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Abstract. In this paper we introduce the Yokonuma–Temperley–Lieb algebra as a quotient
of the Yokonuma–Hecke algebra over a two-sided ideal generated by an expression analogous
to the one of the classical Temperley-Lieb algebra. The main theorem provides necessary and
sufficient conditions for the Markov trace defined on the Yokonuma–Hecke algebra to pass
through to the quotient algebra, leading to a sequence of knot invariants which coincide with
the Jones polynomial.

Introduction

The Temperley–Lieb algebra appeared originally in Statistical Mechanics and is important
in several areas of Mathematics. In his seminal work V.F.R. Jones [15] constructed a Markov
trace on the Temperley–Lieb algebra, leading to unexpected applications in knot theory as well
as to a fertile interaction between Knot theory and Representation theory. In algebraic terms,
the Temperley–Lieb algebra, TLn(u), can be defined as a quotient of the Iwahori–Hecke algebra,
Hn(u).

In [8] the Yokonuma–Hecke algebra Yd,n(u) (defined originally in [20]) has been defined as a
quotient of the modular framed braid group Fd,n, which comprises framed braids with framings
modulo d, over a quadratic relation involving the framing generators ti by means of certain
weighted idempotents ei (Eqs. 13 and 9). Setting d = 1, the algebra Y1,n(u) coincides with the
Iwahori–Hecke algebra. The Yokonuma–Hecke algebras have been studied in [20, 8, 10, 19, 3].
Further, in [8] the second author found an inductive linear basis for the algebras Yd,n(u) and
constructed a unique Markov trace tr on these algebras depending on parameters z, x1, . . . , xd−1.
Aiming to extracting framed link invariants from tr, as it turned out in [11], tr does not re-
scale directly according to the framed braid equivalence, leading to conditions that have to be
imposed on the trace parameters x1, . . . , xd−1; namely, they had to satisfy a non-linear system
of equations, the E–system (Eq. 17). The xi’s being dth roots of unity is one obvious solution.
Gérardin found in [11, Appendix] the full set of solutions of the E–system. Given now any
solution of the E–system, 2–variable isotopy invariants for framed, classical and singular links
were constructed in [11, 12, 13] respectively, which are studied further in [1, 4].

In this paper we define an analogue for the Temperley–Lieb algebra in the context of framed
braids, the Yokonuma–Temperley–Lieb algebra, denoted YTLd,n(u). It is defined as a quotient
of the Yokonuma–Hecke algebra over a two-sided ideal I (Eq. 22 and Definition 2), analogous
to the classical case. For d = 1 the algebra YTL1,n(u) coincides with the Temperley–Lieb
algebra. We first show that I is a principal ideal and we give a presentation for YTLd,n(u) with
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non-invertible generators, analogous to the classical case. We then give a spanning set Σd,n

for YTLd,n(u), in which every word contains the highest and lowest index braiding generator
exactly once. Moreover, any word in Σd,n inherits the splitting property from Yd,n(u), that is,
it splits into the framing part and the braiding part. We also present the results of Chlouveraki
and Pouchin [2] on the dimension and a linear basis for YTLd,n(u). From the spanning set
Σd,n, they extracted an explicit basis for YTLd,n(u) by describing a set of linear dependence
relations among the framing parts for each fixed element in the braiding part. Finally, using the
dimension results of [2] we find a basis for YTL2,3(u) different than the basis in [2].

Next, we seek conditions such that the trace tr, defined on the algebras Yd,n(u), passes to the
quotient algebras YTLd,n(u). More precisely, we compute first the values of the trace parameter
z that annihilate the trace of the generator of the defining ideal I. These are the roots of a
quadratic equation (Eq. 47). Then we annihilate the trace values of all elements of Yd,n(u) that
lie in I and so we end up with a system (Σ) of quadratic equations in z (Eqs. 55a–55c). If
we demand that (Σ) has both roots of Eq. 47 as common solutions, we end up with sufficient
conditions for the trace tr to pass to the quotient algebras YTLd,n(u). In particular, Theorem 5

states that if the trace parameters x1, . . . , xd−1 are dth roots of unity and z = − 1
u+1 or z = −1,

then the trace tr passes to the quotient algebras YTLd,n(u). Note that these two values for z
are precisely the ones that Jones computed such that the Ocneanu trace on the algebras Hn(u)
passes to the quotient algebras TLn(u). If we let (Σ) to have one common solution for z we
obtain the necessary and sufficient conditions for the trace tr to pass through to the quotient
algebras YTLd,n(u). More precisely, Theorem 6 states that the trace tr passes to the quotient
algebras YTLd,n(u) if and only if either the conditions of Theorem 5 are satisfied or the trace

parameters x1, . . . , xd−1 comprise a solution of the E–system (other than dth roots of unity) and
z = −1

2 . This is our main result.

In [1] it is shown that if the trace parameters x1, . . . , xd−1 are dth roots of unity, then the
classical link invariants derived from the algebra Yd,n(u) coincide with the 2–variable Jones or
Homflypt polynomial. Using Theorem 6 and the results in [1], we obtain from the invariants
for framed and classical links in [11, 12] related to Yd,n(u), 1–variable framed and classical link
invariants through the algebras YTLd,n(u), which coincide with the Jones polynomial for the
case of classical links.

The paper is organized as follows: In Section 1 we recall the definition and basic properties of
the classical Temperley–Lieb algebra and the Yokonuma–Hecke algebra. In Section 2 we define
the Yokonuma–Temperley–Lieb algebra as a quotient of the Yokonuma–Hecke algebra over a two-
sided ideal (Eq. 22 and Definition 2), which we show that is a principal ideal (Lemma 4). Finally,
we give a presentation for YTLd,n(u) with non-invertible generators (Proposition 2). In Section 3
we present the spanning set Σd,n for YTLd,n(u) and the results of Chlouveraki and Pouchin [2]
on the dimension (Proposition 5) and a linear basis for YTLd,n(u) (Theorem 3). We also give
a different basis for YTL2,3(u). Section 4 focusses on the necessary and sufficient conditions
under which the trace tr on Yd,n(u) passes to the quotient algebra YTLd,n(u) (Theorems 5 and
6). Finally, in Section 5 we discuss the invariants for classical and framed links that can be
constructed through the trace tr and we recover the Jones polynomial.

Acknowledgments. We would like to thank the Referee for the careful reading and for his/her
valuable remarks.
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1. Preliminaries

1.1. Notations. Throughout the paper we shall fix the following notation. By the term alge-
bra we mean an associative unital (with unity 1) algebra over the field C(u), where u is an
indeterminate. The following two positive integers are also fixed: d and n.

As usual we denote by Bn the braid group on n strands, that is the group generated by the
elementary braids σ1, . . . , σn−1, where σi is the positive crossing between the ith and the (i+1)st

strand, satisfying the well–known braid relations: σiσi+1σi = σi+1σiσi+1 and σiσj = σjσi for
|i− j| > 1.

We denote by Sn the symmetric group on n symbols. Let si be the elementary transposition
(i, i+ 1). We denote by l the length function on Sn with respect to the si’s.

Denote by Cd = 〈t | td = 1〉 the cyclic group of order d. Let ti = (1, . . . , 1, t, 1, . . . , 1) ∈ Cnd ,

where t is in the ith position. Denote also by

Cd,n := Cnd o Sn,

where the action is defined by permutation on the indices of the ti’s, namely: sitj = tsi(j)si.
Finally, we denote by Hn(u) the Iwahori–Hecke algebra, that is, the C(u)–algebra defined by

generators h1, . . . , hn−1 who satisfy the following relations:

hihjhi = hjhihj , |i− j| = 1 (1)

hihj = hjhi, |i− j| > 1 (2)

h2i = (u− 1)hi + u. (3)

1.2. The Temperley–Lieb algebra. Originally, the Temperley–Lieb algebra, over C, was defined
by generators f1, . . . , fn−1 subject to the following relations:

f2i = fi
fifjfi = δfi, |i− j| = 1
fifj = fjfi, |i− j| > 1

where δ is an indeterminate (see [6],[14],[15]). The generators fi are non-invertible. One can
define the Temperley–Lieb algebra with the following invertible generators (see [14]):

hi := (u+ 1)fi − 1 (4)

where u is defined via the equation δ−1 = 2 + u + u−1. The Temperley algebra TLn(u), over
C(u), is then defined by generators h1, . . . , hn−1 (we use the same symbols as for the algebra
Hn(u) by abuse of notation) under the relations (1), (2), (3) and the relations:

1 + hi + hj+hihj + hjhi + hihjhi = 0, |i− j| = 1. (5)

Note that, for n ≥ 3, relations (5) are symmetric with respect to the indices i, j, so relations
(1) follow from relations (5). Relations (1)–(3) are the well–known defining relations of the
Iwahori–Hecke algebra Hn(u). Therefore, TLn(u) can be considered as a quotient of Hn(u) via
the morphism: hi 7→ hi. It turns out that the set:{

(hj1hj1−1 . . . hj1−k1) (hj2hj2−1 . . . hj2−k2) . . .
(
hjphjp−1 . . . hjp−kp

)}
where 1 ≤ j1 < j2 < . . . < jp ≤ n−1 and 1 ≤ j1−k1 < j2−k2 < . . . < jp−kp, furnishes a linear

basis for TLn(u) and the dimension of TLn(u) is equal to the nth Catalan number cn = 1
n+1

(
2n
n

)
[14, 15]. Recall finally, that in [5], Ocneanu constructed a unique Markov trace on the algebras
Hn(u):
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Theorem 1 (Ocneanu). For any ζ ∈ C× there exists a linear trace τ on ∪∞n=1Hn(u) defined
uniquely by the inductive rules:

(1) τ(ab) = τ(ba), a, b ∈ Hn(u)
(2) τ(1) = 1
(3) τ(ahn) = ζ τ(a), a ∈ Hn(u).

Jones’ technique for redefining his Markov trace on the Temperley–Lieb algebra as factoring
of the Ocneanu trace on the Iwahori–Hecke algebra [14] tells us that the least requirement is
that the Ocneanu trace respects the defining relations (5). This requirement implies:

ζ = − 1

u+ 1
or ζ = −1. (6)

The Ocneanu trace is used in [14] for constructing the Homflypt polynomial invariant for classical
knots and links. Then, by specializing ζ to − 1

u+1 the Jones polynomial was recovered.

1.3. The Yokonuma–Hecke algebra. The group Zn is generated by the “framing generators”
t1, . . . , tn, the standard multiplicative generators of Zn. In this notation an element a =
(a1, . . . , an) ∈ Zn in the additive notation can be expressed as ta11 . . . tann . The framed braid
group on n strands is then defined as:

Fn = Zn oBn,

where the action of Bn on Zn is given by the permutation induced by a braid on the indices:

σitj = tsi(j)σi. (7)

In particular, σiti = ti+1σi and ti+1σi = σiti. A word w in Fn has thus the “splitting property”,
that is, it splits into the “framing” part and the “braiding” part:

w = ta11 . . . tann σ,

where σ ∈ Bn and ai ∈ Z. So w is a classical braid with an integer attached to each strand.
Topologically, an element of Zn is identified with a framed identity braid on n strands, while
a classical braid in Bn is viewed as a framed braid with all framings 0. The multiplication in
Fn is defined by placing one braid on top of the other and collecting the total framing of each
strand to the top.

For a fixed positive integer d, the d-modular framed braid group on n strands, Fd,n, is defined
as the quotient of Fn over the modular relations:

tdi = 1 (i = 1, . . . , n). (8)

Thus, Fd,n = Cnd o Bn, where Cnd is isomorphic to (Z/dZ)n but with multiplicative notation.
Framed braids in Fd,n have framings modulo d.

Passing now to the group algebra CFd,n, we have the following elements ei ∈ CCnd (see [10]
for diagrammatic interpretations), which are idempotents (cf. [10, Lemma 4]):

ei :=
1

d

d−1∑
s=0

tsi t
−s
i+1, i = 1, . . . , n− 1. (9)

The definition of the idempotent ei can be generalized in the following ways. For any indices
i, j and any m ∈ Z/dZ, we define the following elements in CCnd :

ei,j :=
1

d

d−1∑
s=0

tsi t
−s
j , (10)
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and:

e
(m)
i :=

1

d

d−1∑
s=0

tm+s
i t−si+1 (11)

(notice that ei = ei,i+1 = e
(0)
i ). The following lemma collects some of the relations among the

ei’s, the ti’s and the σi’s. These relations will be used in the paper.

Remark 1. Later on we are going to use the elements defined above inside the group algebras
C(u)G, where G could be Cd,n or Fd,n. We will use for these elements the same symbols along
the paper, as Cd,n injects in all the algebras we will be considering.

Lemma 1. For the idempotents ei and for 1 ≤ i, j ≤ n− 1 the following relations hold:

tj ei = ei tj
ei+1 σi = σi ei,i+2

ei σj = σj ei, for j 6= i− 1, i+ 1
ej σi σj = σi σj ei for |i− j| = 1
ei ei+1 = ei ei,i+2

ei ei+1 = ei,i+2 ei+1.

Proof. All relations are immediate consequences of the definitions. The proofs for the first four
relations can be found, for example, in [13, Lemma 2.1]. For the sixth relation we have:

ei ei+1 =
1

d

d−1∑
s=0

tsi t
−s
i+1

1

d

d−1∑
m=0

tmi+1t
−m
i+2

=
1

d2

d−1∑
s=0

d−1∑
m=0

tsi t
m−s
i+1 t

−m
i+2. (12)

Setting now k = m− s we obtain:

(12) =
1

d2

d−1∑
s=0

d−1∑
k=0

tsi t
k
i+1t

−k−s
i+2

=
1

d

d−1∑
s=0

tsi t
−s
i+2

1

d

d−1∑
k=0

tki+1t
−k
i+2

= ei,i+2 ei+1.

The fifth relation is proved in an analogous way. �

Remark 2. Concerning the proof of the fifth and sixth relation, the following alternative proof
was suggested by the Referee, which is the underlying explanation for the relations, and so adds
to their understanding: These relations, in the group algebra CCnd , express the fact that in the
group algebra of any abelian group the idempotents associated to two subgroups H, K have
product the idempotent associated to the product of the group. Here in additive terms the fifth
and sixth relations express the fact that the subgroup generated by (1,−1, 0) and (0, 1,−1) in
C3
d is also generated by (1,−1, 0) and (1, 0,−1) or by (0, 1,−1) and (1, 0,−1).

The Yokonuma–Hecke algebra Yd,n(u) is defined [8, 10] as the quotient of the group algebra
C(u)Fd,n over the two-sided ideal generated by the elements:

σ2i − 1− (u− 1) ei − (u− 1) ei σi, for all i. (13)
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Let gi be the image of σi in the quotient of C(u)Fd,n by the two–sided ideal defined above.
The ideal relations imply the following quadratic relations in Yd,n(u):

g2i = 1 + (u− 1) ei + (u− 1) ei gi (14)

(see [10] for diagrammatic interpretations). Since the quadratic relations do not change the
framing we have CCnd ⊂ C(u)Cnd ⊂ Yd,n(u) and we keep the same notation for the elements of
CCnd and for the elements ei in Yd,n(u). The elements gi are invertible:

g−1i = gi + (u−1 − 1) ei + (u−1 − 1) ei gi.

For d = 1 we have tj = 1 and ei = 1, and in this case the quadratic relations (14) become
g2i = (u − 1)gi + u, which are the quadratic relations of the Iwahori–Hecke algebra Hn(u). So,
Y1,n(u) coincides with the algebra Hn(u). Further, there is an obvious epimorphism of the
Yokonuma-Hecke algebra Yd,n(u) onto the algebra Hn(u) via the map:

gi 7→ hi
tj 7→ 1.

(15)

We can alternatively define the algebra Yd,n(u) as a u–deformation of the algebra CCd,n. More
precisely, let w ∈ Sn and let w = si1 . . . sik be a reduced expression for w. Since the generators
gi of Yd,n(u) satisfy the same braiding relations as the generators of Sn, then together with the
well–known theorem of Matsumoto [16], it follows that gw := gi1 . . . gik is well–defined. Notice
that the defining generators gi correspond to gsi . We have the following multiplication rule in
Yd,n(u) (see Proposition 2.4[7]):

gsigw =

{
gsiw for l(siw) > l(w)
gsiw + (u− 1)eigsiw + (u− 1)eigw for l(siw) < l(w)

(16)

We also write gti for ti and we define: gtiw = gtigw = tigw. Using the above multiplication
formulas the second author proved in [8] that Yd,n(u) has the following standard basis:

{ta11 · · · t
an
n gw | ai ∈ Z/dZ, w ∈ Sn}.

Further, we have an inductive basis of the Yokonuma–Hecke algebra, which is used in the
proof of the main theorem.

Proposition 1 ([8] Proposition 8). Every element in Yd,n+1(u) is a unique linear combination
of words, each of one of the following types:

mngngn−1 . . . git
k
i or mnt

k
n+1,

where k ∈ Z/dZ and mn is a word in the inductive basis of Yd,n(u).

1.4. A Markov trace on Yd,n(u). We will write the elements of the additive group Z/dZ by
{0, 1, . . . , d− 1}.

Using the above basis, the second author constructed in [8] a linear Markov trace on the
algebra Yd,n(u). Namely:

Theorem 2 ([8] Theorem 12). For indeterminates z, xs, where s ∈ Z/dZ, s 6= 0, there exists a
unique linear Markov trace tr:

tr : ∪∞n=1Yd,n(u) −→ C(u)[z, x1, . . . , xd−1]

defined inductively on n by the following rules:

tr(ab) = tr(ba)
tr(1) = 1

tr(a gn) = z tr(a) (Markov property)
tr(a tsn+1) = xs tr(a) (s = 1, . . . , d− 1)
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where a, b ∈ Yd,n(u).

Note that the first rule of tr is the standard rule for a trace function, the second rule is the
basis of the inductive computation of tr, the third rule is the so–called Markov property that
takes care of the highest index braiding generator in the word, whilst the fourth rule takes care
of the highest index framing generator in the word.

Remark 3. We will define x0 := 1, so xs is defined for all s ∈ Z/dZ.

By direct computation, tr(ei) takes the same value for all i. We denote this value by E, that
is:

E := tr(ei) =
1

d

d−1∑
s=0

xsxd−s.

For all m ∈ Z/dZ, we also define:

E(m) := tr(e
(m)
i ) =

1

d

d−1∑
s=0

xm+sxd−s,

where e
(m)
i is defined in (11). Notice that E = E(0).

1.5. The E–system. In order for an invariant for framed knots and links to be constructed
through the trace on Yd,n(u), tr should be normalized and rescaled properly. In [11] it is proved
that such a rescaling is possible if the trace parameters xi are solutions of a non-linear system
of equations, the so–called E–system.

Definition 1. We say that the set of complex numbers {x0, x1, . . . , xd−1} (where x0 is always
equal to 1) satisfies the E–condition if x1, . . . , xd−1 satisfy the following E–system of non–linear
equations in C:

E(m) = xmE (1 ≤ m ≤ d− 1)

or equivalently:
d−1∑
s=0

xm+sxd−s = xm

d−1∑
s=0

xsxd−s (1 ≤ m ≤ d− 1). (17)

In [11, Appendix] it is proved that the solutions of the E–system are the functions xS from
Z/dZ to C, parametrized by the non–empty subsets S of the cyclic group Z/dZ as follows:

xS =
1

|S|
∑
s∈S

exps, (18)

where exps(k) = exp(2iπsk/d) and exp denotes the usual complex exponential function.

Remark 4. It is worth noting that the solution of the E–system can be interpreted as a gen-
eralization of the Ramanujan’s sum. Indeed, by taking the subset P of Z/dZ consisting of
the numbers coprimes to d, then the solution parametrized by P is, up to the factor |P |, the
Ramanujan’s sum cd(k) (see [17]).

Equivalently, xS can be seen as an element in CCd, namely:

xS =
d−1∑
k=0

xkt
k, (19)
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where xk = 1
|S|
∑

s∈S χs(t
k), k = 0, . . . , d− 1, and χs is the character of Cd defined as χs : tm 7→

exps(m). So, the coefficient xk of tk in (19) corresponds to xS (k) in (18).
Recall now that on the group algebra CG of the finite group G, we have two products, one of

them is the multiplication coordinate-wise, also called the multiplications of the values, which
is defined as: ∑

g∈G
agg

 ·
∑
g∈G

bgg

 =
∑
g∈G

agbg g.

and the other product is the convolution product:∑
g∈G

agg

 ∗(∑
h∈G

bhh

)
=
∑
g∈G

∑
h∈G

agbhgh =
∑
g∈G

(∑
h∈G

ahbgh−1

)
g. (20)

Lemma 2. In CCd consider the element x =
∑

0≤k≤d−1 xkt
k. We have:

x ∗ x = d
∑

0≤`≤d−1
E(`)t`

and
x ∗ x ∗ x = d2

∑
0≤`≤d−1

tr(e`1e2)t
`.

Proof. The expression for x ∗ x follows immediately by direct computation. For the second
expression we have that:

x ∗ x ∗ x = d
∑

0≤`≤d−1
E(`)t` ∗ x

= d
∑

0≤`≤d−1
E(`)t` ∗

∑
0≤k≤d−1

xkt
k

= d
∑

0≤`,k≤d−1
E(`)xkt

`+k

= d
∑

0≤`,k,s≤d−1
xsx`−sxkt

`+k

= d
∑

0≤`,k,s≤d−1
xsx`−s−kxkt

`

= d2tr(e
(`)
1 e2).

�

For each a ∈ Z/dZ the character χa defines, with respect to the convolution product, an
element ia of CCd,

ia :=
∑

0≤s≤d−1
χa(s)t

s.

One can verify that

ia ∗ ib =

{
d ia if a = b

0 if a 6= b

that is, ia/d is an idempotent element. On the other hand, regarding δa := ta as element in
CCd, it is clear that,
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δa · δb =

{
δa if a = b

0 if a 6= b
.

The connection between the two products on CCd is given by the Fourier transform. More
precisely, the Fourier transform is the linear automorphism on CCd, defined as:

x :=
∑

0≤s≤d−1
ast

s 7→ x̂ := (x ∗ is)(0) =
∑

0≤`≤d−1
a` χs(d− `). (21)

With the above notation we have:

Lemma 3. The following hold in CCd:

x̂ ∗ y = x̂ · ŷ, x̂ · y = d−1x̂ ∗ ŷ,

δ̂a = i−a, îa = d δa, ̂̂x (u) = d x(−u).

Proof. The proof is just a straightforward computation (see [18]). �

2. The Yokonuma–Temperley–Lieb Algebra

In this section we define a framed analogue of the Temperley–Lieb algebra, as quotient of
Yd,n(u) over an appropriate two–sided ideal.

2.1. The Yokonuma–Temperley–Lieb algebra. The Hecke algebra, Hn(u), can be considered as
a u–deformation of the CSn, while TLn(u) is the quotient of Hn(u) over the two–sided ideal:

J = 〈hi,j ; for all i, j such that |i− j| = 1〉,
where hi,j ’s are the Steinberg elements

hi,j := 1 + hi + hj + hihj + hjhi + hihjhi.

It is well–known that that J is a principal ideal. Indeed,

J = 〈h1,2〉.

Notice now that hi,j can be rewritten as

hi,j =
∑

α∈Wi,j

hα,

where Wi,j is the subgroup of Sn generated by si and sj (clearly, Wi,j is isomorphic to S3). On
the other hand Yd,n(u) can be regarded as a u–deformation of C[Cnd oSn]. The symmetric group
Sn can be considered as a subgroup of Cnd o Sn, therefore the subgroups Wi,j of Sn can be also
regarded as subgroups of Cnd o Sn. Thus, in analogy to the ideal J of Hn(u), it is natural to
consider the following ideal I of Yd,n(u):

I := 〈gi,j ; for all i, j such that |i− j| = 1〉, (22)

where

gi,j :=
∑

α∈Wi,j

gα = 1 + gi + gj + gigj + gjgi + gigjgi. (23)

We then define:
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Definition 2. For n ≥ 3, the Yokonuma–Temperley–Lieb algebra, YTLd,n(u), is defined as the
quotient:

YTLd,n(u) =
Yd,n(u)

I
.

In other words, the algebra YTLd,n(u) can be presented by the generators g1, . . . , gn−1, t1, . . . , tn
(by some abuse of notation), subject to the following relations:

gigj = gjgi, |i− j| > 1 (24)

gi+1gigi+1 = gigi+1gi (25)

g2i = 1 + (u− 1)ei + (u− 1)eigi (26)

titj = tjti, for all i, j (27)

tdi = 1, for all i (28)

giti = ti+1gi (29)

giti+1 = tigi (30)

gitj = tjgi, for j 6= i, and j 6= i+ 1 (31)

1 + gi + gi+1+gigi+1 + gi+1gi + gigi+1gi = 0. (32)

We shall refer to relations (32) as the Steinberg relations.

Notice that relations (24)–(31) are the defining relations of the algebra Yd,n(u). Note also
that relations (32) are symmetric with respect to the indices i, i+ 1, that is:

gigi+1gi = −1− gi − gi+1 − gigi+1 − gi+1gi = gi+1gigi+1,

so for n ≥ 3 relations (25) follow from relations (32).

Remark 5. In analogy to the Yokonuma–Hecke algebra, YTL1,n(u) coincides with the algebra
TLn(u). Further, the epimorphism (15) induces an epimorphism of the Yokonuma–Temperley–
Lieb algebra YTLd,n(u) onto the algebra TLn(u). Also, by relations (29) and (30), any monomial
in YTLd,n(u) inherits the splitting property of Yd,n(u), that is, it can be written in the form:

w = ta11 . . . tann gi1 . . . gik , (33)

where: a1, . . . , an ∈ Z/dZ.

We now have the following:

Lemma 4. The ideal I is principal.

Proof. Observe first that (σ1, σ2) is conjugate to (σi, σi+1) in the braid group, hence also in Fd,n.
This proves that the pairs (g1, g2) and (gi, gi+1) are conjugate in Yd,n. This conjugation maps
the elements g1,2 to gi,i+1, and the ideal I is principal. �

Corollary 1. YTLd,n(u) is the C(u)–algebra generated by the set {t1, . . . , tn, g1, . . . , gn−1} whose
elements are subject to the defining relations of Yd,n(u) and the relation:

g1,2 = 0.

Proof. The result follows using the multiplication rule defined on Yd,n(u) and Lemma 4. �
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2.2. A presentation with non-invertible generators. In analogy with Eq. 4 one can obtain a
presentation for the Yokonuma–Temperley–Lieb algebra YTLd,n(u) with the non-invertible gen-
erators:

li :=
1

u+ 1
(gi + 1). (34)

In particular we have:

Proposition 2. YTLd,n(u) can be viewed as the algebra generated by the elements: l1, . . . , ln−1,
t1, . . . , tn, which satisfy the following defining relations:

tdi = 1, for all i (35)

titj = tjti, for all i, j (36)

litj = tjli, for j 6= i and j 6= i+ 1 (37)

liti = ti+1li +
1

u+ 1
(ti − ti+1) (38)

liti+1 = tili +
1

u+ 1
(ti+1 − ti) (39)

l2i =
(u− 1)ei + 2

u+ 1
li (40)

lilj = ljli, |i− j| > 1 (41)

lili+1li =
(u− 1)ei + 1

(u+ 1)2
li. (42)

Proof. Obviously, YTLd,n(u) is generated by the li’s and the ti’s. It is a straightforward compu-
tation to see that relations (24)–(32) are transformed into the relations (35) – (42). However, we
shall show here how it works for the quadratic relations (35) and the Steinberg relations (42).
From Eq. 34 we obtain:

gi = (u+ 1)li − 1. (43)

We then have that:
g2i = ((u+ 1)li − 1)2 ,

which is equivalent to:

1 + (u− 1)ei + (u− 1)eigi = (u+ 1)2l2i − 2(u+ 1)li + 1

or equivalently:
(u− 1)(u+ 1)eili = (u+ 1)2l2i − 2(u+ 1)li,

which leads to:

l2i =
(u− 1)ei + 2

u+ 1
li.

which is Eq. 40.

For the Steinberg elements gi,i+1 using Eq. 43 we have that:

gi,i+1 = 1 + gi + gi+1 + gigi+1 + gi+1gi + gigi+1gi = (u+ 1)3lili+1li − (u+ 1)2l2i + (u+ 1)li.

From the Steinberg relation (32) and Eq. 40 we have that:

(u+ 1)2lili+1li = ((u− 1)ei + 1)li

or equivalently:

lili+1li =
(u− 1)ei + 1

(u+ 1)2
li,
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which is Eq. 42. �

Remark 6. Setting d = 1 in the presentation of YTLd,n(u) in Proposition 2, one obtains the
classical presentation of TLn(u), as discussed in Subsection 1.2. Note also that, substituting in
the braid relations (25) the gi’s using Eq. 43, we obtain the equation:

lili+1li −
(u− 1)ei + 1

(u+ 1)2
li = li+1lili+1 −

(u− 1)ei+1 + 1

(u+ 1)2
li+1

which becomes superfluous, since it can be deduced from Eq. 42. This was to be expected, since
the braid relations (25) were also superfluous.

3. A spanning set for The Yokonuma–Temperley–Lieb algebra

In this section we discuss various properties of a word in YTLd,n(u) and we present a spanning
set for YTLd,n(u) (Proposition 4). Furthermore, using the work of Chlouveraki and Pouchin in
[2] we give their formula for the dimension of YTLd,n(u) (Proposition 5) and we also discuss their
results on the linear basis of YTLd,n(u) (Theorem 3). We finally compute a basis for YTL2,3(u)
different than the one of Theorem 3.

3.1. We have the following definition:

Definition 3. In YTLd,n(u) we define a length function l as follows:

l(tagi1 . . . gik) := l′(si1 . . . sik),

where l′ is the usual length function of Sn and ta := ta11 . . . tann ∈ Cnd . A word in YTLd,n(u) of the
form (33) shall be called reduced if it is of minimal length with respect to relations (24)–(26),
(32).

Proposition 3. Each word in YTLd,n(u) can be written as a sum of monomials, where the
highest and lowest index of the generators gi appear at most once.

Proof. An analogous statement holds for the Yokonuma–Hecke algebra Yd,n(u) where only the
highest index generators appear at most once [8, Proposition 8]. Since YTLd,n(u) is a quotient
of the algebra Yd,n(u) the highest index property passes through to the algebra YTLd,n(u). The
idea is analogous to [15, Lemma 4.1.2] and it is based on induction on the length of reduced
words, use of the braid relations and reduction of length using the quadratic relations (26). For
the case of the lowest index generator gi we use induction on the length of reduced words and
the Steinberg relations (32). Indeed, clearly, the statement is true for all words of length ≤ 2,
namely for words of the form ta, tagi t

agigj .

For words of length 3: Let w = tagigjgi. Applying relation (25) will violate the highest index
property of the word, so we must use the Steinberg relation (32) and we have:

tagigjgi = −ta − tagi − tagj − tagigj − tagjgi.

We assume that the lowest index generator appears at most once in all reduced words of length
≤ r, and we will show the lowest index property for words of length r+1. Let w = tagi1gi2 . . . gir+1

be a reduced word in YTLd,n(u) of length r + 1, and l = min {i1, . . . , ir+1}.
Let first w = taw1glw2glw3, and suppose that w2 does not contain gl. We then have two

possibilities:



THE YOKONUMA–TEMPERLEY–LIEB ALGEBRA 13

If w2 does not contain gl+1, then gl commutes with all the gi’s in w2 and since there cannot
be a g2l term in a reduced word, we have, using the induction hypothesis, that:

w = taw1glw2glw3

= taw1w2g
2
l w3

= taw1w2(1 + (u− 1)el + (u− 1)elgl))w3

= taw1w2w3 + (u− 1)taw1w2elw3 + (u− 1)taw1w2elglw3.

If w2 does contain gl+1, then, by the induction hypothesis w2 has the form w2 = v1gl+1v2, where
in v1, v2 the lowest index generator is at least gl+2, hence:

w = taw1glv1gl+1v2glw3

= taw1v1glgl+1glv2w3.

Applying now the Steinberg relation (32) we obtain a linear combination of words each of which
has at least one less occurrence of gl than w. Note also that in the case where l+ 1 = m, where
m = max {i1, . . . ir+1}, no contradiction is caused with respect to the highest index generator.
Continuing in the same manner for all possible pairs of gl in the word we reduce to having gl at
most once. �

The following proposition gives us a precise spanning set for YTLd,n(u).

Proposition 4. The following set of reduced words

Σd,n =
{
ta(gi1gi1−1 . . . gi1−k1)(gi2gi2−1 . . . gi2−k2) . . . (gipgip−1 . . . gip−kp)

}
, (44)

where

ta = ta11 . . . tann ∈ Cnd , 1 ≤ i1 < i2 < . . . < ip ≤ n− 1,

and

1 ≤ i1 − k1 < i2 − k2 < . . . < ip − kp,

spans the Yokonuma–Temperley–Lieb algebra YTLd,n(u). The highest index generator is gip of
the rightmost cycle and the lowest index generator is gi1−k1 of the leftmost cycle of a word in
Σd,n.

Proof. Through relations (24)–(32) any word is a linear combination of words of the form
tagi1 . . . gik , where gi1 . . . gik is the image of a fully commutative word of the braid monoid
and it is well–known that a fully commutative word can be written under the form given in the
statement of Proposition 4. �

M. Chlouveraki and G. Pouchin in [2] have computed the dimension for YTLd,n(u) by using
the representation theory of the Yokonuma–Hecke algebra [3]. More precisely, they proved the
following result.

Proposition 5. The dimension of the Yokonuma–Temperley–Lieb algebra is:

dim(YTLd,n(u)) = dcn +
d(d− 1)

2

n−1∑
k=1

(
n

k

)2

,

where cn is the nth Catalan number.
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3.2. To find an explicit basis for YTLd,n(u) Chlouveraki and Pouchin in [2] worked as follows:
As mentioned in Remark 5 each word in YTLd,n(u) inherits the splitting property. For each
fixed element in the braiding part, they described a set of linear dependence relations among
the framing parts (see [2, Proposition 5]). Using these relations they extracted from Σd,n (recall
Eq. 44) a smaller spanning set for YTLd,n(u) and showed that the cardinality of this smaller
spanning set is equal to the dimension of the algebra. Thus, it is a basis for YTLd,n(u). Before
describing this basis, we will need the following notations:

Let i and k be the following p–tuples:

i = (i1, . . . , ip) and k = (k1, . . . , kp)

and let I be the set of pairs (i, k) such that:

1 ≤ i1 < . . . < ip ≤ n− 1 and 1 ≤ i1 − k1 < . . . < ip − kp ≤ n− 1.

We also denote by gi,k the element:

gi,k := (gi1gi1−1 . . . gi1−k1)(gi2gi2−1 . . . gi2−k2) . . . (gipgip−1 . . . gip−kp).

Under these notations the set Σd,n can be written as:

Σd,n = {tr11 . . . trnn gi,k | r1, . . . , rn ∈ Z/dZ, (i, k) ∈ I}.

The degree of a word w = tr11 . . . trnn gi1 . . . gim in Yd,n(u), denoted deg(w), is defined to be the
integer m. Set:

Σ<w
d,n := {s ∈ Σd,n | deg(s) < deg(w)}.

The group algebra C(u)(Z/dZ)n is isomorphic to the subalgebra of Yd,n(u) that is generated
by the ti’s but not to the subalgebra of YTLd,n(u) that is generated by the ti’s. Further, the
group algebra C(u)(Z/dZ)n has a natural basis, Bd,n, given by monomials in t1, . . . , tn, the
following:

Bd,n = {tr11 . . . trnn | r1, . . . , rn ∈ Z/dZ}.

Thus, any element of C(u)(Z/dZ)n can be written as a linear combination of words in Bd,n.
There is a surjective algebra morphism from C(u)(Z/dZ)n to the subalgebra of YTLd,n(u) that
is generated by the ti’s. We will denote the image of an element b ∈ Bd,n into the subalgebra of
YTLd,n(u) that is generated by the ti’s with b̄. We then have the following theorem:

Theorem 3 (Chlouveraki and Pouchin). The following set is a linear basis for YTLd,n(u):

Sd,n = {b̄i,k gi,k | (i, k) ∈ I, bi,k ∈ Bd,n(gi,k)},

where Bd,n(gi,k) is a proper subset of Bd,n such that:

{bi,k +R(gi,k) | bi,k ∈ Bd,n(gi,k)}

is a basis of the quotient space C(u)(Z/dZ)n/R(gi,k), and where R(w) is the following ideal of
C(u)(Z/dZ)n:

R(w) = {m ∈ C(u)(Z/dZ)n | m̄w ∈ SpanC(u)(Σ
<w
d,n )}.
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3.3. For d = 2, n = 3 it is relatively easy to find a basis for YTL2,3(u). We will give here a
basis different than the one in Theorem 3. Before continuing, we need the following technical
lemma that will be also used in the proof of Theorem 5.

Lemma 5 (cf. Lemma 7.5 [9]). For the element g1,2 we have in Yd,n(u) (recall (10) for e1,3):

(1) g1g1,2 = [1 + (u− 1)e1]g1,2
(2) g2g1,2 = [1 + (u− 1)e2]g1,2
(3) g1g2g1,2 = [1 + (u− 1)e1 + (u− 1)e1,3 + (u− 1)2e1e2]g1,2
(4) g2g1g1,2 = [1 + (u− 1) e2 + (u− 1)e1,3 + (u− 1)2e1e2]g1,2
(5) g1g2g1g1,2 = [1 + (u− 1)(e1 + e2 + e1,3) + (u− 1)2(u+ 2) e1e2]g1,2.

Analogous relations hold for multiplications with g1,2 from the right.

Proof. The idea is to expand the left–hand side of each equation and then use Eq. 26 and
Lemma 1. We will demonstrate the proof for the indicative cases (1) and (4). The other cases
are proved similarly.

For case (1) we have:

g1g1,2 = g1 + g21 + g1g2 + g21g2 + g1g2g1 + g21g2g1

= g1 + [1 + (u− 1)e1 + (u− 1)e1g1]

+g1g2 + [g2 + (u− 1)e1g2 + (u− 1)e1g1g2]

+g1g2g1 + [g2g1 + (u− 1)e1g2g1 + (u− 1)e1g1g2g1]

= g1,2 + (u− 1)e1g1,2.

Case (2) is completely analogous. In order to prove case (4) we will use cases (1) and (2):

g2g1g1,2 = g2 (g1,2 + (u− 1)e1g1,2)

= g2g1,2 + (u− 1)e1,3g2g1,2 (Lemma 1)

= [1 + (u− 1)e2] g1,2 + (u− 1)e1,3(1 + (u− 1)e2)g1,2

= [1 + (u− 1)e2] g1,2 + (u− 1)e1,3g1,2 + (u− 1)2e1,3e2g1,2 (Lemma 1)

=
[
1 + (u− 1) e2 + (u− 1)e1,3 + (u− 1)2e1e2

]
g1,2.

�

To find a basis for YTL2,3(u): From Proposition 5 we have that dim(YTL2,3(u)) = 28. On
the other hand the spanning set Σ2,3 of YTL2,3(u) of Proposition 4, contains 40 elements. Thus,
any relation w1g1,2w2 = 0 with w1, w2 ∈ Y2,3(u) reduces to having w1, w2 ∈ Σ2,3. Further, if
any of w1, w2 contain braiding generators, then by Lemma 5 (after pushing framing generators
in w2 to the right) these get absorbed by g1,2. Thus, and since ei,j = 1

2(1 + titj) for d = 2, it
suffices to consider the following system of equations:

w1 g1,2w2 = 0 w1, w2 ∈ T , (45)

where T := {1, t1, t2, t3, t1t2, t1t3, t2t3, t1t2t3}. For finding all possible linear dependencies in
Σ2,3, after substituting g1g2g1 with −1− g1− g2− g1g2− g2g1 in Eq. 45, note that some of these
64 equations reduce trivially to g1,2 = 0; for example if w2 = 1 or w2 = t1t2t3 (since it commutes
with g1,2). From the rest one can extract 12 linearly independent equations which, applied on
the spanning set Σ2,3 lead to the following basis for YTL2,3(u):

S2,3 = {1, t1, t2, t1t2, g1, t2g1, t3g1, t2t3g1, g2, t1g2, t3g2, t1t3g2,
g1g2, t1g1g2, t2g1g2, t3g1g2, t1t2g1g2, t1t3g1g2, t2t3g1g2, t1t2t3g1g2,

g2g1, t1g2g1, t2g2g1, t3g2g1, t1t2g2g1, t1t3g2g1, t2t3g2g1, t1t2t3g2g1} .



16 D. GOUNDAROULIS, J. JUYUMAYA, A. KONTOGEORGIS, AND S. LAMBROPOULOU

4. A Markov trace on YTLd,n(u)

The following section is dedicated to finding the necessary and sufficient conditions for the
trace tr on Yd,n(u) to pass to the quotient algebra YTLd,n(u), in analogy to the classical case,
where the Ocneanu trace on Hn(u) passes to the quotient algebra TLn(u) if the trace parameter
ζ satisfies some appropriate condition.

4.1. It is clear by now that if the trace pass to YTLd,n(u) then it has to kill the generator g1,2
of the principal ideal through which the quotient is defined, that is, if tr(g1,2) = 0. We have the
following lemma:

Lemma 6. For the element g1,2 we have:

tr(g1,2) = (u+ 1)z2 + ((u− 1)E + 3) z + 1. (46)

Proof. The proof is a straightforward computation:

tr(g1,2) = tr(1) + tr(g1) + tr(g2) + tr(g1g2) + tr(g2g1) + tr(g1g2g1)

= 1 + 2z + 2z2 + z + (u− 1)Ez + (u− 1)z2

= (u+ 1)z2 + ((u− 1)E + 3) z + 1.

�

Lemma 6, together with the equation:

tr(g1,2) = (u+ 1)z2 + ((u− 1)E + 3) z + 1 = 0 (47)

gives us the following values for z:

z± =
− ((u− 1)E + 3)±

√
((u− 1)E + 3)2 − 4(u+ 1)

2(u+ 1)
. (48)

We shall do now the analysis for all conditions that must be imposed on the trace parameters
in order that tr passes to YTLd,n(u). Having in mind Corollary 1 and the linearity of tr, it
follows that tr passes to YTLd,n(u) if and only if the following equations are satisfied for all
monomials m in the inductive basis of Yd,n(u). Namely:

tr(m g1,2) = 0. (49)

Let us first consider the case n = 3. By Proposition 1 the elements in the inductive basis of
Yd,3(u) are of the following forms:

ta1t
b
2t
c
3, ta1g1t

b
1t
c
3, ta1t

b
2g2g1t

c
1, ta1t

b
2g2t

c
2, ta1g1t

b
1g2t

c
2, ta1g1t

b
1g2g1t

c
1. (50)

Using Lemma 5 and the following notations:

Za,b,c := (u+ 1)z2xa+b+c +
(

(u− 1)E(a+b+c) + xaxb+c + xbxa+c + xcxa+b

)
z + xaxbxc

Va,b+c := (u+ 1)z2xa+b+c + (u+ 1)zE(a+b+c) + z xaxb+c + xaE
(b+c)

Wa,b,c := (u+ 1)z2xa+b+c + (u+ 2)zE(a+b+c) + tr
(
e
(a+b+c)
1 e2

)
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we obtain by (49) and (50) the following equations, for any a, b, c ∈ Z/dZ:

Za,b,c = 0 (51)

Za,b,c + (u− 1)Va,b+c = 0 (52)

Za,b,c + (u− 1) [Va,b+c + Vb,a+c +Wa,b,c] = 0 (53)

Za,b,c + (u− 1) [Va,b+c + Vb,a+c + Vc,a+b +Wa,b,c] = 0. (54)

Eqs. 51–54 reduce to the following system of equations of z, x1, . . . , xd−1 for any a, b, c ∈ Z/dZ:

(Σ)


Za,b,c = 0 (55a)

Va,b+c = 0 (55b)

Wa,b,c = 0 (55c)

Notice that for a = b = c = 0 Eq. 51 becomes Eq. 47. If, now, we require both solutions in (48)
to participate in the solutions of (Σ), then we are led to sufficient conditions for tr to pass to
YTL2,3(u) (Section 4.2). If not, then we are led to necessary and sufficient conditions for tr to
pass to YTL2,3(u) (Section 4.3).

4.2. Suppose that both solutions for z from Eq. 48 participate in the solution set of (Σ). Then
we have the following proposition:

Proposition 6. If the trace parameters xi are dth roots of unity, xi = xi1, 1 ≤ i ≤ d − 1, and
z = − 1

u+1 or z = −1, then the trace tr defined on Yd,3(u) passes to the quotient YTLd,3(u).

Proof. Suppose that (Σ) has both solutions for z from Eq. 48. This implies that there exist λ
in C(u)(x1, . . . , xd−1) such that:

Za,b,c = λZ0,0,0.

From this we deduce that:

λ = xa+b+c

xaxb+c + xbxa+c + xcxa+b = 3xa+b+c

E(a+b+c) = xa+b+cE (56)

xa+b+c = xaxbxc. (57)

Since this holds for any a, b, c ∈ Z/dZ, by taking b = c = 0 in Eq. 56 we have that:

E(a) = xaE, (58)

which is exactly the E–system. Moreover, by taking c = 0 in Eq. 57 we obtain:

xaxb = xa+b. (59)

This implies that the xi’s are dth roots of unity, xi = xi1, 1 ≤ i ≤ d − 1, which is equivalent to
E = 1 [11, Appendix]. In order to conclude the proof it is enough to verify that these conditions
for the xi’s satisfy also (55b)–(55c) of (Σ). Since the xi’s are solutions of the E–system, Eq. 55b

is immediately satisfied. We will finally check Eq. 55c. One has that tr(e
(m)
1 e2) = xmE

2 as soon
as the xm satisfy the E–system. Once this has been noticed, Eq. 55c becomes the same as Eq. 51
using Eq. 57 and E = 1. �

Using induction on n one can prove the general case of the sufficient conditions for tr to pass
to YTLd,n(u). Indeed we have:

Theorem 4. If the trace passes to the quotient for n = 3 then it passes for all n > 3.
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Proof. By induction on n. In Proposition 6 we proved the case where n = 3. Assume that the
statement holds for all YTLd,k(u), where k ≤ n, that is:

tr(ak g1,2) = 0

for all ak ∈ Yd,k(u), k ≤ n. We will show the statement for k = n+ 1. It suffices to prove that
the trace vanishes on any element in the form an+1g1,2, where an+1 belongs to the inductive
basis of Yd,n+1(u) (recall Proposition 1), given the conditions of the Theorem. Namely:

tr(an+1 g1,2) = 0.

Since an+1 is in the inductive basis of Yd,n+1(u), it is of one of the following forms:

an+1 = angn . . . git
k
i or an+1 = ant

k
n+1,

where an is in the inductive basis of Yd,n(u). For the first case we have:

tr(an+1 g1,2) = tr(angn . . . git
k
i g1,2) = z tr(angn−1 . . . git

k
i g1,2)

and the result follows by induction. Therefore the statement is proved. The second case is
proved similarly. Hence, the proof is concluded. �

The above theorem allows us to state the following:

Theorem 5. For n ≥ 3, if the trace parameters xi are dth roots of unity, xi = xi1, 1 ≤ i ≤ d−1,
and z = − 1

u+1 or z = −1, then the trace tr defined on Yd,n(u) passes to the quotient YTLd,n(u).

4.3. Moving on, we investigate the possibility of the xi’s being solutions of the E–system, other
than dth roots of unity. We have the following:

Theorem 6. The trace tr passes to the quotient YTLd,n(u) if and only if the xi’s are solutions
of the E–system and one of the two cases holds:

(i) For some 0 ≤ m1 ≤ d− 1 the x`’s are expressed as:

x` = expm1
(`) (0 ≤ ` ≤ d− 1).

In this case the x`’s are dth roots of unity and z = − 1
u+1 or z = −1.

(ii) For some 0 ≤ m1,m2 ≤ d− 1, where m1 6= m2, the x`’s are expressed as:

x` =
1

2

(
expm1

(`) + expm2
(`)
)

(0 ≤ ` ≤ d− 1).

In this case we have z = −1
2 .

Note that case (i) captures Theorem 5.

Proof. Observe that the x`’s expressed by (i) are indeed solutions of the system (Σ). We will

now assume that our solutions are not of this form. This implies that xa 6= E(a) for some
0 ≤ a ≤ d− 1, and this will allow us to have this quantity in denominators later.

We will use induction on n. We will first prove the case n = 3. Suppose that trace tr passes
to the quotient algebra YTLd,3(u). This means that (Σ) has solutions for z any one of those in
Eq. 48, for any a, b, c ∈ Z/dZ. Subtracting Eq. 55a from Eq. 55b we obtain:(

xaxb+c + xbxa+c − 2E(a+b+c)
)
z = −

(
xaxbxc − xcE(a+b)

)
. (60)

For b = c = 0 in Eq. 60 and since we assumed that there is an a such that xa 6= E(a) we
obtain: z = −1

2 . On the other hand, subtracting Eqs. 55a and 55b from Eq. 55c we have:
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(
3E(a+b+c) − xaxb+c − 2xcxa+b

)
z = xaxbxc + xcE

(a+b) − xbE(a+c) − tr(e
(a+b+c)
1 e2). (61)

For the value a such that xa − E(a) 6= 0 and for b = c = 0 in Eq. 61 we obtain:

z = −xa − tr(e
(a)
1 e2)

3(xa − E(a))
. (62)

By combining Eqs. 60 and 62 we have that:

1

2
=
xa − tr(e

(a)
1 e2)

3(xa − E(a))

or equivalently:

3(xa − E(a)) = 2(xa − tr(e
(a)
1 e2)).

Using Lemma 2, this is equivalent to:

3x− 3

d
x ∗ x = 2x− 2

d2
x ∗ x ∗ x.

By taking the Fourier transform (see Lemma 3) we arrive at:

2

d2
x̂3 − 3

d
x̂2 + x̂ = 0.

Assuming that x̂ =
∑

0≤`≤d−1 y`t
` we have the following expression for the coefficients y` in the

expansion of x̂:

y`

(
2

d2
y2` −

3

d
y` + 1

)
= 0.

So either y` = 0 or y` = d or y` = 1
2d. So, if we take a partition of the set {` : 0 ≤ ` ≤ d−1} into

sets S0, S1, S 1
2

such that y` takes the value i · d on Si (i = 0, 1, 12), we then have from Lemma 3

that:

x =
∑
m∈S1

i−m +
1

2

∑
m∈S 1

2

i−m.

From x0 = 1 we obtain the conditions:

1 = x(0) = |S1|+
1

2
|S 1

2
|.

This means that either S1 has only one element and S 1
2

= ∅ or S1 = ∅ and S 1
2

has two

elements. The first case corresponds to the case (i) where the x`’s are dth roots of unity. In the
second case, if S 1

2
= {m1,m2} we obtain the following solution of the E–system:

x` =
1

2

(
expm1

(`) + expm2
(`)
)
, (0 ≤ ` ≤ d− 1), (63)

which corresponds to z = −1
2 .

We can now check that these solutions satisfy the system (Σ). Since z = −1
2 and E = 1

2 , we

have that E(`) = x`/2, Vc,a+b = Wa,b,c = 0, and that Za,b,c by Eq. 57 reduces to:

(u+ 1)z2xa+b+c +
(

(u− 1)E(a+b+c) + xaxb+c + xbxa+c + xcxa+b

)
z + xaxbxc

= xaxb+c + xbxa+c + xcxa+b = xa+b+c + 2xaxbxc,

which can be checked to be satisfied by the values x` given in Eq. (63).
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The rest of the proof (the induction on n) follows by Theorem 4. �

Remark 7. The values for the trace parameter z in Theorems 5 and 6, z = − 1
u+1 and z = −1,

in order that tr on Yd,n(u) passes to the quotient YTLd,n(u) are the same as the values in Eq. 6
for ζ of the Ocneanu trace τ on Hn(u), so that τ passes to the quotient TLn(u) (recall Section
1.2).

5. The Jones polynomial from YTLd,n(u)

The 2–variable Jones or Homflypt polynomial, P (λ, u), can be defined through the Ocneanu
trace on Hn(u) [14]. Indeed, for any braid α ∈ ∪∞Bn we have:

P (λ, u)(α̂) =

(
− 1− λu√

λ(1− u)

)n−1 (√
λ
)ε(α)

τ(π(α)),

where: λ = 1−u+ζ
uζ , π is the natural epimorphism of C(u)Bn onto Hn(u) that sends the braid

generator σi to hi and ε(α) is the algebraic sum of the exponents of the σi’s in α. Further, the
Jones polynomial, V (u), related to the algebras TLn(u), can be redefined through the Homflypt
polynomial, by specializing ζ to − 1

u+1 , see [14]. This is the non–trivial value for ζ, for which

the Ocneanu trace τ passes to the quotient TLn(u). Namely:

V (u)(α̂) =

(
−1 + u√

u

)n−1 (√
u
)ε(α)

τ(π(α)) = P (u, u)(α̂).

As mentioned in Section 1.5, given a solution of the E–system parametrized by a subset S of
Z/dZ, one can obtain an invariant for framed knots and links [11]:

Γd,S(w, u)(α̂) =

(
− 1− wu√

w(1− u)E

)n−1 (√
w
)ε(α)

tr(γ(α)), (64)

where: w = z+(1−u)E
uz , γ the natural epimorphism of the framed braid group algebra C(u)Fn

onto the algebra Yd,n(u), and α ∈ ∪∞Fn. Note that if the input braids α have all framings zero,
then Γd,s(w, u) restrict to invariants of classical knots and links, denoted ∆d,s(w, u). In [1] it is
shown that for generic values of the parameters u, z the invariants ∆d,S(w, u) do not coincide
with the Homflypt polynomial except in the trivial cases u = 1 or E = 1. More precisely, for
E = 1 an algebra homomorphism can be defined, h : Yd,n(u) −→ Hn(u), and the composition
τ ◦h is a Markov trace on Yd,n(u) which takes the same values as the specialized trace tr, whereby

the xi’s are specialized to the dth roots of unity. For details see [1, §3]. Yet, as computational
data [4] indicate, they may still be topologically equivalent to the Homflypt polynomial.

Recalling now the conditions of Theorem 6 for the trace tr to pass to the quotient YTLd,n(u),
we note that in both cases the xi’s are solutions of the E–system, as required by [11], in order
to proceed with defining link invariants. We do not take into consideration case (i) for z = −1
and case (ii), where z = −1

2 , since crucial braiding information is lost and therefore they are of
no topological interest. For example, the trace tr for these two values of z gives the same result
for all even (resp. odd) powers of the gi’s, as it becomes clear from the following formulas from
[11], for m ∈ Z>0:

tr(gmi ) =

(
um − 1

u+ 1

)
z +

(
um − 1

u+ 1

)
E + 1 if m is even

and

tr(gmi ) =

(
um − 1

u+ 1

)
z +

(
um − 1

u+ 1

)
E − E if m is odd,
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since, for z = −1 and z = −1
2 we find from Eq. 47 E = 1 and E = 1

2 respectively. The only

remaining case of interest is case (i) of Theorem 6, where the x`’s are the dth roots of unity and
z = − 1

u+1 . This implies that E = 1 and w = u in Eq. 64. So, by [1] and [14], the invariant

∆d,s(u, u) coincides with the Jones polynomial.
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