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Abstract. We characterize Harbater-Katz-Gabber curves in terms of a family

of cohomology classes satisfying a compatibility condition. Our construction
is applied to the description of finite subgroups of the Nottingham Group.

1. Introduction

In this article we use and extend results from previous work of the first author
together with S. Karanikolopoulos [12] on HKG-curves. We will work over an alge-
braically closed field k of characteristic p ≥ 5.

Definition 1. A Harbater-Katz-Gabber cover (HKG-cover for short) is a Galois
cover XHKG → P1, such that there are at most two branched k-rational points
P1, P2 ∈ P1, where P1 is tamely ramified and P2 is totally and wildly ramified.
All other geometric points of P1 remain unramified. In this article we are mainly
interested in p-groups so our HKG-covers have a unique ramified point, which is
totally and wildly ramified.

Work of Harbater [9] and of Katz and Gabber [13] showed that any finite sub-
group G of Aut(k[[t]]) can be associated with an HKG-curve X. More precisely,
G is the semi-direct product of a cyclic group of order prime to p (the maximal
tamely ramified quotient) by a normal p-subgroup (the wild inertia group). We are
interested in the latter group, so from now on we will replace the initial group G
with the latter, finite p-subgroup of Aut(k[[t]]). The HKG-curves play an important
role in the deformation theory of curves with automorphisms and to the celebrated
proof of Oort conjecture, [18, 19, 6, 4, 5, 20].

Working with the HKG-curve X allows us to use several global tools like the
genus, the p-rank of the Jacobian etc to the study of k[[t]]. In this article we will
employ the Weierstrass semigroup attached to the unique ramified point P , and we
will use the results of [12] on relating the structure of the Weierstrass semigroup to
the jumps of the ramification filtration.

More precisely, to the HKG-cover there is a Weierstrass semigroupH(P ) attached
to the unique wildly ramified point P . An arithmetic semigroup, and in particular
the Weierstrass semigroup, is always finitely generated, i.e. there are m̄1, . . . , m̄h ∈
N such that

H(P ) = Z+m̄1 + · · ·+ Z+m̄h.

We will denote by mi the i-th element of H(P ), while m̄i will denote the i-th
generator of the semigroup. For every element mi ∈ H(P ) we will select a function
fi with (fi)∞ = miP . Also each element m̄i corresponds to some function f̄i in
the function field of the curve. This selection is not unique and we will study later
what happens by different choices either of fi or f̄i. The ramification filtration
gives rise to a series of subgroups of the group G, see eq. (3), which correspond
to a sequence of subfields k(X/G) = F0 ⊂ · · · ⊂ Fs+1 = k(X) of the function field
F = k(X) of the curve X. By the properties of the ramification filtration, each
extension Fi+1/Fi, i = 0, . . . , s is abelian. We will see that Fi+1 = Fi(f̄i).
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2 A. KONTOGEORGIS AND I. TSOUKNIDAS

One of the main results of this article is the classification and description of the
Galois actions in HKG-covers in terms of group cohomology. Assume that X → P1

is an HKG-cover with a unique wildly ramified point P ∈ X. Consider the ring of
holomorphic functions outside the point P

A =

∞⋃
ν=0

L(νP ).

This ring is equipped with a valuation corresponding to P and elements of A of
valuation smaller or equal than ν, i.e. the Riemann-Roch space L(νP ), give rise to
a vector space of finite dimension. Notice that these kind of rings are essential in
the general definition of Drinfeld modules, see [8, chap. 4].

Write s for the index of the biggest m̄i, such that m̄i < m. Every intermediate
extension Fi+1/Fi is elementary abelian hence; isomorphic to (Z/pZ)ni . Set n =
(n1, . . . , ns) ∈ Ns. In eq. (10) we define the vector space kn,m[f̄0, . . . , f̄s] which will
be considered as a G-module and prove that it is equal to L

(
(m− 1)P

)
.

The polynomial ring k[f0] is the semigroup ring corresponding to the Weierstrass
semigroup N of the projective line, which has bounded part the vector space km[f0]
of polynomials of degree ≤ m. The module kn,m[f̄0, . . . , f̄s] plays a similar role for
the more general setting of the Weierstrass semigroup of the HKG-cover.

The action of G will be described by the following:

Theorem 2. The G-module structure of kn,m[f̄0, . . . , f̄s] is described by a series of
cohomology classes C̄i ∈ H1(Gal(Fi+1/F1), kn,m̄i [f̄0, f̄1, . . . , f̄i−1]). These classes
restricted to the elementary abelian group Gal(Fi+1/Fi) define the additive poly-
nomials Pi(Y ) which in turn describe the elementary abelian extensions Fi+1/Fi.
Moreover, the additive polynomials Pi define maps

H1(G, kn,m̄i [f̄0, f̄1, . . . , f̄i−1]) −→ H1(G, kn,m̄i [f̄0, f̄1, . . . , f̄i−1])

and the cocycles C̄i are in the kernel of Pi, that is

(1) Pi(C̄i) = 0 ∈ H1(G, kn,m̄i [f̄0, f̄1, . . . , f̄i−1]).

Conversely every such series of elements C̄i ∈ H1(G, kn,m̄i [f̄0, f̄1, . . . , f̄i−1]), sat-
isfying eq. (1) defines in a unique way a HKG-cover.

Proof. We now sketch the ingredients of the proof. The precise proof will be given
in the next sections of the article. Notice that the element C̄i is the image of the
class f̄i ∈ L(m̄iP )/L

(
(m̄i − 1)P

)
under the δ map in

· · · → H0(G,L(m̄iP )/L
(
(m̄i − 1)P

)
)

δ−→ H1(G,L(m̄iP ))→ · · ·
coming from the group cohomology long exact sequence corresponding to the short
exact

0 // L
(
m̄i − 1)P

)
// L(m̄iP ) // L(m̄iP )/L

(
(m̄i − 1)P

)
// 0

Since the space L(m̄iP )/L
(
(m̄i−1)P

)
is one dimensional the class f̄i can be replaced

by λf̄i for some λ ∈ k∗. In lemma 12 we will explain further how the change of the
semigroup generators gives rise to coboundaries. It turns out that changing f̄i to

λf̄i for λ ∈ k∗ changes the additive polynomial Pi to λp
ni−1

Pi and the cocycle C̄i
to λC̄i. This forces us to consider the projective space to the cohomology groups in
order to obtain an independent of the generators description, see corollary 3. The
definition of the additive polynomials Pi and the compatibility condition is given in
theorems 15 and 17.

The statement of the above theorem requires the selection of elements f̄0, . . . , f̄s
of corresponding pole orders m̄i generating the Weierstrass semigroup at the unique
ramification point P . The following corollary gives a description independent of such
a selection.
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Corollary 3. The HKG-cover X can be completely described in terms of classes

[C̄i] ∈ PH1
(
Gal(Fi+1/F1), L(m̄iP )

)
satisfying the compatibility conditions

[Pi]([C̄i]) = 0 ∈ PH1
(
Gal(Fi+1/F1), L(m̄iP )

)
,

where [Pi] is the map on projective spaces induced by the additive polynomials Pi.
Once a selection of elements f̄0, . . . , f̄s is made all actions can be expressed in terms
of this expression.

We will now indicate how we can construct the HKG-cover from the information
of the compatible classes C̄i ∈ H1(G, kn,mi [f̄0, f̄1, . . . , f̄i−1]). We argued that the
additive polynomials can be constructed from the classes C̄i. The compatibility
equation Pi(C̄i) = 0 gives us that the cocycle representative C̄i is a coboundary, that
is, there is an element Di ∈ kn,mi [f̄0, f̄1, . . . , f̄i−1]) such that Pi

(
C̄i(σ)

)
= (σ−1)Di

for all σ ∈ G. But then the element f̄i satisfies the generalized Artin-Schreier
extension

(2) Pi(f̄i) = Di,

see section 2.6. This essentially means that we can construct the HKG-cover step
by step, adding in each step the generator f̄i satisfying eq. (2).

�

In fact the above theorem states that all the information for the HKG-cover is
inside the sequence of compatible cohomology classes. This result is similar to the
cohomological interpretation of Kummer and Artin-Schreier-Witt extensions, see
[10, 8.9-8.11], [17, chap. VI, sec. 1-2]. Of course Kummer and Artin-Schreier-Witt
extensions are abelian, while the HKG-extensions are solvable. This fits well with
the Shafarevich philosophy as expressed in [22].

As an application of the above result we give the following description of finite
p-subgroups of the Nottingham group:

Theorem 4. Let G be a finite p-subgroup of the Nottingham group. There are
elements f̄0, . . . , f̄s ∈ k[[t]] acted on by G in terms of the cohomology classes C̄i as
described in theorem 2, and a local uniformizer t′ = (f̄s)

1/m so that

σ(t′) = t′(1 + C̄s(σ)(t′)m)−1/m ∈ k[[t′]] = k[[t]], for every σ ∈ G.

Proof. See theorem 17 and the subsequent discussion. �

The above theorem is applied as follows: We start from a local action of a finite p-
group G on k[[t]] and we construct an HKG-cover from it. From this HKG-cover we
obtain the series of generators f̄0, . . . , f̄s ∈ k[[t]][t−1] and we define the cohomology
class C̄s, which in turn gives an explicit form of the action of G on k[[t′]]. Essentially
we describe the conjugation class of G ⊂ Aut(k[[t]]), since the group acting on k[[t]]
by

σ(t) = t(1 + C̄s(σ)tm)−1/m,

is conjugate to our original action.
We now describe the structure of this article. In section 2 we will introduce

the representation and ramification filtration and their relation and we will also
give a description of the Riemann-Roch space L(miP ) as polynomials of bounded
degrees. Then we give a cohomological interpretation of the action of the group G
and we also see how the polynomials of each successive abelian extension can be
recovered from this construction. In section 3 we apply these tools in the problem
of determining finite subgroups of the Nottingham group and in particular we give
explicit forms of elements of order ph. In the cyclic group case the cohomology
group can be expressed in terms of coinvariants of group action, see proposition 25.
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It seems that in recent years interest on this problem has grown, see [14], [1], [16],
[24].
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2. Generalities on HKG-covers

2.1. Ramification filtration. Let X → P1 be a HKG-cover, that is Galois cover
with Galois group a p-group G fully ramified over one point P ∈ P1. In the associ-
ated HKG-curve X, the group G will coincide with the inertia group of the curve
at the unique ramified point, GT (P ) = {σ ∈ G(P ) : vp(σ(t) − t) ≥ 1}, where t is
a local uniformizer at P and vP is the corresponding valuation. For more informa-
tion on ramification filtration the reader is referred to [21]. We define Gi(P ) to be
the subgroup of σ ∈ G(P ) that acts trivially on Op/m

i+1
P , obtaining the following

filtration;

(3) GT (P ) = G0(P ) = G1(P ) ⊇ G2(P ) ⊇ · · · ⊇ {1}.

Let us call an integer i a jump of the ramification filtration if Gi(P ) 	 Gi+1(P ) and
denote by
(4)
G0(P ) = G1(P ) = · · · = Gb1(P ) 	 Gb1+1(P ) = · · · = Gb2(P ) 	 · · · 	 Gbµ(P ) 	 {1}

the filtration of the jumps, assuming that there are exactly µ jumps.

2.2. The Weierstrass semigroup. The Weierstrass semigroup H(P ) is the semi-
group consisting of all pole numbers, i.e. m ∈ N, such that there is a function f
on X with (f)∞ = mP . For the Weierstrass semigroup H(P ) we consider all pole
numbers mi forming an increasing sequence

0 = m0 < . . . < mr−1 < mr,

where mr is the first pole number not divisible by the characteristic. If g ≥ 2 and
p ≥ 5 we can prove that mr ≤ 2g − 1, see [15, lemma 2.1].

Let F = k(X) be the function field of the HKG-curve X. For every mi, 0 ≤ i ≤ r
in the Weierstrass semigroup we denote by fi ∈ F an element of F that has a unique
pole at P of order mi, i.e. (fi)∞ = miP . For each i ∈ {0, . . . , r} the set {f0, . . . , fi}
forms a basis for the Riemann-Roch space L(miP ). The spaces

(5) k = L(m0P ) ( L(m1P ) ( · · · ( L(mrP )

give rise to a natural flag of vector spaces corresponding to the Weierstrass semi-
group. Notice that if µ is a pole number in H(P ) we have µ = mdimL(µP )−1.

2.3. Representation filtration. For each 0 ≤ i ≤ r we consider the representa-
tions

(6) ρi : G1(P )→ GL(L(miP ))

which give rise to a decreasing sequence of groups

(7) G1(P ) = kerρ0 ⊇ kerρ1 ⊇ kerρ2 ⊇ . . . ⊇ kerρr = {1}.

Recall that r is the index of mr, the first pole number not divisible by p. In [15]
the first author proved that ρr is faithful hence the last equality kerρr = {1}.

We shall call the last filtration the representation filtration of G.
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Definition 5. An index i is called a jump of the representation filtration if and
only if kerρi 	 kerρi+1.

We will denote the jumps in the representation filtration by

c1 < c2 < . . . < cn−1 < cn = r − 1,

that is

kerρci > kerρci+1.

The last equality cn = r − 1 is proved in [12, rem. 9]. We have now a sequence of
decreasing groups

(8) G1(P ) = kerρ0 = . . . = kerρc1 > . . . kerρcn−1 > kerρcn > {1}

which gives rise to the following sequence of extensions;

(9) FG1(P ) = FKerρc1 ⊂ FKerρc2 ⊂ · · · ⊂ FKerρcn ⊂ F.

2.4. A relation of the two filtrations in the case of HKG-covers. In [12]
Karanikolopoulos and the first author related the filtrations defined in eq. (4), (8)
and the Weierstrass semigroup in the following way;

Theorem 6. We distinguish the following two cases:
• If G1(P ) > G2(P ) then the Weierstrass semigroup is minimally generated by
mci+1 = phiλi, (λi, p) = 1, 1 ≤ i ≤ n and the cover F/FG2(P ) is an HKG-cover as
well. In this case |G2(P )| = m1.
• If G1(P ) = G2(P ) then the Weierstrass semigroup is minimally generated by
mci+1 = phiλi, (λ, p) = 1, 1 ≤ i ≤ n and by an extra generator ph = |G1(P )|,
which is different by all mci+1 for all 1 ≤ i ≤ n.

Especially when X → P1 is an HKG-cover, the number of ramification jumps
µ coincides with the number of representation jumps n, i.e. n = µ. The integers
λi, which appear as factors of the integers mci+1, 1 ≤ i ≤ n are the jumps of the
ramification filtration, i.e. λi = bi and Gbi = Kerρci for 2 ≤ i ≤ n. Summing up
we have the following options for the ramification filtration

G1(P ) = · · · = Gλ1
	 Gλ1+1 = · · · = Gλ2

	 Gλ2+1 = · · · = Gλn 	 {1}

or

G1(P ) > G2(P ) = · · · = Gλ1
	 Gλ1+1 = · · · = Gλ2

	 Gλ2+1 = · · · = Gλn 	 {1}

Proof. See [12, th. 13,th. 14]. �

Remark 7. The reader should notice that Kerρc1 = Kerρ0 = G1(P) = Gb1
(P) by

definition, hence Gbi = Kerρci for every i ∈ {1, . . . , n = µ}.

Theorem 6 allows us to use the well known fact that the quotients Gbi/Gbi+1 are
elementary abelian p-groups, hence the quotients Kerρci/Kerρci+1

are elementary
abelian too, and the corresponding sequence of fields in (9) is in fact, a sequence of
elementary abelian p-group extensions.

In [12, prop. 27] the first author and S. Karanikolopoulos observed that for a
σ ∈ Kerρci −Kerρci+1 the following hold;

σ(fν) = fν for all ν ≤ ci

σ(fci+1) = fci+1 + C(σ) for some C(σ) ∈ k∗.
They also proved (prop. 20 & rem. 21) that for each i ∈ {1, . . . , n} we have

F ker ρci+1 = F ker ρci (fci+1).
In order to simplify notation we set Fi := F ker ρci , m̄i := mci+1 and f̄i := fci+1,

see also eq. (10).
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Example 8. In the Artin-Schreier extension F = k(x)(y) where yp − y = xm only
the place P =∞ is ramified with the following ramification filtration:

Z/pZ = G0 = · · · = Gm > {1},
i.e. the first and unique ramification jump is at m, see [23, prop. 3.7.8]. The
representation filtration is given by

G0 = kerρ0 = · · · = kerρm−1 > {1},
that is, the first representation jump is at c1 = m − 1 and f̄1 = fc1+1 = y, where
c1 = m − 1 and c1 + 1 = m. Thus F = F2 = F1(f̄1), and f̄0 is the generator x of
the rational function field k(x).

We will prove in section 2.6 the following

Proposition 9. For a given m ∈ H(P ), in the case of HKG-covers we have

L
(
(m− 1)P

)
= kn,m[f̄0, f̄1, . . . , f̄s],

where

(10) kn,m[f̄0, f̄1, . . . , f̄s] =

〈
f̄a00 f̄a11 · · · f̄ass : 0 ≤ ai < pni for all 1 ≤ i ≤ s,
and deg(f̄a00 f̄a11 · · · f̄ass ) =

∑s
ν=0 aνm̄ν < m

〉
k

.

In the above equation deg(f̄i) is the pole order of f̄i at P . The integer s is determined
uniquely; it is the greatest index of m̄i such that m̄i < m holds. The quantity
n = (n1, . . . , ns) ∈ Ns depends on the ramification filtration, specifically ni is the
number of Z/pZ components in each elementary abelian group Gi/Gi+1 obtained by
quotients of the lower ramification filtration.

2.5. Groups acting on flags. An automorphism of a curve act on all “invariants”
of the curve including the Weierstrass semigroup of the unique ramified point. Usu-
ally this action on invariants provides useful information about the action. Unfor-
tunately the action of the group G on the semigroup H(P ) is trivial. This is not
the case when we move to the action to appropriate flags of vector spaces. More
precisely we will consider flags of k-vector spaces

V̄ : k = V0 ( V1 ( · · · ( Vm ( · · ·
where Vi = L(iP ). We will say that a group G is acting on a flag V̄ , if there is a
homomorphism

ρ : G→ Aut(V̄ ),

i.e. when ρ(g) is an isomorphism such that ρ(g)(Vi) = Vi for all Vi in the flag.

Remark 10. Since the representation ρr is faithful it makes sense to consider the
representation not on the whole flag but only up to L(mrP ). The natural isomor-
phisms on this truncated flag are given by invertible upper triangular matrices.

Recall that s is the the greatest index of m̄i such that m̄i < m. For every
1 ≤ i ≤ s and for every 1 ≤ j ≤ r we have that

σ(fi) = fi + Ci(σ), where Ci(σ) ∈ L
(
(mi − 1)P

)
σ(f̄i) = f̄i + C̄i(σ), where C̄i(σ) ∈ L

(
(m̄i − 1)P

)
.

Proposition 9, which will be proved in the next section, implies that if f̄1, . . . , f̄s
are fixed, then the values C̄i for 1 ≤ i ≤ s determine the action completely.

Also notice that for each i ∈ {1, . . . , r}, fi is a polynomial expression of the
f̄1, . . . , f̄s. By proposition 9 we have C̄i ∈ L

(
(m̄i − 1)P

)
= kn,m̄i [f̄0, . . . , f̄i−1]. The

functions σ 7→ Ci(σ) and σ 7→ C̄i(σ) are cocycles, i.e.

C̄i(στ) = C̄i(σ) + σC̄i(τ).

We plan to show that these cocycles define the action of G on X, and in particular
the finite subgroup of Aut(k[[t]]).
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Remark 11. The selection of the generators f̄i for 0 ≤ i ≤ s is not unique. Every
element a ∈ kn,mi [f̄0, f̄1, . . . , f̄i−1] gives rise to a new generator f̄i + a.

The new cocycle C̄ ′i which is defined in terms of the generator f̄i + a is given by

σ(f̄i + a) = σ(f̄i) + σ(a) = f̄i + a+ C̄i(σ) + σ(a)− a = f̄i + a+ C̄ ′i(σ).

Therefore
C̄ ′i(σ) = C̄i(σ) + (σ − 1)a.

Also instead of selecting the generator f̄i, which has pole order m̄i at P we can
select λf̄i for any λ ∈ k∗. This change leads to cocycle λC̄i. Therefore selecting the
generator amounts to giving an element in the projective space

PH1

(
G

ker ρi−1
, kn,mi [f̄0, f̄1, . . . , f̄i−1]

)
This gives us the following

Lemma 12. The cocycles C̄i, C̄
′
i corresponding to different generators f̄i, f̄

′
i with

the same pole number m̄i, that is f̄ ′i = λf̄i+a, a ∈ kn,mi [f̄0, f̄1, . . . , f̄i−1] satisfy the
relation

C̄ ′i(σ) = λC̄i(σ) + (σ − 1)λa

and a generator free description of the action is determined by a series of classes
C̃i in

(11) H1
(

G
ker ρi−1

, kn,mi [f̄0, f̄1, . . . , f̄i−1]
)
� � inf //

��

H1(G, kn,mi [f̄0, f̄1, . . . , f̄i−1])

��

PH1
(

G
ker ρi−1

, kn,mi [f̄0, f̄1, . . . , f̄i−1]
)
� � inf // PH1(G, kn,mi [f̄0, f̄1, . . . , f̄i−1])

.

These cocycles satisfy certain conditions which will be given in eq. (15) and
theorem 17. The monomorphism inf is the inflation map in group cohomology, see
[26, II.2-3, p. 64], while inf[C] of the projective class [C] of the cocycle C is given
by

inf[C] = [inf(C)].

.

Remark 13. The vector space kn,mi [f̄0, f̄1, . . . , f̄i−1] has as base the space of mono-
mials f̄ν00 f̄ν11 . . . f̄

νi−1

i−1 , of degree smaller than m, where νi < pni . The action on them
can be described in terms of the binomial theorem, i.e.
(12)

f̄ν00 f̄ν11 · · ·f̄
νi−1

i−1
σ−→ f̄ν00

ν1∑
µ1

· · ·
νi−1∑
µi−1

(
µ1

ν1

)
· · ·
(
µi−1

νi−1

)
f̄µ1

1 · · ·f̄
µi−1

i−1 C̄ν1−µ1

1 · · ·C̄νi−1−µi−1

i−1 .

2.6. Describing an HKG-cover as a sequence of Artin-Schreier extensions.
It is known, see [7], that every elementary abelian field extension L/K, with Galois
group (Z/pZ)n, is given as an Artin-Schreier extension of the form

L = K(y) : yp
n

− y = b, b ∈ K.
In our case, the elementary abelian field extension Fi+1/Fi can be generated by an
element y ∈ Fi+1 but this element might not be the semigroup generator f̄i. We can
give a description of the Artin-Schreier extension Fi+1/Fi using a monic polynomial

Ai(X) = Xpni + ani−1X
pni−1

+ · · ·+ a1X
p + a0X −Di,

which can be computed in terms of the Moore determinant [8]. Notice that this
polynomial is an additive polynomial minus a constant term. Let {σ1, . . . , σni} be
a basis of the Galois group Gal(Fi+1/Fi) ∼= (Z/pZ)ni , seen as an Fp-vector space,
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and let w1, . . . , wni be elements of k∗ such that σj(f̄i) = f̄i + wj . Let W be the
Fp-subspace of k spanned by the wj , j = 1, . . . , ni. We have dimFpW = ni.

Let Pi(X) =
∏
a∈W (X−a). Since every wi is an element of k, Gal(Fi+1/Fi) acts

trivially on Pi(X) and we consider the polynomial

Ai(X) := Pi(X)− Pi(f̄i).
Notice that, for a σ ∈ Gal(Fi+1/Fi), we can write σ = σν11 ◦ · · · ◦ σ

νni
ni and

σ(f̄i + a) = f̄i + ν1w1 + · · ·+ νniwni + a, for all a ∈W ⊂ k.
This means that Pi(f̄i) is Gal(Fi+1/Fi) invariant, i.e. belongs to Fi. Therefore,
the polynomial Ai(X) belongs to Fi[X], is monic of degree pni = [Fi+1 : Fi] and
vanishes at f̄i hence it is the irreducible polynomial of f̄i over Fi. The polynomial
Pi(X) is given by

(13) Pi(X) =
∆(w1, w2, . . . , wni , X)

∆(w1, w2, . . . , wni)
,

where ∆(w1, . . . , wn) is the Moore determinant;

∆(w1, . . . , wn) = det


w1 w2 . . . wn
wp1 wp2 . . . wpn
...

...
...

wp
ni−1

1 wp
ni−1

2 . . . wp
ni−1

ni

 .
It is an additive polynomial of the form

Pi(X) = Xpni + ani−1X
pni−1

+ · · ·+ a1X
p + a0X,

where ai ∈ k ⊂ Fi. We have proved that the generator f̄i of the extension Fi+1/Fi
satisfies an equation of the form

(14) f̄i
pni

+ ani−1f̄i
pni−1

+ · · ·+ a1f̄i
p

+ a0f̄i = Di,

for some ani−1, . . . , a0 ∈ k, Di = Pi(f̄i) ∈ Fi.
Remark 14. Instead of f̄i we can use λf̄i. The additive polynomial corresponding

to λf̄i is equal to λp
ni−1

Pi(X), where Pi(X) is the additive polynomial corresponding
to f̄i. Indeed, when we change f̄i to λf̄i the Fp-vector space W is changed to λ ·W ,
that is the basis elements wi are changed to λwi. Hence, the Moore determinant

in the numerator of eq. (13) defining Pi(λX) is multiplied by λ1+p+···+pni−1

while

the denominator is multiplied by λ1+p+···+pni−2

. Therefore Pi(λX) = λp
ni−1

Pi(X)
follows.

We have the following:

Theorem 15. The cocycles C̄i ∈ H1(Gal(Fi+1/F1), kn,m̄i [f̄0, f̄1, . . . , f̄i−1]), when
restricted to the elementary abelian group Gal(Fi+1/Fi) < Gal(Fi+1/F1) describe
fully the elementary abelian extension Fi+1/Fi given by the equation

Pi(Y ) = Di.

Moreover the element Di = Pi(f̄i) is described by the additive polynomial Pi(Y )
and by the selection of f̄i. A different selection of f̄ ′i , i.e. f̄ ′i = λf̄i + a, for some

a ∈ kn,mi [f̄0, f̄1, . . . , f̄i−1], λ ∈ k∗ gives rise to the same polynomial λp
ni−1

Pi and

to a different D′i given by D′i = λp
ni−1

Di + λp
ni−1

Pi(a). The two extensions Fi(f̄i)
and Fi(f̄

′
i) are equal.

Proof. The only part we didn’t prove is the dependence of the additive polynomial to
the selection of the generator f̄i. We have seen that changing f̄i adds a coboundary
to C̄i.

But when σ belongs to Gal(Fi+1/Fi), C̄i(σ) belongs to k, and k admits the trivial
action. Therefore, all coboundaries are zero and the result follows by lemma 12. �
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The additive polynomial Pi(Y ), which depends on the values of C̄i(σ) with σ ∈
Gal(Fi+1/Fi) gives also compatibility conditions for the cocycle C̄i on all elements
of Gal(Fi+1/F1). Namely, by application of σ to eq. (14) we obtain the following

(15) Pi(C̄i(σ)) = (σ − 1)Di for all σ ∈ Gal(Fi/F1).

So if σ keeps Di invariant, for instance when σ ∈ Gal(F/Fi), then C̄i(σ) ∈ Fpn ⊂ k.
Equation (15) is essentially a relation among the cocycles C̄i(σ) and C̄ν(σ) for

ν < i. Indeed, the element Di ∈ kn,mi [f̄0, f̄1, . . . , f̄i−1] is a polynomial expression
on the elements f̄0, . . . , f̄i−1, and the action is given in terms of the elements C̄ν(σ)
for ν < i and f̄i as given in eq. (12).

Lemma 16. An additive polynomial P ∈ k[Y ] defines a map

H1(G, kn,mi [f̄0, f̄1, . . . , f̄i−1]) −→ H1(G, kn,mi [f̄0, f̄1, . . . , f̄i−1])(16)

d 7−→ P (d),

Proof. Notice first that elements in the space L(νP ), for some ν ∈ N, can be multi-
plied as elements of the ring A, so a polynomial expression P (d) of a cocycle d makes
sense. One has to be careful since the multiplication of two elements in L(νP ), is
not in general an element of L(νP ), since it can have a pole order greater than ν.
Therefore the value P (d) is an element in L(µP ) for some µ ∈ N for big enough µ.
However notice that eq. (15) implies that P (C̄i(σ)) ∈ kn,m̄i [f̄0, f̄1, . . . , f̄i−1] so that
Pi(C̄i) ∈ H1(G, kn,m̄i [f̄0, f̄1, . . . , f̄i−1]).

Finally observe now that if d is a cocycle, i.e. d(στ) = d(σ) + σd(τ), then

P (d(στ)) = P (d(σ) + σd(τ)) = P (d(σ)) + P (σd(τ)) = P (d(σ)) + σP (d(τ)).

On the other hand if d(σ) = (σ − 1)b is a coboundary, then

P (d(σ)) = P
(
(σ − 1)b

)
= (σ − 1)P (b)

is a coboundary as well. �

This allows us to give a cohomological interpretation of eq. (15):

Theorem 17. The cocycles C̄i given in eq. (11) are in the kernel of the map Pi
acting on cohomology as defined in lemma 16. The corresponding element Di is then
the element expressing P (Ci) as a coboundary. The elementary abelian extension
is determined by a series of cocycles C̄i ∈ H1(Gal(Fi+1/Fi), kn,m̄i [f̄0, f̄1, . . . , f̄i−1]),
which define a series of additive polynomials Pi and extend to cocycles in C̄i ∈
H1(Gal(Fi+1/F1), kn,m̄i [f̄0, f̄1, . . . , f̄i−1]) so that each C̄i is in the kernel of Pi.

Remark 18. In remark 14 we have seen that by changing the generator f̄0 to λf̄0

the additive polynomial is changed from Pi to λp
ni−1

Pi. The corresponding map

PH1(G, kn,mi [f̄0, f̄1, . . . , f̄i−1]) −→ PH1(G, kn,mi [f̄0, f̄1, . . . , f̄i−1])

is not affected.

3. Nottingham groups

An automorphism σ of the complete local algebra k[[t]] is determined by the
image σ(t) of t, where σ(t) =

∑∞
i=1 ait

i ∈ k[[t]]. We consider the subgroup of
normalised automorphisms that is, automorphisms of the form

σ : t 7→ t+

∞∑
i=2

ait
i.

S. Jennings [11] proved that the set of latter automorphisms forms a group under
substitution, denoted by N (k), called the Nottingham group. This group has many
interesting properties, for instance R. Camina proved in [2] that every countably
based pro-p group can be embedded, as a closed subgroup, in the Nottingham group.
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We refer the reader to [3] for more information regarding N (k). We would like to
provide an explicit way to describe the elements of N (k). It is proved in [14, prop.
1.2] and [16, sec. 4, th. 2.2], that each automorphism of order p is conjugate to the
automorphism given by

(17) t 7→ t(1 + ctm)−1/m = t

( ∞∑
ν=0

(
−1/m

ν

)
cνtνm

)
for some c ∈ k× and some positive integer m prime to p.

In [1] F. Bleher, T. Chinburg, B. Poonen and P. Symonds, studied the extension
L/k(t), where L := k({σ(t) : σ ∈ G}), where G is a finite subgroup of Autk[[t]].
Notice here that each automorphism of order pn is conjugate to t 7→ σ(t), where
σ(t) ∈ k[[t]] is algebraic over k(t). Also in [1] the notion of almost rational auto-
morphism is defined: an automorphism σ ∈ Aut(k[[t]]) is called almost rational if
the extension L/k(t) is Artin-Schreier.

The rational function field k(t), despite its simple form, is not natural with
respect to the group G acting on the HKG-cover. For example the determination
of the algebraic extension L/k(t) and the group of the normal closure seems very
difficult.

Here we plan to give another generalization, by using the fact that the “natural”
rational function field with respect to the Katz-Gabber cover is XG1 and not k(t).

In [15, p. 473] the first author proposed the following explicit form for an auto-
morphism of an HKG-cover of order pn;

σ(t) = t

(
1 +

r∑
i=1

ci(σ)uit
m−mi

)−1/m

,

where m is the first pole number which is not divisible by the characteristic p,
ui/t

mi for 1 ≤ i ≤ r are functions in L(mP ) (ui is a unit) and 1/tm is the function
corresponding to m (t being the local uniformizer). In the latter function the unit
is absorbed by Hensel’s lemma.

3.1. A canonical selection of uniformizer. In an attempt to describe in explicit
form automorphisms of k[[t]] let us quote here some results from [15]. We will work

with the corresponding HKG-cover X
G−→ P1 corresponding to a finite subgroup

G ⊂ Aut(k[[t]]). Again let mr denote the first pole number not divisible by the
characteristic and fi, i = 1, . . . ,dimL(mrP ) = r a basis for the space L(mrP ),
such that

(18) (fi)∞ = mi.

As we have seen this basis is not unique but eq.(18) implies that if the element fi
is selected, then f ′i = λifi + ai, where ai ∈ L

(
(mi − 1)P

)
is also a basis element of

valuation mr.
This means that the base change we will consider, corresponds to invertible

upper triangular matrices, i.e. to linear maps which keep the flag of the vector
spaces L(miP ).

Recall that m = mr is the first pole number not divisible by p. Let us focus on
the element fr. This element is of the form fr = um/t

m, where um is a unit. Since
(m, p) = 1 we know by Hensel’s lemma that um is an m-th power so by a change of
uniformizer we can assume that fr = 1/tm. When changing from a uniformizer t to
a uniformizer t′ = φ(t) = tu(t) (u(t) is a unit in k[[t]]), the automorphism σ ∈ k[[t]]
expressed as an element in k[[t′]] is a conjugate of the initial automorphism, i.e.
φσφ−1. By selecting the canonical uniformizer with respect to fr we see that the
expression of an arbitrary σ can take a simpler representation after conjugation.
Also this result is in accordance with (and can be seen as a generalization of) the
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result of Klopsch and Lubin, [14], [16]. The selection of uniformizer t = tfr is unique
once fr is selected.

Definition 19. We will call the uniformizer tfr = f
−1/m
r the canonical uniformizer

corresponding to fr.

What happens if we change the function fr to f ′r = fr+a, where a ∈ L
(
(m−1)P

)
?

Then a = u/tµ, with 0 ≤ µ < m and in this case the new uniformizer is given by

tf ′r =
(
fr +

u

tµ

)−1/m

= t
(
1 + utm−µ

)−1/m
= t (1 + atm)

−1/m
.

Keep in mind that the set of uniformizers for the local ring k[[t]] equals to tu(t),
where u is a unit of the ring k[[t]].

Let m̄1, . . . , m̄s be the generators of the Weierstrass semigroup H(P ). These
elements correspond to a successive sequence of function fields Fi = Fi−1(f̄i−1) so
that v(f̄i−1) = p|Gal(F/Fi)|λh−1 = m̄i. It is not clear that m̄i ≥ m̄j for j < i.
However if for some j we have m̄j < m̄i for some i < j then

σ(f̄j) = σ(f̄j) + C̄j(σ), where C̄j ∈ k[f̄0, . . . ,
̂̄fi, . . . , f̄j−1],

that is, f̄i does not appear in any term of the polynomial expression of C̄j(σ), for
all σ ∈ G. This means that we can generate an HKG-cover with corresponding
function field generated by fewer elements than the initial one.

If we assume that among all HKG-covers which correspond to a local action of G
on k[[t]] we select one whose function field is minimally generated then m̄1 < m̄2 <
. . . < m̄s.

Lemma 20. Let m = mr be the first pole number not divisible by the characteristic
p. Then m = m̄s, that is the pole number corresponding to the last generator f̄s.

Proof. It is clear that not all pole numbers are divisible by p since m ∈ H(P ), p - m.
So at least one generator must be prime to p. On the other hand Fi = Fi−1(f̄i−1),
thus the pole numbers m̄i of elements f̄i for i < s are divisible by p, see also [12,
eq. (6)]. Therefore only the last generator can be not divisible by p. �

Theorem 21. Let C̄s ∈ H1(G, kn,m[f̄0, f̄1, . . . , f̄s−1]) be the cocycle corresponding
to m = ms, where m is the first pole number not divisible by p, see lemma 20.

We choose as uniformizer the canonical uniformizer t = f̄
−1/m
s . We define the

representation:

Φ : G −→ Aut(k[[t]])

σ 7−→
(
t 7→ t(1 + C̄s(σ)tm)−1/m

)
.(19)

The expression 1 + C̄s(σ)tm)−1/m can be expanded as a powerseries using the bi-
nomial theorem and determines uniquely an automorphisms of k[[t]]. We have that
for all σ, τ ∈ G

Φ(τσ) = Φ(σ)Φ(τ).

Furthermore Φ is a monomorphism.

Proof. We begin by noticing that σ(f̄s) = f̄s + C̄s(σ) and we can select t so that
t−m = f̄s. Using the above expression we can determine the value of σ(t) using

1

σ(t)m
=

1

tm
+ C̄s(σ),

see also [15, eq. 4]. In this way σ coincides with the image of Φ(σ) ∈ Aut(k[[t]]) in
eq. (19).

Recall that σ ∈ G acts on the elements f̄0, . . . , f̄s−1 by definition in terms of
the cocycles C̄i(σ). This was defined to be a left action. Also this action is by
construction assumed to be compatible with the action of G on k[[t]] in the sense
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that when we see the elements f̄i as elements in k[[t]][t−1], then σ(f̄i) = Φ(σ)(f̄i),
that is the action of σ on f̄i as elements in kn,mi+1 [f̄0, f̄1, . . . , f̄s−1] coincides with
the action of σ on fi seen as an element in the quotient field of k[[t]]. In other words
we have

σ(fi(t)) = fi(σ(t)) = fi(t) + Ci(σ).

We will prove first that this is a homomorphism i.e.

(20) t(1 + C̄s(τσ)tm))−1/m = t(1 + C̄s(σ)tm)−1/m ◦ t(1 + C̄s(τ)tm)−1/m,

where ◦ denotes the composition of two powerseries. The right hand side of the
above equation equals

t
(
1 + C̄s(τ)tm

)−1
m

(
1 +

τ(C̄s(σ))tm

1 + C̄s(τ)tm)

)−1
m

= t
(
1 +

(
C̄s(τ) + τC̄s(σ)

)
tm
)−1/m

so eq. (20) holds by the cocycle condition for C̄s.
The kernel of the homomorphism Φ, consists of all elements σ ∈ G such that

C̄s(σ) = 0. But if C̄s(σ) = 0 then σ(t) = t and σ is the identity. �

Remark 22. The above construction behaves well when we substitute fm with f ′m =
fm + a. In any case the representation given in eq. (19) is given in terms of the
canonical uniformizer tfr corresponding to the element f̄s = fr which gives rise to
the cocycle C̄s.

Remark 23. Equation (19) implies that the knowledge of the cocycle C̄s implies
the knowledge of σ(t), which in turn gives us how σ acts on all other elements f̄i
for all 0 ≤ i ≤ s− 1. This seems to imply that C̄s can determine all other cocycles
C̄ν for all 1 ≤ ν ≤ s− 1. This is not entirely correct. Indeed, C̄s is a cocycle with
values on the G-module kn,m̄s [f̄0, f̄1, . . . , f̄s−1], therefore the action of G on f̄i for
0 ≤ i ≤ s− 1 is assumed to be known and is part of the definition of the cocycle C̄s.
This means that C̄i are assumed to be known and part of the definition of C̄s.

Proposition 24. If σ ∈ G, σ 6= 1, then

vP (σ(t)− t) = m− vP
(
C̄s(σ)

)
+ 1 = I(σ),

where −I(σ) is the Artin character since k is algebraically closed, see [21, VI.2].
Therefore σ ∈ GI(σ) −GI(σ)+1.

Proof. The valuation of σ(t) − t comes from the binomial expansion of eq. (19).
The rest is the definition of the ramification group. �

3.2. Application: Elements of order ph in the Nottingham group.

3.2.1. On the form of elements of order p. It is known that every element of order
p in Aut(k[[t]]) is conjugate to the automorphism

t 7→ t(1 + ctm)−1/m, where c ∈ k,

for some m prime to p, see [14, prop. 1.2] and [16, th. 2.2].
We can obtain this result using theorem 21. Let σ be an automorphism of k[[t]]

of order p. Let X → P1 be the corresponding HKG-cover. The sequence of higher
ramification groups equals 〈σ〉 = G0 = G1 = · · · = Gm > {1}, i.e. there is only one
jump in the ramification filtration. If m = 1 then Gi(P ) = {1} for i ≥ 2 and in this
case the genus gX = 0. This is a trivial case so we can assume that m > 1. From
theorem 6 we know that the Weierstrass semigroup is generated by p = |G1(P )|
and mr. If mi is a pole number less than mr then mi is a multiple of p, hence
the corresponding elements fi with pole order mi at P will be powers of f0 where
(f0)∞ = pP .
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Since the ramification filtration jumps only once, the same holds for the repre-
sentation filtration, i.e.

G1(P ) = Kerρc1 > {1}

So if σ is not the identity then by [12, prop.27] we have that

σ(f i0) = f i0 for i = 0, 1, . . . , bmr/pc and

σ(fc1+1) = σ(fr) = fr + C(σ) where C(σ) ∈ k×.

Compare also with the computation of proposition 24. To obtain the result we
notice the following; changing the local uniformizer to a canonical one imposes the
substitution of σ by a conjugate which, by theorem 21, maps t to the desired form.

3.2.2. Application to the case of cyclic groups. Let us now consider an element σ of
order ph. As before the cyclic group

G0(P ) = G1(P ) = · · · = Gb1(P ) 	 Gb1+1(P ) = · · · = Gb2(P ) 	 · · · 	 Gbµ(P ) 	 {1}

Since a cyclic group has only cyclic subgroups and all quotients of cyclic groups are
cyclic, while Gbi/Gbi+1

is elementary abelian, we see that the number of gaps µ is

equal to h and ph−i is the exact power of p dividing each m̄i.
Observe that all intermediate elementary abelian extensions Fi+1/Fi = Fi(f̄i)/Fi

are cyclic. The additive polynomial describing the extension Fi(f̄i)/Fi is given by

Y p − C̄p−1
i Y = f̄pi − C̄

p−1
i f̄i,

by computation of the Moore determinant det

(
Ci Y
Cpi Y p

)
, where C̄i is computed

at a generator σp
i

of the cyclic group Gal(Fi+1/Fi) = Gbi+1/Gbi , (i.e. σp
i

(f̄i) =

f̄i + C̄i(σ
pi)). Since C̄i ∈ k, if we rescale f̄i by f̄i/Ci, we can assume without loss

of generality that the equation is an Artin-Schreier one:

Y p − Y = f̄pi − f̄i = Di, where Di ∈ Fi.

Let g be an automorphism of the HKG-cover X. Since g(f̄ν) = f̄ν + c̄ν(g) and
c̄ν(g) ∈ Fν−1, the automorphism g gives rise to an automorphism g : Fν → Fν for
all ν. We have that

(21) C̄i(g)p − C̄i(g) = (g − 1)(f̄pi − f̄i) = (g − 1)Di.

Notice that eq. (21) has many solutions C̄i(g) for a fixed g, which differ by an
element c̄i(σ) for some σ ∈ Gal(Fi+1/Fi), since (gσ − 1)(Di) = (g − 1)(Di).

The representation filtration has the following form (the filtrations are collectively
depicted in the diagrams below)

FG1(P ) = F0 = F kerρ0 ⊂ F1 = F kerρ1 ⊂ · · · ⊂ Fr = F kerρr = F.

We have ph−i = |kerρci+1
| for 0 ≤ i ≤ n − 1 and ph = |G1(P )|. The generators

of the Weierstrass semigroup are ph, ph−1λ1, . . . , pλµ−1, λµ. We have the following
tower of fields:
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F = Fh+1 = Fh(f̄h)

Z/pZ

Z/phZ

Fh = Fh−1(f̄h−1)

Z/pZ

Fh−1

F2 = F1(f̄1)

Z/pZ

F1 = k(f̄0)

F0 = FG1(P )

{1}

p

Gbh = ker ρch

p

Gbh−1
= ker ρch−1

Gb2 = ker ρc2

p

Gb1 = ker ρc1

G1(P )

1

p

〈σph−1〉 (order=p)

p

〈σph−2〉 (order=p2)

〈σp〉 (order=ph−1)

p

〈σ〉

G1(P )

For every g ∈ Gal(F/F1) we have

g(f̄r−1)− f̄r−1 = C̄r−1(g).

For a cyclic group Z/piZ the cohomology is given by:

H1(Z/piZ, A) =
{a ∈ A : N(a) = 0}

(σi − 1)A
,

where σi is a generator of the cyclic group Z/piZ and N = 1 + σ + · · · + σp
i−1

is the norm, see [25, th. 6.2.2, p. 168]. In view of theorem 17 we will consider
the groups Gal(Fi+1/F1), which are generated by the generator σ of the cyclic
group Gal(Fh+1/F1) modulo the subgroup Gal(Fh+1/Fi+1). Thus in the group
Gal(Fi+1/F1) the order of σ equals pi.

Observe now that τ = σp
i−1

acts trivially on A = kn,mi [f̄0, f̄1, . . . , f̄i−1]. We now
compute the norm for Gal(Fi+1/F1):

1 + σ + · · ·+ σp
i−1 =

pi−1∑
ν=0

σν =

p−1∑
π=0

pi−1−1∑
υ=0

σπp
i−1

συ

=

p−1∑
π=0

τπ
pi−1−1∑
υ=0

συ,

where τ := σp
i−1

, and observe that the above equation restricted on A gives

1 + σ + · · ·+ σp
i−1 = p ·

pi−1−1∑
υ=0

συ

which is zero on A. So we finally arrive at the computation:

H1
(
Z/piZ, kn,m̄i [f̄0, f̄1, . . . , f̄i−1]

)
= kn,m̄i [f̄0, f̄1, . . . , f̄i−1]Z/piZ,

where the latter space is the space of Z/piZ-coinvariants.

Proposition 25. A cyclic group of the Nottingham group is described by a se-
ries of elements C̄i ∈ kn,m̄i [f̄0, . . . , f̄i−1]Z/piZ so that C̄pi − C̄i is zero in the space

kn,m̄i [f̄0, . . . , f̄i−1]Z/piZ.
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In order to ensure that the element σ has order ph we should have, C̄s(σ
pν ) 6= 0,

for all 0 ≤ ν < h i.e. (
1 + σ + · · ·+ σp

ν−1
)
C̄(σ) 6= 0.
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