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SUPERCONGRUENCES SATISFIED BY COEFFICIENTS

OF 2F1 HYPERGEOMETRIC SERIES

HENG HUAT CHAN, ARISTIDES KONTOGEORGIS, CHRISTIAN
KRATTENTHALER AND ROBERT OSBURN

Dedicated to Paulo Ribenboim on the occasion of his 80th birthday

Abstract. Recently, Chan, Cooper and Sica conjectured two congru-
ences for coefficients of classical 2F1 hypergeometric series which also
arise from power series expansions of modular forms in terms of mod-
ular functions. We prove these two congruences using combinatorial
properties of the coefficients.

1. Introduction

The sequence

αn =
n

∑

k=0

(

n
k

)2 (

n + k
k

)2

,

introduced by R. Apéry [1] in his proof of the irrationality of ζ(3), has many
interesting arithmetical properties. For example, F. Beukers [3, p. 276]
showed that αn arises from the power series expansion of a modular form of
weight 2 in terms of a modular function.1 More precisely, if q = e2πiτ with
Im τ > 0,

η(τ) = q1/24
∞
∏

n=1

(1 − qn),

Z(τ) =

(

η(2τ)η(3τ)
)7

(

η(τ)η(6τ)
)5 and X(τ) =

(

η(τ)η(6τ)

η(2τ)η(3τ)

)12

,

then

(1.1) Z(τ) =
∞
∑

n=0

αnXn(τ).

Other properties of αn were soon discovered by S. Chowla, J. Cowles and
M. Cowles [8]. They showed that for all primes p > 3,

αp ≡ α1 (mod p3).

Date: December 3, 2009.
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1Beukers gave the modular form in terms of Lambert series. The product form can be

found in [12].
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Subsequently, I. M. Gessel [9] showed that, for all positive integers n and
primes p > 3,

(1.2) αnp ≡ αn (mod p3).

Recently, an analogue of Apéry numbers was found. The corresponding
sequence is formed by the Domb numbers [5], defined by

βn = (−1)n
n

∑

k=0

(

n
k

)2 (

2k
k

)(

2(n − k)
n − k

)

.

It can be shown (see [5, (4.14)]) that if

Z(τ) =

(

η(τ)η(3τ)
)4

(

η(2τ)η(6τ)
)2 and X (τ) =

(

η(2τ)η(6τ)

η(τ)η(3τ)

)6

,

then

(1.3) Z(τ) =
∞
∑

n=0

βnX n(τ).

In [7], H. H. Chan, S. Cooper and F. Sica showed, using Gessel’s idea,
that

(1.4) βnp ≡ βn (mod p3).

The similarities between (1.1) and (1.3), as well as between (1.2) and (1.4),
indicated that perhaps sequences arising from power series expansions of
modular forms of weight 2 in terms of modular functions may have proper-
ties similar to (1.2) and (1.4). Motivated by this idea, Chan, Cooper and
Sica constructed seven sequences an from η-quotients, analogues of theta
functions and various modular functions, and they conjectured that, under
certain conditions on the primes p, these seven sequences satisfy congruences
of the type

(1.5) anp ≡ an (mod pr),

with r = 1, 2, or 3. Unfortunately, these conjectures do not follow immedi-
ately from Gessel’s method, and therefore new methods have to be devised.
The purpose of this note is to give an elementary approach to proving two
of these conjectures.

Theorem 1.1. Let (a)n = (a)(a + 1)(a + 2) · · · (a + n − 1).

(a) For p ≡ 1 (mod 4) and

sn = 64n

(

1
4

)2

n

(1)2n
,

we have

(1.6) snp ≡ sn (mod p2).
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(b) For p ≡ 1 (mod 6) and

tn = 108n

(

1
6

)

n

(

1
3

)

n

(1)2n
,

we have

(1.7) tnp ≡ tn (mod p2).

The proof of (1.6) will be given in Sections 2 to 4. The proof of (1.7) will
be given in Section 5. Some parts of the proof of (1.7) will only be sketched
as they are similar to that of (1.6).

We conclude this introduction by indicating the analogues of (1.1) and
(1.3).

Let

Z2 =

∞
∑

m=−∞

∞
∑

n=−∞

qm2+n2

and X2 =
η12(2τ)

Z6
2

.

Then the sn’s are obtained from the expansion

Z2 =

∞
∑

n=0

snXn
2 .

Incidentally, the coefficients sn can be obtained from the coefficients
(

1
4

)

n

(

3
4

)

n
/(1)2n studied by S. Ramanujan via a special case of Kummer’s

transformation

2F1

(

1

4
,
3

4
; 1;x

)

=
1

4
√

1 − x
2F1

(

1

4
,
1

4
; 1;

x

x − 1

)

,

where 2F1(a, b; c; z) is the classical Gaußian hypergeometric series.
Let

Z3 =

∞
∑

m=−∞

∞
∑

n=−∞

qm2+mn+n2

and X3 =
η6(τ)η6(τ)

Z6
3

.

Then the tn’s are obtained from the expansion

Z3 =

∞
∑

n=0

tnXn
3 .

The series associated with the coefficients tn were studied in [4] and [6], and
these coefficients are related to the coefficients

(

1
3

)

n

(

2
3

)

n
/(1)2n studied by

Ramanujan and the Borweins by means of the transformation formula

2F1

(

1

3
,
2

3
; 1;x

)

= 2F1

(

1

3
,
1

6
; 1; 4x(1 − x)

)

.

We remark here that, using (3.4), it is immediate (see (3.3) and (5.2))
that, if un = 64n

(

1
4

)

n

(

3
4

)

n
/(1)2n and vn = 27n

(

1
3

)

n

(

2
3

)

n
/(1)2n, then

up ≡ u1 (mod p2) and vp ≡ v1 (mod p2).
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Although it is not clear how one can deduce the corresponding congruences
for sp and tp from congruences satisfied by up and vp using the 2F1 trans-
formation formulas, our proof of Theorem 1.1 is clearly motivated by these
relations.

2. A Lemma for the proof of (1.6)

In this section, we establish a simple lemma which is interesting in its
own right.

Lemma 2.1. For positive integer n and prime p ≡ 1 (mod 4),

(2.1)

(

3

4

)

p

≡ 3

(

1

4

)

p

(mod p3).

Proof. By isolating the terms involving multiples of p on both sides of (2.1),
we find that it suffices to prove the congruence

(2.2)
3p−7

4
∏

k=0

(

3

4
+ k

) p−1
∏

k= 3p+1

4

(

3

4
+ k

)

≡

p−5

4
∏

k=0

(

1

4
+ k

) p−1
∏

k= p+3

4

(

1

4
+ k

)

(mod p2).

Let the product on the left-hand side be L(p) and the product on the right-
hand side be R(p). We group some of the terms in L(p) in pairs as follows:

(

3

4
+

3p − 3

4
− k

) (

3

4
+

3p − 3

4
+ k

)

for

1 ≤ k ≤ p − 1

4
.

We then conclude that

L(p) ≡

p−1

4
∏

k=1

(−k2)

p−3

2
∏

k=0

(

3

4
+ k

)

(mod p2).

Similarly, for

1 ≤ k ≤ p − 1

4
,

we perform the following pairing of some of the terms in the product in
R(p):

(

1

4
+

p − 1

4
− k

)(

1

4
+

p − 1

4
+ k

)

.

Hence we have

R(p) ≡

p−1

4
∏

k=1

(−k2)

p−1
∏

k= p+1

2

(

1

4
+ k

)

(mod p2).
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It now remains to verify that

(2.3)

p−3

2
∏

k=0

(

3

4
+ k

)

≡
p−1
∏

k= p+1

2

(

1

4
+ k

)

(mod p2).

Denoting the left-hand side of (2.3) by l(p) and the right-hand side by
r(p), we observe that we can write l(p) and r(p) as

l(p) =

p−5

4
∏

k=0

(

3

4
+

p − 5

4
− k

) (

3

4
+

p − 1

4
+ k

)

(2.4)

≡

p−5

4
∏

k=0

(

−1

4
− k − k2

)

(mod p2)

and

r(p) =

p−5

4
∏

k=0

(

1

4
+

p + 1

2
+

p − 5

4
− k

)(

1

4
+

p + 1

2
+

p − 1

4
+ k

)

(2.5)

≡

p−5

4
∏

k=0

(

−1

4
− k − k2

)

(mod p2),

which implies (2.3). This completes the proof of (2.2). �

As a consequence, we have the following congruence.

Corollary 2.2. Let p be a prime such that p ≡ 1 (mod 4). Then

(2.6)

p−1
∏

k=0
k 6= 3p−3

4

(3 + 4k) ≡
p−1
∏

k=0
k 6= p−1

4

(1 + 4k) (mod p2).

3. Simple properties of sn and the congruence (1.6) for n = 1

We first observe that

(3.1) sn =

(

1
4

)2

n
64n

(n!)2
=

4n

(n!)2

n−1
∏

i=0

(1 + 4i)2.

Lemma 3.1. If p is a prime satisfying p ≡ 1 (mod 4), then

(3.2) sp ≡ s1 (mod p2).

Proof. From (3.1), we find that

sp =
4p

(p!)2

p−1
∏

i=0

(1 + 4i)2.
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Observe that

sp =
4p

((p − 1)!)2

p−1
∏

i=0
i6= p−1

4

(1 + 4i)2.

By (2.6), we find that

sp ≡ 4p

((p − 1)!)2

p−1
∏

i=0
i6= p−1

4

(1 + 4i)

p−1
∏

k=0
k 6= 3p−3

4

(3 + 4k) (mod p2)

≡ 1

3

4p

(p!)2

p−1
∏

i=0

(1 + 4i)

p−1
∏

i=0

(3 + 4i) (mod p2).

Therefore,

sp ≡ 1

3

4p

(p!)2

p−1
∏

i=0

(1 + 4i)(3 + 4i) (mod p2)(3.3)

≡ 1

3

4p

(p!)2

p−1
∏

i=0

(1 + 4i)(3 + 4i)(2 + 4i)(4 + 4i)

22(1 + 2i)(2 + 2i)
(mod p2)

≡ 1

3

(

4p
2p

)(

2p
p

)

(mod p2).

It is known that (see [11], respectively [2, Theorem 4]), for positive integers
a and b, with a ≥ b, and primes p > 3,

(3.4)

(

pa
pb

)

≡
(

a
b

)

(mod p3).

Using (3.4) in the last expression in (3.3), we conclude that

sp ≡ 1

3

(

4p
2p

)(

2p
p

)

≡ 1

3

(

4
2

)(

2
1

)

≡ 4 (mod p2).

�

We end this section with a simple observation. Let

(3.5) F (n) = 4p−1
p−1
∏

j=0

j 6= p−1

4

(1 + 4j + 4np)2
p−2
∏

i=0

1

(1 + i + np)2
.

From (3.2), we have the following congruence for F (0).

Corollary 3.2.

(3.6) F (0) ≡ 1 (mod p2).
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4. Completion of the proof of (1.6)

Lemma 4.1. Let F (n) be defined as in (3.5) and suppose p ≡ 1 (mod 4).
Then F (n) (mod p2) is independent of n.

Proof. We first consider the denominator of F (n). We have

p−2
∏

i=0

1

(1 + i + np)2
=

(p−1)/2
∏

k=1

1

(np + k)2((n + 1)p − k)2

≡
(p−1)/2

∏

k=1

1

k2(p − k)2
(mod p2).

Next, we split the numerator of F (n) into two parts, namely,

p−1
∏

j=0

j 6= p−1

4

(1 + 4j + 4np)2 = A(n)B(n),

where

A(n) =

(p−1)/4
∏

j=1

(

1 + 4

(

p − 1

4
− j

)

+ 4np

)2

×
(

1 + 4

(

p − 1

4
+ j

)

+ 4np

)2

≡
(p−1)/4

∏

j=1

162j4 (mod p2)

and

B(n) =

(p−1)/4
∏

k=1

(

4np + 2p + 3 + 4

(

p − 1

4
− k

))2

×
(

4np + 2p + 3 + 4

(

p − 1

4
+ k − 1

))2

=

(p−1)/4
∏

k=1

(4np + 3p − (4k − 2))2 (4np + 3p + (4k − 2))2

≡
(p−1)/4

∏

k=1

(

−4 + 16k − 16k2
)

(mod p2).

The above computations show that both A(n) (mod p2) and B(n) (mod p2)
are independent of n. Hence, F (n) (mod p2) is independent of n. �

Using (3.6), we arrive at the following conclusion.
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Corollary 4.2. For all positive integers n and p ≡ 1 (mod p2), we have

F (n) ≡ F (0) ≡ 1 (mod p2).

Completion of the proof of (1.6). Our aim is to show that

snp ≡ sn (mod p2)

for all positive integers n and primes p ≡ 1 (mod 4). We shall accomplish
this by an induction on n.

From (3.1), we find that

(4.1) sn+1 = 4

(

1 + 4n

1 + n

)2

sn.

Therefore

sn+k = 4k
k−1
∏

i=0

(

1 + 4(i + n)

1 + n + i

)2

sn.

In particular,

(4.2) sn+p = 4p
p−1
∏

i=0

(

1 + 4(i + n)

1 + n + i

)2

sn.

Now, for the induction hypothesis, suppose that

(4.3) snp ≡ sn (mod p2).

By (4.2), we find that

s(n+1)p = snp+p = snp4
p

p−1
∏

i=0

(

1 + 4(i + np)

1 + i + np

)2

≡ sn4p
p−1
∏

i=0

(

1 + 4(i + np)

1 + i + np

)2

(mod p2),

where we used (4.3) in the last congruence. We observe that, if

(4.4) 4p
p−1
∏

i=0

(

1 + 4(i + np)

1 + i + np

)2

≡ 4

(

1 + 4n

1 + n

)2

(mod p2),

then we would have

s(n+1)p ≡ sn4

(

1 + 4n

1 + n

)2

≡ sn+1 (mod p2),

by (4.1). But the congruence (4.4) is exactly the congruence in Corollary 4.2.
This completes our proof of (1.6). �
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5. A Lemma for the proof of (1.7)

Lemma 5.1. Let p = 6q + 1 be a prime. Then

4p

(

1

6

)

p

≡
(

2

3

)

p

(mod p3).

Proof. We want to reduce the congruence to one that we can manage. Clear-
ing denominators and dividing the terms which are multiples of p on both
sides, we see that we need to prove that

26q1 · 7 · · ·(6q − 5)(6q + 7) · · · (36q + 1)

≡ 2 · 5 · · · (12q − 1)(12q + 5) · · · (18q + 2) (mod p2).

We next match the terms 6q + 1 − 6k to 6q + 1 + 6k for 1 ≤ k ≤ q and
simplify the left-hand side to

26q
q

∏

k=1

(6q+1−6k)(6q+1+6k) ·M(q) ≡ 28q ·32q
q

∏

k=1

(−k2) ·M(q) (mod p2),

where

M(q) =

4q
∏

k=1

(12q + 1 + 6k).

But M(q) can also be expressed as

M(q) =

2q
∏

k=1

(24q+4−(6k−3))(24q+4+6k−3) ≡ 34q
2q
∏

k=1

(2k−1)2 (mod p2).

Hence the left-hand side is

28q · 36q
q

∏

k=1

(−k2)

2q
∏

k=1

(2k − 1)2.

Similarly, the right-hand side can be expressed as

2q
∏

k=1

(12q + 2 − 3k)(12q + 2 + 3k) · N(q) ≡ 34q
2q
∏

k=1

k2 · N(q) (mod p2),

where N(q) is given by

N(q) =

q
∏

k=1

(

3q +
1

2
− 6k − 3

2

)(

3q +
1

2
+

6k − 3

2

)

≡
(

3

2

)2q q
∏

k=1

(−(2k − 1)2) (mod p2).

Simplifying both sides, we observe that we need to prove that

210q
2q
∏

k=q+1

(2k − 1)2 ≡
2q
∏

k=q+1

k2 (mod p2).
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We rewrite both sides, so that the above congruence turns out to be equiv-
alent to

210q
2q
∏

k=q+1

(p − (2k − 1))(p + (2k − 1)) ≡
2q
∏

k=q+1

(p − k)(p + k) (mod p2).

This leads to

211q
2q
∏

k=q+1

(p − (2k − 1)) ≡
2q
∏

k=q+1

(p + k) (mod p2),

since
2q
∏

k=q+1

(p + (2k − 1)) = 2q
2q
∏

k=q+1

(p − k).

Now rewriting

2q
∏

k=q+1

(p − (2k − 1)) = 2q
2q
∏

k=q+1

(3q − k + 1),

we see that we must show that

212q(q + 1)(q + 2) · · · (2q)
≡ (q + 1)(q + 2) · · · (2q) (1 + p (H2q − Hq)) (mod p2),

where

Hn =
n

∑

k=1

1

k
.

Equivalently, we need to verify that

26q − 1

p
· 2 ≡ H2q − Hq (mod p).

But it is known (see [10, Theorem 132]) that

2p−1 − 1

p
≡ H6q −

H3q

2
(mod p).

Since
H6q ≡ 0 (mod p),

it suffices to show that

−H3q + Hq − H2q ≡ 0 (mod p).

Observe that

H3q = 1 +
1

2
+ · · · + 1

q
+ H2q − Hq +

1

2q + 1
+ · · · + 1

3q
.

Now, for 1 ≤ i ≤ q, we pair the terms in the sums at both ends as follows:

1

i
+

1

3q + 1 − i
=

3q + 1

i(3q + 1 − i)
≡ 1

2i(3q + 1 − i)
≡ 1

i
− 2

2i − 1
(mod p).
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Hence, we deduce that

H3q ≡ Hq − 2

(

H2q −
Hq

2

)

+ H2q − Hq ≡ −H2q + Hq (mod p),

which completes the proof of the lemma. �

We are now ready to show that if

tn = 108n

(

1
6

)

n

(

1
3

)

n

(1)2n

then

(5.1) tp ≡ t1 (mod p2)

for all primes p ≡ 1 (mod 6). By Lemma 5.1,

(5.2) tp ≡ 27p

(

2
3

)

p

(

1
3

)

p

(1)2p
(mod p2).

But the last expression can be written as
(

3p

p

)(

2p

p

)

≡ 6 ≡ t1 (mod p2),

by using (3.4). This completes the proof of (5.1).
The proof of (1.7) for n > 1 is similar to the proof of (1.6). We will

simply list the corresponding identities that are needed in the proof. These
are:

(i) The sequence tn satisfies

tn+1 = 6
(1 + 6n)(1 + 3n)

(1 + n)2
tn

and

tn+p = tn6p
p−1
∏

i=0

(1 + 6n + 6i)(1 + 3n + 3i)

(1 + n + i)2
.

(ii) The expression

G(n) = 6p−1
p−1
∏

j=0

j 6= p−1

6

(1 + 6j + 6np)

p−1
∏

j=0

j 6= p−1

3

(1 + 3j + 3np)

p−2
∏

i=0

1

(1 + i + np)2

is independent of n modulo p2, and

G(n) ≡ G(0) ≡ 1 (mod p2).

The proofs of (i) and (ii) are similar to those presented in Section 4.
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Astérisque 61 (1979), 11–13.

[2] D. F. Bailey, Two p3 variations of Lucas’ theorem, J. Number Theory 35 (1990),
208–215.

[3] F. Beukers, Irrationality proofs using modular forms, Journées arithmétiques (Be-
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