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INTEGRAL REPRESENTATIONS OF CYCLIC GROUPS ACTING

ON RELATIVE HOLOMORPHIC DIFFERENTIALS OF

DEFORMATIONS OF CURVES WITH AUTOMORPHISMS

SOTIRIS KARANIKOLOPOULOS AND ARISTIDES KONTOGEORGIS

(Communicated by Matthew A. Papanikolas)

Abstract. We study integral representations of holomorphic differentials on
the Oort-Sekiguchi-Suwa component of deformations of curves with cyclic
group actions.

1. Introduction

Let X be a nonsingular projective curve defined over an algebraically closed field
k of positive characteristic p. If the curve X has genus g ≥ 2, then it is known that
the automorphism group G of X is finite. If p divides |G|, then the automorphism
group of X behaves in a much more complicated way compared to automorphism
group actions in characteristic zero. Wild ramification can appear and the structure
of decomposition groups and the different is much more complicated [18].

The representation theory of groups on holomorphic differentials has been a use-
ful tool for studying curves with automorphisms even in characteristic zero [6, chap.
V.2]. In the positive characteristic case, extra difficulties arise in the representa-
tion theory of the automorphism group which now requires the usage of modu-
lar representation theory. The classical problem of determination of the Galois
module structure of (poly)differentials, i.e. the study of k[G]-module structure of
H0(X,Ω⊗n

X ), remains open in positive characteristic and only some special cases
are understood [12], [19], [16], [10].

Also one can consider the deformation problem of curves with automorphisms:
Can one find proper, smooth families X → SpecR over a local ring R, with maximal
ideal mR, acted on by G, such that the special fibre X ⊗SpecR R/mR is the original
curve? There are certain obstructions [1], [4] to the existence of such families,
especially if R is a mixed characteristic ring. As part of this problem one can
consider the lifting problem to characteristic zero of a curve with automorphisms.
We will use the following lemma.
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Lemma 1. Let R be a local noetherian integral domain with residue field k and
quotient field L. Every finitely generated R-module M with the additional property
dimk M ⊗R k = dimL M ⊗R L = r is free of rank r.

Proof. See [8, Lemma 8.9]. �

By Lemma 1 the modules of relative polydifferentials Mn = H0(X ,Ω⊗n
X ) are free

R-modules that are acted on by G. The aim of this article is to motivate and start
the study of the following

Problem. Describe the R[G]-module structure of Mn.

This problem is to be studied within the theory of integral representations. Tradi-
tionally the theory of integral representations considers the Z[G]-module structure,
but essentially the theory of R[G]-module structure is similar to the Z[G] theory if
R is a principal ideal domain. For cyclic p-groups the possible Z[G]-modules are
classified [15], [5]. Here the situation is a little bit easier since we will only con-
sider integral domains that contain a p-th root of unity. In this article we will also
consider deformations over affine schemes where R is not a principal ideal domain.

The study of integral representations is even more difficult than the theory of
modular representations. Actually one of the main ideas of Brauer in studying
modular representation theory is to lift the representation to characteristic zero
using complete rings with special fibre k.

The Galois module structure of the special fibre Mn ⊗R R/mR remains open,
but for Artin-Schreier curves it is known [14], [19], [10]. The relative situation in
mixed characteristic rings is described by the Oort-Sekiguchi-Suwa theory [17] and
is also well understood, at least for cyclic p-groups of order p.

Using the Oort-Sekiguchi-Suwa theory, Bertin and Mézard [2] gave an explicit
such model of equivariant and mixed characteristic deformations of an Artin-
Schreier cover with only one ramification point. In this article we will study ex-
plicitly the R[G]-module structure of M1 using the Bertin-Mézard deformation as
a toy model.

In order to express our main theorem we first introduce some notation:

Proposition 2. We extend the binomial coefficient
(
i
j

)
by zero for values i < j.

For every a ∈ Z, 1 ≤ a ≤ p, consider the a× a matrix Aa = (aij) given by

aij =

(
j − 1

i− 1

)
.

The matrix (aij) is lower triangular, and in characteristic p the matrix Aa has
order p. Let G = 〈σ〉 be a cyclic group of order p. The matrix Aa defines an
indecomposable Z[G] module of dimension a by sending

ρ : σi 	→ Ai
a.

Proof. Let k be a field of characteristic p. There is a natural representation of
a p-group on k[x] by defining σ(x) = x + 1. Let ka−1[x] be the vector space of
polynomials of degree at most a− 1. This action with respect to the natural basis
{1, x, x2, . . . , xa−1} has representation matrix Aa. Also, the space of invariants
ka−1[x]〈σ〉 is one dimensional, therefore the G-module ka−1[x] is indecomposable.

�
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For an algebraically closed field k of positive characteristic we consider the ring
W (k)[ζ] of Witt vectors with one p-root of unity added to it.

Proposition 3. Let S be an integral domain that is a W (k)[ζ] algebra. Set λ =
ζ − 1. For a0, a1 ∈ Z, 1 ≤ a1 ≤ p, we consider the S-module

V ′
a0,a1

:=S

〈
(λX + 1)i : a0 ≤ i < a0 + a1

〉
⊂ S(λX + 1).

Consider the diagonal integral representation of a cyclic group of order p on V ′
a0,a1

by defining

(1) σ(λX + 1)i = ζi(λX + 1)i.

Notice that the modules V ′
a0,a1

and V ′
a0+p,a1

are isomorphic as G-modules. The
problem with the module V ′

a0,a1
is that there is no good reduction of it modulo the

maximal ideal of S. So we define the S-module

Va0,a1
:=S

〈
(λX + 1)a0Xi : 0 ≤ i < a1

〉
⊂ S(λX + 1, X)

instead. The two modules are GLa(Quot(S))-equivalent but not GLa(S)-equivalent.
After a GLa(Quot(S)) change of basis the representation on Va0,a1

becomes equiv-
alent to

(2) ρ(σ) = diag(ζa0 , ζa0+1, . . . , ζa0+a1−1)Aa1
.

The S[G]-representation Va0,a1
is indecomposable.

Proof. We consider the linear change of coordinates from the (λX +1)a0(λX+1)κ,
0 ≤ κ < a1, basis to the (λX + 1)a0Xκ, 0 ≤ κ < a1, basis. This can be done using
the binomial theorem as follows:

(λX + 1)a0(λX + 1)κ =

κ∑
ν=0

(
κ

ν

)
λν(λX + 1)a0Xν .

Observe that this change of basis is invertible if and only if the elements λ are
invertible. We can work out the conjugation in terms of the binomial coefficients,
but it is easier to observe that the action of σ on polynomials of X is obtained from
(1) to be σ(X) = ζX + 1.

Let m be the maximal ideal of W (k)[ζ]. In order to prove that Va0,a1
is inde-

composable we simply take the reduction of S modulo mS and obtain the indecom-
posable modular representation of Proposition 2. This finishes the proof since a
decomposable S[G] integral representation has decomposable reduction as well. �

Remark 4. The isomorphism class of the module Va0,a1
depends on the equivalence

class modulo p of a0 and of the length a1. Notice also that the isomorphism class of
the reduction of Va0,a1

modulo the maximal ideal of S depends only on the length
a1. Indeed, the S-module isomorphism (but not the G-module isomorphism unless
a0 ≡ 0 mod p)

V0,a1
→ Va0,a1

,

v 	→ (λX + 1)a0v

reduces to the identity modulo the maximal ideal of S. This is also compatible
with the fact that the isomorphism type of a modular representation for the cyclic
group depends only on the rank of the module.
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Remark 5. Two modules can be isomorphic over the quotient field of an integral
domain S but not be S-isomorphic. This is one of the ingredients of the Bruhat-
Tits theory of buildings and also appears in algebraic geometry in the birational
versus biregular equivalence.

Definition 6. Define by Va the indecomposable integral representation V1−p,a of
Proposition 3. It has the matrix representation given in (2). The module Va is free
of rank a.

The main theorem of our article is:

Theorem 7. Let σ be an automorphism of X of order p �= 2 and conductor m with
m = pq − l, 1 ≤ q, 1 ≤ l ≤ p− 1. Let

(3) R =

{
W (k)[ζ][[x1, . . . , xq]] if l = 1,
W (k)[ζ][[x1, . . . , xq−1]] if l �= 1

be the Oort-Sekiguchi-Suwa factor (see also Theorem 9) of the versal deformation
ring Rσ. The free R-module H0(X ,ΩX ) of relative differentials has the following
R[G]-structure:

(4) H0(X ,ΩX ) =

p−2⊕
ν=0

V δν
ν ,

where

δν =

{
q +

⌈
(ν+1)l

p

⌉
−

⌈
(2+ν)l

p

⌉
if ν ≤ p− 3,

q − 1 if ν = p− 2.

We will use the explicit construction of Bertin and Mézard [2] for constructing
models of the family X → SpecR. Let π be a local uniformizer of S = W (k)[ζ].
We will first employ the Boseck [3] construction for finding a basis for the space of
differentials for Kummer extensions working with base ring Quot(S) ⊗R.

Then we will select a basis B so that the R-lattice generated by it has full rank
and gives a well defined reduction modulo the ideal πR. A detailed analysis for the
family of Artin-Schreier extensions given by X ×R R/πR proves that the basis B
chosen before is indeed a basis for H0(X ,ΩX ). The proof of Theorem 7 is given
by detailed computations with the basis elements chosen. As an application we
easily obtain a classical theorem due to Hurwitz on the Galois module structure of
Kummer extensions. We also obtain the known modular representation structure
of the special fiber by reduction of the integral representation.

2. Explicit deformation theory

2.1. Holomorphic differentials of Kummer extensions. The following theo-
rem will be used for constructing a basis on the characteristic zero fibers.

Theorem 8 (Boseck). Let L be a not necessarily algebraically closed field of char-
acteristic p ≥ 0, (p, n) = 1. Consider the Kummer extension F of L(x) := F0

given by the equation yn = f(x) where f(x) = a
∏r

i=1 pi(x)li , the pi(x) are monic
irreducible polynomials of degree di, and the exponents li satisfy 0 < li < n. The
place at infinity of L(x) is assumed to be nonramified in F/F0, and this is equiv-
alent to deg(f) =

∑
dili ≡ 0 mod n. The ramified places in F/F0 correspond



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

INTEGRAL REPRESENATIONS, HOLOMORPHIC DIFFERENTIALS 2373

to the irreducible polynomials pi and are ramified in extension F/F0 with index
ei = n/(n, li). We will denote by gi the number of places of F extending the place
pi. Set t := deg(f)/n and λi = eili/n. Let fi be the residual degree of the places pi
in extension F/F0. For every μ = 1, . . . , n− 1 we define m

(μ)
i , ρ

(μ)
i by the division

μλi = m
(μ)
i ei + ρ

(μ)
i , where 0 ≤ ρ

(μ)
i ≤ ei − 1.

We set

t(μ) =
1

n

r∑
i=1

difigiρ
(μ)
i

and

gμ(x) =
r∏

i=1

pi(x)m
(μ)
i .

A basis of holomorphic differentials is given by

xνgμ(x)y−μdx,

for μ = 1, . . . , n− 1, 0 ≤ ν ≤ t(μ) − 2.

Proof. See [3, II, pp. 48-50]. �

2.2. The Bertin-Mézard model. Let k be an algebraically closed field of positive
characteristic p > 0. Consider the Witt ring W (k)[ζ] extended by the p-th root of
unity, and let L = Quot(W (k)[ζ]). Let λ = ζ − 1.

We consider the Kummer extension of a rational function field L(x) defined by
the extension

(X + λ−1)p = x−m + λ−p.

Write m = pq − l where 0 < l ≤ p− 1.
Set λX + 1 = y/xq. We have then the model

(5) yp = (λp + xm)xl = λpxl + (xq)p.

Notice that the polynomial f(x) = (λp + xm)xl on the right hand side has degree
m + l = qp divisible by p so that the place at infinity is not ramified.

More generally we replace xq on the right hand side of (5) by

(6) a(x) = xq + x1x
q−1 + · · · + xq,

where xq = 0 if l �= 1. This gives the Kummer extension

(7)
(
λξ + a(x)

)p
= λpxl + a(x)p,

where ξ = Xa(x), and if we set

(8) y = λξ + a(x) = a(x)(λX + 1),

we have

(9) yp = λpxl + a(x)p.

Observe that (9) becomes (5) if we set x1 = · · · = xq = 0.
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It is known [2] that the global deformation functor is prorepresentable by a ring
Rσ. Bertin and Mézard for the case we are studying proved the following theorem.

Theorem 9. Let σ be an automorphism of the special fibre X, of order p �= 2 and
conductor m, with m = pq − l, 1 ≤ q, 1 ≤ l ≤ p − 1. The versal ring Rσ has
a formally smooth quotient Rσ � R called the Oort-Sekiguchi-Suwa (OSS) factor;
the ring R is given in (3). One model of a family over the OSS factor R is given
by setting ξ = Xa(x), where a(x) is defined in (6), and by taking the normalization
of the fibers given by (7).

We will use the Boseck construction for bases for holomorphic differentials on
the generic fibre. Set x̄ = (x1, . . . , xq) and consider the polynomial

fx̄(x) = λpxl + a(x)p.

We consider the decomposition of the polynomial fx̄(x) as a product of irreducible
polynomials pi(x) of degree di:

fx̄(x) =
∏

pi(x)li .

Consider the x̄ = (0, . . . , 0) case, i.e. fx̄(x) = λpxl + xpq = xl(λp + xm). In this
case it is clear (compute the discriminant of the polynomial xm − a) that li = 1 for
irreducible factors of λp + xm and the only possible factor where l1 := l > 1 is x.
Since (li, p) = 1 we have that every place Pi corresponding to an irreducible factor
pi of fx̄(x) ramifies completely in the cover X → P

1
L. Therefore, all inertia degrees

are fi = 1 and the number of places gi above Pi is gi = 1. Notice that the number
of places that are ramified is m + 1.

We can arrive at the same conclusion for the general fx̄(x). Indeed, if l = 1,
then the polynomial fx̄(x) is of degree m+ 1 and should have m+ 1 distinct roots
in an algebraic closure (otherwise the genus of the curve given in (5) differs from
the genus of the curve given in (9)). We can apply the same method for the l > 1
case. We notice that a(x)px−l is a polynomial and we have

fx̄(x) = xl(λp + a(x)px−l).

That is to say, we have that the factor x of multiplicity l and the remaining factor
λp + a(x)px−l is a polynomial of degree m = pq− l that should have distinct roots;
otherwise the genera of the curves defined in (5) and (9) are different.

Generic Fibre
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Following the notation of Boseck we have λi = eili/p = li and we also define for
every μ = 1, 2, . . . , p− 1 the integers

μλi = m
(μ)
i ei + ρ

(μ)
i ,

i.e.

m
(μ)
i =

⌊
μli
p

⌋
and ρ

(μ)
i = p

〈
μli
p

〉
= μli −

⌊
μli
p

⌋
p.

This means that for all 2 ≤ i ≤ r such that li = 1 we have

m
(μ)
i = 0 and ρ

(μ)
i = μ for all 1 ≤ i ≤ r,

while the same holds for m1, ρ1, only if l = 1, i.e. only if m = pq − 1. Therefore,
the polynomials

gμ(x) =

r∏
i=1

pi(x)m
(μ)
i

that are defined in the work of Boseck have only xm
(μ)
1 as a factor.

We set

t(μ) =
1

p

r∑
i=1

difigiρ
(μ)
i =

mμ + μl −
⌊
μl
p

⌋
p

p
= μq −

⌊
μl

p

⌋
.

The set of holomorphic differentials is given by

(10) xν+
 lμ
p �y−μdx, where 1 ≤ μ ≤ p− 1, 0 ≤ ν ≤ t(μ) − 2 = μq −

⌊
μl

p

⌋
− 2.

Let us write y = a(x)(λX + 1); set N := ν +
⌊
lμ
p

⌋
and a := p− 1 − μ. We have

proved the following proposition:

Proposition 10. The set of differentials of the form

(11) xNa(x)a
(λX + 1)a

a(x)p−1(λX + 1)p−1
dx,

where

(12) 0 ≤ a < p− 1 and l −
⌈

(1 + a)l

p

⌉
≤ N ≤ (p− 1 − a)q − 2,

forms a basis of holomorphic differentials.

This basis is not suitable for taking the reduction modulo the maximal ideal of
the ring S = W (k)[ζ]. We will select a different basis so that it has good reduction.

Lemma 11. For every holomorphic differential in the basis given in Proposition 10
and for 0 ≤ k ≤ a the differential

(13) xNa(x)a
(λX + 1)k

a(x)p−1(λX + 1)p−1
dx

is also holomorphic.
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Proof. For k = a we have nothing to show. Let us assume that 0 ≤ k < a. The
differentials of the form

(14) xN ′
a(x)k

(λX + 1)k

a(x)p−1(λX + 1)p−1
dx

for l −
⌈
(1+k)l

p

⌉
≤ N ′ ≤ (p − 1 − k)q − 2 are holomorphic. We will show that

every differential given in (13) is written as a linear combination of holomorphic
differentials given in (14).

Indeed we have to show that we can select λN ′ such that

(p−1−k)q−2∑
N ′=l−� (1+k)l

p �
λN ′xN ′

a(x)k = xNa(x)a

or equivalently that

(15)

(p−1−k)q−2∑
N ′=l−� (1+k)l

p �
λN ′xN ′

= xNa(x)a−k.

We now observe that a(x)a−k is a polynomial of degree q(a−k) and that the possible
values of N are in the range given by (12). This means that on the right hand side
of (15) appear monomials of degree at most N1 = N + q(a− k), where N1 satisfies

N1 ≤ (p− 1 − a)q − 2 + q(a− k) = (p− 1 − k)q − 2

and at least

N2 :=

{
N if l = 1,
N + a− k if l > 1.

The distinction in the two cases appears since in the l > 1 case the polynomial a(x)
has zero constant term.

For l = 1 it is enough to prove that

l −
⌈

(1 + k)

p

⌉
≤ l −

⌈
(1 + a)

p

⌉
,

which is immediate since 1 ≤ 1 + k ≤ 1 + a ≤ p− 1.
For the l > 1 we have to prove that

(16)

⌈
(1 + a)l

p

⌉
−

⌈
(1 + k)l

p

⌉
≤ (a− k).

Write a = k + t for some t > 0. Then we have

(1 + a)l = πap + va, (1 + k)l = πkp + vk where 0 ≤ va, vk < p,

so

(1 + a)l = πkp + vk + tl

and

vk + tl = p

⌊
vk + tl

p

⌋
+ v for some 0 ≤ v < p.
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This way we see that

πa = πk +

⌊
vk + tl

p

⌋
,

but ⌊
vk + tl

p

⌋
≤

⌊
vk + tp

p

⌋
= t +

⌊
vk
p

⌋
= t;

therefore (16) holds. �

Corollary 12. If for every p(x) ∈ R[x] the differential

p(x)a(x)a
(λX + 1)a

a(x)p−1(λX + 1)p−1
dx

is holomorphic, then the differentials

p(x)a(x)a
(λX + 1)k

a(x)p−1(λX + 1)p−1
dx

are also holomorphic.

For 0 ≤ a ≤ p − 2 we consider the set of admissible N , i.e. N that satisfy the

inequalities Na ≤ N ≤ Na, where Na = l−
⌈
(1+a)l

p

⌉
and Na = (p− 1−a)q− 2. For

example Np−2 = 0 and Np−2 = q − 2.

We consider the space of holomorphic differentials as a graded space with grading
given by the exponent of (λX + 1)a, i.e.

ΩX =
⊕

0≤a≤p−2

Ωa
X .

Notice that every space Ωa
X has dimension:

(17) dim Ωa
X = Na −Na + 1 = (p− 1 − a)q − 2 − l +

⌈
(1 + a)l

p

⌉
+ 1.

Corollary 12 implies that for every 0 ≤ k ≤ a ≤ p− 2 there are linear injections

La,k : Ωa
X → Ωk

X

so that

La,k

(
p(x)a(x)a

(λX + 1)a

a(x)p−1(λX + 1)p−1
dx

)
= p(x)a(x)a

(λX + 1)k

a(x)p−1(λX + 1)p−1
dx.

Define

Cp−2 := Ωp−2
X .

We define Cp−3 so that Ωp−3
X is a direct sum in the category of vector spaces:

Ωp−3
X = Lp−2,p−3(Cp−2) ⊕ Cp−3.

We proceed inductively. We define Cp−4 so that

Ωp−4
X = Lp−2,p−4(Cp−2) ⊕ Lp−3,p−4(Cp−3) ⊕ Cp−4.

More generally,

(18) Ωp−k
X =

p−2⊕
ν=p−k+1

Lν,p−k(Cν) ⊕ Cp−k =

p−2⊕
ν=p−k

Lν,p−k(Cν).
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After setting a = p− k we have

Ωa
X =

p−2⊕
ν=a

Lν,a(Cν).

We now write

ΩX =

p−2⊕
a=0

p−2⊕
ν=a

Lν,a(Cν) =

p−2⊕
ν=0

ν⊕
a=0

Lν,a(Cν).

Recall that by Proposition 10 the differentials in Ων
X are of the form

f(x)a(x)ν
(λX + 1)ν

a(x)p−1(λX + 1)p−1
dx,

where f(x) is a polynomial in R[x] with degree bounded by eq. (12):

(19) l −
⌈

(1 + ν)l

p

⌉
≤ deg f(x) ≤ (p− 1 − ν)q − 2.

Fix a basis{
f
(ν)
1 a(x)ν

(λX + 1)ν

a(x)p−1(λX + 1)p−1
dx, . . . , f

(ν)
dimCν

a(x)ν
(λX + 1)ν

a(x)p−1(λX + 1)p−1
dx

}

of Cν , where f
(ν)
i are polynomials in R[x] with degree bounded by (19). Then the

set {
f (ν)
κ a(x)ν

(λX + 1)a

a(x)p−1(λX + 1)p−1
dx : 1 ≤ κ ≤ dimCν , 0 ≤ a ≤ ν

}
is a basis of the space

⊕ν
a=0 Lν,a(Cν), by the injectivity of the Lν,a’s. Furthermore,

Proposition 3 implies that
ν⊕

a=0

Lν,a(Cν) = V dimCν
ν ,

where Vν is the indecomposable factor defined in Definition 6.

Corollary 13. A natural basis for
⊕ν

a=0 Lν,a(Cν) with respect to the reduction is

(20)

{
f (ν)
κ a(x)ν

Xa

a(x)p−1(λX + 1)p−1
dx : 1 ≤ κ ≤ dimCν , 0 ≤ a ≤ ν

}
.

The degrees of the polynomials f
(ν)
κ are bounded by (19). Notice that Lemma 11

and its proof implies that we can select as a basis

(21)

{
f ′(ν)

κ a(x)a
Xa

a(x)p−1(λX + 1)p−1
dx : 1 ≤ κ ≤ dimCν , 0 ≤ a ≤ ν

}
,

where the degrees of the polynomials f ′(ν)
κ now satisfy the bound

(22) l −
⌈

(1 + a)l

p

⌉
≤ deg f ′(ν)

κ (x) ≤ (p− 1 − a)q − 2.

Using the decomposition in (18) and (17) we obtain that

dimCp−2 = dim Ωp−2
X = q − 1,

dimCp−k = dim Ωp−k
X − dim Ωp−k+1

X for k ≥ 3.
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So

dimCa =

{
dim Ωa

X − Ωa+1
X = q +

⌈
(a+1)l

p

⌉
−

⌈
(2+a)l

p

⌉
if a ≤ p− 3,

q − 1 if a = p− 2.

The proof of our main Theorem 7 will be complete if we show that the differentials
chosen in Corollary 13 are X holomorphic. For this we will study the characteristic
p-fibers of our family X → SpecR.

3. On the finite characteristic fibres

Recall that S = W (k)[ζ] and R is defined in Theorem 7 to be the Oort-Sekiguchi-
Suwa factor. These are rings of characteristic zero, and here we focus on their
reduction modulo the ideal generated by the uniformizer π of S. The quotient is a
polynomial ring over the algebraically closed field k of characteristic p > 0.

In this section we consider the reduction of the model given in (9):(
λξ + a(x)

)p
= λpxl + a(x)p,

modulo the ideal generated by π. Using the fact that for λ = ζ − 1, pλ−j ≡ 0
mod π for 0 ≤ j < p − 1 and that pλ−(p−1) ≡ −1 mod π, Bertin and Mézard in
[2, sec. 4.3] arrived at the equation

(23) Xp −X =
xl

a(x)p
, where X =

ξ

a(x)
.

This equation, that lives in positive characteristic, is Artin-Schreier but not in
normal form since the right hand side has poles of orders divisible by p. Write
(keep in mind that l1 = l)

a(x) = xl1

r∏
i=2

pi(x)li mod πS,

where pi(x) are irreducible polynomials in S[[x1, . . . , xq]][x]. The valuations of
the denominator in (23) are not prime to p. Bertin and Mézard proved that the
normalization of R[[x]] in the Galois extension of the generic fibre is the ring R[[η]],
where ηl = ξ. The group action of the generator σ of G, on the characteristic p
fiber, is then given by

σ(ξ) = ξ + a(x) ⇒ σ(η) = η

(
1 +

a(x)

ηl

)1/l

,

so

σ(η) − η = η
∞∑
ν=1

(1
l

ν

)(
a(x)

ηl

)ν

=

(
a(x)

ηl−1

) ( ∞∑
ν=1

( 1
l

ν

) (
a(x)

ηl

)ν−1
)
.(24)

Notice that for l > 1 the polynomial a(x) has at least one root, and since x =
ηpu(η), where u(η) is a unit in R[[η]], we have that a(x)/ηl−1 has reduced order
pq − l + 1 = m + 1 and by Weierstrass preparation theorem can be written as(

a(x)

ηl−1

)
=

(
ηpq−l+1 + apq−l(x1, . . . , xq)η

pq−l + · · · + a0(x1, . . . , xq)
)
U(η),
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where ai(0, . . . , 0) = 0. According to [7, sec. 2.1] the ramification locus corresponds
to the irreducible factors of the distinguished Weierstrass polynomial that differs
from a(x) only by a unit. Therefore only the places pi(x) corresponding to fac-
tors of a(x) are ramified. If li is the multiplicity of the polynomial pi(x) in the
decomposition of a(x), then the conductor is given by

mi =

{
pli − 1 if i �= 1,
pl1 − l1 if i = 1.

Remark 14. Notice that since
∑

li = q, the contributions to the different∑
(p− 1)(mi + 1) = (p− 1)(pq − l + 1) = (p− 1)(m + 1)

are as expected [7, sec. 3.4], [11, sec. 5].

Let Pi be the unique places above the polynomials pi(x) and P1 above x. We
compute the divisors

div(X) = div0(X) −
r∑

i=2

lipPi − (l1p− l)P1.

Remark 15. Notice that in the case of normalized Artin-Schreier curves the coef-
ficients in front of the poles of the generating functions is just the conductor of
the corresponding place; see [3, eq. 26]. This cannot be true in our case since the
conductors are not divisible by p.

The differential dx is a differential on X/G ∼= P
1. We will denote by P∞ the

place at infinity of the function field of X/G. We would like to compute its divisor,
seen as a differential on X. For this we use proposition IV.2.3 in [8, p. 301]. By
computation,

div(dx) =

r∑
i=2

(p− 1)pliPi + (p− 1)(l1p− l + 1)P1 − 2Con(P∞),

where Con(P∞) is the sum of places extending P∞ in the Artin-Schreier extension,
and

div(Xμdx) =
r∑

i=2

(p− 1 − μ)pliPi +
(
(p− 1 − μ)(l1p− l) + (p− 1)

)
P1

− 2Con(P∞) + μdiv0(X).

Following Boseck we now set

m
(μ)
i = (p− 1 − μ)li and m

(μ)
1 =

⌊
(p− 1 − μ)(l1p− l) + (p− 1)

p

⌋
.

Then we form the polynomials

gμ(x) =
r∏

i=1

pi(x)m
(μ)
i =

(
a(x)

xl1

)p−1−μ

x

⌊
(p−1−μ)(l1p−l)+(p−1)

p

⌋

= a(x)p−1−μx

−l(p−1−μ)+(p−1)

p �.
Therefore

gμ(x)−1Xμdx
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is a holomorphic differential if

t(μ) =

r∑
i=1

dim
(μ)
i = q(p− 1 − μ) − l +

⌊
l(1 + μ) + p− 1

p

⌋
≥ 2.

Notice that for μ = p − 1 the above formula gives t(p−1) = 0, so μ = p − 1 is not
permitted and 0 ≤ μ ≤ p− 2. By computation we see{

xνgμ(x)−1Xμdx, μ = 0, . . . , p− 1, t(μ) ≥ 2, ν = 0, . . . , t(μ) − 2
}

is a basis of holomorphic differentials. We set N := ν −
⌊
−l(p−1−μ)+(p−1)

p

⌋
and we

observe that

(25) l −
⌊
l(1 + μ) + (p− 1)

p

⌋
≤ N ≤ q(p− 1 − μ) − 2.

Since for every integer a we have
⌊
a+p−1

p

⌋
=

⌈
a
p

⌉
, we see that inequality (25) is

equivalent to inequality (22) of Corollary 13 and every basis element in the basis
given in (21) of Corollary 13 has a reduction that is a linear combination of elements
of the set {

xNa(x)μ
Xμ

a(x)p−1
dx

}
with N satisfying inequality (25) and 0 ≤ μ ≤ p − 2. This set forms a basis of
holomorphic differentials of the special fibre. The reader should always keep in
mind that λ ≡ 0 modulo the maximal ideal of the Witt ring.

Therefore, the union of the bases given in Corollary 13 is not just a basis of
holomorphic differentials on the characteristic zero fibers but it forms a free basis
of the module of relative differentials H0(ΩX ,X ).

3.1. On a theorem of Hurwitz. The following is a classical result due to Hurwitz
[9] (see also [13, Theorem 3.5, p. 600]) that characterizes the dimension of the
ζi eigenvalues of the generator of a p-cyclic group on the space of holomorphic
differentials. Let K be an algebraically closed field of characteristic char(K).

Theorem 16 (Hurwitz). Let F/E be a cyclic Galois extension of function fields
with Galois group the cyclic group G, of order n, (char(K), n) = 1 or char(K) = 0.
This is given in Kummer form yn = u, where u ∈ E and ul �∈ E for every l | n.
For every place Pi of E that is ramified in F/E with ramification index ei, we set

Φ(i) =
eivPi

(u)

n . Set

Γκ :=

r∑
i=1

〈
κΦ(i)

ei

〉
.

For κ = 0, . . . , n − 1, we have n distinct irreducible representations of degree 1.
Every representation of the cyclic group G is decomposable as a direct sum of one
dimensional representations. The one dimensional representation where a generator
of G acts on the eigenvector by multiplication by a n-th primitive root of 1 raised
to the κ-power is called the κ-th representation. Let gE denote the genus of E. The
κ-th representation occurs dκ = Γn−κ − 1 + gE times in the representation of G in
the holomorphic differentials ΩF of F when κ �= 0, and gE times when κ = 0.
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We will apply this theorem for the Kummer extension defined in (5). So in our
case n = p, the group G is a cyclic group and the characteristic is zero on the
generic fibre. We have Φ(i) = 1 for all places that correspond to divisors of λp+xm

and Φ(r) = l for the last place. We compute

Γκ =
r∑

i=1

〈
κΦ(i)

p

〉

= m

(
κ

p
−

⌊
κ

p

⌋)
+

κl

p
−

⌊
κl

p

⌋

= κ
m + l

p
−

⌊
κl

p

⌋

= κq −
⌊
κl

p

⌋
.

The dimension of the eigenspace of the eigenvalue ζμ is Γp−μ − 1. We compute

(26) Γp−μ − 1 = (p− μ)q −
⌊

(p− μ)l

p

⌋
− 1.

We would like to obtain the result of Hurwitz using our result on integral rep-
resentation. Observe that the action of σ on Vn has eigenvalues ζ, ζ2, . . . , ζn+1;
thus there is a contribution from Vn to the eigenspace of the eigenvalue ζμ only if
n + 1 ≥ μ. Therefore only the summands for which n ≥ μ − 1 contribute dimCn

to the eigenspace. The dimension of the desired eigenspace is

p−2∑
n=μ−1

dimCn =

p−3∑
n=μ−1

dimCn + dimCp−2

= q(p− μ− 1) +

⌈
μl

p

⌉
−

⌈
(p− 1)l

p

⌉
+ q − 1

= q(p− μ) +

⌈
μl

p

⌉
− l − 1.

Of course, this result coincides with the result given by (26).
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