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Abstract For nonsingular projective curves defined over algebraically closed fields of
positive characteristic the dependence of the ramification filtration of decomposition groups
of the automorphism group with Weierstrass semigroups attached at wild ramification points
is studied. A faithful representation of the p-part of the decomposition group at each wild
ramified point to a Riemann–Roch space is defined.

1 Introduction

An important difference between the theory of curves in characteristic 0 and in positive
characteristic is the existence of wild ramification. Let X be a smooth, complete, projective
curve over an algebraically closed field k of characteristic p > 0 and let G be a subgroup
of the automorphism group. The decomposition group G(P) of a point P is defined as the
subgroup of G consisting of elements that fix P . The decomposition group G(P) of a point
on X admits the following ramification filtration

G(P) = G0(P) ⊃ G1(P) ⊃ G2(P) ⊃ · · · , (1)

where the groups Gi (P) are defined as Gi (P) = {σ ∈ G(P) : vP (σ (t)) − t ≥ i + 1},
and t is a local uniformizer at P and vP is the corresponding valuation. Note that G1(P)
is the p-part of G(P). The ramification filtration is very well studied in the theory of local
fields [12]. Global properties of the curve like the genus do not seem to affect the filtration.
However, it is known that several global invariants can affect the ramification filtration at
wild ramification points. For example, it is known that if the p-rank of the Jacobian equals
the genus then G2(P) = {1} for all P , see [10]. The Riemann Hurwitz formula gives also
some connection of the genus to the ramification groups.
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472 A. Kontogeorgis

We will define a faithful representation of G1(P) in GL(L(m P)), where L(m P) = { f ∈
k(X)∗ : div( f ) + m P ≥ 0} ∪ {0}. This faithful representation takes into account global
properties of the curve. Using this representation we are able to relate the jumps in the rami-
fication filtration to the gaps of the Weierstrass semigroup at the point P and to give bounds
on the number of jumps and of the highest jump in the ramification filtration in terms of the
genus.

The curves X with order of the group G divisible by the characteristic so that G2(P) = {1}
for all ramified points, are in some sense the most simple ones. We will call these curves
weakly ramified. Many intractable problems for the theory of curves with general automor-
phism group can be solved for weakly ramified curves. For example, the computation of
the G-module structure of spaces of holomorphic differentials [6] or the computation of the
deformation rings of curves with automorphisms [2].

In our representation perspective it seems natural to consider as the simplest curves those
with 2-dimensional representations at all wild ramification points. We provide many exam-
ples of such curves and we compare them to weakly ramified curves.

2 Representations

Let X be a nonsingular projective complete curve defined over an algebraically closed field
of characteristic p �= 2, 3. Let G be a subgroup of the automorphism group of X , and let
P be a wildly ramified point of the cover X → X/G. For every point P of the curve X of
genus g we consider the sequence of k-vector spaces

k = L(0) = L(P) = · · · = L((i − 1)P) < L(i P) ≤ · · · ≤ L((2g − 1)P), (2)

where

L(i P) := { f ∈ k(X)∗ : div( f )+ i P ≥ 0} ∪ {0}.
We will write �(D) = dimk L(D). An integer i will be called a pole number if there is a
function f ∈ k(X)∗ so that div∞( f ) = i P or equivalently �

(
(i − 1)P

) + 1 = �
(
i P

)
. The

set of pole numbers at P form a semigroup that is called the Weierstrass semigroup at P . It
is known that there are exactly g pole numbers that are smaller or equal to 2g − 1 and that
every integer i ≥ 2g − 1 is in the Weierstrass semigroup, see [14, I.6.7].

Lemma 2.1 If g ≥ 2 and p �= 2, 3 then there is at least one pole number m ≤ 2g − 1 not
divisible by the characteristic p.

Proof The number of integers 0 ≤ i ≤ 2g −1 that are divisible by p is given by
⌊

2g−1
p

⌋
+1.

Since p ≥ 5 we have
⌊

2g − 1

p

⌋
+ 1 ≤

⌊
2g − 1

5

⌋
+ 1 ≤ g −

⌈
3g + 1

5

⌉
< g;

therefore there must be pole numbers in the interval 0 ≤ i ≤ 2g − 1 not divisible by p. 
�

Lemma 2.2 Let 1 ≤ m ≤ 2g − 1 be the smallest pole number not divisible by the charac-
teristic. There is a faithful representation

ρ : G1(P) → GL
(
L(m P)

)
(3)

123



The ramification sequence for a fixed point 473

Proof It is clear that the space L(m P) is preserved by any automorphism in G1(P). Hence
we have the desired representation ρ. We now prove that it is faithful. Let f be a function
with pole at P of order m. We can write f as f = u/tm , where u is a unit in the local ring OP .
Since (m, p) = 1, Hensel’s lemma implies that u is an m-th power so the local uniformizer
can be selected so that f = 1/tm . Let σ ∈ G1(P) be an element that acts trivially on L(m P).
Then σ(1/tm) = 1/tm and σ(t) = ζ t , where ζ is an m-th root of unity. Since σ is an element
of order p and (p,m) = 1 we have that ζ = 1, and σ is the identity element of G1(P). 
�

The above lemma makes G1(P) realizable as a finite algebraic subgroup of the linear
group GL�(m P)(k). Moreover the flag of vector spaces L(i P) for i ≤ m is preserved, so the
representation matrices are upper triangular, or in other words G1(P) is a subgroup of the
Borel group of the flag.

We assume that m = m0 > m1 > · · · > mr = 0, are the pole numbers ≤ m. Therefore,
a basis for the vector space L(m P) is given by

{
1,

ui

tmi
,

1

tm
: where 1 < i < r, p | mi and ui are certain units

}

With respect to this basis, an element σ ∈ G1(P) acts on 1/tm by

σ
1

tm
= 1

tm
+

r∑

i=1

ci (σ )
ui

tmi
,

and then it maps the local uniformizer t to

σ(t) = ζ t
(
1 + ∑r

i=1 ci (σ )ui tm−mi
)1/m

,
(4)

where ζ is an m-th root of 1.
The above expression can be written in terms of a formal power series as:

σ(t) = ζ t

⎛

⎝1 +
∑

ν≥1

aν(σ )t
ν

⎞

⎠ . (5)

Since σ is an automorphism of the power series ring and σ |G1(P)| = 1, and (m, p) = 1 we
obtain that ζ = 1 and (5) can be written as:

σ(t) = t

⎛

⎝1 +
∑

ν≥1

aν(σ )t
ν

⎞

⎠ . (6)

The above computation allows us to compute the jumps in the filtration of the group
G1(P).

Proposition 2.3 Let P be a wild ramified point on the curve X and let

ρ : G1(P) → GL�(m P)(k)

be the corresponding faithful representation we considered in Lemma 2.2. Let m = m0 >

m1 > · · · > mr = 0 be the pole numbers at P that are ≤ m. If Gi (P) > Gi+1(P) then
i = m − mk, for some pole number mk.
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474 A. Kontogeorgis

Proof We use the notation of (4) for σ . If all ci (σ ) for i = 1, . . . , r vanish then σ(1/tm) =
1/tm andσ is the identity. The valuation of the expressionσ(t)−t can be explicitly computed.
We have

σ(t)− t = − 1

m

r∑

i=1

ci (σ )ui t
m−mi +1 + · · · ,

therefore vP
(
σ(t) − t

) = m − mk + 1, where k = min{i : ci (σ ) �= 0}. Assume that
σ ∈ Gi (P) but σ �∈ Gi+1(P), thus vP (σ (t)− t) = i + 1 and this equals some m − mk + 1.


�

Corollary 2.4 No jump i in the ramification filtration is divisible by p, i.e., if Gi (P) <
Gi+1(P) then p � i .

Proof By lemma 2.3 every gap in the ramification filtration is given as m − mk , where m is
not divisible by p and mk are divisible by p, cf. [12, IV. Proposition 11]. 
�

Corollary 2.5 We have �(m P) ≤
⌊

g
p−1

⌋
+ 2.

Proof Using m as before we let λp be a pole number smaller than m. There are exactly g pole
numbers smaller or equal to 2g − 1. The number of pole numbers smaller or equal to λp is
≤ λ+ 1. (Note that 0 is a pole number). Therefore the cardinality of the set� := {κ ∈ Z≥0 :
λp < κ ≤ 2g − 1} should be at least g − (λ+ 1). The set � has cardinality 2g − 1 − λp, so

g − λ− 1 ≤ 2g − 1 − λp hence λ ≤
⌊

g

p − 1

⌋
. (7)

On the other hand we have �(m P) = 1+#{ number of poles in [0, λp]} ≤ λ+2. The desired
result follows by using the bound ( 7). 
�

Remark 1 The bound in ( 2.5) is best possible. For example the Artin–Schreier function field

F given by (y5 − y)x2(x −1)(x −2)(x −4) = 1 is of genus 14 and
⌊

g
p−1

⌋
+2 = 5. The gap

sequence at the unique place Q of F above Px=0 is 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 18.
The pole numbers up to first pole number not divisible by 5 are 0, 5, 10, 15, 17, i.e., m = 17,
and �(17Q) = 5, as one can compute using the Magma program [1].

Remark 2 For an estimate of �(k P) for k < 2g − 2 in terms of the genus one can employ
the theorem of Clifford [4, Corollary 4.4.18]

�(k P) ≤ k

2
+ 1 ≤

⌊
2g − 1

2

⌋
+ 1 = g.

For wild ramification points Corollary 2.5 is an improvement of the above estimate.

Corollary 2.6 Let n be the length of the ramification filtration, i.e. Gn(P) �= {1} and
Gn+1(P) = {1} and let r be the number of jumps in the ramification filtration. If the first non
zero pole number at P is divisible by p, then

n ≤
(⌊

g

p − 1

⌋)
p and r ≤

⌊
g

p − 1

⌋
+ 2.
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The ramification sequence for a fixed point 475

Proof By proposition 2.3 every jump in the ramification filtration corresponds to a pole
number m − mi + 1. The number n is a gap in the ramification filtration therefore it is of
the form m − mi0 for some mi0 . If there is no pole number < m divisible by the p then
n = m < g + 1.

Assume now that there are pole numbers mi < m divisible by p. Let λp < m be the
maximum pole number smaller than m. The integer λp + mi0 is also a pole number divisible
by p, therefore m < λp + mi0 . We have

n = m − mi0 ≤ λp + mi0 − mi0 ≤
(⌊

g

p − 1

⌋)
p.

For the second inequality observe that every jump in the ramification filtration correspond to
some mi and the number of the mi ’s is bounded by �(m P). 
�

Let cr (σ ), . . . , c1(σ ) be the elements of the last row of the representation matrix of ( 3).
We consider them as functions G1(P) → k. Some of them can be identically zero. Let
1 ≤ t1 ≤ r be the first index so that ct1 : G1(P) → k is not identically zero. The first jump
in the ramification filtration occurs at i1 = m − mt1 , i.e.

G1(P) = G2(P) = · · · = Gi1(P) > Gi1+1(P) = · · ·
Let t2 < t1 be the first index so that ct2 : Gi1+1(P) → k is not identically zero. The second
jump in the ramification filtration occurs at i2 = m − mt2 . Proceeding inductively we define
a sequence t1 < t2 < · · · < ts so that the sequence of jumps in the ramification filtration
is given by iν = m − mtν . Moreover Giν+1(P) = ker(ctν ), so ctν induces the following
injective homomorphism:

ctν : Giν (P)

Giν+1(P)
→ k.

Examples 1. The Fermat curves xn + yn + 1 = 0, where n − 1 = ph . The automorphisms
of these curves where studied by H. W. Leopoldt in [9]. Leopoldt constructed a basis for the
space of holomorphic differentials of the curve and he was able to prove that for the points of
the form P : (x, y) = (ζ2n, 0) where ζ2n is a 2nth root of 1, we have the following sequence
of k-vector spaces [9, Satz 4]:

k = L(0P) = L(P) = · · · = L((n − 2)P) < L((n − 1)P) < L(n P) ≤ · · ·
The interesting case for us (Hermitian function fields) appears when n − 1 is a power of the
characteristic, so in this case the representation of the decomposition subgroup is of the form:

ρ : G0(P) → GL
(
L(n P)

)

with

σ �→

⎛

⎜⎜
⎝

1 0 0

α χ 0

γ β ψ

⎞

⎟⎟
⎠ .

According to Proposition 2.3 the filtration of the decomposition subgroup is given by:

G0(P) > G1(P) > G2(P) = · · · = Gn(P) > Gn+1(P) = {1},
i.e., the gaps of the filtration are in 0, 1, n.
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476 A. Kontogeorgis

2. We consider the curves xn + xm + 1 = 0, where m | n and m − 1 = ph . The
automorphism group of a nonsingular model of the above curve is studied by the author, in
[7]. It is proved that for the points P : (x, y) = (ζ2n, 0) we have the following sequence of
vector spaces [7, Eq. (4)]

k = L(0P) = L(P) = · · · = L((m − 1)P) < L(m P) = L((m + 1)P) ≤ · · ·
Since m is not divisible by p we have the following representation

G0(P) → GL
(
L(m P)

)
,

sending

σ �→
(

1 0
α χ

)
.

Thus G0(P) is the semidirect product of an elementary abelian group by a cyclic group of
order prime to the characteristic. For the ramification filtration of G0(P) we have

G0(P) > G1(P) = G2(P) = · · · = Gm(P) > {1}.
3. Ordinary Curves. A curve is called ordinary if the p-rank of the Jacobian is equal to the

genus of the curve. It is known that ordinary curves form a Zariski-open set in the moduli
space of curves of genus g in characteristic p. For ordinary curves we have that G2(P) = {1}
(see [10]), thus we have the following picture for the faithful representation ρ of the group
G1(P): There is a gap at G1(P) > G2(P) = {1}, thus 1 = m − mi for some i , therefore
mi = m −1 and i = 1. This implies that if the genus g of X is g ≥ 1, then the representation
has dimension at least 3, because otherwise, i.e., if the representation is 2-dimensional, we
have the following sequence

k = L(0P) = L(P) = · · · L((m − 1)P) < L((m)P).

But m − 1 is a pole number so m − 1 = 0 and m = 1, i.e., the Weierstrass semigroup is the
semigroup of natural numbers, a contradiction, for g ≥ 2.

4. We will now consider p-cyclic covers of the affine line. In this example we apply
our computations to Artin–Schreier curves that are nonsingular models of the function field
defined by:

Ct0,...ts−1 : W p − W =
s−1∑

i=0

ti X pi +1 + X ps+1.

These curves give extreme examples of automorphism groups and were studied by Stichte-
noth [13] and Lehr and Matignon [8], Elkies [3], van der Geer and van der Vlugt [15].

There is only one ramified point in the cover Ct0,...ts−1 → P1, the point P that lies over
the point X = ∞ of P1. The Weierstrass semigroup at P is computed by Stichtenoth [13] to
be equal to (ps + 1)Z≥0 + pZ≥0.

Thus, the smallest pole number that is not divisible by p is ps + 1 and the Weierstrass
semigroup up to ps + 1 is computed to be

0, p, 2p, . . . ,

[
1 + ps

p

]
p, 1 + ps .

Observe that
[

1+ps

p

]
p = ps . According to Proposition 2.3 the possible gaps of the

ramification filtration are the numbers ps + 1 − kp, with k = 0, . . . , ps . Notice that by
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The ramification sequence for a fixed point 477

the work of Lehr and Matignon (see [8]) we know that the gaps of the ramification filtra-
tion are 1 and 1 + ps , therefore a converse of Proposition 2.3 is not true. The dimension

dimk L
(
(ps + 1)P

)
is n =

[
1+ps

p

]
+ 2 = ps−1 + 2 and the representation of G1(P) on

L
(
(ps + 1)P

)
is given by an n × n lower triangular matrix with 1 in the diagonal. More

precisely, if we choose the natural basis {1, X, X2, . . . , X ps−1
,W } of L

(
(ps + 1)P

)
then the

representation ρ is given by the matrix

ρ(σ )i j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if i < j

1 if i = j

y j
(i

j

)
if i > j, i �= ps−1 + 1

b j (y) if i = ps−1 + 1 > j,

(8)

where b j (y) are the coefficients of the polynomial Pf (X, y), and y is a solution of Ad f (Y ) =
0 as defined in lemma 4.1 and Definition 4.2 in [8].

3 Two-dimensional representations

One can argue that among wildly ramified covers the simplest are the weakly ramified covers
i.e. covers where G2(P) = {1} at all ramified points. However, in our setting it seems that the
simplest covers are the ones with 2-dimensional representations attached at wild ramifica-
tion points. Using Proposition 2.3 we observe that curves with 2-dimensional representations
have only one jump in their ramification filtration at P , and that jump occurs at m, where m is
the first non zero pole number. Moreover in this case the group G1(P) has to be elementary
abelian.

It is tempting to consider the bound given in Corollary 2.5 in order to give a criterion

for a representation to be 2-dimensional. We see that if g < p − 1 then
⌊

g
p−1

⌋
= 0 and

the dimension is at least 2-dimensional. Roquette in [11] proved that if a curve has a wild
ramification point then p ≤ g + 1 with only one exception, the hyperelliptic curve

y2 = x p − x .

Therefore, the g < p − 1 condition is not that useful. We observe that the representation at
P is 2-dimensional if and only if the first nonzero pole number of the Weierstrass semigroup
at P is not divisible by p.

We can construct many curves that have 2-dimensional representation space. For example
the curves that correspond to function fields defined by the equation

F :
n∑

ν=0

an y pν =
m∑

µ=0

bµxµ, (9)

so that m �≡ 0 mod p, an, a0, b0 �= 0, n ≥ 1,m ≥ 2, studied by Stichtenoth in [13]. Let P∞
be the unique place above the place p∞ of the function field k(x). Stichtenoth proved that
the Weierstrass semigroup at P∞ is given by mZ≥0 + pnZ≥0. Thus, if we select m < pn ,
we see that the first pole number is 0 and the second is m therefore d = 2. Moreover, the
ramification filtration of G = Gal(F/k(x)) at P∞ is given by (see [13, Satz 1.]):

G0(P∞) = G1(P∞) = · · · = Gm(P∞) = Gal(F/k(x)) > Gm+1(P∞) = {1}.
Notice that if the right hand side of ( 9) is generic then G = Aut(F).
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478 A. Kontogeorgis

On the other hand, assume that we have a curve that has a 2-dimensional representation
attached at a wild ramified point P . The group G1(P) is elementary abelian G1(P) ∼=⊕r

ν=1 Z/pZ. Let f be a function so that 〈1, f 〉 is a basis of L(m P). We would like to write
down an algebraic equation for the cover X → X/G1(P). The representation c1 : G1(P) →
k is a faithful homomorphism of additive groups. We consider the action of G1(P) on f :

∏

σ∈G1(P)

σ ( f ) =
∏

σ∈G1(P)

( f + c1(σ )) .

Let

�(w1, . . . , ws) = det

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

w1 · · · ws,

w
p
1 · · · w

p
s

...
...

w
ps−1

1 · · · w
ps−1

s

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

be the Moore determinant, see [5, 1.3.2]. Let F(Y ) be the additive polynomial with roots
c1(σ ), where σ is running over G1(P). The polynomial F(Y ) can be computed as follows:
Select a basis σi , with 1 ≤ i ≤ s of G1(P) seen as Fp-vector space. Then

F(Y ) = �(σ1, . . . , σs, Y )

�(σ1, . . . , σs)
,

see [5, Lemma 1.3.6]. Thus, the cover X → X/G1(P) is given in terms of the generalized
Artin–Schreier equation

F(Y ) =
∏

σ∈G1(P)

σ f = NG1(P)( f ).
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