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AUTOMORPHISMS OF HYPERELLIPTIC MODULAR CURVES
X0(N) IN POSITIVE CHARACTERISTIC

ARISTIDES KONTOGEORGIS and YIFAN YANG

Abstract

We study the automorphism groups of the reduction
X0(N)× F̄p of a modular curve X0(N) over primes p - N .

1. Introduction

Let X → S be a family of curves of genus g > 2 over a base scheme S. For every
point P : Spec k → S, we will consider the absolute automorphism group of the
fibre P to be the automorphism group Autk̄(X ×S Spec k̄) where k̄ is the algebraic
closure of k. Any automorphism σ acts like the identity on k̄, so in our setting there
is no Gal(k̄/k) contribution to the automorphism group of any special fibre. The
following theorem due to P. Deligne, D. Mumford [6, lemma I.12] compares the
automorphism groups of the generic and special fibres:

Proposition 1.1 ([6]). Consider a stable curve X → S over a scheme S and let
Xη denote its generic fibre. Every automorphism φ : Xη → Xη can be extended to
an automorphism φ : X → X .

Of course the special fibre of X might possess automorphisms that can not be
lifted to the generic fibre. For example the Fermat curve

xp
s+1 + yp

s+1 + zp
s+1 = 0,

can be considered as a stable curve over Spec Z[ 1
ps+1 ] and has automorphism group

(µn × µn) o S3 for all geometric fibres above the primes q 6= p but PGU(3, p2s) for
the prime p [31], [18]. A special fibre Xp := X ×S S/p with Aut(Xp) > Aut(Xη)
will be called exceptional. In general we know that there are finite many exceptional
fibres and it is an interesting problem to determine exactly the exceptional fibres.

There are some results towards this problem for some curves of arithmetic in-
terest. A. Adler [1] and C.S. Rajan [23] proved for the modular curves X(N), that
X(11)3 := X(11) ×Spec Z Spec F3 has the Mathieu group M11 as the full automor-
phism group. C. Ritzenthaler in [24] and P. Bending, A. Carmina, R. Guralnick [3]
studied the automorphism groups of the reductions X(q)p of modular curves X(q)
for various primes p. It turns out that the reduction X(7)3 of X(7) at the prime 3
has an automorphism group PGU(3, 3), and X(7)3 and X(11)3 are the only cases
where AutX(q)p > AutX(q) ∼= PSL(2, p).

In this paper we will investigate some modular curves of the form X0(N). Igusa
[14] proved that X0(N) has a non-singular projective model which is defined by
equations over Q whose reduction modulo primes p, p - N are also non-singular, or
in a more abstract language that there is a proper smooth curve X0(N)→ Z[1/N ]
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Automorphisms of hyperelliptic modular curves X0(N) in positive characteristic

so that for p ∈ Spec Z[1/N ] the reduction X0(N)×Spec Z Fp is the moduli space of
elliptic curves with a fixed cyclic subgroup of order N .

The automorphism group of the curve X0(N) at the generic fibre is now well
understood. Let us call an automorphism σ of X0(N) modular if σ arises from the
normalizer of Γ0(N) in SL(2,R), then the results of [7, 15, 21] can be summarized
as follows.

Theorem 1.2 ([7, 15, 21]). Assume that X0(N) has genus g > 2. Then all the
automorphisms of X0(N) are modular, with only two exceptions, namely the cases
N = 37, 63, which have extra non-modular involutions.

Remark 1.3. Note that if 4 - N and 9 - N , then all modular automorphisms are
of the Atkin-Lehner type [2, Theorem 8]. In particular, if 4 - N and 9 - N , then the
automorphism group is an elementary abelian 2-group.

Denote by A(N, 0) the absolute automorphism group of X0(N) at the generic
fibre and by A(N, p) the absolute automorphism group at the reduction at the
prime p. The problem of determining the exact primes for which A(N, p) > A(N, 0)
seems difficult in general. However, when X0(N) is hyperelliptic, the situation is
relatively simple because the function field of a hyperelliptic curve has a unique
genus zero subfield of degree 2, and the problem of determining the automorphism
group of a hyperelliptic curve is essentially the same as that of determining the
automorphisms of a projective line that permute a set of marked points. Therefore,
as a starting point for our general problem of studying automorphisms of X0(N) in
positive characteristics, in this note, we will investigate the automorphism groups
of hyperelliptic modular curves X0(N).

Theorem 1.4. Table 1 is the complete list of integers N and primes p such that
the reduction of the hyperelliptic modular curve X0(N) modulo p has exceptional
automorphisms.

Here in the table, the notation Dn denotes the dihedral group of order 2n,

A := 〈a, b, c | c2, ba−2b−1a−1, b−1a3ba−1, ba−1cb−1a−1ca−1c,
(
a−1b−1cb−1

)2〉,
is a group of order 672,

B := 〈a, b, c | c2, a−5, b−1a−2ba, (cb−1)3, a−1bca2cac〉.

is a group of order 240, and

Vn = 〈x, y | x4, yn, (xy)2, (x−1y)2〉

is a group of order 4n. Moreover, in the case of X0(37) in characteristic 2, the
notation E32− represents the extraspecial group E32− = (D4 ×Q8)/〈(a, b)〉, where
a and b denote the nontrivial elements of the centers of D4 and Q8, respectively.

Acknowledgments: This paper was completed during the authors visit at Max-
Planck Institut für Mathematik in Bonn. The authors would like to thank the
institute for its support and hospitality.

2. Automorphisms in characteristic p 6= 2

According to [22], there are exactly 19 values of N such that X0(N) is hyper-
elliptic. The equations of the form y2 = f(x) for hyperelliptic X0(N) have been
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Automorphisms of hyperelliptic modular curves X0(N) in positive characteristic

Table 1: Automorphism groups of X0(N) in positive characteristics

N Genus Generic Aut Exceptional primes Exceptional Aut

22 2 (Z/2Z)2 3, 29
101

D6

D4

23 2 Z/2Z 3, 13, 29, 43, 101, 5623 (Z/2Z)2

26 2 (Z/2Z)2 7, 31
41, 89

D6

D4

28 2 D6 3
5
11

GL(2, 3)
B
V6

29 2 Z/2Z 19
5, 67, 137, 51241

D4

(Z/2Z)2

30 3 (Z/2Z)3 23 V8

31 2 Z/2Z 3
5, 11, 37, 67, 131, 149

D4

(Z/2Z)2

33 3 (Z/2Z)2 2
19
47

GL(2, 2)× (Z/2Z)
(Z/2Z)× (Z/4Z)
(Z/2Z)3

35 3 (Z/2Z)2 — —

37 2 (Z/2Z)2 2
7, 31
29, 61

E32− o (Z/5Z)
D6

D4

39 3 (Z/2Z)2 5
29

(Z/2Z)3

(Z/2Z)× (Z/4Z)

40 3 (Z/2Z)×D4 3 V8

41 3 Z/2Z 17 (Z/2Z)2

46 5 (Z/2Z)2 3 (Z/2Z)× (Z/4Z)

47 4 Z/2Z — —

48 3 (Z/2Z)× S4 7 A, |A| = 672

50 2 (Z/2Z)2 3
37

D6

D4

59 5 Z/2Z — —

71 6 Z/2Z — —
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Automorphisms of hyperelliptic modular curves X0(N) in positive characteristic

Table 2: List of hyperelliptic curves X0(N)

N Equation/Automorphisms

22 y2 = (x3 + 4x2 + 8x + 4)(x3 + 8x2 + 16x + 16)
w2 : (x, y) 7→ (4/x, 8y/x3), w11 : (x, y) 7→ (x,−y)

23 y2 = (x3 − x + 1)(x3 − 8x2 + 3x − 7)
w23 : (x, y) 7→ (x,−y)

26 y2 = x6 − 8x5 + 8x4 − 18x3 + 8x2 − 8x + 1
w13 : (x, y) 7→ (1/x, y/x3), w26 : (x, y) 7→ (x,−y)

28 y2 = (x2 + 7)(x2 + x + 2)(x2 − x + 2)
w4 : (x, y) 7→ ((x + 3)/(x − 1), 8y/(x − 1)3), w7 : (x, y) 7→ (x,−y), w1/2 : (x, y) 7→ (−x,−y)

29 y2 = x6 − 4x5 − 12x4 + 2x3 + 8x2 + 8x − 7
w29 : (x, y) 7→ (x,−y)

30 y2 = (x2 + 4x − 1)(x2 + x − 1)(x4 + x3 + 2x2 − x + 1)
w2 : (x, y) 7→ ((x + 1)/(x − 1),−4y/(x − 1)4), w3 : (x, y) 7→ (−1/x,−y/x4),
w15 : (x, y) 7→ (x,−y)

31 y2 = (x3 − 6x2 − 5x − 1)(x3 − 2x2 − x + 3)
w31 : (x, y) 7→ (x,−y)

33 y2 = (x2 + x + 3)(x6 + 7x5 + 28x4 + 59x3 + 84x2 + 63x + 27)
w3 : (x, y) 7→ (3/x,−9y/x4), w11 : (x, y) 7→ (x,−y)

35 y2 = (x2 + x − 1)(x6 − 5x5 − 9x3 − 5x − 1)
w7 : (x, y) 7→ (−1/x, y/x4), w35 : (x, y) 7→ (x,−y)

37 y2 = x6 + 14x5 + 35x4 + 48x3 + 35x2 + 14x + 1
w37 : (x, y) 7→ (1/x, y/x3)

39 y2 = (x4 − 7x3 + 11x2 − 7x + 1)(x4 + x3 − x2 + x + 1)
w3 : (x, y) 7→ (1/x, y/x4), w39 : (x, y) 7→ (x,−y)

40 y2 = x8 + 8x6 − 2x4 + 8x2 + 1
w5 : (x, y) 7→ (−1/x,−y/x4), w8 : (x, y) 7→ ((1 − x)/(1 + x),−4y/(x + 1)4)
w1/2 : (x, y) 7→ (−x, y)

41 y2 = x8 − 4x7 − 8x6 + 10x5 + 20x4 + 8x3 − 15x2 − 20x − 8
w41 : (x, y) 7→ (x,−y)

46 y2 = (x3 + x2 + 2x + 1)(x3 + 4x2 + 4x + 8)(x6 + 5x5 + 14x4 + 25x3 + 28x2 + 20x + 8)
w23 : (x, y) 7→ (x,−y), w46 : (x, y) 7→ (2/x, 8y/x6)

47 y2 = (x5 + 4x4 + 7x3 + 8x2 + 4x + 1)(x5 − 5x3 − 20x2 − 24x − 19)
w47 : (x, y) → (x,−y)

48 y2 = (x4 − 2x3 + 2x2 + 2x + 1)(x4 + 2x3 + 2x2 − 2x + 1) = x8 + 14x4 + 1
w1/4 : (x, y) → (ix, y), w3 : (x, y) → (−1/x,−y/x4),

w16 : (x, y) → ((1 − x)/(1 + x),−4y/(1 + x)4)

50 y2 = x6 − 4x5 − 10x3 − 4x + 1
w2 : (x, y) 7→ (1/x, y/x3), w50 : (x, y) 7→ (x,−y)

59 y2 = (x3 + 2x2 + 1)(x9 + 2x8 − 4x7 − 21x6 − 44x5 − 60x4 − 61x3 − 46x2 − 24x − 11)
w59 : (x, y) 7→ (x,−y)

71 y2 = (x7 − 3x6 + 2x5 + x4 − 2x3 + 2x2 − x + 1)(x7 − 7x6 + 14x5 − 11x4 + 14x3 − 14x2 − x − 7)
w71 : (x, y) 7→ (x,−y)

computed by several authors [8, 10, 30]. They are tabulated in Table 2, along with
their modular automorphisms. Here, for a divisor e of N with (e,N/e) = 1, we let
wd be the Atkin-Lehner involution corresponding to the normalizer(

ae b
cN de

)
, ade− bcN/e = 1,

of Γ0(N). For X0(28) and X0(40), the notation w1/2 represents the automorphism
coming from the normalizer (

1 1/2
0 1

)
.

The notation w1/4 in the case X0(48) carries a similar meaning.
These models are not the Igusa models. They have a singularity at infinity but are

smooth otherwise. The automorphism group of a non-singular curve is a birational
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Automorphisms of hyperelliptic modular curves X0(N) in positive characteristic

invariant and one can work with singular models of the corresponding function
fields. But one has to be careful if he wants to compute reductions out of the
singular model.

Proposition 2.1. Let y2 = f(x) where f(x) ∈ Z[x] is a polynomial with integer
coefficient such that deg(f) ≡ 0 mod 2.

Suppose that f(x) has no multiple roots and denote ρ1, . . . , ρs ∈ Q̄ the set of
roots of f . Let ∆ ∈ Z be the discriminant of the polynomial f(x). Then, the relative
curve

Y :=
Z
[
∆−1

]
[x, y]

〈y2 = f(x)〉
→ Z

[
∆−1

]
(1)

is a smooth family. The set of roots {ρi}i=1,...,s gives rise to horizontal divisors ρ̄i
that intersect the generic fibre of Y at ρi. The intersections of ρ̄i with the fibre Yp
at the prime p are roots of the polynomial f mod p.

Let X → Z
[
(2N)−1

]
be the Igusa family (with the 2-fiber removed if 2 - N). For

every p such that (p,∆) = 1 the function fields of the curves Xp and Yp have the
same automorphism group.

Proof. To prove that the map given in eq. (1) is smooth we will show that Yp is
smooth for every p so that p - ∆. Set F (x) = y2 − f(x). We compute

∂F

∂y
= 2y,

∂F

∂x
=
∂f

∂x
.

Therefore, a nonsmooth point appears at y = 0 (since p 6= 2) and at a double root
of f(x) mod p, i.e., only at primes dividing the discriminant.

The Igusa family has good reduction at the prime 2 if 2 - N . The hyperelliptic
models in Table 2 have always bad reduction at the prime 2. Therefore the re-
duction of the curve Y2 is not related to the Igusa model. In the 2 - N case the
special fibre of the Igusa model at the prime 2, is a nonsingular curve and the cover
X0(N)2 → P1

F̄2
is given in terms of an Artin-Schreier extension. The automorphisms

in characteristic 2 will be treated separately in Section 5.
The Igusa model is the normalization of the family Y at infinity at every prime

in Spec Z[∆−1]. It is known that every point P in the generic fibre Yη defines a
unique thickening, i.e., a horizontal branch divisor intersecting the generic fibre
at P . Since deg(f) ≡ 0 mod 2 the place at infinity is not ramified at the cover
X0(N) → P1. Therefore the set of branch points of the cover X0(N) → P1 is
contained in the generic fibre Yη of Y. Moreover the thickenings ρ̃i of each point ρi
in Yη ⊗Q Q̄ ⊂ X ⊗Q Q̄ do not intersect the singular locus of the projective closure
of Y.

The automorphism group of Xp is equal to the automorphism group of the cor-
responding function field and Xp,Yp share the same function field.

The automorphism group of hyperelliptic curves is a well studied object [4],
[13],[27]. There is the hyperelliptic involution j so that 〈j〉 is a normal subgroup of
the whole automorphism group, and moreover X/〈j〉 is isomorphic to the projective
line. The quotient Ḡ = Aut(X)/〈j〉 is called the reduced group. The reduced group
is a finite subgroup of the group of automorphisms of the projective line and these
groups are given by proposition 2.2. We introduce the following notation: For every
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w ∈ Aut(X) we will denote by w̄ the image of w in the reduced group Ḡ :=
Aut(X)/〈j〉.

Consider the cover X → X/〈j〉 ∼= P1
k. Let P1, . . . , Ps ∈ P1

k be the branched points
of the coverX → P1

k. We will call the set P1, . . . , Ps the branched hyperelliptic locus.
We know that the reduced group Ḡ induces a permutation action on them. If

the points P1, . . . , Ps are in general position, then there is no finite subgroup of
PGL(2, k) permuting them and Aut(X) = 〈j〉. The existence of additional auto-
morphisms is a matter of special configurations of points in the configuration space
of s points in the projective line. The problem of determining the primes p, so
that the reduction of a hyperelliptic curve at that primes has more automorphisms,
is then reduced to the problem of determining the primes at which the branch
hyperelliptic locus becomes more symmetric.

We now return to the theory of hyperelliptic curves X0(N). If the number N
is composite or N = 37 then the group of automorphisms at the generic fibre is
bigger than Z/2Z. This means that we have nontrivial reduced group at the generic
fibre. This situation gives us a lot of information for the location of fixed points
of any extra automorphism in the reduction modulo p and on the possible extra
automorphism groups.

For instance the case of hyperelliptic curves that admit an extra involution is
studied by T. Shaska and J. Gutierrez [27],[13]. They introduced the theory of di-
hedral invariants, a theory that allows us to compute every possible extra automor-
phism for hyperelliptic curves of genera 2, 3, and also gives us a lot of information
in the bigger genus cases.

If the reduced automorphism group at the generic fibre is trivial then we use a
brute force method in order to compute any extra automorphism group. This is a
demanding computational problem that needs several days of processing time.

Once the reduced group Ḡ of a hyperelliptic curve is determined the group G is
given in terms of an extension of groups

1→ 〈j〉 → G→ Ḡ→ 1.

For a cohomological approach to the structure of G we refer to [16]. It is known the
group structure of G depends on whether the fixed points of Ḡ are in the branch
locus of the cover X0(N)→ X0(N)〈j〉 = P1

k [4].

Proposition 2.2. Let k be an algebraically closed field of characteristic p > 0. Let
G be a finite subgroup of Aut(P1

k) = PGL(2, k), let P1, . . . , Pr denote the number of
branch points in the cover P1

k → P1
k. Denote the ramification degree of Q 7→ Pi by

ei. Then G is one of the following groups:
1. Cyclic group Z/nZ of order n relatively prime to p with r = 2, and e1 = e2 =

n.
2. Elementary abelian p-group with r = 1, e1 = |G|.
3. Dihedral group Dn of order 2n, with p = 2, (p, n) = 1, r = 2, e1 = 2, e2 = n,

or p 6= 2, (p, n) = 1, r = 3, e1 = e2 = 2, e3 = n.
4. Alternating group A4 with p 6= 2, 3, r = 3, e1 = 2, e2 = e3 = 3
5. Symmetric group S4 with p 6= 2, 3, r = 3, e1 = 2, e2 = 3, e3 = 4.
6. Alternating group A5 with p = 3, r = 2, e1 = 6, e2 = 5, or p 6= 2, 3, 5 r = 3,

e1 = 2, e2 = 3, e3 = 5.
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Automorphisms of hyperelliptic modular curves X0(N) in positive characteristic

7. Semidirect product of an elementary abelian p-group of order pt with a cyclic
group Z/nZ of order n with n|(pt − 1), r = 2, e1 = |G|, e2 = n.

8. PSL(2, pt) with p 6= 2, r = 2, e1 = pt(pt − 1)/2, e2 = (pt + 1)/2.

9. PGL(2, pt) with r = 2 e1 = pt(pt − 1), e2 = pt + 1.

Proof. [32, Th. 1]

Remark 2.3. Observe that the groups A4, S4, A5,PSL(2, pt),PGL(2, pt) contain a
dihedral group Dn, for (n, p) = 1.

Let f(x) be a polynomial of degree s with roots ρ1, . . . , ρs. A simple computation
shows that

Lemma 2.4. Let A =
(
a b
c d

)
be an invertible matrix. If c 6= 0 and ρic 6= a for all

roots of f then:

f

(
ax+ b

cx+ d

)
=

c

(cx+ d)s
f(a/c)

s∏
i=1

(
x− ρid− b
−ρic+ a

)
. (2)

If c = 0 then ρic 6= a since A is invertible and

f

(
ax+ b

d

)
=
(a
d

)s s∏
i=1

(
x− ρid− b

a

)
, (3)

If there is some ρi0 such that cρi = a then c 6= 0 and

f

(
ax+ b

cx+ d

)
=

(dρi0 − b)
(cx+ d)s

s∏
i=1,i6=i0

(a− ρic)
s∏

i=1,i6=i0

(
x− ρid− b
−ρic+ a

)
. (4)

Definition 2.5. Let A denote the Möbius transformation x 7→ (ax+ b)/(cx+ d).
We will denote by f∗A the polynomial

f∗A(x) :=
s∏

i=1,ρic 6=a

(
x− ρid− b
−ρic+ a

)
.

Notice that deg(f) = deg(f∗A) if cρi 6= a for all roots ρi of f , or deg(f) = deg(f∗A)+1
if there is a root ρi such that cρi = a.

Lemma 2.6. Let A be a Möbius transformation and set s = deg f . If s ≡ 0 mod 2
then the curves y2 = f(x) and y2 = f∗A(x) are isomorphic, over a quadratic exten-
sion of Q.

Proof. The two curves become isomorphic under the change of variables

(x, y) 7→
(
ax+ b

cx+ d
,

yC1/2

(cx+ d)s/2

)
,

where C is a constant depending on which of the cases in (2),(3),(4) we are.

If f(x) =
∑s
ν=0 aνx

nu is a polynomial with a0 6= 0 then we will denote by f∗(x)
the reciprocal polynomial given by f∗(x) = a−1

0 xsf(1/x) = a−1
0

∑s
ν=0 aνx

s−ν .
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If 2|s and f(0) 6= 0 then the hyperelliptic curves

y2 = f(x) and y2 = f∗(x)

are isomorphic.

Lemma 2.7. We will denote by σ the automorphism of P1
k sending x to −x. Consider

the hyperelliptic curve

X : y2 = f(x) =
s∑

ν=0

a2νx
2ν ,

that has σ in the reduced automorphism group. There is a cyclic group 〈σ〉 < Cd <
PGL(2, k) that is a subgroup of the reduced automorphism group of X if and only
if d|s and aδ = 0 for all d|δ.

3. Curves with non trivial reduced group

3.1. Curves of Genus 2 with an extra involution.
In this case we consider the set of curves X0(N) that are of genus 2 and have

reduced group isomorphic to Z/2Z. This is the case for N = 22, 26, 28, 37, 50.
For genus two curves with reduced group Z/2Z there is a well developed the-

ory due to Guttierez, Shaska [13], [27], namely the theory of dihedral invariants
that reduce the computation of the tame part of the automorphism group to the
computation of several invariants of the curve.

Since X0(N) has reduced group Z/2Z, we can find a model of the curve so that
the generator σ of the reduced group acts like x 7→ −x. Thus, the model of our
curve is of the form:

y2 = x2g+2 + a1x
2g + · · ·+ agx

2 + 1. (5)

The dihedral invariants are then given by ui := ag−i+1
1 ai + ag−i+1

g ag−i+1 for i =
1, . . . , g. In particular for a genus two curve the dihedral invariants are given by
u1 = a3

1 + a3
2, u2 = 2a1a3. Let Vn denote the group

Vn := 〈x, y | x4, yn, (xy)2, (x−1y)2〉.

In [28, exam. 5.2], [29] T. Shaska and H. Völklein proved that the automorphism
group is isomorphic to

1. V6 if and only if (u1, u2) = (0, 0) or (u1, u2) = (6750, 450)
2. (a) GL(2, 3) if and only if (u1, u2) = (−250, 50) and p 6= 5

(b) B if and only if (u1, u2) = (−250, 50) and p = 5
3. D6 if and only if u2

2 − 220u2 − 16u1 + 4500 = 0,
4. D4 if and only if 2u2

1 − u3
2 = 0 for u2 6= 2, 18, 0, 50, 450.

(Cases 0, 450, 50 are reduced to Cases (1) and (2) ). The group B mentioned above
is given by:

B := 〈a, b, c | c2, a−5, b−1a−2ba, (cb−1)3, a−1bca2cac〉.

Using the exact action of the generator of the reduced group given in Table 2
we can find a model of the form (5) by diagonalizing the 2× 2 matrix representing
the Möbius transformation. The dihedral invariants are then computed (3) and this
information allows us to compute the automorphism groups given in table 1.
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Table 3: Dihedral invariants of curves of genus 2 with extra involutions

N u1 u2

22 −17322/14641 130/121
26 −4351/2704 15/13
28 43625/784 125/7
37 −25642/1369 −198/37
50 −135/16 −5

Table 4: Possible Automorphism groups in the g = 3 case.
G Ḡ Conditions

(Z/2Z)3 (Z/2Z)2 2u1 − u3 = 0

(Z/2Z) ×D8 D8 2u1 − u3 = 0, a1 = a3

V8 D16 2u1 − u3 = 0, a1 = a2 = a3 = 0

(Z/2Z) × S4 S4 (2u1 − u3 = 0, a1 = a3 or E1(u1, u2) = E2(u1, u2) = 0) and
((u1, u2, u3) = (0, 196, 0) or (81u1, 27u2, 8u3) = (8192,−1280, 128))

D12 D6 E1(u1, u2) = E2(u1, u2) = 0

Z/2Z × Z/4Z D4 2u1 + u2
3 = 0

U6 D12 (2u1 + u2
3 = 0 or E1(u1, u2) = E2(u1, u2) = 0) and

u2 = 0.

3.2. Curves of genus 3 with an extra involution
A similar approach to the genus 2 in terms of the dihedral invariants can be

given for the hyperelliptic curves with an involution in the reduced group that have
genus 3. A complete list of all possible automorphism groups that can appear in
the genus 3 case together with necessary conditions on the dihedral invariants is
given in the following theorem due to J.Gutierrez, D. Sevilla and T. Shaska [12].

Theorem 3.1. Consider a hyperelliptic curve X of genus 3 with an extra involu-
tion. Let G denote the full automorphism group Aut(X) of X and Ḡ the reduced
automorphism group. If the curve has G, Ḡ as in the first two columns of table 4
then the conditions given in the 3rd column of table 4 are satisfied, where

E1(u1, u2) := 588u2 − 5(u3 − 8)(9u3 − 1024),

E2(u1, u2) := 73u1 −
9
8
u3

3 −
873
2
u2

3 +
149504

9
u3 −

1048576
9

and V8, U6 are the groups with presentations:

V8 := 〈x, y | x4, y8, (xy)2, (x−1y)2〉
U6 := 〈x, y | x2, y12, xyxy7〉.

The curves X0(N) that are hyperelliptic of genus 3 and have an involution in
the reduced group correspond to N ∈ {39, 40, 48, 33, 35, 30}. We compute first a
hyperelliptic model of our curves so that the generator σ of an extra involution is
given by σ : x 7→ −x. These models are given in table 5.

The dihedral invariants in the case of genus 3 curves with an extra involution

9
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Table 5: Models f(x) for N = 33, 35, 39, 40, 48.

N f(x)

30 x8 + (276+184
√

2)
(−540

√
2−765)x

6 − 46x4 + (−184
√

2+276)
(−540

√
2−765)x

2 − 765+540
√

2

(−540
√

2−765)

33 x8 + (−240
√

3+508)x6

−264
√

3+473
+ 342x4 + (508+240

√
3)x2

−264
√

3+473
+ 473+264

√
3

−264
√

3+473

35 5x8 + (140 + 128 i)x6 − 34x4 + (140− 128 i)x2 + 5
39 27x8 − 22 · 97x6 + 2 · 29x4 + 22 · 11x2 + 3
40 x8 − 18x4 + 1
48 x8 + 14x4 + 1

Table 6: Exceptional primes for N = 30, 33, 35, 39, 40, 48.

N Factors of
2u1 + u2

g

Factors of
2u1 − u2

g

Possible excep-
tional primes

Exceptional
primes

30 2, 23, 17 2, 17 23, 17 17
33 2,19, 31, 103 2, 3, 47 19, 31, 47, 103 19, 47
35 3, 67 2, 7 3, 67
39 2, 29, 181 2, 5, 13 5, 29, 181 5, 29
40 0 0 3 3
48 0 0 7 7

are given by u1 = a4
1 + a4

3, u2 = (a2
1 + a2

3)a2, u3 = 2a1a3, where

y2 = x8 + a1x
6 + a2x

4 + a3x
2 + 1

is a normalized model of the hyperelliptic curve. The dihedral invariants for the
hyperelliptic curves X0(N) of genus 3 with extra involution are given in table 6.

For N = 39 we see that possible exceptional primes are 5, 29, 181 and then
by reducing the coefficients modulo each of these primes we see that A(39, 5) ∼=
(Z/2Z)3, A(39, 29) ∼= (Z/2Z) × (Z/4Z). The prime 181 is not exceptional. For
N = 40 the possible exceptional primes are 3, 7 and A(40, 0) = (Z/2Z) × D8 and
A(40, 3) ∼= V8 while for A(40, 7) ∼= (Z/2Z)×S4. For N = 48 the possible exceptional
primes is 7 and we have A(48, 0) = (Z/2Z) × S4, A(48, 7) = V8. The full group of
X0(48)7 was studied by the first author in [17] and is isomorphic to an extension of
PGL(2, 7) by Z/2Z. Using magma we compute that this group admits the following
presentation:

A :=
〈
a, b, c | c2, ba−2b−1a−1, b−1a3ba−1, ba−1cb−1a−1ca−1c,

(
a−1b−1cb−1

)2〉
.

For N = 30, 33, 35 the situation is a little more difficult, since the normal model is
not defined over Z but in the principal ideal domains Z[

√
2],Z[

√
3],Z[i] respectively.

We compute that the dihedral invariants in the cases N = 33, 35 are in Q and in
table 6 we present the prime factors of the numerator. For the N = 30 case the
dihedral invariants are in Q[

√
2], and we compute that the principal ideal generated

by the numerators of 2u2
1 − u2

g and 2u2
1 + u2

g have the prime ideals I2, I23,1, I23,2

10
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and I2, I23,1, I23,2, I17,1, I17,2, where I2 = 〈2,
√

2〉Z[
√

2] and I23,i, I17,i are the prime
ideals that extend the prime ideals 23Z, 17Z of the ring of rational integers. Since
both conjugate prime ideals I23,i, i = 1, 2 (resp. I17,i) are divisors of 2u2

1 − u2
g

(resp. 2u2
1 + u2

g) we see that 17, 23|(2u1 + u2
g) and 17|(2u1 + ug). The possible

exceptional primes are p = 17, 33. We reduce the coefficients modulo p = 17, 33 and
we compute the automorphism group. It turns out that A(30, 17) ∼= V8, A(33, 19) ∼=
(Z/2Z)× (Z/4Z), A(33, 47) ∼= (Z/2Z)3.

3.3. Elementary abelian groups
The theory of dihedral invariants is working for the tame part of the automor-

phism group. If p 6= 2, then any wild part in the automorphism group will appear
only in the reduced automorphism group. By looking at the table of possible sub-
groups of the rational function field, we see that every finite subgroup acting on
the rational function field of order divisible by p should have an elementary abelian
subgroup. Notice also that once one find a prime p - N such that the special fibre at
p contains a wild subgroup, then we can give the equation of the reduced curve and
the prime p to magma and magma can compute the whole automorphism group.
The difficult problem is finding the primes where the exceptional curves appear.

We will study now whether there might be an elementary abelian subgroup
E ∼= (Z/pZ)s as a subgroup of the reduced group of a hyperelliptic curve. We are
in the composite N case so there is already a cyclic group inside the reduced group.
For every maximal cyclic subgroup of the reduced automorphism group we change
coordinates so that the model of our curve is of the form:

y2 = f(x) =
s∑

ν=0

a2νx
2ν .

If there is an elementary abelian group inside the reduced group modulo some prime
p then the reduced group contains Eo (Z/mZ), for some m prime to p. The Galois
cover P1

k → P1
k with group G = Znp o 〈σ〉 is ramified over 0,∞. The elementary

abelian group E fixes either 0 or ∞. If E fixes ∞ then the arbitrary τ ∈ E is of
the form τ : x 7→ x + c(τ), for some c(τ) ∈ k. In this case c is a root of all the
coefficients of the polynomial G1(x) := f(x+ c)−f(x) seen as a polynomial of x. If
E fixes 0 then we consider the model y2 = f∗(x) of the hyperelliptic curve and now
E fixes ∞. In this case c is a root of the polynomial G2(x) := f∗(x+ c)− f∗(x).

The possible primes p, so that there is an elementary abelian E group in the
reduced group modulo p, are the divisors of 2g + 2, if E does not fix any of the
roots of the right hand side of the defining equation of the hyperelliptic curve. If
E fixes such a root then p | 2g + 1, but then there are a lot of cyclic groups in the
reduced group. This is the case in A(48, 7) and in A(50, 5).

Looking at the degrees of modular hyperelliptic curves X0(N), where N is com-
posite we obtain that only for p = 3 the reduction might have some extra automor-
phisms. The modular hyperelliptic curves with degree divisible by 3 are those with
N ∈ {22, 26, 28, 50, 46}. On the generic fibre if N 6= 28 then the reduced group on
the generic fibre is isomorphic to Z/2Z while for N = 28 the reduced group on the
generic fibre is isomorphic to D4.

We compute the polynomials G1(N) and G2(N) for every N ∈ 22, 26, 28, 50, 46
and we arrive at Table 7.

11
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Table 7: Tables of G1(N), G2(N)

22 G1

(
2 c3 + 2 c

)
x3 +

(
2 c3 + c

)
x+ c6 + 2 c4 + 2 c2

G2 0

26 G1
(
2 c3 + c

)
x3 + xc3 + c6 + c4

G2 x3c3 + 2xc+ 2 c6 + c2

28 G1

(
c3 + 2 c

)
x3 +

(
2 c3 + c

)
x+ 2 c6 + 2 c4 + 2 c2

G2

(
c3 + 2 c

)
x3 +

(
2 c3 + c

)
x+ 2 c6 + 2 c4 + 2 c2

28b G1

(
c3 + 2 c

)
x3 +

(
2 c3 + c

)
x+ 2 c6 + 2 c4 + 2 c2

G2

(
c3 + 2 c

)
x3 +

(
2 c3 + c

)
x+ 2 c6 + 2 c4 + 2 c2

28c G1 2x3c3 + c6 + c3

G2 2x3c3 + c6 + c3

50 G1

(
c3 + c

)
x3 +

(
c3 + c

)
x+ 2 c6 + c4 + 2 c2

G2

(
c3 + 2 c

)
x3 +

(
2 c3 + 2 c

)
x+ 2 c6 + 2 c4 + c2

46 G1 0

37 G2 0

From that table we see that the curves X0(22)3, X0(28)3, X0(50)3, X0(46)3 admit
an extra Z/3Z automorphism group, while X0(26)3 does not.

3.4. The X0(46) curve.
The curve X0(46) is a curve of genus 5 and has reduced automorphism group in

the generic fibre isomorphic to Z/2Z = 〈σ1〉. We compute the following model of
our curve, so that σ1 acts like σ1 : x 7→ −x.

y2 = x12 +

(
−4896

√
2− 6786

)
x10

−2392
√

2− 3381
+

(
−3512

√
2− 4891

)
x8

−2392
√

2− 3381
− 2652x6

−2392
√

2− 3381

+

(
3512

√
2− 4891

)
x4

−2392
√

2− 3381
+

(
4896

√
2− 6786

)
x2

−2392
√

2− 3381
+
−3381 + 2392

√
2

−2392
√

2− 3381
.

We compute the decomposition of the coefficients of the above polynomial and we
see that there is no prime P of Z[

√
2] with Norm(P ) 6= 2, 3, 23 so that the reduction

of the curve at the prime P has a cyclic group containing σ1.
We compute the dihedral invariants of this curve. We know that if the reduced

group Ḡ contains (Z/2Z)2 as a subgroup, then 2g−1u2
1−ug+1

g = 0 [13, th. 3.8]. The
primes p such that 2g−1u2

1−ug+1
g becomes zero modulo p are possible primes where

the reduced group can be large enough to contain (Z/2Z)2. We compute that

2
g−1

2 u1 − u
g+1

2
g =

223 · 312 · 3372 · 6832

236 · (−147 + 104
√

2)5(147 + 104
√

2)
,

2
g−1

2 u1 + u
g+1

2
g =

210 · 312 · 72 · 132 · 2812 · 7092

236 · (−147 + 104
√

2)5(147 + 104
√

2)

Only the prime p = 3 gives rise to an extra automorphism modulo p. For this prime

12
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we have reduced group isomorphic to Z/2Z× Z/2Z and A(46, 3) ∼= (Z/2Z)3.
We will now see if there are primes so that σ1 is the involution of a dihedral

group and there is an element τ of order n so that σ1, τ generate a dihedral group.
We consider the polynomials g(x) = (x+1)2s

f(−1) f
(

1−x
1+x

)
= f∗A(x), where A =

(−1 1
1 1

)
,

so that σ1 acts on the model y2 = g(x) as an involution sending x 7→ 1/x. The
polynomial g(x) is given by

g(x) = g1(x)g2(x),

where

g1(x) =
(
x6 + 5/2

√
2x5 + 5x4 +

21
4

√
2x3 + 5x2 + 5/2

√
2x+ 1

)

g2(x) =
(
x6 + 5/2

√
2x5 + 7x4 +

25
4

√
2x3 + 7x2 + 5/2

√
2x+ 1

)
.

A model of a dihedral group acting on the rational function field is given by τnorm :
x 7→ 1

x and σnorm : x 7→ ζx, where ζ is a primitive n-th root of one. This model is
conjugate by a Möbius transformation Q : x 7→ ax+b

cx+d to any other dihedral action on
the rational function field. We have normalized so that QτnormQ−1 = τnorm. This
means that for a, b, c, d we have b = λc, a = λd, d = λa, c = λb for some non zero
element λ. This gives that λ = ±1 therefore a = ±b and b = ±c. If there is a dihedral
group acting on our curve modulo p then there should be a transformation of Q
of the form x 7→ ax+b

±bx+±a such that the polynomial g∗Q(x) has zero the coefficients
a1, a7, a11 of the monomials x, x7, x11. Indeed, the extra automorphism should act
as x 7→ ζz for an appropriate root of unity and moreover the polynomial g∗Q(x)
should be kept invariant.

The coefficients a1, a7, a11 are polynomials of a, b and we can eliminate a by using
the resultant determinant. We compute:

Resultanta(a1, a7) =
312 · 72 · 2310 · 608760587932768932

228
b144.

The reduced curve can have more automorphisms only at the primes dividing the
numerator of the resultant. By reducing the hyperelliptic curve modulo all that
primes and studying its automorphism group we see that the only prime where the
reduced automorphism group grows is p = 3. Again notice that once a prime p - N
is fixed finding the automorphism group of the special fibre at p can be done by
magma.

4. The prime N -case

If N is a prime number N 6= 37 so that X0(N) is hyperelliptic then on the generic
fibre there is only one involution, the hyperelliptic involution. In order to determine
the possible primes p - N so that X0(N)p has automorphism group greater than
Z/2Z we proceed as follows: Suppose that the curve admits the hyperelliptic model
y2 = fN (x) where fN (x) ∈ Z[x]. We consider an arbitrary Möbius transformation
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σ given by x 7→ ax+b
cx+d . Then we consider the coefficients of the polynomial

fN (x)− fN
(
ax+ b

cx+ d

)
(cx+ d)deg fN =

deg fN∑
ν=0

aix
i. (6)

If σ is an automorphism then all ai should be zero. We would like to find if the
system ai = 0 has solutions modulo p. We consider the ideal Ir := 〈ai, i = 1, . . . , r〉�
Z[a, b, c, d] where r < deg fN . We compute a Gröbner basis for the ideal Ir with
respect of the lexicographical order a < b < d < c, and then we form the set S
of all basis elements that are polynomials in c only. Since in the generic fibre the
only admissible automorphism is the trivial one, the greatest common divisor of
elements in S is cα for some 1 < α ∈ N. We divide every element in S by cα and we
obtain an integer δ as an element in the set {f/cα : f ∈ S}. The prime factors p of
δ are exactly the possible primes where an automorphism σ with c 6= 0 can appear.

We do again the same procedure, but now we choose the a lexicographical order
where a < c < d < b. We find again an integer δ′ and the divisors of δ′ are exactly
the possible primes where an automorphism σ with d 6= 0 can appear.

If we select a big r then the procedure of finding the Gröbner basis is difficult. If
on the other hand we select a small r (4 6 r since we need at least four equations in
order to find a unique solution in a, b, c, d) then we obtain big integers δ, δ′ that we
are not able to factorize. A selection of r = 6 allows us to perform the computations
needed for the given set of N .

Now for each prime p that is a divisor of δ or δ′ we consider the ideals Ideg fN
⊗Z

Z/pZ and we do the same elimination procedure. The Gröbner basis computation is
easier to perform over a finite field and we finally arrive at a solution of the system
ai = 0 mod p.

For example, for the N = 41 case the only exceptions can happen at the primes
2, 17, 41. The primes 2, 41 are excluded so we focus to the p = 17 case. We reduce
our curve modulo 17 and then we compute that the ideal Ideg f41 ⊗Z Z/pZ has a
Gröbner basis of the form:

{a+ 16d+ b, d8 + 12b8 + 16, b(d+ 8b), c+ 8b, b(b8 + 13)}.

We will now solve the above system. If b = 0 then we see that c = 0 and a = d,
therefore we obtain the identity matrix. If b 6= 0 then b8 + 13 = 0 ⇒ b4 = 2. Let
b be a fourth root of 2 in F̄17. Then c = −8b, d = −8b, a = −9b. The equation
d8+12b8+16 is compatible with the system. Thus we obtain the extra automorphism
σ so that σ̄ : x 7→ (−9bx+ b)/(−8bx− 9b) = (9x− 1)/(8x+ 9). The automorphism
group in this case is (Z/2Z)× (Z/2Z).

There might be also an extra automorphism σ modulo p so that b = c = 0. Then
σ : x 7→ (a/d)x where a/d is an n-th root of unity. This does not happen for any
prime p as one easily checks. Our results are collected in table 1.

Remark 4.1. For the case N = 71, the polynomial f71(x) has degree 14. Then the
coefficients ai in (6) are polynomials of degree 14 in a, b, c, d. The computation of
the Gröbner basis over Z is very time and memory-consuming. For such situations,
we use the following trick. If we homogenize the polynomial fN (x) into a binary
form fN (x, y), then the property (6) means that fN (x, y) is invariant under the
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Table 8: Global minimal Weierstrass equations for X0(N), N odd
N Equation

23 y2 + (x3 + x + 1)y = −2x5 − 3x2 + 2x − 2

29 y2 + (x3 + 1)y = −x5 − 3x4 + 2x2 + 2x − 2

31 y2 + (x3 + x + 1)y = −2x5 + x4 + 4x3 − 3x2 − 4x − 1

33 y2 + (x4 + x2 + 1)y = 2x7 + 9x6 + 27x5 + 56x4 + 81x3 + 85x2 + 54x + 20

35 y2 + (x4 + x2 + 1)y = −x7 − 2x6 − x5 − 3x4 + x3 − 2x2 + x

37 y2 + (x3 + x2 + x + 1)y = 3x5 + 8x4 + 11x3 + 8x2 + 3x

39 y2 + (x4 + x3 + x2 + x + 1)y = −2x7 + 2x5 − 7x4 + 2x3 − 2x

41 y2 + (x4 + x)y = −x7 − 2x6 + 2x5 + 5x4 + 2x3 − 4x2 − 5x − 2

47 y2 + (x5 + x3 + 1)y = x9 − 8x7 − 34x6 − 74x5 − 106x4 − 103x3 − 67x2 − 25x − 5

59 y2 + (x6 + 1)y = x11 − 7x9 − 21x8 − 38x7 − 51x6 − 53x5 − 44x4 − 30x3 − 17x2 − 6x − 3

71 y2 + (x7 + x6 + x4 + x + 1)y = −3x13 + 9x12 − 17x11 + 16x10 − 12x9+

+3x8 + 9x7 − 17x6 + 16x5 − 15x4 + 10x3 − 7x2 + x − 2

substitution (x, y) 7→ (ax+ by, cx+ dy). Any transvectant

(fN , fN )r =
r∑

k=0

(−1)k
(
r

k

)
∂rfN

∂xr−k∂yk
∂rfN

∂xk∂yr−k

of fN (x, y) with itself is also invariant under this substitution. (See [9, page 54].)
Thus, for X0(71) we first work on g = (f71, f71)10 of degree 8. We determine all
possible primes p such that there exists non-trivial automorphisms for g modulo
p. We then determine whether these primes indeed give extra automorphisms for
X0(71)p.

5. Automorphisms in characteristic 2

In this section we will study modular hyperelliptic curves X0(N) for N odd,
in characteristic 2. These curves admit a minimal Weierstrass model of the form
y2 + q(x)y = p(x) [20], that can easily be found with the help of magma algebra
system. For these curves there is a notion of discriminant and for every prime not
dividing the discriminant the reduction of the curve is non-singular [20, th. 1.7].

The equations are given in Table 8. These models are examples of the unified
Artin-Schreier-Kummer theory in the sense of T. Sekiguchi, N. Suwa [25], [26].
We also observe that the discriminant of the Weierstrass equation given in table 8
corresponding to X0(N) is N . Thus, the minimal hyperelliptic models of table 8 and
the models of Igusa are both regular smooth arithmetic surfaces over Spec Z[N−1].
Since all nonsingular fibers of a smooth arithmetic surface (smooth here means non-
singular fibers) have genus g > 2, these fibers are irreducible and do not contain
any exceptional divisor [19], [5]. Therefore, the model of Igusa and the hyperelliptic
model are both minimal regular models over Spec Z[N−1] and are Spec Z[N−1]-
isomorphic. In particular, all fibers above primes p - N are isomorphic and have the
same automorphism group.

Lemma 5.1. Let C := y2 + q(x)y+ p(x) be a hyperelliptic curve of genus g over F2

with deg q(x) 6 g + 1 and deg p(x) 6 2g + 1. Then every automorphism σ of C is
of the form

σ : (x, y) 7−→
(
ax+ b

cx+ d
,
y + h(x)

(cx+ d)g+1

)
15
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for some
(
a b
c d

)
∈ GL(2,F2) and h(x) ∈ F2[x] of degree at most g + 1 satisfying

q

(
ax+ b

cx+ d

)
(cx+d)g+1 = q(x), p

(
ax+ b

cx+ d

)
(cx+d)2g+2 = p(x)+h(x)2+q(x)h(x).

In particular the hyperelliptic involution is given by

j(x) = x, j(y) = y + q(x). (7)

Proof. The function field of C is an Artin-Schreier extension of the rational function
field F2(x). Indeed, if we set Y = y/q, then we have

Y 2 + Y =
p

q2
,

and the hyperelliptic involution is given by (x, Y ) 7→ (x, Y + 1), i.e, σ(y) = y + q.
The hyperelliptic involution is in the center of the automorphism group. Thus, the
restriction of an automorphism σ of C to F2(x) gives an automorphism of F2(x).
Therefore, we must have σ(x) = (ax+ b)/(cx+ d) for some

(
a b
c d

)
in GL(2,F2).

Recall [20, prop. 1.12] that a basis for the space of holomorphic differentials on
C is given by

ωi =
xi−1dx

2y + q
=
xi−1dx

q
, 1 6 i 6 g,

and every automorphism σ of C induces a linear action on the space of holomorphic
differentials. Write q((ax+ b)/(cx+ d))(cx+ d)g+1 = q∗(x) ∈ F2[x]. We find

σ(ωi) =
σ(x)i−1dσ(x)
q(σ(x))

= (ad− bc)(ax+ b)i−1(cx+ d)g−i
dx

q∗
.

Since each σ(ωi) is a linear combination of ωj , we must have q∗ = λq for some
λ ∈ F∗2. Because for any α ∈ F∗2, α

(
a b
c d

)
defines the same automorphism on F2(x)

as
(
a b
c d

)
, we may rescale a, b, c, d so that λ = 1, i.e., we have

q

(
ax+ b

cx+ d

)
(cx+ d)g+1 = q(x). (8)

We now consider σ(y). We write it in the form σ(y) = µy+ ν with µ, ν ∈ F2(x).
Substituting the expression into σ(y)2 + q(σ(x))σ(y) + p(σ(x)) = 0 and using (8),
we obtain

y2 +
q(x)

µ(cx+ d)g+1
y +

p(σ(x)) + ν2 + q(x)ν/(cx+ d)g+1

µ2
= 0.

Comparing this with y2 + q(x)y + p(x) = 0, we find µ = 1/(cx+ d)g+1 and ν(cx+
d)g+1 is a polynomial h(x) such that

p

(
ax+ b

cx+ d

)
(cx+ d)2g+2 = p(x) + h(x)2 + q(x)h(x).

This completes the proof of the lemma.

Lemma 5.2. Let X be a hyperelliptic curve in characteristic 2. The group structure
of the full automorphism subgroup G of X is determined by the structure of the
2-Sylow subgroup of G.

16



Automorphisms of hyperelliptic modular curves X0(N) in positive characteristic

Proof. Let Ḡ denote the reduced group of G. By the theory of group extensions, the
group G is determined uniquely by a cohomology class in the group H2(Ḡ,Z/2Z)
corresponding to the first row of diagram (9).

For p prime let H2(Ḡ,Z/2Z)p denote the p-part of the finite abelian group
H2(Ḡ,Z/2Z) and let Ḡp denote the p-Sylow subgroup of the reduced group Ḡ.
Denote also the order of Ḡ by s. The following map is monomorphism:

Φ : H2(Ḡ,Z/2Z) =
⊕
p|s

H2(Ḡ,Z/2Z)p →
⊕
p|s

H2(Ḡp,Z/2Z),

α =
∑
p|s

αp 7→
∑
p|s

resḠ,Ḡp
(αp)

[33, p. 93]. Now if (p, 2) = 1 then H2(Ḡp,Z/2Z) = 0. Therefore we have to consider
only the p = 2 case. This proves that H2(Ḡ,Z/2Z) is itself a group of order a
power of 2, since all p-parts of that group is maped into 0. Moreover, the restriction
map H2(Ḡ,Z/2Z) → H2(Ḡ2,Z/2Z) is a monomorphism. The class resḠ,Ḡ2

(α2)
corresponds to the subextension given by the second row of diagram (9)

1 // Z/2Z //

=

��

G
π // Ḡ // 1

1 // Z/2Z // G2
//

1−1

OO

Ḡ2
//

1−1

OO

1.

(9)

This means that the structure of G2 determines uniquely the structure of G.

Corollary 5.3. If Ḡ2 = {1} then G = Z/2Z× Ḡ.

Corollary 5.4. Let Ḡ2 denote the 2-Sylow subgroup of the reduced group. This
group is elementary abelian and fixes only one point ∞ of P1. If ∞ does not ramify
in X → P1 then G = Ḡ× Z/2Z.

Proof. If ∞ does not ramify in X → P1 then there are two points P1, P2 of X
above ∞. The group 〈σ〉 := Z/2Z = Gal(X/P1) transfers P1 to P2. Consider the
isotropy supgroup G2(P1). By the transitivity of the ramification index we have
that |G2(P1)| = |Ḡ2|. The map G2(P1)→ Ḡ2 is onto and since the two groups have
the same order it is an isomorphism. Therefore, π has a section and last line of (9)
splits. The first line splits also and G = Ḡ×Z/2Z, since the hyperelliptic involution
is central.

The group Ḡ2 is elementary abelian therefore is it is generated by the commuting
elements xi, i = 1, . . . , s, i.e., Ḡ2 = (Z/2Z)s. If the group G2 is not a direct product
then there are elements say σ ∈ G2 of order 4. Every such element when raised to
the square gives the hyperelliptic involution, i.e. j = σ2. For the elements xi such
that π−1〈xi〉 is a cyclic group of order 4 select a generator σi for this group. All
these elements have squares equal to j. Order the elements xi so that for 1 6 i 6 ν0

the group π−1〈xi〉 is a cyclic group of order 4 and for ν0 > 1 the group π−1(〈xi〉) is a
direct product of two cyclic groups. The group G2 admits the following presentation
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in terms of generators and relations:

G2 :=
〈
j, σν , xµ : 1 6 ν 6 ν0 < µ

∣∣∣∣ σ2
ν = j, j2 = 1, x2

µ = 1,
1 = [xµ, xµ′ ] = [xµ, σ2

ν ] = [σν , σν′ ]

〉
.

For every Weierstrass model given in 8 we use lemma 5.1 in order to determine
the automorphism group in characteristic 2. For every entry in that table we do
not get any new automorphism except in the cases N = 33, 37.

5.1. Case X0(37)
By Table 8, a Weierstrass model for X0(37)2 is given by y2 + q(x)y = p(x) with

q(x) = x3 + x2 + x+ 1, p(x) = x5 + x3 + x.

The hyperelliptic involution j is j : (x, y) 7→ (x, y + q(x)). Let G denote the auto-
morphism group of X0(37)2 and G = G/〈j〉 be the reduced automorphism group,
considered as a subgroup of AutF2(x) = PGL(2,F2). According to Lemma 5.1, an
element of G takes the form

(x, y) 7−→
(
ax+ b

cx+ d
,
y + h(x)
(cx+ d)3

)
,

where h(x) = u0 + u1x + u2x
2 + u3x

3 ∈ F2[x] is a polynomial of degree at most 3
and

(
a b
c d

)
∈ G ⊂ GL(2,F2) satisfies

q

(
ax+ b

cx+ d

)
(cx+ d)3 = q(x), p

(
ax+ b

cx+ d

)
(cx+ d)6 = p(x) + h(x)2 + q(x)h(x).

These two conditions give a set of relations among a, b, c, d and ui. The Gröbner
basis of the ideal generated by these relations with respect to the lexicographic
order u0 > u1 > u2 > u3 > a > b > d > c is

u0 + u3 + d2c4 + d2c+ dc8 + dc2 + c192 + c180 + c168 + c165 + c150 + c138 + c135

+ c132 + c120 + c105 + c96 + c90 + c84 + c75 + c69 + c66 + c48 + c36 + c18 + c9,

u1 + u3 + d2c+ dc8 + c168 + c138 + c120 + c105 + c90 + c75 + c72 + c60 + c48

+ c45 + c30 + c24 + c18 + c15 + c12 + c3,

u2 + u3 + d2c4 + dc2 + c180 + c165 + c150 + c144 + c135 + c129 + c96 + c84 + c69

+ c66 + c60 + c48 + c45 + c36 + c33 + c30 + c18 + c15,

u2
3 + u3 + d2c4 + d2c+ dc5 + dc2 + c36 + c33 + c21 + c18 + c6 + c3,

a+ d+ c16 + c,

b+ c16,

d3 + d2c+ dc2 + c192 + c144 + c132 + c129 + c72 + c48 + c33 + c24 + c18

+ c12 + c9 + 1,

d(c16 + c) + c176 + c161 + c146 + c131 + c80 + c65 + c56 + c41 + c26 + c20

+ c17 + c11 + c5 + c2,

(c16 + c)(c192 + c144 + c132 + c129 + c96 + c72 + c66 + c48 + c36 + c33

+ c24 + c18 + c12 + c9 + c6 + c3 + 1).
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Automorphisms of hyperelliptic modular curves X0(N) in positive characteristic

Here the polynomial of degree 192 in c in the last element of the Gröbner basis is a
product of 12 irreducible polynomials of degree 8 over F2. Using this basis, we find
that the total number of solutions in F2 is 480. (Each root of the degree 192 polyno-
mial gives two solutions and each root of c16+c gives 6 solutions.) However, since for
each root α of x3+1 in F4, (u0, u1, u2, u3, a, b, c, d) and (u0, u1, u2, u3, αa, αb, αc, αd)
give the same automorphism, we find that

|G| = 480/3 = 160, |G| = |G|/2 = 80.

We now determine the structure of the automorphism group.
We first consider the reduced automorphism group G. Recall that, in general,

the order of a matrix in PGL(2,F2) can only be 2 or an odd integer. Moreover, the
order is 1 or 2 if and only if the trace is zero. Now the relation a+ d+ c16 + c = 0
shows that an element

(
a b
c d

)
∈ G has order 1 or 2 if and only if c ∈ F16. Therefore,

we find that the Sylow 2-subgroup of G is an elementary abelian 2-group of order
16, and is normal in G. (Again, each c ∈ F16 gives 3 solutions (a, b, c, d), but for
each root α of x3 + 1 in F2, (a, b, c, d) and (αa, αb, αc, αd) correspond to the same
reduced automorphism in G.) The remaining 64 elements of G all have order 5,
and G has 16 Sylow 5-subgroups. Therefore, G is the semi-direct product of an
elementary abelian 2-group of order 16 by a cyclic group of order 5.

Now consider the structure of G itself. Let P be its Sylow 2-subgroup, and τ be
any element of order 5. The centralizer ZP (τ) of τ in P must satisfy |ZP (τ)| ≡ |P | =
32 mod 5. Thus, we have |ZP (τ)| = 2 or |ZP (τ)| = 32. The latter possibility cannot
occur as it would imply that G is an abelian group. Thus, we have |ZP (τ)| = 2,
that is, ZP (τ) = 〈j〉.

We next turn the attention to the center Z(P ) of the Sylow 2-subgroup P itself.
Observe that 〈τ〉 acts on Z(P ) by conjugation. The identity automorphism and the
hyperelliptic involution are left fixed by this group action. Since |ZP (τ)| = 2, all
the other orbits under this group action have 5 elements. In other words, we have
|Z(P )| ≡ 2 mod 5, i.e., |Z(P )| = 2 or |Z(P )| = 32.

Assume that |Z(P )| = 32. Then P is an abelian group of order 32 whose elements
have order at most 4 (since P/〈j〉 is elementary abelian). Noticing that τ acts on
the set of elements of order 4 in P and that |ZP (τ)| = 2, we see that the number
of elements of order 4 in P must be a multiple of 5. The only possibility is that
P ' (Z/2Z)5. However, we can easily check that the automorphism σ ∈ G given by

σ : (x, y) 7−→
(

(α+ 1)x+ α

αx+ (α+ 1)
,

y + x2 + x

(αx+ (α+ 1))3

)
is an element of order 4, where α is a root of x2 +x+1 in F4. Therefore, we conclude
that |Z(P )| cannot be 32. Instead, we have |Z(P )| = 2, i.e., Z(P ) = 〈j〉.

Now we have |Z(P )| = 2 and P/Z(P ) is elementary abelian. This means that P
is one of the extraspecial groups. (An extraspecial group H is a p-group such that the
center Z is cyclic of order p and the quotient group H/Z is a non-trivial elementary
abelian p-group.) For order 32, there are two extraspecial groups E32+ := (D4 ×
D4)/〈(a, a)〉 and E32− := (D4 ×Q8)/〈(a, b)〉, where a and b denote the non-trivial
elements in the centers of the dihedral group D4 and the quaternion group Q8,
respectively. To determine which one P is isomorphic to, we consider the action of
〈τ〉 defined by conjugation on the set S of subgroups of order 16 in P .
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We claim that τAτ−1 6= A for all A ∈ S. Assume that τAτ−1 = A for some
A ∈ S. The centralizer ZA(τ) of τ in Amust have only one element since |ZP (τ)| = 2
and |ZA(τ)| ≡ |A| mod 5. In other words, j 6∈ A, but this would imply that P '
A × 〈j〉, which cannot be true for an extraspecial group. Therefore, we must have
τAτ−1 6= A. It follows that for each group H of order 16, the number of subgroups of
P that are isomorphic to H must be divisible by 5. Now according to the database of
small groups [11], E32+ has 9 subgroups isomorphic to D4×(Z/2Z) and 6 subgroups
isomorphic to another group H16 of order 16. Therefore, we conclude that P must be
isomorphic to E32−, which has 5 subgroups isomorphic to Q8×(Z/2Z) and another
5 subgroup isomorphic to H16, and the automorphism group G is a semi-direct
product of E32− by a cyclic group of order 5.

Of course, the conclusion above can be verified by brute force computation.
However, the computation is too complicated to be presented here.

5.2. Case X0(33)
The conditions given in lemma 5.1 give rise to a system in a, b, c, d describing

every element in the reduced group Ḡ. The Gröbner basis of this system is computed
to be:

a2 + ac+ d2 + dc, ab+ ac+ bd+ dc, ad+ bc+ d2 + dc+ c2, ac4 + a+ dc4 + d,

b2 + bd+ dc+ c2, bdc+ bc2 + dc2 + c3, d4 + dc3 + c4 + 1, d2c+ dc2, c5 + c

This gives us the following solutions (written in matrix form):

Ḡ =
{(

1 0
0 1

)
,

(
0 1
1 0

)
,

(
0 1
1 1

)
,

(
1 1
0 1

)
,

(
1 1
1 0

)
,

(
1 0
1 1

)}
.

Thus, the group Ḡ is isomorphic to the group GL(2,F2) of order 6. One 2-Sylow
subgroup of Ḡ is given by the group generated by the element τ : x 7→ x + 1. The
fixed point of τ is the point ∞ and since ∞ is not ramified in the cover X → X〈j〉

Corollary 5.4 implies that G = Ḡ× 〈j〉.
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