
Chapter 16
Automorphisms of Curves

Jannis A. Antoniadis and Aristides Kontogeorgis

Abstract This is a survey article concerning the groups of automorphisms of curves
definedover algebraically closedfields of positive characteristic, their representations
and applications to their deformation theory.

16.1 Introduction

By an (algebraic) curve we will mean a projective non-singular one-dimensional
variety, defined over an algebraically closed field k of characteristic p ≥ 0. Over the
field C of complex numbers the notion of a projective algebraic curve coincides with
the notion of compact Riemann surface. Every compact Riemann surface X is known
to be an orientable two-dimensional real manifold and to any such surface we can
attach a natural number gX ∈ N ∪ {0}, called the genus, which topologically counts
the number of holes of the surface X . Over an arbitrary field of positive characteristic
we can still define the genus, by setting gX to be the dimension of the space of global
holomorphic differentials H 0(X,ΩX ), although a topological interpretation is less
clear, see [72]. In Sect. 16.2.2 a topological interpretation can be given as the number
of cycles of the graph of analytic reduction.

An automorphism of a curve X is an isomorphism σ : X → X , and the set
Autk(X) of all automorphisms form a group under composition. Since we assumed
that the constant field is algebraically closed we will omit the index k from the
notation, and we will denote the automorphism group by Aut(X).

If the genus is zero, then X is isomorphic to the projective lineP
1 and the automor-

phism group is the group of Möbius transformations PGL(2, k), which is infinite. If
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gX = 1, then the curve X admits a group structure and X acts on X by translations,
hence X ⊂ Aut(X), so X is infinite as well.

When gX ≥ 2 the automorphism group is finite. In characteristic zero this can be
proved by applying the Riemann–Roch theorem, in order to see that every automor-
phism fixing more than 2gX + 2 points is the identity, and then obtaining a faithful
representation on the set ofWeierstrass points. For the case of positive characteristic,
the same argument does not work. In order to prove that the automorphism group is
finite, we first prove that the decomposition group G(P) is finite, for every P ∈ X .
Then we need the existence of a finite non-empty Aut(X)-invariant set �. We can
use as � the set of Weierstrass points, since they are invariant under the action of the
automorphism group. A notion of Weierstrass points in positive characteristic was
given first by F.K. Schmidt [75] using the theory of Hasse derivatives. For a modern
account of this topic we refer to [26, Sect. 6], [29, Chap.11].

Moreover, it is known that for any finite group G there exists a curve X such
that Aut(X) ∼= G, see [52]. Notice that most of the curves have trivial automorphism
group [57, 67], since curves with non-trivial automorphisms correspond to singulari-
ties of the moduli space of curves of fixed genus. However, finding specific examples
of curves without automorphisms is not easy, see [65].

Understanding the automorphism group is an interesting problem on its own and
has many applications to counting points, moduli problems, etc. In Sect. 16.2 we
will present results concerning the order of the group and we will give upper bounds
in terms of constants of topological nature, like the genus and the p-rank of the
Jacobian.

In Sect. 16.5 we will study automorphisms of relative curves π : X → SpecR,
where R is a discrete valued ring with algebraically closed residue field. We will
restrict ourselves to maps π which have fibers X of genus gX ≥ 2 and which vary
“nicely”. Both these properties are formulated by the notion of “stable curve”. The
precise definition is given in [14, Definition I.1]. If the relative curve is stable, then
the automorphism group of the special fibre contain the automorphism group of the
generic fibre [14, Lemma I.12]. The study of automorphisms of relative curves is
a difficult problem even at the infinitesimal level. In this section we also discuss
reduction, lifting and the deformation problem. Automorphisms of relative curves
are related to the representation theory of the automorphism group on several natural
objects of the curve like global sections of global polydifferentials and this will be
explained in Sect. 16.3. In Sect. 16.6 we study integral representations of a fibrewise
action in relative holomorphic polydifferentials.

The theory of automorphisms of curves is a vast object of study and this article
does not have the ambition to describe it completely. It is rather focused on subjects
closer to the research interests of the authors. For more general information about
automorphisms of curves in characteristic zero we refer to [15, Chap.V], while
for curves defined over fields of positive characteristic we refer to [29, Chap.11],
[13, par. 14.3].
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16.2 Size of the Group

The automorphism group of a curve X of genus gX ≥ 2 is finite. However if the genus
is fixed, then the size of the groups that can appear is bounded. In characteristic zero,
for gX ≥ 2, using the theory of Riemann–Hurwitz formula and by a case by case
examination, Hurwitz [31] proved the bound:

|Aut(X)| ≤ 84(gX − 1). (16.1)

16.2.1 Ramification Filtration

In order to explain the situation in characteristic p > 0 we have to introduce the
ramification filtration at a closed point x ∈ X . Let G be a subgroup of Aut(X) and
let mX,x be the maximal ideal of the local ring OX,x . We will denote by k(x) the
residue field of x . For i ≥ 0, the i th lower ramification subgroup Gx,i of G at x is the
subgroup of all elements σ ∈ G which fix x and which act trivially on OX,x/m

i+1
X,x .

These groups form a decreasing finite sequence

Gx,0 � Gx,1 � · · · � Gx,n � Gx,n+1 = {1}, n ∈ N. (16.2)

When the characteristic p = 0 it is known that Gx,1 = {1}. In general Gx,0/Gx,1 is
a cyclic group of order prime to the characteristic, while for i ≥ 1 Gx,i/Gx,i+1 is an
elementary abelian group, i.e. isomorphic to the direct sum of finitely many cyclic
groups of order p. If Gx,1 = {1} for every x ∈ X , then the cover X → X/G is said
to be tame, otherwise it is called wild. If Gx,2 = {1}, then the ramification is called
weak.

The Riemann–Hurwitz formula [82, Sect. 3.4 p. 90] relates the genera of the
curves X and X/G = Y as follows:

2(gX − 1) = 2(gY − 1)|G| +
∑

x∈X

∞∑

i=1

(|Gx,i | − 1
)
. (16.3)

Notice that this equation can be obtained by taking degrees on Eq. (16.11).
For tame covers the Hurwitz bound remains the same. For the general wildly

ramified curve H. Stichtenoth [80, 81] proved that the following bound holds:

|Aut(X)| ≤ 16g4X , (16.4)

with the Hermitian Fermat curve as only exception, given by the equation:

0 = x ph+1 + y ph+1 + z p
h+1 = x

(
xt
)ph

, where we have set x = (x, y, z). (16.5)
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Notice that for h = 0 the above Fermat curve is a quadratic form, while for h > 0 it
behaves as Frobenious shifted quadratic form and has PGU(3, p2h) as automorphism
group, [43, 51]. The result of H. Stichtenoth was improved by H. Henn [27] who
proved that

|Aut(X)| ≤ 8g3X , (16.6)

with a finite list of exceptions. The result of Henn contained a gap which was filled
by M. Giulietti and Gábor Korchmáros, see [20].

All exceptions in the list of Henn, have a large p-subgroup compared to its genus.
C. Lehr and M. Matignon [50] defined the notion of “big action”, when the Aut(X)

contains a p-subgroup P , such that

|P| >
2p

p − 1
gX . (16.7)

M. Matignon and M. Rocher [55, 70, 71], and M. Giulietti and G. Korchmáros [19]
studied and classified “big actions” defined by an equation similar to Eq. (16.7).

In characteristic p > 0 the p-rank of the Jacobian γX plays a role analogous to
the rank of the homology group and as a matter of fact 0 ≤ γX ≤ gX . Curves with
gX = γX are called ordinary and they form a Zariski-dense set in the moduli space
of curves of fixed genus. For such curves S. Nakajima [62] proved the bound:

|Aut(X)| ≤ 84(gX − 1)gX . (16.8)

He further notices that his bound could not be best possible and by studying the
Artin–Schreier–Mumford curve

(x ph − x)(y ph − y) = c, c ∈ k (16.9)

he conjectured that the best possible bound is given by a cubic polynomial in
√
gX .

16.2.2 Mumford Curves

It is well known that an algebraic curve X , defined over C can be uniformized by
a discrete subgroup Γ of PSL(2, R), i.e. X ∼= Γ \H, and the Hurwitz upper bound
given in Eq. (16.1) is equivalent to Siegel’s lower bound π/21 on the volume of the
fundamental domain of a Fuchsian group ([15, Exercise 6 p. 245], [49]).

Let K be a non-archimedean valued field. D. Mumford [59] showed that curves
defined over K , whose stable reduction is split multiplicative, i.e. a union of rational
curves intersecting at K̄ -rational points, are isomorphic to an analytic space of the
form Γ \(P1

K − LΓ ), where Γ is a discontinuous group in PGL(2, K ) andLΓ is the
set of limit points. The automorphism group of the curve X is then isomorphic to the
group N/Γ , where N equals the normalizer of Γ ∈ PGL(2, K ), [12], [18, p. 216].
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Wewill call such curvesMumford curves. Notice that not all curves defined over K
admit such a uniformisation. For example theArtin–SchreierMumford curve has split
multiplicative reduction and is a Mumford curve only if |c| < 1. The uniformization
theory can give stronger results when applied to Mumford curves.

Herrlich [28] has shown that for p-adic Mumford curves of genus gX ≥ 2 and
p ≥ 7 the Hurwitz bound can be strengthened to 12(gX − 1).

Notice that by the work of Manin-Drinfeld [53] and Gerritzen [17], Mumford
curves are known to be ordinary, therefore the Nakajima bound given in Eq. (16.8)
holds. For Mumford curves defined over non-archimedean fields of positive charac-
teristic G. Cornelissen, F. Kato and the second author [12], proved that Nakajima’s
conjecture was correct for Mumford curves and the following bound holds:

|Aut(X)| ≤ max
{
12(gX − 1), 2

√
gX (

√
gX + 1)2

}
. (16.10)

They also classified those curves for which |Aut(X)| ≥ 12(gX − 1). Moreover, the
above bound is best possible since it is attained for the Artin–Schreier–Mumford
curves given by Eq. (16.9).

This theorem can also be reformulated in the style of Siegel lower bound as
follows: the μ(N ) invariant [37, Eq.2] of its normalizer N is bounded from below
by

μ(N ) ≥ min

{
1/12,

√
gX − 1

2
√
gX (

√
gX + 1)

}
.

Notice that μ(N ) plays the role of a Gauss–Bonnet “volume” and the index [N : Γ ]
which equals the order of automorphism group can be evaluated in terms of theorems
of HNN groups as in Theorem 2 in [37].

Concerning the Nakajima conjecture for ordinary curves X over a field of charac-
teristic p > 0, R. Guralnik andM. Zieve in aWorkshop in Leiden onAutomorphisms
of curves in 2004, announced that there exists a sharp bound of the order of g8/5X for
|Aut(X)|.

For automorphisms groups of Mumford curves with a specific structure we can
have better bounds. For example S. Nakajima in [61] used the Hasse-Arf theorem in
order to prove that

|Aut(X)| ≤ 4gX + 4,

and this bound has been further improved for abelian automorphisms groups of
Mumford curves by V. Rotger and the second author in [47], to the bound

|Aut(X)| ≤ 4(gX − 1).
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16.3 Representation Theory

The next step is to understand representations of Aut(X) in some naturally defined
vector spaces. Let ΩX denote the sheaf of relative differentials of X over k and by
H 0(X,Ω⊗m

X ) the space of global holomorphic polydifferentials of X . The automor-
phism group acts on both ΩX and H 0(X,Ω⊗m

X ), therefore H 0(X,Ω⊗m
X ) becomes

a k[G]-module of k-dimension equal to (2m − 1)(g − 1) if m �= 1 or g if m = 1.
By the work of B. Köck and J. Tait [41] we know that this action is faithful, unless
Aut(X) contains a hyperelliptic involution and either m = 1 and p = 2 or m = 2
and gX = 2.

It is a classical problem proposed first by Hecke [25], to analyse the k[G]-module
structure of H 0(X,Ω⊗m

X ), i.e. analyse the indecomposable components together with
their multiplicities. If the characteristic does not divide |G|, this problem was solved
by Chevalley and Weil [9].

If the ramification of X → X/G is tame, then Nakajima [60, Theorem 2] and,
independently, Kani [32, Theorem 3] determined the k[G]-module structure of
H 0(X,ΩX ). B. Köck in [40] studied weakly ramified covers, he generalized Kani’s
and Nakajima’s work and corrected a criterion for the projectivity of the space of
holomorphic differentials given by Kani, see remark 2.4b.

K. Ward in [85] studied the Galois module structure of holomorphic differentials
for the cyclotomic function fields obtained by the torsion points of Carlitz modules
CM for a totally split polynomial M ∈ Fq(T ).

The case when G is a cyclic group was first studied by Valentini and Madan [84,
Theorem1]who considered cyclic p-groups (and also revisited cyclic groups of order
prime to the characteristic, [84, Theorem 2]). The case of a general cyclic G was
treated by S. Karanikolopoulos and the second author [35, Theorem 7]. A different,
general approach to determining the decomposition of global sections of coherent
OX − G-modules into decomposable direct summands was developed by Borne in
[7], using the notion of rings with several objects. Some formulas concerning the
case of cyclic groups and curves are given in [7, Sect. 7.2].

The situation in positive characteristic is more difficult, because phenomena of
modular representation theory appear; for example, the notion of irreducible repre-
sentation is different than the notion of indecomposable representation. Moreover
wild ramification appears: the decomposition groups are not cyclic groups and higher
ramification groups appear, see Eq. (16.2). Also the classification of non-cyclic p-
groups even for the simplest group G = Z/pZ × Z/pZ, for a prime p > 2 is con-
sidered to be impossible [3, p.13 Sect. 1.2].

For each closed point x ∈ X , let mX,x be the maximal ideal of the local ring OX,x

and let k(x) be the residue field of x . The fundamental character of the inertia group
Gx,0 of x is the character θx : Gx,0 → k(x)∗ = Aut(mX,x/m2

X,x ) giving the action of
Gx,0 on the cotangent space of x . Here θx factors through the maximal p′-quotient
Gx,0/Gx,1 of Gx,1.
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In [5] F. Bleher, T. Chinburg and the second author studied the structure of
H 0(X,ΩX ), when G is any group such that the p-Sylow subgroup of G is cyclic. It
turns out that the k[G]-module structure depends only on the ramification data and
the fundamental characters of closed points of X , ramified under the action of G.

16.4 Bases of Holomorphic Differentials

16.4.1 Boseck Theory

A strategy for studying the k[G]-module structure is to first write explicit bases of
the spaces H 0(X,Ω⊗m

X ). Usually, a curve with a non-trivial automorphism group
comes with a natural Galois cover π : X → X/H = Y , where Y is a known curve
(usually P

1 or an elliptic curve) and H is a subgroup of the full automorphism group
G. In this way the divisor of the H -invariant differential divπ∗dx can be computed
in terms of the pullback formula [24, prop. 2.3 p. 301]

divπ∗dx ∼= π∗div(dx) + RX/Y , (16.11)

where RX/Y denotes the ramification divisor of the cover.
Once the divisor div(dx) is computed, finding the space of holomorphic (poly)

differentials is the same as computing the Riemann–Roch space L(divdx). This
method was used by H. Boseck in [8], who gave precise formulas for both Kummer
and Artin–Schreier extensions of the projective line. Once a basis is constructed,
one has to identify the indecomposable summands. For the case of cyclic group
action the last computation essentially is equivalent to the computation of the Jordan
normal form. Notice that Boseck’s article has an error concerning the computation
of Weierstrass points, see the article of A. Garcia [16] for more details.

This method was used in [35, 84] and also by articles of Rzedowski–Calderón
Villa-Salvador and Madan [73] and Marques and Ward [54] for some other groups
under additional hypotheses on the cover X → X/G.

16.4.2 Mumford Curves

For the case of Mumford curves there is a pure group theoretic approach to the
determination of global sections of holomorphic differentials initiated by the work
of V. Drinfeld and Y. Manin [53]. For holomorphic polydifferentials there is also a
group theoretic approach, the theory of harmonic measures studied by J. Teitelbaum
and P. Schneider see [76, 83].
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Let K be a complete non-archimedeanvaluedfield,Γ ⊆ PGL(2, K )be aSchottky
subgroup, and XΓ the Mumford curve obtained from Γ . We will denote by N the
normalizer of Γ in PGL(2, K ). The quotient group G = N/Γ , which acts on XΓ

from the left, is the automorphism group Aut(XΓ ) of XΓ over K . Recall that Γ

is a free group of finite rank, whose rank, say g, is equal to the genus of XΓ . Let
us fix a free generating set {γ1, . . . , γg} of Γ . For any right K [Γ ]-module P , each
derivation d : Γ → P is uniquely determined by its values hi = d(γi ) for 1 ≤ i ≤ g,
and conversely, since Γ is free, such values hi ∈ P can be freely chosen to obtain
a derivation d; indeed, once hi ’s are chosen, then d(w) for any w ∈ Γ is uniquely
determined by the derivation rules.

For a positive integer n, we consider the 2n − 1 dimensional vector space of
polynomials Pn ⊆ K [T ] of degree ≤ 2(n − 1). The group PGL(2, K ) acts on Pn

from the right as follows: for γ =
(
a b
c d

)
∈ PGL(2, K ) and F ∈ Pn , we define

Fγ (T ) := (cT + d)2(n−1)

(ad − bc)n−1
F

(
aT + b

cT + d

)
∈ K [T ]. (16.12)

Now, consider the (2n − 1)gXΓ
-dimensional space Der(Γ, Pn) of derivations,

which can be seen as an N -module as follows: for δ ∈ N and d ∈ Der(Γ, Pn), define

(dδ)(γ ) = [d(δγ δ−1)]δ (16.13)

for γ ∈ Γ . There is then a well defined G = N/Γ action on the group cohomology
H 1(Γ, Pn), since Γ acts trivially modulo principal derivations.

Theorem 16.1 ([83, Theorem 1]) For any n ≥ 1, the space H 0(XΓ ,Ω⊗n
XΓ

) of n-
differentials on the curve XΓ is naturally isomorphic to the space group cohomology
H 1(Γ, Pn). Moreover, this identification is G-equivariant with respect to the natural
right G-action on H 0(XΓ ,Ω⊗n

XΓ
). �

F. Kato and the second author [38] used this approach to study the K [G]-module
structure of polydifferentials for the case of Artin–Schreier–Mumford curves, where
N = A ∗ B, Γ = [A, B] and A, B ⊂ PGL(2, K ) are cyclic groups of order p gen-
erated by

εA =
(
1 1
0 1

)
and εB =

(
1 0
s 1

)
, (16.14)

respectively, where s ∈ K× and |s| > 1.
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16.5 Curves in Families

16.5.1 Stable Curves

LetX → R be a family of curves of genus g ≥ 2 over a base scheme S := SpecR,
where R is a discrete valuation ring with algebraically closed residue field. For every
point P : Speck → S, we will consider the absolute automorphism group of the
fibre P to be the automorphism group Autk̄(X ×S Speck̄) where k̄ is the algebraic
closure of k. Any automorphism σ acts like the identity on k̄ so in our setting there
is no Gal(k̄/k) contribution to the automorphism group of any special fibre. The
following theorem due to P. Deligne and D. Mumford [14, Lemma I.12] compares
the automorphism groups of the generic and special fibres:

Theorem 16.2 Consider a stable curveX → S and letXη denote its generic fibre.
Every automorphism φ : Xη → Xη can be extended to an automorphism φ : X →
X .

The example of the Fermat curve given in Eq. (16.5), shows that the automorphism
group of the special fibre can be strictly bigger. A special fibre Xp := X ×S S/p
with Aut(Xp) > Aut(Xη) will be called exceptional. In general we know that there
are finitemany exceptional fibres and it is an interesting problem to determine exactly
all of them.

There are some results towards this problem for some curves of arithmetic inter-
est. A. Adler [1] and C.S. Rajan [68] proved for the modular curves X (N ), that
X (11)3 := X (11) ×SpecZ SpecF3 has the Mathieu group M11 as the full automor-
phism group. C. Ritzenthaler in [69] and P. Bending, A. Carmina, R. Guralnick in
[2] studied the automorphism groups of the reductions X (q)p of modular curves
X (q) for various primes p. It turns out that the reduction X (7)3 of X (7) at the prime
3 has an automorphism group PGU(3, 3), and X (7)3 and X (11)3 are the only cases
where AutX (q)p > AutX (q) ∼= PSL(2, p). Also Y. Yang together with the second
author in [48] studied special fibers of hyperelliptic modular curves.

In this spirit, a particular interesting problem is the lifting of automorphisms in
characteristic zero: Let X be a curve defined over a field of characteristic p and a
group G ⊂ Aut(X). Is there a smooth family X → SpecS, where S is a local ring
with closed point k and generic point a field of characteristic zero, such that G acts
fibrewise on the family and the special fibre is the initial curve X?

These types of lifting problems where initiated by J.P. Serre in [79] in his attempt
(before étale cohomology was invented) to define an appropriate cohomology theory,
which could solve the Weil conjectures.

The answer is no for general G. For example in zero characteristic the Hurwitz
bound holds, while in positive characteristic there are known examples of automor-
phism groups that exceed this bound. Frans Oort in 1987 conjectured that such a lift
always exists if the group G is cyclic. This was known in the literature as the Oort
Conjecture until recently. Florian Pop proved in [66] that this conjecture is true in
a stronger sense: in the case where G has only cyclic groups as inertia groups. We
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must mention that Pop’s proof is based on recent results by Obus and Wewers [64].
For a survey article and for a complete list of the protagonists for this effort see [63]
and the historical note in [66].

16.5.2 Deformations of Curves

We will now explain infinitesimal deformation problems from the viewpoint of M.
Schlessinger [74]. A deformation of the curve X is a relative curve X → Spec(R)

(proper, smooth) over a local ring R with maximal ideal m and R/m ∼= k, such that
X ∼= X ×SpecR SpecR/m, i.e. we have the following commutative diagram:

X ∼= X ×SpecR SpecR/m X

Spec(k) ∼= R/m Spec(R)

Two deformationsX1 X2 are considered to be equivalent if there is an isomorphism
ψ : X1 → X2 making the diagram

X1
ψ

X2

SpecR

commutative, such that ψ gives the identity on the special fibres.

Definition 16.1 We consider a deformation functor from the category C of local
Artin algebras R with R/mR

∼= k, to the category of sets:

D : C → Sets,

R �→
{
Equivalence classes of
deformations of X over R

}
.

We define the tangent space to the deformation functor to be D(k[ε]/〈ε2〉).
The space D(k[ε]/〈ε2〉) is known to be a vector space [74] and by Chech theory

and affine triviality we can show [23, p. 89] that:

D(k[ε]/〈ε2〉) = H 1(X, TX ), (16.15)

where TX
∼= Ω∗

X is the tangent sheaf of the curve X .
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We now fix a pair (X,G) of curves together with a subgroup G of the automor-
phism group. A deformation of (X,G) over the local ring R is a deformation of the
curve X over R together with a group isomorphism G → AutR(X ), such that there
is a G-equivariant isomorphism φ from the fibre over the closed point of A to the
original curve X :

φ : X ⊗Spec(A) Spec(k) → X.

The notion of equivalence of (X,G) deformations is similar to the non equivariant
case, but we now assume that ψ is also G-equivariant. A deformation functor is then
defined:

D(X,G) : C → Sets,

R �→
⎧
⎨

⎩

Equivalence classes
of deformations of
couples (X,G) over R

⎫
⎬

⎭

J. Bertin andA.Mézard [4] proved that there is an equivariant analogon of Eq. (16.15)

T := D(X,G)(k[ε]/〈ε2〉) ∼= H 1(G, X, TX ),

where H 1(G, X, TX ) is Grothendiecks’s equivariant cohomology as defined in [21].
Cohomology theories appear as derived functors of appropriate left exact functors.
For example for group cohomology we apply the functor of invariant elements of G-
modules, and for Zarisky cohomology the functor of global sections. Grothendieck’s
equivariant cohomology [21] appears naturally when we consider the composition of
two left exact functors. In this setting we consider both the functor of global sections
and the functor of group invariants.

Geometrically the space H 1(X, TX ) can be interpreted as the tangent space to
the moduli space of curves of genus gX , computed at the point-curve X . It consists
of equivalence classes of infinitesimal deformations of the curve X . Similarly the
space H 1(G, X, TX ) can be interpreted as the subspace of H 1(X, TX ) consisted of
G-invariant elements, which give rise to infinitesimal deformations acted on by G
(Fig. 16.1).

16.5.3 Dimension of the Tangent Space to the Deformation
Functor

The study of the space D(X,G)(k[ε]) can be reduced to the short exact sequence [4]:

0 → H 1
(
X/G, πG

∗ (TX )
) → H 1(G, X, TX ) → H 0

(
X/G, R1πG

∗ (TX )
) → 0.



350 J.A. Antoniadis and A. Kontogeorgis

Fig. 16.1 Tangent space to
the deformation functor

Suppose that in the cover X → X/G there are r ramified points x1, . . . , xr and
set e(μ)

i = |Gxi ,μ|, for i = 1, . . . , r , μ ∈ N. The first factor can be computed using
Riemann–Roch theorem [4]

dim H 1(X/G, πG
∗ (TX )) = 3gX/G − 3 +

r∑

μ=1

⌈ nμ∑

i=0

e(μ)

i − 1

e(μ)
0

⌉
.

The second functor can be expressed in terms of group cohomology:

H 0 (X/G, R1πG
∗ (TX )

) ∼=
r⊕

i=1

H 1(G0,xi , T̂X,xi ), (16.16)

where the later sum runs over all wildly ramified points and by H 1(G0,xi , T̂X,xi ) we
mean the first cohomology groups, and T̂X,xi = k[[t]]d/dt is the local tangent space
at xi , while the action of G is the adjoint action:

(
f (t)

d

dt

)σ

= f (t)σ σ
d

dt
σ−1 = f (t)σ σ

(
dσ−1(t)

dt

)
d

dt
.

The computation of group cohomology in Eq. (16.16) is manageable only for
explicit covers, in particular for Artin–Schreier extensions [11]. One idea exploited
by the second author in [44] is to use that the decomposition groupGxi admits a ram-
ification filtration given in Eq. (16.2), where the successive quotients are elementary
abelian groups given by Artin–Schreier extensions.

Therefore one can use the Lyndon-Hochshild-Serre spectral sequence [30] which
connects the cohomology of the extensions of groups

1 → H → G → G/H → 1,
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giving rise to a 5-term exact sequence:

0 → H1(G/H, AH )
inf−→ H1(G, A)

res−→ H1(H, A)G/H tg−→ H2(G/H, AH )
inf−→ H2(G, A)

Unfortunately, the transgression map can be effectively computed only in special
cases like the next theorem [44], which limits the usage of this method.

Theorem 16.3 If G is an abelian group and G/H ∼= Z/p, G ∼= G/H × H then the
transgression map is zero.

16.5.4 Representation Theory and the Tangent Space

Serre duality allows us to compute

H 1(X, TX ) ∼= H 0(X,Ω⊗2)∗, (16.17)

and the dimension of the later space can be effectively computed using Riemann–
Roch theorem to be 3gX − 3. In [45] the second author proposes an equivariant form
of Eq. (16.17)

Dgl(k[ε]/〈ε2〉) = H 1(X, TX )G ∼= H 0(X,Ω⊗2
X )G .

Notice that the space of invariants becomes the space of the co-invariants on the dual
space,where for aG-module A, the spaces of invariants and coinvariants respectively,
are given by

AG := {a ∈ A : ag = a} AG := A/〈ga − a : a ∈ A, g ∈ G〉.

For G = Z/p we have AG ∼= AG , but if G is a more complicated group like G =
Z/p × · · · × Z/p we can have AG

� AG .
The idea of this construction is that the knowledge of k[G]-module structure can

lead to the computation of dim Dgl(k[ε]).
S. Karanikolopoulos [33] pursued this idea by studying elementary abelian exten-

sions given as Artin-Schreier extensions: F/K (x) with

y pn − y = g(x)

(x − a1)Φ(1) · · · (x − as)Φ(s)

using amodifiedBoseck construction in order to compute theGaloismodule structure
of global polydifferentials. It turns out that

H 0(X,Ω⊗m
X ) ∼=

pn⊕

j=1

W
dj

j ,
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where

Γk(m) =
s∑

i=1

⌊
m(pn − 1)(Φ(i) + 1) − kΦ(i)

pn

⌋
,

dpn = Γpn−1(m) − 2m + 1, d j = Γ j−1(m) − Γ j (m), j = 1, . . . , pn − 1,

Wj = 〈θ0, . . . , θ j−1〉K , σα(θi ) =
i∑

�=0

(
i

�

)
αi−�θ�.

Moreover if j has the p-adic expansion j = ∑n
i=1 ai p

i and χ be the map

χ : {0, . . . , p − 1} → {0, 1}

defined by:

χ(a) :=
{
1 if a �= 0,

0 if a = 0

then

dim((Wj )G) =
n∑

i=1

χ(ai ).

Finally

dim(H 1(X,G, TX )) =

⎧
⎪⎨

⎪⎩

s(n + 2) − 3 if p > 3

s(n + 1) − 3 if p = 3

sn − 3 if p = 2

16.5.5 Weakly Ramified Covers

For the case of weakly ramified covers B. Köck [40] proved that one can extend the
global section of holomorphic polydifferentials H 0(X,Ω⊗m

X (D)) by considering a
suitable G-invariant divisor D such that the Euler characteristic χ(G, X,ΩX (D))

lifts to a class in the Grothendieck group of projective k[G]-modules. This implies
that if H 1(X,ΩX (D)) = 0 vanishes then H 0(G,ΩX (D)) is projective.

B. Köck together with the second author in [42] used this idea in order to write
the short exact sequence

0 → H 0(X,Ω⊗2
X ) → H 0(X,Ω⊗2

X (D)) → H 0(X, �) → 0,

where D is selected so that the G-module H 0(X,Ω⊗2(D)) is projective, and �
is a skyscraper sheaf supported at ramified points. Then, the coinvariant functor is
applied and the following long exact homology sequence is obtained:
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0 → H1(G, H0(X, �)) → H0(X, Ω⊗2
X )G → H0(X,Ω⊗2

X )(D))G → H0(X, �)G → 0.

Using the above exact sequence, they arrived at the dimension formula, where gY is
the genus of the quotient curve Y = X/G:

dimH 0(X,Ω⊗2
X )G = 3gY − 2 +

r∑

j=1

logp |G(x j )| +
{
2r if p > 3

r if p = 2 or 3.

16.5.6 Galois Weierstrass Points and Harbater–Katz–Gabber
Covers

In 1986 Ian Morrison and Henry Pinkham [58], connected the k[G]-structure of the
space H 0(X,ΩX ) to the theory of Weierstrass semigroups of Galois Weierstrass
points for the case of Riemann surfaces. A point P on a compact Riemann sur-
face is called Galois Weierstrass, if for a meromorphic function f on X such that
( f )∞ = dP , where d is the least pole number in the Weierstrass semigroup at P
the induced cover f : X → P

1 is Galois. Morrison and Pinkham’s study was based
on the monodromy representation of the Galois group at a ramified point, on the
fact that the stabilizer of a point in characteristic zero is cyclic and on character
theory of cyclic groups. The character of the associated representation of the group
G := Gal( f ) is called a Hurwitz character ofG, and the authors were able to classify
all such characters.

As a wild replacement of the Galois Weierstrass points we can consider the
Harbater–Katz–Gabbercovers. A p-order Harbater-Katz-Gabber cover, which from
now on will be called HKG-cover, see [22], is a Galois cover X → P

1 with Galois
group a p-group G which has a unique totally ramified point.

Let G act on the complete local ring k[[t]]. The Harbater–Katz–Gabber compact-
ification theorem [22, 39], asserts that there is a HKG-cover XHKG → P

1 ramified
only at one point P of X with Galois group G = Gal(XHKG/P

1) = G0 such that
G0(P) = G0 and the action of G0 on the completed local ring ÔXHKG,P coincides
with the original action of G0 on O . There is a lot of recent interest on HKG-covers
see [6, 10].

By considering the Harbater–Katz–Gabber compactification to an action on the
local ring k[[t]], we have the advantage to attach global invariants, like genus, p-
rank, differentials etc., in the local case. Also finite subgroups of the automorphism
group Autk[[t]], which is a difficult object to understand (and is a crucial object
in understanding the deformation theory of curves with automorphisms, see [4])
become subgroups of GL(V ) for a finite dimensional vector space V .

More precisely, let P be a ramified point and letG(P) be the decomposition group
at P . There is a representation:

ρ : G(P) → Aut(k[[t]]),
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expressing the action of the decomposition group to the completed local ring at a
point. The local deformation functor is defined:

DP : C → Sets, R �→
⎧
⎨

⎩

liftsG(P) → Aut(R[[t]]) of ρ mod−
ulo conjugation with an element
of ker(AutR[[t]] → k[[t]])

⎫
⎬

⎭

The representation ρ maps G(P) inside the group of automorphisms of formal pow-
erseries, which is a group hard to understand. The following theorem introduced by
the second author in [46] gives us a linear representation instead.

Theorem 16.4 Let P be a fully ramified point of X → X/G1(P). Assume that
gX ≥ 2, p ≥ 2, 3. Consider the Weierstrass semigroup at P up to the first pole
number mr not divisible by p:

0 = m0 < · · · < mr−1 < mr ,

and select functions in k(X) f0, . . . , fr with ( fi )∞ = mi P. Then the natural repre-
sentation

ρ : G1(P) → GL(L(mr P))

is faithful.

This theorem allows us to write in explicit form the action on the formal powerseries
ring. Indeed, by Hensel’s lemma we can select the uniformizer t such that fr = t−m ,
m = mr . Then the action is given in closed form:

σ(t) = t

(
1 + tm

r∑

ν=1

aν,r fν

)−1/m

.

This allows us to work with a general linear group instead of Aut(k[[t]]) and define a
representation functor of linearGalois representations as used in the proof of Fermat’s
last theorem [56].

16.5.7 Representation Filtration

S. Karanikolopoulos and the second author in [34] defined a filtration similar to the
ramification filtration, the representation filtration. More precisely for each 0 ≤ i ≤
r , consider the representations:

ρi : G1(P) → GL(L(mi P)),

which give rise to the decreasing sequence of groups:
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G1(P) = ker ρ0 ⊇ ker ρ1 ⊇ ker ρ2 ⊇ · · · ⊇ ker ρr = {1},

corresponding to the tower of function fields:

FG1(P) = Fker ρ0 ⊆ Fker ρ1 ⊆ · · · ⊆ Fker ρr = F.

Theorem 16.5 If X → X/G is a HKG-cover, then the representation and the ram-
ification filtrations coincide.

Select a function fi0 ∈ k(X) such that k(X)G = k( fi0).

div(d f ⊗m
i0

) =
(

−2mph0 + m
n∑

i=1

(bi − bi−1)(p
h−1 − 1)

)
P,

where

b0 = −1, ph0 = |G1(P)|, phi = | ker ρci+1 | = |Gbi+1 |, for i ≥ 1.

The following theorems give some information for k[G]-module structure of
holomorphic polydifferentials for the case of HKG-covers.

Theorem 16.6 For every pole numberμ select a function fμ such that ( fμ)∞ = μP.
The set

{ fμd f ⊗m
i0

: deg( fi ) ≤ m(2gX − 2)}

forms a basis for the space of m-holomorphic (poly)differentials of X.

Theorem 16.7 The module H 0(X,Ω⊗m
X ) is a direct sum of N =

⌊
m(2g−2)

ph0

⌋
direct

indecomposable summands.

Corollary: If |G1(P)| ≥ m(2g − 2), then N = 1. In particular curves with big-
action (in the sense ofM.Matignon-M.Rocher) have one indecomposable summand.

16.6 Integral Representation Theory

Suppose that a relative curve X → SpecR with a fibrewise action of G is given.
When R is a principal ideal domain then one can show that the spaces Mn =
H 0(X ,Ω⊗n

X ) are free R-modules.
Problem: Describe the module structure of Mn within the theory of integral

representations. Notice that usually the term integral representation is reserved for
Z[G]-modules. Our situation is a little bit easier since we work over complete local
rings, and we also add the eigenvalues R = W (k)(ζn).

S. Karanikolopoulos and the second author in [36] used the model of Bertin-
Mézard [4] based on thework of Sekiguchi, Oort and Suwa theory [77, 78] in order to



356 J.A. Antoniadis and A. Kontogeorgis

study this problem for cyclic groups. More precisely, the generic fibre for the Bertin-
Mézard model is a Kummer extenrion defined over the Witt ring S := W (k)(ζp) of
k with a p-th root of unity ζp adjoined, given by:

(X + λ−1)p = x−m + λ−p,

where λ = ζp − 1 such that λ ≡ 0 mod mS . We set m = pq − l, 0 < l ≤ p − 1
and λX + 1 = y/xq . The model then becomes

y p = (λp + xm)xl = λpxl + xqp.

More generally xq can be replaced by a(x) = xq + x1xq−1 + · · · + xq , where xq = 0
if l �= 1, and consider the Kummer extension

(λξ + a(x))p = λpxl + a(x)p,

where ξ = Xa(x), y = λξ + a(x) = a(x)(λX + 1). This more general model is
given by

y p = λpxl + a(x)p = xl(λp + a(x)px−l).

Let R denote the Oort-Sekiguchi-Suwa factor of the versal deformation ring [4]:

R =
{
W (k)[ζp][x1, . . . , xq ] if l = 1

W (k)[ζp][x1, . . . , xq−1] if l > 1

The Bertin-Mézard model is a relative curve X → SpecR, where the horizontal
branch locus is given in Fig. 16.2.

Using the theory of Boseck for the generic fibre of R we see that the set of
differentials of the form

Fig. 16.2 Splitting the
branch locus
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xNa(x)a
(λX + 1)a

a(x)p−1(λX + 1)p−1
dx, (16.18)

where

0 ≤ a < p − 1 and l −
⌈

(1 + a)l

p

⌉
≤ N ≤ (p − 1 − a)q − 2, (16.19)

forms a basis of holomorphic differentials. This base is not suitable for taking the
reduction modulo the maximal ideal of the ring S = W (k)[ζ ] since in the reduction
λ = 0. The idea is to change the basis of the generic fibre so that no λ appears in the
numerator of the differentials. Then we use the special fibre Boseck basis to show
that the reductions are holomorphic, therefore the relative differentials are indeed
holomorphic over SpecR.

In this way, we arrive at:

Theorem 16.8 Let σ be an automorphism of X of order p �= 2 and conductor m
with m = pq − l, 1 ≤ q, 1 ≤ l ≤ p − 1. Consider the modules

Va0,a1 :=S 〈(λX + 1)a0Xi : 0 ≤ i < a1〉.

which are indecomposable S[G]-modules and define Va := V1−p,a.
The free R-module H 0(X ,ΩX ) has the following R[G] structure:

H 0(X ,ΩX ) =
p−2⊕

ν=0

V δν

ν ,

where

δν =
{
q +

⌈
(ν+1)l

p

⌉
−
⌈

(2+ν)l
p

⌉
if ν ≤ p − 3,

q − 1 if ν = p − 2.
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