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On the non-existence of exceptional automorphisms
on Shimura curves

Aristides Kontogeorgis and Victor Rotger

Abstract

We study the group of automorphisms of Shimura curves X0(D, N) attached to an Eichler order
of square-free level N in an indefinite rational quaternion algebra of discriminant D > 1. We
prove that, when the genus g of the curve is greater than or equal to 2, Aut(X0(D, N)) is a
2-elementary abelian group which contains the group of Atkin–Lehner involutions W0(D, N) as
a subgroup of index 1 or 2. It is conjectured that Aut(X0(D, N)) = W0(D, N) except for finitely
many values of (D, N) and we provide criteria that allow us to show that this is indeed often
the case. Our methods are based on the theory of complex multiplication of Shimura curves and
the Cerednik–Drinfeld theory on their rigid analytic uniformization at primes p | D.

1. The automorphism group of Shimura curves

1.1. Congruence subgroups of PSL2(R) and automorphisms

Let Γ be a congruence subgroup of PSL2(R). As explained in [16, § 4], we see that Γ is a
congruence subgroup of PSL2(R) if there exist

• a quaternion algebra B/F over a totally real number field F of degree d � 1;
• an embedding ϕ : B ↪→ M2(R) × D× (d−1)... ×D;
• an integral two-sided ideal I of a maximal order O of B;

such that Γ contains ϕ({α ∈ O1 : α ∈ 1 + I}).
Here, we let D denote Hamilton’s skew-field over R and n : B → F stand for the reduced

norm. We write O1 = {α ∈ O : n(α) = 1}. We refer the reader to [25] for generalities on
quaternion algebras. Examples of congruence subgroups of PSL2(R) with F = Q will be
described in detail below.

Let XΓ denote the compactification of the Riemann surface Γ\H. Let N = NormPSL2(R)(Γ)
denote the normalizer of Γ in PSL2(R). The group BΓ = N/Γ is a finite subgroup of Aut(XΓ).

When the genus of XΓ is 0 or 1, Aut(XΓ) is not a finite group and necessarily Aut(XΓ) � BΓ.
However, there exist finitely many congruence groups Γ for which g(XΓ) � 1. One actually
expects much more, as we claim in the following conjecture.

Conjecture 1.1. Aut(XΓ) = BΓ for all but finitely many congruence groups Γ ⊂
PSL2(R).

We call exceptional those congruence groups Γ for which the genus of XΓ satisfies g � 2 and
Aut(XΓ) � BΓ.

The conjecture as we have stated remains widely open, although it is based on several
positive partial results in its favour. The first general statement is the following classical result
of Riemann surfaces, of which we briefly recall a proof.
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Proposition 1.2. Let Γ be a congruence subgroup of PSL2(R) that contains no elliptic
or parabolic elements. Then Aut(XΓ) = BΓ.

Proof. Since Γ contains no parabolic elements, the quotient Γ\H is already compact. The
absence of elliptic elements implies that the natural projection H → XΓ = Γ\H is the universal
cover of the curve. Thus all automorphisms of XΓ lift to a Möbius transformation of H which,
by construction, normalizes Γ. The result follows.

Besides this, the question has been settled for certain families of modular curves, as we now
review.

Let D � 1 be the square-free product of an even number of prime numbers, and let N � 1,
(D,N) = 1, be an integer coprime to D.

Let B be a quaternion algebra over Q of reduced discriminant D such that there exists a
monomorphism B

ϕ−→ M2(R). Let O be a maximal order in B. Regard O1 as a subgroup of
SL2(R) by means of ϕ.

For any prime p | N fix isomorphisms O ⊗ Zp � M2(Zp). If pe || N is the exact power
of p which divides N , then let πp : O ⊗ Zp � M2(Zp) → M2(Z/peZ) denote the natural
reduction map.

Define the congruence groups Γ(D,N) ⊆ Γ1(D,N) ⊆ Γ0(D,N) as follows:
• Γ(D,N) = {γ ∈ O1 : πp(γ) = Id ∈ GL2(Z/peZ) for all p | N};
• Γ1(D,N) = {γ ∈ O1 : πp(γ) = ( 1 ∗

0 1 ) ∈ GL2(Z/peZ) for all p | N};
• Γ0(D,N) = {γ ∈ O1 : πp(γ) = ( ∗ ∗

0 ∗ ) ∈ GL2(Z/peZ) for all p | N}.
Let X(D,N), X1(D,N) and X0(D,N) denote the corresponding Shimura modular curves

of discriminant D and level N (cf. [2]).
When D = 1, these are just other names for the elliptic modular curves X(N), X1(N) and

X0(N) which classify elliptic curves with various level structures. When D > 1, these curves
still admit a moduli interpretation in terms of abelian surfaces with quaternionic multiplication
(cf. [2]).

Finally, note that when N = 1 we have X(D, 1) = X1(D, 1) = X0(D, 1), and we shall simply
denote this curve by XD.

As further examples of congruence subgroups of PSL2(R) are the normalizers BΓ for the
groups Γ above.

The group BΓ0(D,N) contains the subgroup W0(D,N) of Atkin–Lehner modular involutions
(cf. [18, 19]). It can be described as

W0(D,N) = {ωm : m � 1, m | D · N, (m,DN/m) = 1},

where ω2
m = w1 = Id and ωm · ωm′ = ωmm′/(m,m′)2 . Hence

W0(D,N) � (Z/2Z)| {p |D·N} |.

If N is square-free we actually have BΓ0(D,N) = W0(D,N).

Remark 1.3 [16, p. 1]. The above conjecture cannot be true for the wider family of
arithmetic subgroups of PSL2(R). As an example for which the conjecture fails, let X(2) be
the classical modular curve of full-level structure Γ(2). This is a rational curve with three cusps
and no elliptic points. If we choose a rational coordinate z for which the cusps are at 0, 1 and
∞, then z1/n is a rational coordinate for a subgroup of index n in X(2). This subgroup is not
congruent for n large enough, but it is arithmetic. The corresponding curve has genus 0 and
the automorphism group is not finite.
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Several results close to Conjecture 1.1 with regard to the above families of curves have been
obtained by different authors.

Theorem 1.4. For the curves below, if their genus is greater than or equal to 2, one has:

(i) Aut(X(N)) = BΓ(1,N) for all N (Serre [24], Kontogeorgis [12]).
(ii) Aut(X1(D,N)) = BΓ1(D,N) for all N � 4 (Momose (see remarks below), Buzzard [3]).
(iii) Aut(X0(N)) = BΓ0(1,N) for all N 	= 37, 63 (Ogg [18], Kenku–Momose [11], Elkies [7]).
(iv) Aut(X0(p)/〈ωp〉) is trivial for all primes p 	= 67, 73, 103, 107, 167, 191 (Baker–Hasegawa

[1]).
(v) Aut(XD) = W0(D, 1), where D = 2p or 3p for some prime p (Rotger [22]).

Part (i) was shown by Serre [24] for prime N and extended to composite N by Kontogeorgis
in [12].

Part (ii) above was proved by Momose unpublished work, communicated to the authors in
December 2005, for D = 1. For D > 1, Γ1(D,N) contains no parabolic (because B is division)
or elliptic elements by [3, Lemma 2.2]. Thus Proposition 1.2 applies.

The result analogous to (i) in positive characteristic for the Drinfeld modular curves X(N)
has been obtained in [4].

In (iv), for p = 67, 73, 103, 107, 167, 191 the genus of X0(p)/〈ωp〉 is 2 and the hyperelliptic
involution is the only (exceptional) automorphism of the curve.

1.2. Main results

Let D > 1 be the square-free product of an even number of primes, and let N � 1 be a square-
free integer coprime to D. Let r = |{p | DN}|.

The aim of this section is to make progress towards Conjecture 1.1 for the family of Shimura
curves X0(D,N). Due to their moduli interpretation, these curves admit a canonical model over
Q, which we shall still denote by X0(D,N)/Q. There exists a flat proper model M0(D,N)/Z of
X0(D,N) which extends the moduli interpretation to arbitrary schemes over Z and is smooth
over Z[1/DN ].

For primes p � D, the construction of this model over Zp is very similar to that of the elliptic
modular curve X0(N) as in [6]; see [3] for more details. For primes p | D the description of
M0(D,N) ⊗ Zp is due to Cerednik and Drinfeld. For any prime p we let M0(D,N)p denote the
closed fibre of M0(D,N) at p.

Proposition 1.5. Let U ⊆ W0(D,N) be a subgroup, and let X0(D,N)/U denote the
quotient curve. If the genus of X0(D,N)/U is at least 2, then all automorphisms of X0(D,N)/U
are defined over Q and

Aut(X0(D,N)/U) � (Z/2Z)s

for some s � r − rankF2(U).

Proof. Write X = X0(D,N). Let JU and J denote the Jacobian varieties of X/U and
X, respectively. A result essentially due to Ribet claims that J is isogenous over Q to
J0(D · N)D-new, the D-new part of the Jacobian J0(D,N) of X0(DN); see, for example, [9,
Theorem 5.4] or [21] for more details. Since DN is square-free, it is well known that J0(DN)
has semi-stable reduction over Q (cf. [6]) and EndQ(J0(DN)) ⊗ Q is a product of totally real
fields (cf. [20]). The same thus holds for J and JU . The proposition now follows as a direct
application of [1, Proposition 2.4].
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Let us fix some notation. Throughout, let s � r be the integer such that
|Aut(X0(D,N))| = 2s. We have s � r, and Conjecture 1.1 in this setting predicts that s = r.

The letters p, q will stand for non-necessarily different prime numbers and ( ·
p ) will denote

the Kronecker quadratic character mod p. For an imaginary quadratic field K, let δK denote
its discriminant and h(K) its class number. If δR = disc(R) is the discriminant of some order
R in K, then let h(δR) denote its class number.

If m > 1 is a square-free integer, then let δm = −4 if m = 2, and δm = δQ(
√−m) otherwise.

For any prime p | DN , set

εp =

{
1 if p | D,

−1 if p | N,

and for any m | DN ,

hD,N (m) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if m = 2,

h(−4m) if m 	= 2,m 	≡ 3 mod 4,

h(−m) if m ≡ 3 mod 4 and h(−4m) > h(−m) or 2 | DN,

2h(−m) if m ≡ 3 mod 4, h(−4m) = h(−m), 2 � DN.

If in addition (δm/p) 	= εp for all p | DN if m 	= 2, and (−4/p) 	= εp for all p | DN or (−2/p) 	=
εp for all p | DN if m = 2, then set

σD,N (m) =

{
|{p | DN, (δm/p) = −εp}| if m 	= 2,

min(|{p | DN, (−4/p) = −εp}|, |{p | DN, (−2/p) = −εp}|) if m = 2.

Otherwise, set σD,N (m) = ∞.

Theorem 1.6. Assume that g(X0(D,N)) � 2.
(i) If there exist p, q | DN such that (−4/p) = εp and (−3/q) = εq, then s = r.
(ii) Let m | DN such that σD,N (m) < ∞. Then

s � ord2 (hD,N (m)) + σD,N (m) + 1.

(iii) s � ord2(g − 1) + 2.

For any two coprime square-free integers δ, ν � 1, let h(δ, ν) denote the class number of any
Eichler order of level ν in a quaternion algebra of reduced discriminant δ over Q, which counts
the number of one-sided ideals of the order up to principal ideals. An explicit formula for h(δ, ν)
is given in [25, p. 152].

Theorem 1.7. Assume that g(X0(D,N)) � 2.
(i) Let m = 2 or m = 3. Assume that (δm/p) 	= εp for all p | DN except for at most one

prime divisor of D. If m | DN then s = r; otherwise s � r + 1.
(ii) For any odd p | D, s � ord2 h(D/p,N) + 3.
(iii) For any � � 2DN , s � ord2 | M0(D,N)�(F�) | +1.

An explicit formula for the number of rational points of M0(D,N)� over F�n , n � 1, may be
found in [23, § 2]. As a direct consequence of Theorem 1.6(i) and Theorem 1.7(i) we derive the
following result.

Corollary 1.8. If g(X0(D,N)) � 2 then s = r or s = r + 1.
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We prove Theorem 1.6 in Section 2, while the proof of Theorem 1.7 is offered in Section 3.
Theorems 1.6 and 1.7 may be applied to show that there exist no automorphisms on many

Shimura curves beyond the Atkin–Lehner involutions. Indeed, Theorem 1.6(ii) covers the case
e2 = e3 = 0 while Theorem 1.7(ii) solves the cases e2 	= 0, 2 | DN and e3 	= 0, 3 | DN . As a
consequence, we have the following corollary.

Corollary 1.9. If 6 | DN then s = r; that is, Aut(X0(D,N)) = W0(D,N).

All together, Theorems 1.6 and 1.7 can be applied to many other Shimura curves. It follows,
for instance, from Theorem 1.6(iii) that Aut(X0(2p,N)) = W0(2p,N) for all primes p and N
are primes, N ≡ 3 mod 8. This follows because h(2, N) is always odd (cf. [25, p. 152]). We
refer the reader to Proposition 3.5 for more numerical computations.

1.3. Overview of the article

We devote the remainder of this note to introducing the necessary tools that we shall need
eventually to prove Theorems 1.6 and 1.7.

The next section reviews the theory of complex multiplication on Shimura curves and its
behaviour with respect to the Atkin–Lehner group. Following ideas borrowed from [22], we use
this to prove Theorem 1.6.

Section 3 recalls the theory of Cerednik–Drinfeld, which provides an explicit description of
the reduction mod p of Shimura curves X0(D,N) at primes p | D. The main result of Cerednik
and Drinfeld describes X0(D,N) × Qp as a quadratic twist of a Mumford curve over Qp which
is rigid and analytically uniformized by a certain discrete finitely generated subgroup Γ+ of
PGL2(Qp). The group Γ+ is constructed by means of an interchange of invariants of the
quaternion algebra of reduced discriminant D over Q.

In turn, this allows us to interpret the dual graph of the special fibre of a suitable model
of X0(D,N) over Zp as the quotient of the Bruhat–Tits tree at p by Γ+. We use this to give
a combinatorial description of the stable model and minimal regular model of X0(D,N) at
primes p | D; see Proposition 3.2.

In Subsection 3.1 we make use of this material to complete the proof of Theorem 1.7. Finally,
in Subsection 3.2 we offer a numerical result that shows how the methods of this note apply to
prove the non-existence of exceptional automorphisms on most Shimura curves X0(D,N) for
D � 1500 and N = 1.

2. Automorphisms and points of complex multiplication

Let (D,N) be a pair as in the previous section. For an order R in an imaginary quadratic
field K, let cR be its conductor in K, and let CM(δR) denote the set of complex multiplication
(CM) points on X0(D,N) by the order R. A fundamental result of Shimura states that the
coordinates of a CM-point P ∈ CM(δR) on X0(D,N) generate the ring class field HR over K
(cf., for example, [9, § 5]). That is,

K · Q(P ) = HR. (2.1)

The cardinality of CM(δR) is given in [19, § 1]:

|CM(δR) | =

{
0 if (δK/p) = εp for some p | DN or (cR,DN) 	= 1,

h(R) · 2|{p |DN,(δK/p)=−εp}| otherwise.
(2.2)
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CM-points arise in a natural way as fixed points of Atkin–Lehner involutions on X0(D,N).
Indeed, for any m | DN , the set Fm of fixed points of ωm on X0(D,N) is

Fm =

⎧⎪⎨
⎪⎩

CM(−4) ∪ CM(−8) if m = 2,

CM(−m) ∪ CM(−4m) if m ≡ 3 mod 4,

CM(−4m) otherwise.
(2.3)

Under our assumptions on D and N , the groups Γ0(D,N) contain no parabolic elements
and the only elliptic points on these curves are of order 2 or 3. In fact, the set of elliptic points
of order i = 2, 3 is CM(δi). Thus, its cardinality ei is

ei =

⎧⎪⎨
⎪⎩

0 if there exists a p | DN, (δi/p) = εp,

2r−1 if i | DN and (δi/p) 	= εp for any p | DN,

2r otherwise.
(2.4)

By [19, pp. 280, 301] the genus of X0(D,N) is

g = g(X0(D,N)) = 1 +
DN

12
·
∏
p |D

(
1 − 1

p

)
·

∏
p |N

(
1 +

1
p

)
− e3

3
− e2

4
.

The next lemma is a particular case of [18, § 1, Hilfsatz 1].

Lemma 2.1. Let X be an irreducible curve over a field k with char(k) 	= 2. If Aut(X) �
(Z/2Z)s for some s � 1 and P ∈ C(k) is a regular point, then

Stab(P ) = {ω ∈ Aut(X) : ω(P ) = P}
has order 1 or 2.

2.1. Proof of Theorem 1.6

Let X = X0(D,N) and A = Aut(X0(D,N)).
(i) By (2.4) the group Γ0(D,N) ⊂ PSL2(R) has neither elliptic nor parabolic elements.

According to Proposition 1.2, A = BΓ0(D,N) = W0(D,N).
(ii) As is clear from (2.2) and (2.3), the assumptions of part (ii) imply that the set Fm of fixed

points of ωm is non-empty. Since all automorphisms of X commute with ωm by Proposition
1.5, we deduce that A acts on Fm.
Assume that either m = 2 or m ≡ 3 mod 4 and h(−4m) > h(−m) or 2 | DN . Set S1 = CM(−4),
S2 = CM(−8) if m = 2; S1 = CM(−m), S2 = CM(−4m) otherwise. By (2.3), Fm = S1 ∪ S2.
Moreover, (2.2) guarantees that at least one of S1 and S2 is non-empty. In fact, when m ≡ 3
mod 4, we have S1 	= ∅. When m = 2, S1 ⊆ X(Q(

√
−1)) and S2 ⊆ X(Q(

√
−2)) by (2.1). As all

automorphisms of X are defined over Q by Proposition 1.5, A leaves both S1 and S2 invariant.
When m ≡ 3 mod 4, by (2.1) any point in S1 generates the Hilbert class field of K = Q(

√
−m),

which is an abelian extension of K of degree h(−m). Similarly, S2 = ∅ if 2 | DN by (2.2);
otherwise, any point in S2 generates an extension of K of degree h(−4m). Since h(−4m) >
h(−m), we conclude as above that A fixes the sets S1 and S2.
Hence, in any case, A acts on a non-empty set S (= S1, S2 or Fm) with |S| = hD,N (m) ·
2σD,N (m). By Lemma 2.1 the stabilizer of any of the elements of S in A is exactly 〈ωm〉. Thus
A/〈ωm〉 acts freely on S, and (ii) follows.

(iii) Let Y = X/A and let π : X →Y be the natural projection map. By Proposition 1.5, π
is a finite morphism of degree 2s which ramifies precisely at the set F of all fixed points of
automorphisms of X. Riemann–Hurwitz’s formula applied to π says that

g(X) − 1 = 2s(g(Y ) − 1) + 1
2 · |F|.
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Hence, it suffices to show that ord2(|F|) � s − 1. However, this fact readily follows from an
induction argument, since for any u ∈ A one has

|F| = 2 · |F ′|, where F ′ = {[x] ∈ X/〈u〉 : ω([x]) = [x] for some ω ∈ A/〈u〉}.

3. Cerednik–Drinfeld theory

Fix a prime p | D. Let kp denote the quadratic unramified extension of Qp, Qunr
p the maximal

unramified extension of Qp and Zunr
p its ring of integers.

Let O(p) be an Eichler order of level N in a definite quaternion algebra of discriminant D/p
and fix an immersion O(p) ↪→ M2(Qp). Let

Γ+ = {γ ∈ (O(p) ⊗ Z[1/p])∗ : ordp(det(γ)) ∈ 2Z}/Z[1/p]∗ ↪→ PGL2(Qp),

which is a finitely generated discontinuous subgroup of PGL2(Qp).
We warn the reader that Γ+ may not be torsion-free: for m = 2, 3, any embedding

Z[
√

δm]
ϕ
↪→ O(p)

produces an element γ = ϕ(
√

δm) in Γ+ of order m. However, by [8, p. 19] there exists a torsion-
free normal subgroup Γ0

+ of finite index in Γ+. The group Γ0
+ is thus a Schottky group; let

XΓ0
+

= Γ0
+\(P1

Qp
− LΓ0

+
) denote the Mumford curve over Qp attached to Γ0

+ as in [8]. If its
genus g is at least 2, XΓ0

+
has stable totally split reduction over Qp.

Since A = Γ0
+\Γ+ is a finite group that lies naturally in Aut(XΓ0

+
), there exists an algebraic

curve XΓ+ over Qp which is the quotient of XΓ0
+

by A.

Theorem 3.1 (Cerednik–Drinfeld). Let χ : Gal(kp/Qp) → Aut(XΓ+ ⊗ kp), let Fr �→ ωp

and let Xχ
Γ+

be the quadratic twist of XΓ+ by χ. Then

X0(D,N) × Qp � Xχ
Γ+

.

We refer the reader to [2] for a proof. See also [10].
Let T denote the Bruhat–Tits tree attached to Qp. Following [14, § 4, 5] and [10, § 3],

the special fibre of M0(D,N) ⊗ Zp is described up to a quadratic twist by the finite graph
G = Γ+\T , regarded as a graph with lengths.

Each vertex v and edge e of G is decorated with the order �(v) or �(e) of the stabilizer of v
or e, respectively, in Γ+, which we call its length. Geometrically, a vertex v corresponds to an
irreducible rational component Cv of M0(D,N)p. An edge e of length � joining v and v′ corre-
sponds to an intersection point Pe of Cv ∩ Cv′ locally at which the scheme M0(D,N) × Zunr

p

is isomorphic to Spec(Zunr
p [X,Y ]/(XY − p�)). In particular, any automorphism of X0(D,N)

induces an automorphism of G that leaves the set of edges of given length invariant.
Let h = h(D/p,N). The number of vertices of G is 2h and that of the edges is h(D/p,Np).

(According to [14, formula (4.1)] and its notation, the number of vertices of Γ0\Δ is h(D/p, 1).
Since the index of Γ+ in Γ0 is 2, the number of vertices of Γ+\Δ is 2h(D/p, 1). These formulas
extend to the case of non-trivial level N without difficulty.) The set Ver(G) of vertices of G
may be written as

Ver(G) = V ∪ V ′, V = {v1, . . . , vh}, V ′ = {v′
1, . . . , v

′
h}, (3.1)

in such a way that the Atkin–Lehner involution ωp ∈ Aut(X0(D,N)) acts on G as ωp(vi) = v′
i.

There are no edges in G joining two vertices from the same set V or V ′, and hence there are
no loops in G. We have �(vi) = �(v′

i) and the number of edges of given length joining a vertex
vi with v′

j coincides with that of v′
i with vj .
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For a vertex v, it holds that �(e) | �(v) for all edges e in its star and∑
e∈Star(v)

�(v)
�(e)

= p + 1. (3.2)

When (D/p,N) equal to (2, 1) or (3, 1), G consists of two vertices v, v′ of length 12 and 6,
respectively, joined by g + 1 edges. Assume otherwise that (D/p,N) equal to (2, 1), (3, 1). Then
all lengths of vertices and edges are 1, 2 or 3. By [14, (4.2)], for � = 2, 3, the cardinality h� of
vertices in V of length � is

h� =
1
2

∏
q | DN

p

(
1 − εq ·

(
δ�

q

))
. (3.3)

If v is a vertex of length � = 2, 3, by [14, Proposition 4.2] the number of edges of length � in
its star is as follows.

|Star�(v)| = 1 +
(

δ�

p

)
∈ {0, 1, 2}. (3.4)

The scheme M0(D,N) is regular if and only if �(e) = 1 for all edges of G. In general, a
desingularization M̃0(D,N) of M0(D,N) is obtained by blowing -up, �(e) − 1 times, each
singular point Pe. The resulting dual graph G̃ is constructed from G by replacing each edge e
of length �(e) � 2, by a chain of �(e) edges of length 1 each (cf. [10, Proposition 3.6]).

In general, M0(D,N) is neither a minimal regular model nor a stable model of X0(D,N).
The next proposition, which may be of independent interest, shows how to construct these two
models.

Proposition 3.2. Assume that g = g(X0(D,N)) � 1.
(i) Let M0(D,N)min denote the minimal regular model of X0(D,N).

• If p > 2 or h3 = 0, then M0(D,N)min = M̃0(D,N).
• If p = 2 and h3 � 1, then M0(D,N)min is the blow-down of all components Cv of

M̃0(D,N) with �(v) = 3.
Its dual graph Gmin is obtained from G̃ by erasing v and Star(v) for all vertices of length 3.

(ii) Assume that g � 2, and let M0(D,N)st denote the stable model of X0(D,N).
• If p 	= 2, 3 or h2 = h3 = 0, then M0(D,N)st = M0(D,N).
• If p = 2, then M0(D,N)st is the blow-down of all components Cv of M0(D,N) with

�(v) = 2, 3.
• If p = 3, then M0(D,N)st is the blow-down of all components Cv of M0(D,N) with

�(v) = 2, 3.
Its dual graph Gst is obtained from G by

- if p = 2, erasing v and Star(v) for all v with �(v) = 3;
- if p = 2 or 3, replacing each chain

v
e
− v′ e′

− v′′

such that �(v′) = 2 or 3, by v
(e′′)
− v′′ with �(e′′) = �(e) + �(e′).

Proof. (i) By construction, M̃0(D,N) is regular. By Castelnuovo’s criterion (cf. [15,
pp. 416–417]), M̃0(D,N) is minimal over Zp if and only if there exist no irreducible rational
components E in M̃0(D,N)p which intersect the remaining components at a single point. This
is equivalent to saying that there exists no vertex v in G̃ with |Star(v)| = 1. Since |Star(v)| = 2
for those vertices that were newly created when constructing G̃ from G, we can work directly
with G.



AUTOMORPHISMS ON SHIMURA CURVES 371

If (D/p,N) = (2, 1) or (D/p,N) = (3, 1), then the vertices v and v′ are joined by g + 1 � 2
edges. Thus M̃0(D,N) is minimal.

Assume that (D/p,N) 	= (2, 1), (3, 1). By (3.2) and (3.4), |Star(v)| = 1 for a vertex in G
exactly when p = 2 and �(v) = 3. The minimal regular model is then obtained by blowing
down the corresponding components Cv.

(ii) By definition, M0(D,N) is stable if |Star(v)| � 3 for all vertices v of G. By (3.2) and
(3.4), |Star(v)| < 3 exactly when p = 2, 3 and �(v) = 2, 3. When this holds, the stable model is
achieved by blowing down all these irreducible components.

The incidence matrix of G can be recovered (and explicitly computed) from the theory of
Brandt modules and matrices. That is, let M := MO(p);p ∈ Mh(Z) denote the Brandt matrix
attached to O(p) and the prime number p. Let Ii, i = 1, . . . , h, be a set of representatives of
left ideals of O(p) up to principal ideals. By definition, M(i, j) is the number of integral ideals
of reduced norm p, which are equivalent on the right to I−1

i · Ij .
Recall that there exist no edges joining vertices vi, vj (and the same holds for v′

i, v′
j). The

number of edges e joining two given vertices vi and v′
j (which equals that of edges joining vj

and v′
i) can be computed by means of (3.4) and the formula

M(i, j) =
∑

vi
e→v′

j

�(vi)
�(e)

. (3.5)

In particular it always holds that M(i, j)/�(vi) = M(j, i)/�(vj). This completely determines
G. Note that (3.2) implies that

∑h
j=1 M(i, j) = p + 1 for each row i = 1, . . . , h.

3.1. Proof of Theorem 1.7

Definition 3.3. An automorphism ω ∈ Aut(G) is admissible if there exists no vertex
v in G fixed by ω such that Star(v) contains three different edges e1, e2, e3 also fixed by ω.
A subgroup A ⊆ Aut(G) is admissible if any ω ∈ A, ω 	= Id, is admissible.

Proposition 3.4. Assume that g(X0(D,N) ) � 2. Then there exists a monomorphism � :
Aut(X0(D,N)) ↪→ Aut(G) that embeds Aut(X0(D,N)) into an admissible subgroup of Aut(G).

Proof. By [5, I.12; 15 chapter IX], there exists a natural monomorphism

Aut(X0(D,N)) ↪→ Aut(M0(D,N)st × Fp).

Since M0(D,N) is the blow-up of M0(D,N)st over Zp at finitely many points, there is a
birational morphism M0(D,N)→M0(D,N)st that induces an embedding

Aut(M0(D,N)st × Fp) ↪→ Aut(M0(D,N) × Fp).

By considering the action on the irreducible components and singular points of the special
fibre at p, any ω ∈ Aut(X0(D,N)) induces through the above embeddings an automorphism
�(ω) of G as a graph with lengths. Let � : Aut(X0(D,N)) ↪→ Aut(G) be the resulting map. By
construction, it is clearly a group homomorphism.

Assume that �(ω) = Id. Then, the action of ω on M0(D,N)st × Fp would fix all its irreducible
components and intersection points. Since a non-trivial automorphism of the projective line
has at most two fixed points, we conclude that ω = Id. Hence � is a monomorphism and �(ω)
is admissible for any ω 	= Id.

As we mentioned above, the Atkin–Lehner involution ωp acts on G, as ωp(vi) = v′
i.
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Proposition 3.4 provides an explicit method for proving in many instances that s = r.
Indeed, the graph G can be computed by means of David Kohel’s Brandt modules package
implemented in MAGMA. Namely, for a given p | D, Brandt’s matrix M := MO(p);p can be
computed by MAGMA V:=BrandtModule(D/p,N); M:=HeckeOperator(V,p);. For a prime
q | D/p, the action of the Atkin-Lehner involution ωq on V is obtained by MAGMA
Wq:=HeckeOperator(V,q);. The action of ωq on the set E of edges of G is obtained by MAGMA
E:=BrandtModule(D/p,Mp); W ′

q:=HeckeOperator(E,q);.

Proof of Theorem 1.7. Throughout we may assume that (D,N) 	= (2p, 1), (3p, 1), where p
denotes a prime number, as these cases are covered by Theorem 1.4(v).

(i) Let m = 2. Fix a prime q | D. Choose q to be the (single) prime such that (−4/q) = 1
in case it exists. Let G be the dual graph of M0(D,N)q. In Ver(G) there exist 2 · h2 = 2r−1

vertices of length 2 if 2 � DN (and 2r−2 if 2 | DN). Since q 	= 2 and the maximal 2-elementary
subgroup of

Aut(P1
Fq2

) = PGL2(Fq2)

is isomorphic to (Z/2Z)2 (cf., for example, [13, Lemma 1.3]), it follows that the stabilizer of
any vertex has order at most 4. Hence s � r + 1 if 2 � DN ; s = r if 2 | DN .
The proof for m = 3 follows along the same lines and one again obtains that if (−3/p) 	= εp for
all p | DN except at most for one prime divisor of D then s � r + 1 if 3 � DN ; s = r if 3 | DN .

(ii) Let h = h(D/p,N). There is a well-defined action of Aut(X0(D,N))/〈ωp〉 on the subset
V = {v1, . . . , vh} of vertices of the dual graph G of M0(D,N)p. As above, the stabilizer of each
of these vertices has order at most 4 and the statement follows.

(iii) As we mentioned, there is a canonical embedding of Aut(X0(D,N)) into
Aut(M0(D,N)�). Since ord2(0) = ∞, we can assume that M0(D,N)�(F�) 	= ∅. Our claim now
follows immediately from Lemma 2.1 applied to any point P ∈ M0(D,N)p(F�).

3.2. A numerical result

Let us illustrate how our results above serve to prove that there exist no exceptional
automorphisms in many Shimura curves.

Example. Let D = 5 · 41. We have g(XD) = 13. None of the items of Theorems 1.6 or 1.7
applies to show that all automorphisms of XD are modular. Since h(41, 1) = 4, the dual graph
G of the special fibre of XD at p = 5 consists of eight vertices {v1, . . . , v4, v

′
1, . . . , v

′
4}, of which

v1 and v′
1 have length 3 while the remainder have length 1. Moreover, all edges have length 1.

One computes that

M =

⎛
⎜⎜⎝

0 3 0 3
1 0 3 2
0 3 2 1
1 2 1 2

⎞
⎟⎟⎠ and W41 = IdV .

In fact, the action of any involution ω ∈ Aut(G)/〈ω5〉 fixes each vertex v ∈ V , because
Star (vi) are pairwise different for i = 1, . . . , 4. Looking at the action of ω on the rational
component Cv1 , the two points P, P ′ corresponding to the edges joining v1 with v′

2 and v′
4

are necessarily fixed points of w̃. Since Aut(C̃v1 , P, P ′) � Z/2Z, it follows that Aut(XD) =
Aut(G) = 〈ω5, ω41〉.

Proposition 3.5. For D � 1500, the only automorphisms of XD are the Atkin–Lehner
involutions, provided that g(XD) � 2 and D 	= 493, 583, 667, 697, 943.
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Proof. If the number of prime factors of D is r � 4, then Theorem 1.6(i) and Corollary 1.9
show that s = r.

Assume now that D = p · q is the product of two primes. By applying Theorems 1.4(v), 1.6(i)
and 1.7(iii) for the 300 first primes � 	= p, q, we prove the statement for all such D except for
a list L of 44 values of D; we do not reproduce the list here for the sake of brevity.

For the values of D in L, we apply Proposition 3.4 as in the above example. This way we
are able to prove that s = 2 for all D except for D = 85, 145, 493, 583, 667, 697, 943. Let us
illustrate what is going on with some examples.

When D = 697, let G denote the dual graph of the reduction mod p = 17. With the notation
above, it turns out that V = {v1, v2, v3, v4}, with �(v1) = 3, �(vi) = 1 for i = 2, 3, 4 and one
computes that the permutation ω of the vertices v2 and v3 is an admissible involution which
commutes with the Atkin–Lehner involutions. Hence there exists an admissible subgroup of
Aut(G) which is isomorphic to (Z/2Z)3 and we cannot prove that s = 2.

When D = 1057, let G denote the dual graph of the reduction mod p = 7. One computes
that |V | = 13. Note that any automorphism of X1057 must induce a permutation ω ∈ S13 of
the vertices in V which commutes with the matrices M and W151. When computing M and
W151, one shows that there exist exactly sixteen such permutations ωk, k = 1, . . . , 16. However,
for each of them, it turns out that either ωk or ωk · W151 is not admissible. Thus s = 2.

It remains to prove our proposition for D = 85, 145. For D = 145, it has already been shown
in the proof of [22, Theorem 7] that Aut(X145) � 〈ω5, ω29〉. One shows the same similarly for
D = 85: as obtained from William Stein’s data basis, there exist isogenies

Jac(X85) ∼ Jac(X0(85))new ∼ E × S1 × S2,

defined over Q, where E is a (modular) elliptic curve and S1, S2 are modular abelian surfaces
over Q.

The modularity implies that End(Si) are orders in a real quadratic field. Hence, the only
automorphisms of finite order of E, S1 or S2 are ±Id. Composing with this isogeny, we obtain
a monomorphism

Aut(X85) ↪→ A := {±IdE} × {±IdS1} × {±IdS2}.

By [19], X85 is not hyperelliptic, and this is saying that (−IdE ,−IdS1 ,−IdS2) does not lie
in Aut(X85). Thus its index in A is at least 2 and we conclude that s = 2.

These ideas appear to be insufficient to prove the same result for D = 493, 583, 667, 697 or
943. For these D, we can just claim that s � 3, by Corollary 1.8.
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Vilanova i la Geltrú
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