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1. Introduction

Let X be a projective nonsingular curve, defined over an algebraically closed field K of positive
characteristic p. The study of the curve X is equivalent to the study of the corresponding function
field F .

An open question in positive characteristic is the determination of the Galois module structure
of the space of holomorphic differentials of X . This problem is still open and only some special
cases are known [17,18,9,13,2] where restrictions are made either on the ramification type or on the
group structure of G . R. Valentini and M. Madan [20] computed the Galois module structure of the
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space of holomorphic differentials for the case of a cyclic group action G , where G was a cyclic p-
group of order either prime to p or a power of p. One of the aims of this paper is to extend the
result of Valentini Madan to the more general case of a cyclic group that has order p�n, (n, p) = 1.
We will characterize the indecomposable summands V (λ,k) (see Section 2 for a precise definition in
terms of the Jordan indecomposable blocks of the generator) and we will decompose the space V of
holomorphic differentials as:

V :=
n−1⊕
λ=0

p�⊕
k=1

V (λ,k)d(λ,k). (1)

The numbers d(λ,k) will be described in terms of the ramification of the extension F/F G in Theo-
rem 7.

The G-module structure is expressed in terms of the Boseck invariants. These are invariants intro-
duced by Boseck [3] coming from the construction of bases of holomorphic differentials. The Boseck
invariants have rich connections with other subjects in the literature: computation of Weierstrass
points, [3–5]; the computation of the rank of the Hasse–Witt matrix, [10]; the classification of curves
with certain rank of the Hasse–Witt matrix [12]; the study of the Artin–Schreier (sub)extensions of
rational functions fields, [19], etc. Here we choose to focus only on the G module structure as well as
on the structure of the Weierstrass semigroup that is attached to a ramified point.

The complicated notation needed in order to state the main results prevents us from presenting
our main theorem here.

The paper is organized as follows: In Section 2 we introduce a notation for the places that are ram-
ified in the extensions F/F P /F G and give a filtration of the module of holomorphic differentials used
in the computations. Next section is devoted to dimension computations with the aid of Riemann–
Roch formula. In the final section we see the relation to the Weierstrass semigroup. We tried to relate
our results to known results in the literature. This way we discovered an inaccuracy in the work of
Boseck [3] in the case of a Z/pZ-extension of the rational function field ramified above one point.
Finally we extend results from characteristic zero relating the Galois module structure of the space
of holomorphic differentials and the Weierstrass semigroup attached to a ramified point in positive
characteristic.

2. Notation

Let G = 〈g〉 be a cyclic subgroup of automorphisms acting on the space of holomorphic differen-
tials V := H0(X,ΩX ). The group G can be written as a direct product of a group T = 〈g p�〉 of order n
and a cyclic p-group P = 〈gn〉. We consider the tower of function fields F/F P /F G . Let np� = |G|,
(n, p) = 1 and consider a primitive n-th root of unity ζn ∈ K . By Jordan decomposition theory we
see that we can decompose V as a direct sum of K [G]-modules V (λ,k). The modules V (λ,k) are
k-dimensional K -vector spaces with basis {v1, . . . , vk} and action given by

gvi = ζ λ
n vi + vi+1 for all 1 � i � k − 1 (2)

and

gvk = ζ λ
n vk.

The action of the generator g on V (λ,k) is given in terms of the matrix:
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A :=

⎛
⎜⎜⎜⎜⎜⎜⎝

ζ λ
n 1 0 · · · 0

0 ζ λ
n 1

. . .
...

...
. . .

. . .
. . . 0

0 · · · 0 ζ λ
n 1

0 · · · 0 0 ζ λ
n

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Observe that for a cyclic group G of order np� generated by g the module K [G] can be decomposed
as K [G] =⊕n−1

λ=0 V (λ, p�). Indeed, the characteristic polynomial of g acting on K [G] is up to ±1 equal

to xnp� − 1 = (xn − 1)p�
, and every root of unity in K appears as a character in K [G].

Remark 1. The indecomposable K [P ]-modules of a cyclic p-group of order p� and with generator σ
are given by the quotients K [P ]/(σ − 1)k , where k = 1, . . . , p� [20]. In our notation these are the
modules V (0,k) i.e. the indecomposable Jordan forms of dimension k.

Proposition 2. The indecomposable K [G]-module V (λ,k) seen as a K [T ]-module is a direct sum of k char-
acters of the form ζ �→ ζ p�λ , where ζ = ζn denotes a primitive n-th root of unity. The module V (λ,k) seen as
K [P ]-module is indecomposable and isomorphic to the module K [P ]/(σ − 1)k.

Proof. We will use the following idea: The action of G on the indecomposable summand V (λ,k) is
described by the action of the generator g of G . We would like to view the module V (λ,k) as a
P and T module respectively. A generator for the T group is given by g p�

. Write the matrix A as
A = diag(ζ λ) + N where N is a nilpotent k × k matrix with k � p� . Therefore, the generator g p�

of
the T group is given by the matrix A p� = diag(ζ λp�

). This means that V (λ,k) seen as a T module is
decomposed as a direct sum of k characters of the form ζ �→ ζ λp�

. Since (p�,n) = 1 raising an n-th
root of unity to the p�-power is an automorphism of the group of n-th roots of one.

On the other hand, the action of the generator gn on the module V (λ,k) is given by the n-th
power of A. We observe first that all eigenvalues of An are 1. We will prove that An is similar to the
matrix Id + N , i.e. a Jordan indecomposable block. Since all eigenvalues of An are 1 the characteristic
polynomial of An is (x − 1)k . The minimal polynomial of An is (x − 1)d for some integer 1 � d � k.
Since A is an indecomposable Jordan block the minimal polynomial of A is (x − ζ λ)k . On the other
hand, since (An − 1)d = 0 we have that (x − ζ λ)k divides (xn − 1)d and this is possible only if d = k.
This implies that An is similar to an indecomposable Jordan form of dimension k. �
2.1. Fields and ramification

We will introduce some notation on the ramification places in the extensions F/F P and F/F G . Let
us denote by P̄1, . . . , P̄ s the places of F P that are ramified in F/F P . The places of F that are above P̄ i
will be denoted by Pi,ν , 1 � ν � p�/ei , where ei = pεi is the common ramification index e(Pi,ν/ P̄ i).

The different Diff(F/F P ) is supported at the places Pi,ν while the discriminant D(F/F P ) is sup-
ported at the places P̄1, . . . , P̄ s . Let us denote the different exponent of P j,ν over P̄ j at each ramified
place by δ j . The discriminant is then computed:

D
(

F/F P )=
s∑

j=1

p�−ε j δ j P̄ j,

while the different is given by

Diff
(

F/F P )=
s∑

j=1

δ j

∑
ν

P j,ν .
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The cyclic group extension F P /F G is a Kummer extension with Galois group T and it is defined by
an equation of the form:

F P = F G(y), yn = b, b ∈ F G . (3)

Let Q̄ 1, . . . , Q̄ t be the places of F G that are ramified in extension F P /F G . We define Q i,ν , 1 � ν �
n/e′

i to be the places of F P which are above Q̄ i , where e′
i denotes the common ramification index,

e′
i = e(Q i,ν/Q̄ i).

Assume that the set of places {Q̄ 1, . . . , Q̄ t0 } extend to places Q i,ν of F P that do not ramify on
F/F P and that each place Q̄ i of the places {Q̄ t0+1, . . . , Q̄ t} extends to places Q i,ν that ramify in
F/F P . The total number of places of the form Q i,ν t0 + 1 � i � t equals

s0 :=
t∑

i=t0+1

n

e′
i

= ∣∣{Q i,ν : t0 + 1 � i � t, 1 � ν � n/e′
i

}∣∣.
We enumerate the places P̄ i such that { P̄ s0+1, . . . , P̄ s} do not ramify in F P /F G and { P̄1, . . . , P̄ s0 } =
{Q i,ν : t0 + 1 � i � t, 1 � ν � n/e′

i}.

F

P

P1,μ

e1

Pt,μ

et

P s0+1,ν

es0+1

P s,ν

es

F P

T

Q 1,ν

e′
1

Q t0,ν

e′
t0

Q t0+1,ν

e′
t0+1

Q t,ν

e′
t

P̄ s0+1 P̄ s

F G Q̄ 1 Q̄ t0 Q̄ t0+1 Q̄ t

We can select b in Eq. (3) such that [20, Sect. 2]

divF G (b) = nA +
t∑

i=1

φi Q̄ i, (4)

where 0 < φi < n, A is a divisor of F G . The ramification indices are given by e′
i = n/(n, φi), and the

discriminant is given by

D
(

F P /F G)=
t∑

i=1

(
n − n

e′
i

)
Q̄ i . (5)

We also define Φi = φi/(n, φi).

2.2. Modules

Let us now focus on the cyclic p-group extension F/F P . The G-module structure on holomorphic
differentials on a cyclic p-group is studied by R. Valentini and M. Madan in [20]. Let σ := gn be a
generator of the cyclic group P . Recall that V denotes the set of holomorphic differentials. Following
the article of Valentini Madan we consider the set of subspaces V i ⊂ V defined by

V i := {
ω ∈ V : (σ − 1)iω = 0

}
for i = 0, . . . , p�.
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We compute that (the set {v1, . . . , vm} is the basis of V (μ,m) given in Eq. (2))

V i+1 ∩ V (λ,m) =
{

V (λ,m) if m � i + 1,

〈vm−i, . . . , vm〉 if m > i + 1.

Since G is a commutative group there is a well defined action of T = 〈g p�〉 on the quotient space
V i+1/V i and the natural map

V i+1 → V i+1/V i,

is T -equivariant. The images of the spaces V i+1 ∩ V (λ,m) under this map are 0 for m � i and are one
dimensional if m > i.

The space V i+1/V i is decomposed into characters of the group T . Let d(λ,k) be the number of
V (λ,k) blocks in V . Let c(λ, i), 0 � i � p� − 1 be the number of characters of the form gω = ζ λω in
V i+1/V i .

We have that

c(λ, i) =
∑

k�i+1

d(λ,k).

Therefore

d
(
λ, p�

)= c
(
λ, p� − 1

)
,

d(λ,k) = c(λ,k − 1) − c(λ,k). (6)

Lemma 3. There is a basis {w0, . . . , w p�−1} of F over F P such that:

(1) For 0 � k � p� − 1 with p-adic expansion k = ak
1 + ak

2 p + · · · + ak
� p�−1 , we have

(σ − 1)k wk = ak
1!ak

2! · · ·ak
n! wk.

(2) Every ω ∈ V can be written as

ω =
p�−1∑
ν=0

cν wν dx

with x, cν ∈ F P and with the additional property that

ω ∈ V i ⇔ ci = ci+1 = · · · = cp�−1 = 0.

(3) There are numbers Φ(μ, j) prime to p such that

v Pμ,ν (wk) = −
�∑

j=1

ak
jΦ(μ, j)p�− j .
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Proof. The definition of the basis is given in [20, p. 108] while the second assertion is proved in the
same article in the proof of Theorem 1. The existence of the numbers Φ(μ, j) follows by the construc-
tion of the extension F/F P in terms of successive Artin–Schreier extensions (see [20, Sect. 1]). �

Recall that δμ denotes the different exponent of Pμ,ν over P̄μ . We define the integers:

νμ,k :=
⌊

δμ + v Pμ,ν (wk)

eμ

⌋
. (7)

Notice that the valuation v Pμ,ν (wk) does not depend on the selection of the place Pμ,ν over P̄μ .

Let τ = g p�
be a generator of the cyclic group T . Assume that τ y = ζ r

n y. For each λ = 0, . . . ,n − 1
we select 0 � αλ � n − 1 such that

rαλ ≡ λ mod n. (8)

Definition 4. Let 〈x〉 = x − x� denote the fractional part of a real number x. Define the Boseck invari-
ants:

Γk,λ :=
t∑

i=1

〈
−αλΦi

e′
i

〉
+

t∑
j=t0+1

⌊〈
αλΦ j − 1

e′
j

〉
+ ν j,k

n

⌋
+

s−s0
n∑

μ=1

νμ,k.

Remark 5. If n = 1, then

Γk,λ = Γk =
s∑

μ=1

νμ,k.

This is the Boseck invariant for the p cyclic case, see [3] and [7]. If p� = 1 then

Γk,λ = Γλ =
t∑

j=1

〈
−αλΦ j

e′
j

〉
.

This is the Boseck invariant for the cyclic tame case. These invariants coincide with the ones intro-
duced by [3], and used by [7], after letting r = 1, to Eq. (8) (this can be done without loss of the
generality).

Recall that the p-part P of the whole cyclic group is generated by gn . Is there a place of F that
is fully ramified in extension F/F 〈gn〉? If not then we consider the place Pi,ν of F with maximal
ramification index. Set r = �− max{εi}. The wild decomposition group 〈gn〉(Pi,ν ) at this place is cyclic
and we will denote the corresponding fixed field by Er . Call E the fixed field of the wild part 〈gn〉.
Then we will have a tower of fields F/Er/E such that in extension Er/E there is no ramification at
all. Notice that r = 0 and Er = E if and only if there is a place Pi,ν fully ramified in extension F/F 〈gn〉 .

In next section we will prove the following:

Proposition 6. Recall that εi are integers such that pεi = e(Pi,ν/ P̄ i). Consider the integer r = � − maxεi .
For 0 � k < p� − pr , we have

c(λ,k) = gF G − 1 + Γk,λ + Λk,λ.

The integer Λk,λ is given by the following rule: If Γk,λ = 0 then Λk,λ = 1. In all other cases Λk,λ = 0.
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For p� − pr � k � p� − 1 we have

c(λ,k) =
{ 1

pr (gE T
r

− 1 + Γk,λ) if k � p� − pr + 1 or λ �= 0,

gF G if k = p� − pr and λ = 0.

This will allow us to see:

Theorem 7. If r = 0 then

d
(
λ, p�

)= gF G − 1 + Γp�,λ + Λp�,λ. (9)

For all the values of r and for k < p� − pr we have:

d(λ,k) = Γk−1,λ − Γk,λ + Mk,λ,

where {−1,0,1} � Mk,λ := Λk−1,λ − Λk,λ .
If k = p� − pr then k − 1 = p� − pr − 1 and

d
(
λ, p� − pr)= gF G − 1 + Γk−1,λ + Λk−1,λ − c

(
λ, p� − pr)

=
{

Γk−1,λ − 1
pr Γk,λ + Λk−1,λ, if λ �= 0,

Γk−1,0 + Λk−1,0 − 1, if λ = 0.

For r �= 0 and p� − pr � k � p� − 1, we have:

d(λ,k) =
⎧⎨
⎩

1 if k = p� − pr + 1, λ = 0,
1
pr (gE T

r
− 1 + Γk,λ) if k = p�,

0 otherwise.

(10)

Proof. The proof is a simple application of Proposition 6. �
2.3. Computation of c(λ,k)

This section is devoted to the proof of Proposition 6.

Lemma 8. Let G be a group of order p�n acting on the curve X, with only tame ramification, i.e. every point
that is ramified has decomposition group G(P ) ⊂ 〈g p� 〉. Let T = 〈g p� 〉 be the tame cyclic part of the group G.
Consider the integers φi,Φi,αλ, e′

i describing the Kummer extension F/F T and let gF T denote the genus of F T .
Then the decomposition of the space V of holomorphic differentials is given by

V :=
p�⊕

k=1

n−1⊕
λ=0

V (λ,k)d∗(λ,k),

where d∗(0,1) = 1,

d∗(λ, p�
)= 1

p�

(
gF T − 1 +

t∑
i=1

〈−αλΦi

e′
i

〉)

and d∗(λ,k) = 0 in all other cases.



S. Karanikolopoulos, A. Kontogeorgis / Journal of Number Theory 133 (2013) 158–175 165
Proof. Group actions on curves without branched points on spaces of holomorphic differentials were
studied by T. Tamagawa [17]. Tamagawa proved that the space of holomorphic differentials is decom-
posed as

V := K ⊕ K [P ]gX/P −1,

where g X/P is the genus of the quotient curve X/P .
Actions with tame ramification where studied by E. Kani [6]. Kani proved that:

V := K ⊕ K [G]gX/G −1 ⊕ R̃∗
G ,

where R̃∗
G is a k[G]-module such that nR̃∗

G = R∗
G and R∗

G is the contragredient module of the tame
ramification module (for precise definition see [6, Sect. 1]).

The result of Tamagawa for the action of the p-group P = 〈gn〉 gives that

V = K ⊕
n−1⊕
λ=0

V
(
λ, p�

)d∗(λ,p�)
. (11)

The integers d∗(λ, p�) can be computed by a careful look at the definition of the tame ramification
module. We will instead compute them using the results of Valentini and Madan for the extension
F/F T , T = 〈g p�〉.

The extension F/F T is a cyclic Kummer extension with Galois group generated by σ = g p�
and it

is characterized by the integers φ,Φ, e′
i,αλ introduced in Section 2.1. For the module of holomorphic

differentials the multiplicities mλ of the character λ given by the action σ j(v) = ζ λ j v are equal to

mλ = gF T − 1 +
t∑

i=1

〈−αλΦi

e′
i

〉
, if λ �= 0

and

m0 = gF T +
t∑

i=1

〈−α0Φi

e′
i

〉
= gF T , if λ = 0.

For the last equality it is enough to notice that as (Φi, e′
i) = 1 then

∑t
i=1〈−α0Φi

e′
i

〉 = 0, since the

condition e′
i | α0 is equivalent to e′

i | 0 for all i’s (see [20, p. 115]).
From Tamagawa result we have that d∗(0,1) = 1, while for the remaining m0 − 1 = gF T − 1 repre-

sentations give us that in both cases (λ = 0 and λ �= 0) we have

d∗(λ, p�
)= 1

p�

(
gF T − 1 +

t∑
i=1

〈−αλΦi

e′
i

〉)

and d∗(λ,k) = 0 in all other cases. Notice that the eigenvalue ζ λ appears p� times in every component
V (λ,k). �
Remark 9. Applying Riemann–Hurwitz formula, we obtain:

d∗(λ, p�
)= gF G − 1 + 1

p�

t∑
i=1

〈−αλΦi

e′
i

〉
.



166 S. Karanikolopoulos, A. Kontogeorgis / Journal of Number Theory 133 (2013) 158–175
• If F/F T is unramified, i.e. when e′
i = 1 for all i, then this coincides with the result of Tama-

gawa, [17].
• If p� = 1, i.e. F G = F T , then this coincides with the result of Hurwitz [11, Theorem 3.5, p. 600],

after letting r = 1, to Eq. (8).

For the study of the spaces V k+1/V k , with k = 0, . . . , p� − 1, we will distinguish two cases:

Case 1. k < p� − pr .

Lemma 10. Assume that k < p� − pr . If the differential ω =∑k
ν=0 cν wνdx ∈ V k+1 , representing a class in

V k+1/V k, is holomorphic then

ck ∈ L F P

(
divF P (dx) +

s∑
μ=1

νμ,k P̄μ

)
.

The space V k+1/V k is of dimension gF P − 1 +∑s
μ=1 νμ,k.

Proof. See the proof of Theorem 1 and p. 112 in [20]. �
In order to study the k[T ]-module structure of the space V we will apply the previous argument

with f in place of the ck and we focus our study to the space of differentials which have poles at∑s
μ=1 νμ,k P̄μ , i.e. differentials of the form:

ω = f dx such that divF P ( f dx)�−
s∑

μ=1

νμ,k P̄μ. (12)

We may choose the function x ∈ F P to be a function in F G . Let τ = g p�
be a generator of the cyclic

group T . Recall that we assumed that τ y = ζ r
n y and we have selected αλ such that rαλ = λ mod n.

Assume that

τ ( f dx) = ζ λ f dx.

By Eq. (8) we have

τ
(

f /yαλ
)= f /yαλ,

so f = hyαλ with h ∈ F G . Therefore, Eq. (12) is satisfied if and only if

N F P /F G

(
div( f dx)

)
� N F P /F G

(
−

s∑
μ=1

νμ,k P̄μ

)
. (13)

We compute:

N F P /F G

(
div( f dx)

)= n divF G h + αλ divF G (b) + n divF G (dx) + D
(

F P /F G).
Remark 11. Whenever we write down a reduced divisor A =∑

αi P i (i.e. Pi �= P j) with αi ∈ Q we
mean the divisor

∑ αi� Pi . Notice that if A =∑
αi P i is a divisor (with possible rational coefficients)
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and B =∑
β j P j is a divisor with integer coefficients, then since for α ∈ Q, β ∈ Z α + β� = α� + β

we have that

A + B =
∑

αi� Pi +
∑

β j P j,

i.e. we don’t have to write down A + B in reduced form, before taking the integral part of its
coefficients.

Using Eqs. (4), (5) we see that Eq. (13) is equivalent to

div(h)� −divF G (dx) − αλA −
t∑

j=1

(
αλφ j

n
+ 1 − 1

e′
j

)
Q̄ j − 1

n
N F P /F G

(
s∑

μ=1

νμ,k P̄μ

)
,

i.e. h ∈ L(W + Ek,λ). Notice that the norm N F P /F G ( P̄μ) is just the place of F G lying below P̄μ . We
proved the following

Lemma 12. The subspace of V k+1/V k of elements where g acts by multiplication by ζ λ is isomorphic to the
space L F G (W + Ek,λ), where W is a canonical divisor on F G and

Ek,λ := αλA +
t∑

j=1

(
αλφ j

n
+ 1 − 1

e′
j

)
Q̄ j + 1

n
N F P /F G

(
s∑

μ=1

νμ,k P̄μ

)

is an effective divisor.

We will now write Ek,λ as a sum of an integral divisor and of a divisor in reduced form. We can
assume that {Q̄ 1, . . . , Q̄ t0 } is the set of ramified places such that their extensions in F P do not ramify
further in F/F P . We will denote by {Q̄ t0+1, . . . , Q̄ t} the rest of the ramified places.

Notice that there are s − s0 places of F P that are not ramified in F P /F G . These places are all
decompose completely in the extension F P /F G . Denote with Πμ := N F P /F G ( P̄μ), for each 1 � μ �
s − s0. Note that these places of F G are not all different. However there are s−s0

n different Πμ ’s, with
n = |T |.

Now Ek,λ can be written:

Ek,λ = αλA +
t0∑

j=1

(
αλφ j

n
+ e′

j − 1

e′
j

)
Q̄ j +

t∑
j=t0+1

(
αλφ j + ν j,k

n
+ e′

j − 1

e′
j

)
Q̄ j +

s−s0
n νμ,k∑
μ=1

Πμ.

The divisor Ek,λ as it is written above is not necessarily in reduced form. We don’t know whether the
divisor A is prime to Q̄ i or Πμ . But since it has integer coefficients and since all the divisors with
possibly rational coefficients are prime to each other, we arrive at

Ek,λ = αλA +
t0∑

j=1

⌊
αλφ j

n
+ e′

j − 1

e′
j

⌋
Q̄ j +

t∑
j=t0+1

⌊
αλφ j + ν j,k

n
+ e′

j − 1

e′
j

⌋
Q̄ j

+
s−s0

n∑
μ=1

νμ,kΠμ. (14)
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Lemma 13. The degree of Ek,λ equals

deg(Ek,λ) =
t∑

i=1

〈
−αλΦi

e′
i

〉
+

t∑
j=t0+1

⌊〈
αλΦ j − 1

e′
j

〉
+ ν j,k

n

⌋
+

s−s0
n∑

μ=1

νμ,k.

Proof. Following Valentini and Madan we see that

deg(A ) = −
t∑

j=1

φ j

n
= −

t∑
j=1

Φ j

e′
j

(15)

(recall that Φi = φi/(φi,n)).

deg Ek,λ =
t0∑

j=1

〈
−αλΦ j

e′
j

〉
+

t∑
j=t0+1

(⌊
αλφ j + ν j,k

n
+ e′

j − 1

e′
j

⌋
− αλΦ j

e′
j

)
+

s−s0
n∑

μ=1

νμ,k.

We will use

αλΦ j

e′
j

=
⌊

αλΦ j

e′
j

⌋
+
〈
αλΦ j

e′
j

〉
.

We have

⌊
αλφ j + ν j,k

n
+ e′

j − 1

e′
j

⌋
− αλΦ j

e′
j

=
〈
−αλΦ j

e′
j

〉
+
⌊

αλΦ j + e′
j − 1

e′
j

+ ν j,k

n

⌋
+
⌊
−αλΦ j

e′
j

⌋

=
〈
−αλΦ j

e′
j

〉
+
⌊⌊

αλΦ j + e′
j − 1

e′
j

⌋
+
〈
αλΦ j + e′

j − 1

e′
j

〉
+ ν j,k

n

⌋
+
⌊
−αλΦ j

e′
j

⌋

=
〈
−αλΦ j

e′
j

〉
+
⌈

αλΦ j

e′
j

⌉
+
⌊〈

αλΦ j + e′
j − 1

e′
j

〉
+ ν j,k

n

⌋
+
⌊
−αλΦ j

e′
j

⌋

=
〈
−αλΦ j

e′
j

〉
+
⌊〈

αλΦ j − 1

e′
j

〉
+ ν j,k

n

⌋
. �

Proposition 14. If k < p� − pr , we have

c(λ,k) = dim L(W + Ek,λ) = gF G − 1 + deg(Ek,λ) + Λk,λ.

Moreover, if

deg(Ek,λ) = 0

then Λk,λ = 1. In all other cases Λk,λ = 0.



S. Karanikolopoulos, A. Kontogeorgis / Journal of Number Theory 133 (2013) 158–175 169
Proof. By the Riemann–Roch theorem and Lemma 13 we see that

dim L(W + Ek,λ) = gF G − 1 + deg Ek,λ + dim L(−Ek,λ).

If the divisor deg(Ek,λ) > 0 then dim L(−Ek,λ) = 0 and the result follows.
Assume now that deg(Ek,λ) = 0. Since Ek,λ is effective this means that Ek,λ = 0 and in this case

Λk,λ = �(0) = 1. �
Case 2. p� − pr � k � p� − 1.

In this case we will apply the same procedure as we did in Case 1 and then we will apply Lemma 8
for the extension Er/F G . Write k = k1 + tpr with 0 � k1 < pr and t = p�−r − 1. Set k0 = tpr = p� − pr .
Let σ = gn be a generator for the p-cyclic part of G . Let V k

Er
be the space of holomorphic differentials

of Er that are annihilated by (σ − 1)k . Valentini and Madan [20, pp. 111–112] proved that

(σ − 1)k0 : V k+1/V k → V k1+1
Er

/V k1
Er

(16)

is an isomorphism. We will now consider the extension Er/F G and we will apply Lemma 8 in order
to compute the decomposition into indecomposable G/〈g pr 〉-modules. Let c∗(λ,k1) be the number of
characters ζ �→ ζ λ in the module V k1+1

Er
/V k1

Er
. We compute that c(λ,k) is equal to:

c
(
λ,k1 + p� − pr)= c∗(λ,k1) =

∑
μ�k1+1

d∗(λ,μ) =
{

d∗(λ, p�), if k1 � 1 or λ �= 0,

d∗(0, p�) + 1= gF G , if k1 = 0, and λ = 0.

Therefore, for k = p� we compute:

d
(
λ, p�

)= c
(
λ, p� − 1

)= d∗(λ, p�
)= 1

pr

(
gE T

r
− 1 +

t∑
i=1

〈−αλΦi

e′
i

〉)

by Lemma 8. Moreover for p� − pr � k � p� − 1 and from Eq. (6) and the isomorphism given in
Eq. (16) we obtain:

d(λ,k) = c(λ,k − 1) − c(λ,k)

= c∗(λ,k − 1 − (
p� − pr))− c∗(λ,k − (

p� − pr))
= d∗(λ,k − (

p� − pr))= 0

unless k = p� − pr + 1 and λ = 0. In this case d∗(0,1) = 1 = d(0, p� − pr + 1).

Remark 15. Notice that when k � p� − pr , then νμ,k = 0 (see also [20, p. 110]). Thus Boseck invariants
(Definition 4) take now the form

Γk,λ = Γλ =
t∑

i=1

〈−αλΦi

e′
i

〉
.

With this in mind, we take that

d
(
λ, p�

)= 1

pr
(gE T

r
− 1 + Γk,λ).
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This completes the proof of Theorem 7.

Example 16. Suppose that F G = F P , i.e. n = 1 then, from Eqs. (9) and (10) respectively, we get that
the regular representation of G occurs

d
(
λ, p�

)= d
(

p�
)=

{
gF G − 1, if r �= 0,

gF G , otherwise,

times in the representation of G in V . This result coincide with the results obtained in [20].

3. Relation to the theory of Weierstrass semigroups

Aim of this section is to find a relation between the Galois module structure of the space of
holomorphic differentials and the Weierstrass semigroup attached to a ramified point. In charac-
teristic zero there are results [11] relating the structure of the Weierstrass semigroup at P to the
subgroup G(P ). For example there is a theorem due to J. Lewittes [8, Th. 5] which relates the struc-
ture of the semigroup to the module structure of holomorphic differentials. Also I. Morrison and
H. Pinkham [11] considered the case of Galois Weierstrass points, i.e. covers of the form X → P1 with
cyclic cover group in characteristic 0.

Let us start with a convenient description of a numerical semigroup: Let Σ ⊂ N be a semigroup
and let d be the least positive number in Σ . For 1 � i � d − 1 we denote by bi the smallest element
in Σ congruent to i mod d, and define νi by the equation:

bi = νid + i, (17)

i.e. νi =  bi
d �. The numbers νi are equal to the number of gaps ak for which ak ≡ i mod d, and the

semigroup Σ is characterized by them.
Notice that the bi together with b0 = 0 form the Apéry set Ap(Σ,d) of d in Σ see [1, p. 149,

Par. 7.2.2].
From now on Σ will be the Weierstrass semigroup attached to a point P . Let f be a function on X

such that ( f )∞ = dP . This gives rise to a map f : X �→ P1 and we assume that this map is a Galois
cover with Galois group G(P ). In characteristic 0 the group G(P ) is always cyclic and the space of
holomorphic differentials is described by a theorem due to Lewittes and Hurwitz [11, Th. 1.3, Th. 3.5].

In this paper we assume that G(P ) is a cyclic group of order np� . The following theorem is a gen-
eralization of the theorems of Lewittes and Hurwitz written in the language of Brauer characters [14].

Proposition 17. Let T be the tame cyclic part of G(P ). Let L be a complete local ring that contains the n-th
roots of unity, let OL be its valuation ring and let mL be the maximal ideal of OL such that OL/mL = K . For
example we can take L = W (K )[ζn], the Witt ring of K with one primitive n-th root of unity attached to it.
The modular character of μ : Greg → OL induced by the K [G]-module of holomorphic differentials can be
written as

μ =
d−1∑
i=1

μiχ
i,

where χ is a generator of the character group Ĝreg of the cyclic group Greg = Z/nZ and μi are equal to the
number of gaps at P that are equivalent to i mod n.

Proof. The proof we will write is a modification of the characteristic zero proof given in [11, Th. 1.3].
By construction for every σ ∈ T we have σ(T ) = T . Let τ be the generator of T . By the lemma of

Hensel we might assume that there is a local uniformizer t at P such that σ(t) = ζ t where ζ is a
primitive n-th root of unity.
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Every gap ak corresponds by the Riemann–Roch theorem to a holomorphic differential ωk with
a root of order ak − 1 at P . Observe that the flag of vector spaces 〈ωg, . . . ,ωk〉 are invariant under
the action of G and by a trigonal change of coordinates we might assume that ωk can be selected in
such a way so that ωk = tak−1dt . For this selection of ωk we have that τωk = ζ akωk and the result
follows. �

This proposition does not describe completely the relation of the semigroup and the K [G]-module
structure since it gives information of the number gaps modulo n and not modulo np� as required.
Notice that by construction d := np� is the smallest nonzero pole number.

Definition 18. For every i, 0 � i < np� we consider the reductions of i modulo p� and n respectively,
namely: i0 = i mod n and i1 = i mod p� . We will denote by

c̄(i0, i1) = the number of gaps at P that are equivalent to i mod np�.

Of course these quantities are related to the μi defined in Proposition 17. For an i0 with 0 � i0 < n
we have

μi0 =
p�−1∑
i1=0

c̄(i0, i1).

We will give an independent and complete description in terms of the decomposition given in Eq. (1).

Proposition 19. Recall that δμ denotes the different exponent of Pμ,ν over P̄μ . Let rμ,k be the remainder of
the division of δμ + v Pμ,ν (wk) by p� , i.e.

rμ,k = δμ + v Pμ,ν (wk) − p�νμ,k. (18)

The holomorphic differentials in V k+1 have roots at Pμ,ν of orders

rμ,k + p�ξ, with ξ ∈
{

0,1, . . . ,

s∑
μ=1

νμ,k − 2

}
∪ Bμ,k, (19)

where Bμ,k is a subset of natural numbers with gF P elements, all greater than
∑s

μ=1 νμ,k. The dimension of

the space of holomorphic differentials in V k+1 that have roots of order x such that:

x ≡ rμ,k mod p�,

x ≡ αλ mod n (20)

is equal to c(λ,k) = c̄(aλ + 1, rμ,k + 1).

Proof. By Lemma 10 the differential
∑k

ν=0 cν wνdx is holomorphic if the elements ck are in L :=
L(divF P (dx) + ∑s

μ=1 νμ,k P̄μ). What are the possible valuations of such elements at a fixed P̄μ0 ?
Fix μ0 and consider the divisors:

A j := divF P (dx) +
s∑

μ=1,μ �=μ

νμ,k P̄μ + j P̄μ0 ,
0
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for j < νμ0,k . We have that L(A j) ⊂ L(Aνμ0,k ). There is an element ck with v P̄μ0
(ck) =

−v P̄μ0
(divF P (dx))− j if and only if �(A j)−�(A j−1) = 1: Indeed, by using the Riemann–Roch theorem

we see that

�(A j) = gF P − 1 +
s∑

μ=1,μ �=μ0

νμ,k + j + �

(
−

s∑
μ=1,μ �=μ0

νμ,k P̄μ − j P̄μ0

)
.

Therefore,

if
s∑

μ=1,μ �=μ0

νμ,k + j − 1 � 0 then �

(
−

s∑
μ=1,μ �=μ0

νμ,k P̄μ − j P̄μ0

)
= 0

and �(A j)− �(A j−1) = 1 and there is an element ck with valuation at P̄μ0 equal to −v P̄μ0
(divF P (dx))

− j. This proves that possible valuations v = −v P̄μ0
(divF P (dx)) − j of elements in L at P̄μ0 satisfy

−νμ0,k − v P̄μ0

(
divF P (dx)

)
� v �

s∑
μ=1,μ �=μ0

νμ,k − 1 − v P̄μ0

(
divF P (dx)

)
,

i.e.

0 � νμ0,k − j �
s∑

μ=1

νμ,k − 1. (21)

The valuation at Pμ0 of the differential ck wkdx of F equals:

p�v P̄μ0
(ck dx) + δμ0 + v Pμ0,ν (wk). (22)

Recall that δμ0 + v Pμ0,ν (wk) = rμ0,k + p�νμ0,k by Eq. (18), so (22) becomes

p�v P̄μ0
(ck dx) + rμ0,k + p�νμ0,k

which in turn by using (21) implies that the possible valuations of differentials in V k+1 contain the
set

rμ0,k + p�ξ, 0 � ξ <

s∑
μ=1

νμ,k − 1.

If gF P = 0 then there are no other possible valuations for the elements ck since the above valuations
are different, the corresponding functions are linear independent and have the correct dimension
given in Lemma 10. If gF P > 0 then there are gF P more possible valuations, but their exact values
cannot be easily described. Indeed, notice that always �(A j) − �(A j−1) � 1 by [16, I.4.8].

Using Lemma 12 and Proposition 14 we compute that the dimension of the differentials satisfying
the conditions given in (20), is equal to c(k, λ).

It is a well known application of the Riemann–Roch theorem that the existence of a differential
with root of order a−1 at P implies that a is a gap at P . Therefore if we add 1 to the natural numbers
appearing in Eq. (19) then we obtain all the gaps at P coming from holomorphic differentials in V k+1.
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All of them are equivalent to rμ,k + 1 modulo p� . Moreover, if a is a gap at P then there is a one-
dimensional subspace of V such that the action of the tame part is given by ζ �→ ζ a [11, Th. 1.3]. This
proves the equality c(λ,k) = c̄(aλ + 1, rμ,k + 1). �
Remark 20. Notice, that now we are able to describe completely Σ at Pμ,ν by the method introduced
by I. Morrison and H. Pinkham [11] and explained in Eq. (17), when Pμ,ν ramifies completely. Indeed:

(1) The numbers c(λ,k) = c̄(aλ + 1, rμ,k + 1) are equal to the number of gaps x + 1 for which x + 1 ≡
i mod d and thus from the Chinese remainder theorem are equivalent to αλ + 1 (or equivalently,
see (2), to λ + 1) and rμ,k + 1 modulo n and p� respectively.

(2) rμ,k forms a complete system modulo p� as k takes all the values 0, . . . , p� − 1, and thus takes all
the values from 1 to d − 1. Moreover, let r = 1 to Eq. (8) (we use this argument widely through
this paper). Then, in the same way we see that αλ forms a complete system modulo n, as λ runs
through 0, . . . ,n − 1.

4. The case of a cyclic p-group

We will now focus on the case of cyclic extensions of the rational function field of order p� . We
will also assume that every ramified place is ramified completely and that the place at infinity does
not ramify. In this case we construct explicitly a basis of holomorphic differentials as follows:

We denote the ramified places of K (x), by Q̄ i = (x − αi), 1 � i � s, since in a rational function
field every ramified place corresponds to an irreducible polynomial, which is linear since the field K
is algebraically closed. We set

gk(x) =
s∏

i=1

(x − αi)
νik .

Definition 21. For k = 0,1, . . . , p� − 1, we define

Γk :=
s∑

i=1

νik.

Proposition 22. Let X be a cyclic extension of degree p� of the rational function field. The set

{
ω

(αi)

kν = (x − αi)
ν(k)

gk(x)−1 wk dx: 0 � ν(k) � Γk − 2, 0 � k � pn − 2
}

forms a basis for the set of holomorphic differentials for a cyclic extension of the rational function field of
order p� .

Proof. We take the basis of [7, Lemma 10], set m = 1 and modify it in order to evaluate holomorphic
differentials in the ramified primes of the extension. The same construction is given by Garcia in
[5, Theorem 2, Claim] where the elementary abelian, totally ramified case is studied. The proof is
identical to the one given there. �

Keep in mind that the natural number i is a gap at P if and only if there is a holomorphic
differential ω with root at P of order i − 1.

Lemma 23. The remainders rμ,i for different values of i are different modulo p� and form a full set of repre-
sentatives modulo p� .



174 S. Karanikolopoulos, A. Kontogeorgis / Journal of Number Theory 133 (2013) 158–175
Proof. Observe first that the valuations of the functions wk as k runs over 0, . . . , p� − 2 are all differ-
ent, since

v Pμ,ν (wk) = −
�∑

j=1

ak
jΦ(μ, j)p�− j .

Therefore the values δμ + v Pμ,ν (wk) = δμ − ∑�
j=1 ak

jΦ(μ, j)p�− j take all possible values mod-

ulo p� . �
Definition 24. For every natural number 0 � a < p� define by ψ(a) the natural number such that

rψ(a),μ = a.

Such a number exists by Lemma 23.

Remark 25. Recall that rμ,k was defined in Eq. (18) to denote the remainder of the division of δμ +
v Pμ,ν (wk) by p� . Boseck in his seminal paper [3, Satz 18], where the G = Z/pZ case is studied, states
that as k takes all the values 0 � k � p − 2 the remainder of the Boseck’s basis construction rμ,k takes
all the values 0 � rμ,k � p − 2 and thus all the numbers 1, . . . , p − 1 are gaps. This is not entirely
correct as we will show in Example 28. The problem appears if there is exactly one ramified place in
the Galois extension.

Lemma 26. If all Γk � 2 then all numbers 1, . . . , p� − 1 are gaps. If there exist Boseck invariants Γk = 1, then
the set of gaps smaller than p� is exactly the set {rμ,k: 0 � k � p� − 2,Γk � 2}.

Proof. As k runs in 0 � k � p� − 2 the rμ,k run in 0, . . . , p� − 2. But the Γk that are equal to 1 have to
be excluded since they give not rise to a holomorphic differentials in Proposition 22, see [7, Eq. (21)]
and Example 28. �
Remark 27. Notice that elements Γk = 1 can appear only for primes p � Φ(μ, j) and only if there is
only one ramified place.

Example 28. We consider the now the case of an Artin–Schreier extension of the function field k(x),
of the form yp − y = 1/xm . In this extension only the place (x−0) is ramified with different exponent
δ1 = (m + 1)(p − 1). The Boseck invariants in this case are

Γk =
⌊

(m + 1)(p − 1) − km

p

⌋
for k = 0, . . . , p − 2.

The Weierstrass semigroup is known [15] to be mZ+ + pZ+ . Let us now find the small gaps by using
Lemma 26. If p < m then all numbers 1, . . . , p − 1 are gaps. If p > m then m is a pole number smaller
than p. Indeed, Γp−2 = 1 and the remainder of the division of (m + 1)(p − 1) − (p − 2)m by p is
rp−2 = m − 1. But then rp−2 + 1 = m is not a gap.
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