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Abstract. In this paper we state and prove the analogous of the principal
ideal theorem of algebraic number theory for the case of 3-manifolds from the
point of view of arithmetic topology.

1. Introduction

There are certain analogies between the notions of number theory and those of
3-dimensional topology, that are described by the following dictionary, named after
Mazur, Kapranov and Reznikov.

• Closed, oriented, connected, smooth 3-manifolds correspond to affine schemes
SpecOK , where K is an algebraic number field and OK denotes the ring of
algebraic integers of K.

• A link in M corresponds to an ideal in OK and a knot in M corresponds
to a prime ideal in OK .

• An algebraic integer w ∈ OK is analogous to an embedded surface (possibly
with boundary).

• The class group Cl(K) corresponds to H1(M, Z).
• Finite extensions of number fields L/K correspond to finite branched cov-

erings of 3-manifolds π : M → N . A branched cover M of a 3-manifold
N is given by a map π such that there is a link L of N with the following
property: The restriction map π : M\π−1(L) → N\L is a topological cover.

For the necessary background in algebraic number theory the reader should look
at any standard book, for example [2]. For the topological part: by the term knot
(resp. link) we mean tame knot (resp. tame link). By the term embedded surface we
mean an embedding f : E → M , of a two dimensional oriented, connected, smooth
manifold E. A tame knot is an embedding f : S1 → M that can be extended
to an embedding of f : S1 × B(0, ǫ) → M . In other words tame knots admit a
tubular neighborhood embedding. We will call a manifold tamely path connected
if for every two points P, Q of M there is a path γ : [0, 1] → M with γ(0) = P ,
γ(1) = Q with the additional property that for a suitable small disk B(0, ǫ) the
path γ can be extended to an embedding γ : B(0, ǫ) × [0, 1] → M . It is not clear
to the authors whether all path connected 3 manifolds are tamely path connected.
In what follows we will be concerned only with tamely path connected 3 manifolds.
We also consider manifolds M so that π1(M) is a finitely generated group.

This is just a small version of the dictionary. More precise versions can be found
in [5], [6].
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One of the differences between the two theories is that the group Cl(K) is always
finite while H1(M, Z) = Zr ⊕ H1(M, Z)tor is not. Many authors proposed that the
analogue of the class group for arithmetic topology should be the torsion part
H1(M, Z)tor, but we think that one advantage, of taking as analogue of the class
group, the whole H1(M, Z) is that H1(M, Z) is the Galois group of the Hilbert
manifold M (1) over M , where the Hilbert manifold M (1) is the maximal unramified
abelian cover of M .

Theorem 1.1 (Principal Ideal Theorem for Number Fields.). Let K be a number
field and let K(1) be the Hilbert class field of K. Let OK , OK(1) be the rings of
integers of K and K(1) respectively. Let P be a prime ideal of OK(1) . We consider
the prime ideal

OK ⊲ p = P ∩ OK

and let
pOK(1) = (PP2 . . . Pr)

e
=

∏

g∈CL(K)

g(P )

be the decomposition of pOK(1) in OK(1) into prime ideals. The ideal pOK(1) is
principal in K(1).

This theorem was conjectured by Hilbert and the proof was reduced to a purely
group theoretic problem by E. Artin. The group theoretic question was resolved
by Ph. Furtwangler [1]. For a modern account we refer to [2, V.12].

Aim of this paper is to state and prove a natural generalization of the principal
ideal theorem for number fields in the case of knot theory. It is interesting to point
out that using this generalization we are able to prove the clasical Seifert theorem
(cor. 2.6) and we are able to characterize 3-manifolds that have the Seifert property
(cor. 2.7).

Acknowledgments: The authors would like to thank Prof. E. Kehagias for
usuful discussions concerning the subject of the paper.

2. The Principal Ideal Theorem for Knots

The Hilbert class field in number fields is defined to be the largest non-ramified
abelian extension. Therefore we define the Hilbert manifold M (1) of M as the
universal covering space M̃ of M modulo the commutator group [π1(M), π1(M)]:

M (1) = M̃/[π1(M), π1(M)].

Above and in the rest of this article we will abuse the notation and we will denote
by π1(M) = π1(M, P ) the first homotopy group based on a fixed point P of the
manifold M . By definition M (1) is the largest unramified abelian cover of the
manifold M . Moreover, the Galois group of the cover is:

G = Gal(M (1)/M) ∼= π1(M)/[π1(M), π1(M)]
Φ
∼= H1(M, Z).

The map Φ is the map sending a loop around a fixed point P to the homology
class of the corresponding 1-cell. We have π1(M

(1)) = [π1(M), π1(M)]. Notice
that if π1(M) is an abelian group then M (1) is the universal cover of M and if
[π1(M), π1(M)] = π1(M) then M (1) = M .

Let L/K be a Galois extension of number fields and let OL,OK be the corre-
sponding rings of algebraic integers. In the case of number fields it is known that
every prime ideal p⊳OK gives rise to an ideal pOL. This construction is not always
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possible in the case of 3-manifolds. Namely, if M1 → M is a covering of 3-manifolds
then an arbitrary knot does not necessarily lift to a knot in M1. Indeed, a knot
can be seen as a path γ : [0, 1] → M so that γ(0) = γ(1), and paths do lift to
paths γ̃ : [0, 1] → M1, but in general γ̃(0) 6= γ̃(1). The following theorem gives a
necessary and sufficient condition for liftings of maps between topological spaces.

Theorem 2.1. Let (Y, y0), (X, x0) be topological spaces (arcwise connected, locally
simply connected), let p : (X ′, x′

0) → (X, x0) be a topological covering with p(x′

0) =

x0 and let f : (Y, y0) → (X, x0) be a continuous map. Then, there is a lift f̃ : Y →
X ′ of f,

X ′

p

��
Y

f
//

f̃
>>

}

}

}

}

X

making the above diagram commutative if and only if

f∗(π1(Y, y0)) ⊂ p∗(π1(X
′, x′

0)),

where f∗, p∗ are the induced maps of fundamental groups.

Proof. [4, Chapter 5, Proposition 5]. �

Proposition 2.2. Let K1 be a knot in M (1). Denote by G(K1) the subgroup
of G fixing K1 and by p the covering map M (1) → M . Consider the link L =
p−1(p(K1)) =

⋃
g∈G/G(K1)

gK1. Then L is the boundary of a possibly singular and

possibly nonconnected surface in M (1).

Proof. In number theory this theorem is proved by using the transfer map, but this
method can not be applied in our case since G need not be finite. If |H1(M, Z)| < ∞
then the classical [2, V.12] proof applies by just using the MKR dictionary, i.e.
by replacing all the class groups that appear in the classical proof with the first
homology groups. In the general case we will use the Theorem 2.1.

The map p when restricted to L gives a covering map L
p

−→ π(K1). If P is a
point on π(K1) then π−1(P ) has G elements while π−1(π(K1)) consists of G/G(K1)
isomorphic copies of K1, the isomorphism is given by the action of an element of G.
This means that G(K1) elements of π−1(P ) belong to the same copy of K1. The
situation is ilustrated in figure 1.

Figure 1. The knot K1 and the link L.
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Since the diagram

K1

p

��

// M (1)

p

��
S1

f
//

f̃
<<

y
y

y
y

y
y

y
y

y

p(K1) // M

commutes we have that

f∗(π1(S
1)) ⊂ p∗(π1(K1)) ⊂ p∗(π1(M

(1))) = p∗([π1(M), π1(M)]),

therefore the image of f∗(π1(S
1)) under the map Φ : π1(M) → H1(M, Z) is zero.

By definition of H1(M, Z) we have that there is a topological (possibly singular)
surface φ : E → M so that

f(S1) = p(K1) = ∂φ(E).

Moreover the surface E is homotopically trivial therefore theorem 2.1 implies that

there is a map φ̃ making the following diagram commutative:

M (1)

p

��
E

φ
//

eφ
==

z
z

z
z

z
z

z
z

M

,

with the additional property ∂φ̃(E) = p−1(∂φ(E)) = L. �

Observe that proposition 2.2 proves only that there is no topological obstruction
for the link L to be the boundary of a surface. Since we have worked in terms of
singular homology the boundary surface might have singularities or might consist
of several components. We will use the following theorem known as “Dehn lemma”
in the literature.

Theorem 2.3. Let M be a 3-manifold and f : D2 → M be a map such that for
some neighborhood A of ∂D2 in D2 f |A is an embedding and f−1f(A) = A. Then
f |∂D2 extends to an embedding g : D2 → M .

Proof. [3, 4.1] �

Corollary 2.4. Let M be a 3-manifold satisfying all the assumptions of the in-
troduction. If a tame knot is the boundary of a topological and possibly singular
surface then the knot is the boundary of an embedded surface.

Proof. Using the embedding of a tubular neighborhood of the knot we can construct
a nonsingular collar around the boundary of the topological surface and the desired
result follows by theorem 2.3. �

Proposition 2.5. Let L be a link in M that is a homologically trivial. Then there
is a family of tame knots Kǫ in M with ǫ > 0, that are boundaries of embedded
surfaces Eǫ so that limǫ→0 Kǫ = L and E = limǫ→0 Eǫ is an embedded surface with
∂E = L.

Proof. We will consider the case of a link with two components. The general case
follows by induction since the group π1(M) has by definition countable many el-
ements. Let L = K1 ∪ K2, where Ki is given by the embedding fi : S1 → M ,
a tame knot. The passage from two components to n > 2 components follows by
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induction. Notice that for the induction to work we need to know that π1(M) has
countable many elements and this follows since π1(M) is finitely generated.

Select two points P1, Q1 on f1(S
1) and two points P2, Q2 on f2(S

1) so that
d(Pi, Qi) = ǫ. The embedding fi can be given as the union of two curves, namely
γi : [0, 1] → M , δi : [0, 1] → M , so that γi(0) = δi(1) = Pi, γi(1) = δi(0) = Qi.
This means that the “small” curve is the curve δi.

Since the manifold M is tamely path connected we can find two paths α, β :
[0, 1] → M so that α(0) = P1, α(1) = Q2, β(0) = P2, β(1) = Q1, that are close
enough so that the rectangle α(−δ2)β(−δ1) is homotopically trivial. Let I = [0, 1] ⊂
R. Every path in M , i.e. every function f : I → M , defines a cycle in H1(M, Z).
We will abuse the notation and we will denote by f(I) the homology class of the
path f(I). We compute in H1(M, Z):

0 = f1(S1) + f2(S1) = γ1(I) + γ2(I) + δ1(I) + δ2(I) + 0 =

= γ1(I) + γ2(I) + δ1(I) + δ2(I) + α(I) − δ2(I) + β(I) − δ1(I) =

= γ1(I) + α(I) + γ2(I) + β(I).

This means that the tame knot γ1αγ2β is the boundary of a topological surface,
and by Corollary 2.4 it is the boundary of an embedded surface Eǫ.

Choose an orientation on Eǫ so that on P ∈ ∂Eǫ one vector of the oriented
basis of TP Eǫ is the tangent vector of the curves ∂Eǫ and the other one is pointing
inwards of E. We will denote the second vector by NP . Moreover, we choose the
same orientation on all surfaces Eǫ in the same way, i.e. the induced orientation
on the common curves of the boundary is the same.

We would like to take the limit surface for ǫ → 0. For this we have to distinguish
the following two cases: In the first case the direction of decreasing the distance ǫ is
the opposite of NP and the limiting procedure makes the rectangle α·(−δ2)·β ·(−δ1)
thinner and eventually it eliminates it. In this case the elimination of the above
mentioned rectangle glues two parts of the surface Eǫ together. The limit ǫ → 0
gives us an embedded surface E that is the boundary of our initial link L. Indeed
by taking the limit the paths α(I), β(I) are identified, and this identification can
be done in a smooth manner.

In the second case the direction of decreasing the distance ǫ is the same with
NP . This means that by taking the limit ǫ → 0 we don’t glue two parts of the
boundary of the surface Eǫ but we make the rectangle α(−δ2)β(−δ1) thinner and
after eliminating it we cut the surface in two pieces. Still the limit ǫ → 0 gives us
two embedded surfaces E, E′ that are the boundaries of our initial link components
K1, K2. We can arrive at one embedded surface in the following way: We cut two
disks D1, D2 of the interiors of E and E′ and glue together them together along a
tubular path T so that ∂T = D1 ∪ D2. �

As a corollary of the principal ideal theorem for knots we state the following:

Corollary 2.6 (Seifert). Every link in a simply connected 3 manifold is the bound-
ary of an embedded surface.

Proof. Let M be simply connected. The Hilbert manifold of M coincides with M
and the result follows. �

Using the “principal ideal theorem” for knots we are able to prove the following
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Corollary 2.7. In a manifold M every link is the boundary of an embeded surface
if and only if π1(M) = [π1(M), π1(M)], i.e. the abelianization of π1(M) is trivial.

Proof. If π1(M) = [π1(M), π1(M)] then H1(M, Z) is trivial and this means that
the Hilbert manifold M (1) of M coincides with M and the result follows.

If on the other hand π1(M) ! [π1(M), π1(M)] then we can choose a point P ∈ M
and a closed path γ based on P so that 0 6= Φ(γ) ∈ H1(M, Z). This means that
there is no topological surface in M with boundary the path γ. �

Remark: Manifolds so that π1(M) is a simple non abelian group satisfy the
hypotheses of corollary 2.7.
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