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Abstract
We use tools from combinatorial group theory in order to study actions of three types on
groups acting on a curve, namely the automorphism group of a compact Riemann surface, the
mapping class group acting on a surface (which now is allowed to have some points removed)
and the absolute Galois group Gal(Q̄/Q) in the case of cyclic covers of the projective line.
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1 Introduction

There is a variety of groups that can act on a Riemann surface/algebraic curve over C; the
automorphism group, the mapping class group (here we might allow punctures) and if the
curve is defined over Q̄, then the absolute Galois group Gal(Q̄/Q) is also acting on the curve.
Understanding the above groups is a difficult problem and these actions provide information
on both the curve and the group itself. For all the groups mentioned above the action can
often be understood in terms of linear representations, by allowing the group to act on vector
spaces and modules related to the curve itself, as the (co)homology groups and section of
holomorphic differentials.

For a compact Riemann surface X the automorphism group Aut(X) consists of all invert-
ible maps X → X in the category of Riemann surfaces.

A compact Riemann surface minus a finite number of punctures can be also seen as
a connected, orientable topological surface and the mapping class group Mod(X) can be
considered acting on X . The mapping class group is the quotient

Mod(X) = Homeo+(X)/Homeo0(X),

B Aristides Kontogeorgis
kontogar@math.uoa.gr

Panagiotis Paramantzoglou
pan_par@math.uoa.gr

1 Department of Mathematics, National and Kapodistrian University of Athens, Panepistimioupolis,
15784 Athens, Greece

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10711-019-00501-w&domain=pdf
http://orcid.org/0000-0002-6869-8367


Geometriae Dedicata

where Homeo+(X) is the group of orientation preserving homeomorphisms of X and
Homeo0(X) is the connected component of the identity in the compact-open topology.

These actions of the above mentioned three types of groups seem totally unrelated and
come from different branches of Mathematics. Recent progress in the branch of “Arithmetic
topology” provide us with a complete different picture. First the group Aut(X) can be seen
as a subgroup of Mod(X) consisting of “rigid” automorphisms.

Y. Ihara in [11,12], proposed a method to treat elements in Gal(Q̄/Q) as elements in the
automorphism group of the profinite free group. This construction is similar to the realization
of braids as automorphisms of the free group. This viewpoint of elements in Gal(Q̄/Q) as
“profinite braids” allows us to give a series of Galois representations similar to classical braid
representations.

In this article we will focus on curves which are cyclic ramified covers of the projective
line. These curves form some of the few examples of Riemann surfaces where explicit
computations can be made.

A ramified cover of the projective curve reduces to a topological cover, when the branch
points are removed. By covering map theory these covers correspond to certain subgroups
of the fundamental group of the projective line with branch points removed, which is a free
group.

The computation of homology groups can be done by abelianization of the fundamental
group, which in turn can be computed using the Schreier lemma. This method of computation
provides us with a unified way to treat all the actions on curves, by seeing an element in these
aforementioned groups as an automorphism of the corresponding fundamental group.

The authors find very interesting that this approach provides us with a totally new method
in order to study actions in the dual case, that is actions on global sections of holomorphic
differentials H0(X ,�X ). When G is the automorphism group, the determination of the G-
module structure H0(X ,�X ) is a classical problem first posed by Hecke [10], which was
solved by Chevalley et al. [5] using character theory, when the characteristic of the field is
zero.

For theMod(X) case, in [20] C.McMullen considered unitary representations of the braid
group acting on global sections of differentials of cyclic covers of the projective line. His
result can be recovered by our homological computations by dualizing. This approach was
also mentioned in this article [20, p. 914 after th. 5.5.]. We believe that the details of this
computation are worth studying and are by no means trivial.

Finally the homology approach allows us to study the pro-� analogue according to Ihara’s
point of view, and several classical notions like the homology intersection pairing can be
generalized to the Weil pairing for the Tate module. This fits well with the “arithmetic
topology” viewpoint, where notions from knot theory have an arithmetic counterpart, [15,23].

Let us now describe the results and the structure of the article. Section 2 is devoted to the
construction of Artin’s and Ihara’s representations. In Sect. 3 we compute the generators of
the fundamental group of the open curves involved in this article. All information is collected
in Table 1 of page 11.

We will make computations in several group algebras for multiplicative groups. In order
to avoid confusion we will denote by Z = {ta : a ∈ Z} and by Z� = {ta : a ∈ Z�}, where
t is a formal parameter. These groups are isomorphic to the groups Z and Z�. The group
Z/nZ = 〈σ 〉 is considered to be generated by the order n element σ .

Select a set � consisted of s points of P1. Let Cs be a topological cover of Xs = P1\�
with Galois group Gal(Cs/Xs) = Z, see Definition 9. Let also Yn be a topological cover
of Xs , covered by Cs , so that Gal(Yn/Xs) = Z/nZ. We will denote by Ȳn the complete
algebraic curve corresponding to Yn .
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In Sect. 4 we investigate the decomposition of the homology groups as Galois modules
and prove the following

Theorem 1 The homology groups for the cyclic covers Cs (resp. Yn) can be seen as Galois
modules for the group Z (resp. Z/nZ) as follows:

H1(Cs, Z) = R0/R
′
0 = Z[Z]s−2 = Z[t, t−1]s−2

H1(Yn, Z) = Rn/R
′
n = Z[Z/nZ]s−2

⊕
Z. (1)

Cyclic coverswith infiniteGalois group lead to theBurau representationwhich is discussed
in 4.2. Similar to the discrete case, we have that H1(Cs, Z�) = Z�[Z]s−2 but in order to have
an action of the absolute Galois group, a larger space is required, namely the completed group
algebra Z�[[Z�]]s−2.

In Sect. 4.3 we give a pro-� version of the analogue of a Burau representation

ρBurau : Gal(Q̄/Q) → GLs−2(Z�[[Z�]])
and in Theorem 23 we give a matrix expression of this representation.

In Sect. 5 for the complete curve Ȳn we prove the following

Theorem 2 Let σ be a generator of the cyclic group Z/nZ. The complete curve Ȳn has
homology

H1(Ȳn, Z) = J s−2
Z/nZ,

where JZ/nZ = Z[Z/nZ]/〈∑n−1
i=0 σ i 〉 is the co-augmentation module of Z[Z/nZ].

The later space when tensored with C gives a decomposition

H1(Ȳn, Z) ⊗Z C =
n−1⊕

ν=1

Vν,

where each Vν is the s − 2-dimensional eigenspace corresponding to eigenvalue e
2π iν
n of the

action of a generator σ of the group Z/nZ, where σ is seen as a linear operator acting on
H1(Ȳn, Z) ⊗Z C. Each space Vν gives rise to a representation of the braid group Bs , which

is the reduction of the Burau representation at t �→ e
2π iν
n .

If n = �k then a similar reduction process can be applied to the pro-�Burau representation.
We consider the �k −1 non-trivial �k-roots of unity, ζ1, . . . , ζ�k−1 in the algebraically closed
field Q̄�. We have

Z�[[Z�]]s−2 ⊗Z�
Q̄� =

�k−1⊕

ν=1

Vν,

which after reducing Z�[[Z�]] → Z�[Z�/�
kZ�] = Z�[Z/�kZ] sending t �→ ζν gives rise

to the representation in Vν . The modules Vν in the above decomposition are only Z�[[Z�]]-
modules and kerN -modules, where N : Gal(Q̄/Q) → Z∗

� is the pro-� cyclotomic character.
We would like to point out that the space Z�[[Z�]]s−2 contains information of all covers

Ȳ�k for all k ∈ N, and equals the étale homology of a curve Ỹ , which appears as a Z�-cover
of the projective line, minus the same set of points removed. Going back from the arithmetic
to topology we can say that the classical discrete Burau representation can be recovered
by all representations of finite cyclic covers Ȳn , since we can define the inverse limit of all
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mod n representations obtaining the Bs-module Z[[Ẑ]]s−2. This Bs-module in turn contains
Z[Z]s−2 as a dense subset.

Finally in Sect. 5.2.1 we see how the analogue of the homology intersection pairing can
be interpreted as an intersection pairing using the Galois action on the Weil pairing for the
Tate module. For a free Z (resp. Z�)-module of rank 2g, endowed with a symplectic pairing
〈·, ·〉 the symplectic group is defined as

Sp(2g, Z) = {M ∈ GL(2g, Z) : 〈Mv1, Mv2〉 = 〈v1, v2〉}
and the generalized symplectic group is defined as

GSp(2g, Z) = {M ∈ GL(2g, Z�) : 〈Mv1, Mv2〉 = m〈v1, v2〉, for some m ∈ Z∗
�}.

In the topological setting the pairing is the intersection pairing and we have the following
representation

ρ : Bs−1 → Sp(2g, Z)

We employ properties of the Weil pairing in order to show that we have a representation

ρ′ : Gal(Q̄/Q) → GSp(2g, Z�)

as an arithmetic analogue of the braid representation ρ.

2 On Artin and Ihara representations

2.1 Artin representation

It is known that the braid group can be seen as an automorphism group of the free group
Fs−1 in terms of the Artin representation. More precisely the group Bs−1 can be defined as
the subgroup of Aut(Fs−1) generated by the elements σi for 1 ≤ i ≤ s − 2, given by

σi (xk) =

⎧
⎪⎨

⎪⎩

xk if k �= i, i + 1,

xi xi+1x
−1
i if k = i,

xi if k = i + 1.

The open disk with s − 1 points removed is homeomorphic with the the projective line with
infinity and s − 1 points removed. In particular, these spaces have isomorphic fundamental
groups. Indeed, the free group Fs−1 is the fundamental group of Xs defined as

Xs = P1 − {P1, . . . , Ps−1,∞}. (2)

In this setting the group Fs−1 is given as:

Fs−1 = 〈x1, . . . , xs |x1x2 · · · xs = 1〉, (3)

the elements xi correspond to homotopy classes of loop circling once clockwise around each
removed point Pi .

Remark 3 Notice that not only Bs−1 acts on Fs−1 but also Bs acts on Fs−1. Indeed, for the
extra generator σs−1 ∈ Bs − Bs−1 we define

σs−1(xi ) = xi for 1 ≤ i ≤ s − 2 (4)

σs−1(xs−1) = xs−1xs x
−1
s−1 = x−1

s−2x
−1
s−3 · · · x−1

1 x−1
s−1 (5)
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and using Eqs. (4) and (5) we compute

σs−1(xs) = σs−1(x
−1
s−1 · · · x−1

1 ) = σs−1(xs−1)
−1(x−1

s−2 · · · x−1
1

) = xs−1.

2.2 Ihara representation

We will follow the notation of [15]. Y. Ihara, by considering the étale (pro-�) fundamental
group of the space P1

Q̄
− {P1, . . . , Ps−1,∞}, with Pi ∈ Q, introduced the monodromy

representation

IhS : Gal(Q̄/Q) → Aut(Fs−1),

where Fs−1 is the pro-� completion of the free group Fs−1. Here the group Fs−1 admits a
presentation, similar to Eq. (3),

Fs−1 = 〈x1, . . . , xs |x1x2 · · · xs = 1〉 , (6)

where here Fs−1 is considered as a quotient of the free pro-� group Fs in the pro-� category.
The image of the Ihara representation is inside the group

P̃(Fs−1) :=
{
σ ∈ Aut(Fs−1)|σ(xi ) ∼ xN (σ )

i (1 ≤ i ≤ s) for some N (σ ) ∈ Z∗
�

}
,

where ∼ denotes the conjugation equivalence.
This group is the arithmetic analogue of the Artin representation of ordinary (pure) braid

groups inside Aut(Fs−1). Notice that the exponent N (σ ) depends only on σ and not on xi .
Moreover the map

N : P̃(Fs−1) → Z∗
�

is a group homomorphism and N ◦ IhS : Gal(Q̄/Q) → Z∗
� coincides with the cyclotomic

character χ�.

Remark 4 As in Remark 3 the relation x1 · · · xs−1xs = 1 implies that P̃(Fs−1) also acts on
the free group Fs since xs = (x1 · · · xs−1)

−1.

In this setting an element σ ∈ Gal(Q̄/Q) can be seen acting on the topological generators
x1, . . . , xs−1 of the free group by

σ(xi ) = wi (σ )xN (σ )
i wi (σ )−1. (7)

Moreover, by normalizing by an inner automorphism we might assume that w1(σ ) = 1. We
will use this normalization from now on.

Remark 5 We have considered in Ihara’s representation the points P1, . . . , Ps−1 to be in
Q. If we allow P1, . . . , Ps−1 to be in Q̄ then there is a minimal algebraic number field K
which contains them all. We can consider in exactly the same way the absolute Galois group
Gal(Q̄/K ) = Gal(K̄/K ) and then all arguments of this article work in exactly the same way
for Gal(K̄/K ).

If now we want to consider representations of Gal(Q̄/Q) but the field K defined by
the set of points P̄ := {P1, . . . , Ps−1} is strictly bigger than Q, then in order to obtain
a reasonable action of Gal(Q̄/Q) on the set of branch points, we have to assume that the
polynomial f P̄ (x) := ∏s−1

j=1(x − Pj ) is in Q[x]. In this case the absolute Galois group
induces a permutation action on the points Pj and defines a subgroup of the the symmetric
group Ss−1.
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The braid group is equipped by an onto map φ : Bs−1 → Ss−1 with kernel the group of
pure braids.

We have have argued that the braid group Bs is a discrete analogue of the absolute Galois
groupGal(Q̄/Q). Every selectionof points P̄ ,whichgives rise to a polynomial f P̄ (x) ∈ Q[x],
provides us with a map φP̄ : Gal(Q̄/Q) → Ss−1. We would like to see these maps φP̄ as
analogues of the map φ. The group of “pure braids” with respect to such a map φP̄ is the
absolute Galois group Gal(Q̄/K ) of the field K generated by the set of points P̄ , while the
imageφP̄ (Gal(Q̄/Q)) ⊂ Ss−1 is not onto, unless the points P1, . . . , Ps−1 have no polynomial
algebraic relations defined overQ. As a matter of fact it conjectured -this is the inverse Galois
problem- that any finite group can appear as the image of such a map φP̄ allowing P̄ and s
to vary. In this way we obtain a short exact sequence

1 → Gal(Q̄/K ) → Gal(Q̄/Q)
φP̄−→ Gal(K/Q) → 1.

In general case, even if P̄ is not a subset of Q, there is a representation

ρ : Gal(Q̄/Q) → Aut(Fs−1)

where for σ ∈ Gal(Q̄/Q) ρ(σ )(xi ) = w(σ)xφP̄ (σ )w(σ )−1. If σ is a “pure braid”, then
the above action can be simplified, since the generator xi of Fs−1 is not moved to another
generator. For this article the interesting part is the study of Gal(Q̄/Q) and not the problem
of finding the Galois group of a polynomial in Q[x]. If we start by selecting all points in P̄
in Q, as Ihara did, then the whole group Gal(Q̄/Q) can be considered as an analogue of pure
braids.

2.3 Similarities

For understanding representations of the absolute Galois group Gal(Q̄/Q), the theory of
coverings of P1

Q
− {0, 1,∞} is enough, by Belyi’s theorem, [2]. On the other hand the study

of topological covers of P1
Q

−{0, 1,∞} is not very interesting; both groups B2 and B3 which

can act on covers of P1
Q

− {0, 1,∞} are not very interesting braid groups. In order to seek
out similarities between the Artin and Ihara representation, we will study covers with more
than three points removed. Notice that when the number s of points we remove is s > 3, then
we expect that their configuration might also affect our study.

Moreover elements in the braid group are acting like elements in the mapping class group
of the punctured disk i.e. on the projective line minus s points. The braid group acts like the
symmetric group on the set of removed points� and acts like a complicated homeomorphism
on the complement Ds−1 of the s − 1 points.

Let� = P̄∪{∞} and let K be the field generated by the points in P̄ . The groupGal(Q̄/K )

keeps invariant the set � and corresponds to the notion of pure braids. Since Gal(Q̄/K ) also
acts on P1

Q̄
it acts on the difference P1

Q̄
\�. This mysterious action should be seen as the

arithmetic analogue of the action of the (pure)braid group on the punctured disc.
Knot theorists study braid group representations, in order to provide invariants of knots

(afterMarkov equivalence, see [26, III. 6 p. 54]) and number theorists studyGalois representa-
tions in order to understand the absoluteGalois groupGal(Q̄/Q). Both kind of representations
are important and bring knot and number theory together within the theory of arithmetic
topology.
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3 On the fundamental group of cyclic covers

Let π : Y → P1 be a ramified Galois cover of the projective line ramified above the set
� = {P1, . . . , Ps} ⊂ P1. The open curve Y0 = Y − π−1(�) is then a topological cover
of Xs = P1 − � and can be seen as a quotient of the universal covering space X̃s by the
free subgroup R0 = π1(Y0, y0) of the free group π1(Xs, x0) = Fs−1 (resp. pro-� free group
Fs−1), where s = #�. We will employ the Reidemeister Schreier method, algorithm [4,
chap. 2 sec. 8], [19, sec. 2.3 th. 2.7] in order to compute the group R0.

3.1 Schreier’ s lemma

Let Fs−1 = 〈x1, · · · , xs−1〉 be the free group with basis X = {x1, · · · , xs−1} and let H be a
subgroup of of Fs−1.

A (right) Schreier Transversal for H in Fs−1 is a set T = {t1 = 1, · · · , tn} of reduced
words, such that each right coset of H in Fs−1 contains a unique word of T (called a
representative of this class) and all initial segments of these words also lie in T . In particular,
1 lies in T (and represents the class H ) and Hti �= Ht j , ∀i �= j . For any g ∈ Fs−1 denote
by g the element of T with the property Hg = Hg.

If ti ∈ T has the decomposition as a reduced word
ti = xe1i1 · · · xekik (with i j = 1, . . . , s − 1, e j = ±1 and e j = e j+1 if xi j = xi j+1), then for

every word ti in T we have that

ti = xe1i1 · · · xekik ∈ T ⇒ 1, xe1i1 , xe1i1 x
e2
i2

, . . . , xe1i1 x
e2
i2

· · · xekik ∈ T . (8)

Lemma 6 (Schreier’s lemma) Let T be a right Schreier Transversal for H in Fs−1 and set
γ (t, x) := t xt x−1, t ∈ T , x ∈ X and tx /∈ T . Then H is freely generated by the set

{γ (t, x)|γ (t, x) �= 1〉}. (9)

3.2 Automorphisms of free groups acting on subgroups

If R0 = π1(Y0, y0) is a characteristic subgroup of Fs−1 = π1(P
1 − �) (resp. of Fs−1 in the

pro-� case) then it is immediate that the Artin (resp. Ihara) representation gives rise to an
action on R0.

Observe that since the cover π : Y → P1 is Galois we have that R0 � Fs−1 and the Artin
representation gives rise to a well defined action of the braid group on R0.

The same argument applies for the kernel of the norm map in the Ihara case, that is since
the pro-� completion of R0 is a normal subgroup of Fs−1, every element σ in Gal(Q̄/Q)with
χ�(σ ) = 1 acts on the pro-� completion of π1(Y0, y0).

This is in accordance with a result of Birman and Hilden [3, th. 5], which in the case of
cyclic coverings π : C → (P1 − �), relates the subgroup Modπ (C) of the mapping class
group of C consisted of the fiber preserving automorphisms, the Galois group Gal(C/P1)

and the mapping class group Mod(P1 − �) of P1 − � in terms of the quotient

Modπ (C)/Gal(C/P1) = Mod(P1 − �).

For example when Y is the covering corresponding to the commutator group F ′
s−1, then

Gal(Y/Xs) ∼= Fs−1/F ′
s−1 = H1(X , Z). Therefore, the latter space is acted on by the group

of automorphisms, and the braid group Bs .
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3.3 Automorphisms of curves

For the case of automorphisms of curves, where the Galois cover π : Y → P1 has Galois
group H , we consider the short exact sequence

1 → R0 → Fs−1 → H → 1.

We see that there is an action of H on R0 modulo inner automorphisms of R0 and in particular
a well defined action of H on R0/R′

0 = H1(Y0, Z). Therefore the space H1(Y0, Z) can be
seen as a direct sum of indecomposable Z[H ]-modules.

Remark 7 A cyclic cover X given in Eq. (21) might have a bigger automorphism group than
the cyclic group of order n, if the roots {bi , 1 ≤ i ≤ s} form a special configuration. Notice
also that if the number s of branched points satisfies s > 2n then the automorphism group
G fits in a short exact sequence

1 → Z/nZ → G → H → 1, (10)

where H is a subgroup of PGL(2, C) [16, prop. 1]. The first author in [16] classified all such
extensions.

Observe that the action of the mapping class group on homology is of topological nature
and hence independent of the special configuration of the roots bi . If these roots have a special
configuration, then certain elements of the mapping class group become automorphisms of
the curve. This phenomenon is briefly explained on page 895 of [20].

Similarly, suppose that the set b1, . . . , bs is fixed point wise by the absolute Galois group,
that is b1, . . . , bs ∈ P1(Q). The action of elements of Gal(Q̄/Q) on homology is the same
for all such selections of {b1, . . . , bs} ⊂ P1(Q). However if these roots bi have a special
configuration, then certain elements of Gal(Q̄/Q) become automorphisms of the group.

If the branch locus {bi : 1 ≤ i ≤ s} is invariant under the group H then H1(X , Z) is a
Z[G] module, where G is an extension of H with kernel Z/nZ given by Eq. (10).

3.4 Adding themissing punctures

Let us now relate the group R = π1(Y , y0) corresponding to the complete curve Y with the
group R0 corresponding to the open curve Y0 = Y − π−1(�). We know that the group R0

admits a presentation

R0 = 〈a1, b1, . . . , ag, bg, γ1, . . . , γs |γ1γ2 · · · γs · [a1, b1][a2, b2] · · · [ag, bg] = 1〉,
where g is the genus of Y .

Convention 8 Given γ1, . . . , γs group elements we will denote by 〈γ1, . . . , γs〉 the closed
normal group generated by these elements. In the case of usual groups the extra “closed”
condition is automatically satisfied, since these groups have the discrete topology. So the
“closed group” condition has a non-trivial meaning only in the pro-� case.

The completed curve Y has a fundamental group which admits a presentation of the form

R = 〈a1, b1, a2, b2, . . . , ag, bg|[a1, b1][a2, b2] · · · [ag, bg] = 1〉
= R0

〈γ1, . . . , γs〉 .
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There is the following short exact sequence relating the two homology groups:

0 〈γ1, . . . , γs〉 H1(Y0, Z)
∼=

H1(Y , Z)
∼=

0

R0/R′
0 R/R′ = R0/R′

0〈γ1, . . . , γs〉

(11)

Note that if a group acts on R0, then this action can be extended to an action of R0/〈γ1, . . . , γs〉
if and only if the group keeps 〈γ1, . . . , γs〉 invariant.

4 Examples—curves with punctures

Definition 9 Recall that Xs = P1\�, where� is a subset ofP1 consisted of s points. Consider
the projection

0 → I → H1(Xs, Z)
α−→ Z → 0

and let Cs be the curve given as quotient Y/I , so that Gal(Cs/Xs) = Z. The map α is
the winding number map which can be defined both on the fundamental group and on its
abelianization by: (1 ≤ i1, . . . , it ≤ s, �i1 , . . . , �it ∈ Z)

α : π1(Xs, x0) −→ Z x
�i1
i1

x
�i2
i2

· · · x�it
it

�→
t∑

μ=1

�iμ . (12)

The following map is a pro-� version of the w-map defined in Eq. (12). Let Fs−1 be the
free pro-� group in generators x1, . . . , xs−1. Consider the map

α : Fs−1 → Fs−1/〈x1x−1
j , j = 2, . . . , s − 1〉 ∼= F1 ∼= Z�. (13)

The map α is continuous so if vn is a sequence of words in Fs−1 converging to v ∈ Fs−1,
then

lim
n

α(vn) = α(v) ∈ Z�.

4.1 On certain examples of cyclic covers of P1

Consider the commutative diagram below on the left:

X̃s

Fs−1

F ′
s−1

R0 Y

H1(Xs ,Z)

I

Cs

Z

Xs

Then H1(Cs, Z) = R0/R′
0, where R0 = π1(Cs) is the free subgroup of Fs−1 correspond-

ing to Cs . Moreover H1(Cs, Z) is a free Z[Z]-module free of rank s − 2 acted on also by
Bs−1 giving rise to the so called Burau representation:
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ρ : Bs−1 → GL(s − 2, Z[t, t−1]).
Keep in mind that Z[Z] ∼= Z[t, t−1]. In what follows will give a proof of these facts using
the Schreier’s lemma.

Lemma 10 The group R0, is an infinite rank group and is freely generated by the set

{xi1x j x−i−1
1 : i ∈ Z, j ∈ 2, . . . , s − 1}. (14)

Proof Consider the epimorphisms

Fs−1
p′

α

Fs−1/F ′
s−1

p′′
Z = H1(Y , Xs)/I .

Set α = p′′ ◦ p′. Let y be an element in α−1(1Z). By the properties of the winding number
we can take as y = x1. Moreover α(x j ) = y for all 1 ≤ j ≤ s − 1, since the automorphism
xi ↔ x j is compatible with I and therefore introduces an automorphism of Z, so α(x j ) =
y±1, and we rename the generators xi to x−1

i if necessary.
Let T := {yi : i ∈ Z} ⊂ Fs−1 be a set of representatives of classes in Fs−1/R0 ∼= Z.

The set T is a Schreier transversal, and Schreier’s lemma can be applied, see lemma 6. For
every x ∈ Fs−1 we will denote by x̄ the representative in T . Moreover for all i ∈ Z and
1 ≤ j ≤ s − 1 we have yi x j = yi+1 and by the Schreier’s lemma we see that

yi x j
(
yi x j

)−1 = yi x j y
−i−1 = xi1x j x

−i−1
1 i ∈ Z, j ∈ 2, . . . , s − 1.

��

Remark 11 The action of Z[Z] on R0/R′
0 is given by conjugation. This means that for n ∈ Z

we have

Z[Z] × R0 −→ R0

(tn, r) �−→ xn1 r x
−n
1 (15)

A generating set for H1(Cs, Z) as a free Z[Z]-module is given by the s − 2 elements β j :=
x j x

−1
1 . Moreover the Z-action is given by

(
xi x

−1
1

)tn = xn1 xi x
−n−1
1 ,

where t is a generator of the infinite cyclic group Z. This means that H1(Cs, Z) is a free
Z[Z]-module of rank s − 2.

Observe that in R0/R′
0 we have

x j (xi x
−1
1 )x−1

j = (x j x
−1
1 )x1βi x

−1
1 (x j x

−1
1 )−1

= β j x1βi x
−1
1 β−1

j = β t
i ,

i.e. the conjugation by any generator x j has the same effect as the conjugation by x1.

Let us now consider a finite cyclic cover Yn of Xs which is covered by Cs , i.e. we have
the diagram on the right bellow:
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Lemma 12 The group Rn = π1(Yn) ⊃ R0 is the kernel of the map αn

π1(X)
α

αn

Z Z/nZ.

Proof This is clear from the explicit description of the group R0 given in Eq. (14). ��
X̃s

R0 Y

H1(Xs ,Z)

I

Cs

Z Yn

Z/nZ
Xs

Lemma 13 The group Rn is generated by

Rn = {xi1x j x−i−1
1 : 0 ≤ i ≤ n − 2, 2 ≤ j ≤ s − 1} ∪ {xn−1

1 x j : 1 ≤ j ≤ s − 1}.
which is a free group on r = (s − 2)n + 1 generators.

Proof In this case the transversal set equals T = {yi : 0 ≤ i ≤ n − 1}. Moreover

yi x j =
{
yi+1 if i < n − 1

1 if i = n − 1.

For all i , 0 ≤ i ≤ n − 1 and for all generators x j , 1 ≤ j ≤ s − 1 we compute

yi x j (yi x j )
−1 =

{
yi x j y−i−1 = xi1x j x

−i−1
1 if 0 ≤ i ≤ n − 2

yn−1x j = xn−1
1 x j if i = n − 1

Keep in mind that if j = 1 then xi1x j x
−i−1
1 = 1 and this value does not give us a gen-

erator. On the other hand the expression x−1
1 x j survives even if j = 1. The desired result

follows. ��
Proposition 14 The Z-module Rn/R′

n as Z[Z/nZ]-module is isomorphic to
Rn/R

′
n = Z[Z/nZ]s−2

⊕
Z.

Proof Set β j = x j x
−1
1 for 2 ≤ j ≤ s − 1. Then the action of Z/nZ = 〈σ 〉 on elements β j

is given by

βσ�

j = x�
1

(
x j x

−1
1

)
x−� = x�

1x j x
−�−1
1 for 0 ≤ � ≤ n − 1.

It is clear that for each fixed j , 2 ≤ j ≤ s −1, the elements βσ�

j generate a copy of the group
algebra Z[Z/nZ]. By the explicit form of the basis generators given in Lemma 13 we have
the alternative basis given by

{xi1x j x−i−1
1 : 2 ≤ j ≤ s − 1, 0 ≤ i ≤ n − 1} ∪ {xn1 }. (16)
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Table 1 Generators and homology

Group Generators Curve Galois group Homology

Fs−1 x1, . . . , xs−1 Xs {1} Fs−1/F
′
s−1

{1} ∅ X̃s Fs−1 {1}
F ′
s−1 [xi , x j ], i �= j Y Fs−1/F

′
s−1 F ′

s−1/F
′′
s−1

R0 xi1x j x
−i−1
1 , i∈Z

2≤ j≤s−1 Cs Z R0/R
′
0

Rn
xi1x j x

−i−1
1 ,

0≤i≤n−2
2≤ j≤s−1

xn−1
1 x j , 1 ≤ j ≤ s − 1

Yn Z/nZ Rn/R′
n

The result follows. ��
Remark 15 The above computation is compatible with the Schreier index formula [4, cor.
8.5 p. 66] which asserts that

r − 1 = n(s − 2). (17)

Remark 16 Observe that there is no natural reduction modulo n map from H1(Cs, Z) to
H1(Yn, Z) corresponding to the group reduction Z → Z/nZ.

We collect here the generators of the open curves involved in this article. The curves on
the third column correspond to the quotients of the universal covering space of Xs by the
groups of the first column.

4.2 The Burau representation

Consider the action of a generator σi of Bs seen as an automorphism of the free group, given
for 1 ≤ i, j ≤ s − 2 as

σi (x j ) =

⎧
⎪⎨

⎪⎩

x j if j �= i, i + 1

xi if j = i + 1

xi xi+1x
−1
i if j = i

Therefore the conjugation action on the generatorsβ j = x j x
−1
1 of R0, seen as aZ[Z]-module,

is given for j ≥ 2 by:

σ j (β j+1) = σ j (x j+1x
−1
1 ) = x j x

−1
1 = β j ,

σ j (β j ) = σ j (x j x
−1
1 ) = x j · x j+1 · x−1

j · x−1
1 = x j x

−1
1 · x1x j+1x

−2
1 x21 x

−1
j · x−1

1

= β j x1β j+1x
−1
1 x1β

−1
j x−1

1 = β jβ
t
j+1β

−t
j = β1−t

j β t
j+1.

The notation for t above is in accordance with the group algebra notation Z[Z] = Z[t, t−1].
Also in the special case where j = 1 we compute:

σ1(β2) = σ1(x2x
−1
1 ) = x1 · x1x−1

2 x−1
1 = β−t

2 ,

and if i > 2

σ1(βi ) = σ1(xi x
−1
1 ) = xi · x1x−1

2 x−1
1 = xi x

−1
1 · x1x1x−1

2 x−1
1 = βiβ

−t
2 .
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We now compute the action on the Z[Z]-module R/R′, so the βi , β j are commuting and we
arrive at the matrix of the action with respect to the basis {β2, . . . , βs−1}:

σ j �→

⎛

⎜⎜⎝

Id
1 − t 1
t 0

Id

⎞

⎟⎟⎠ , if j �= 1 and σ1 �→

⎛

⎜⎜⎜⎝

−t −t −t
0 1 0
...

. . .
. . .

0 · · · 0 1

⎞

⎟⎟⎟⎠ .

Lemma 17 The action of t on Rab
0 commutes with the action of the braid group.

Proof It is obvious that for σ j j ≥ 2 and a ∈ R0 we have

σ j (a
t ) = σ j (x1ax

−1
1 ) = x1σ j (a)x−1

1 = (σ j (a))t .

For σ1 we observe that

σ1(a
t ) = σ1(x1ax

−1
1 ) = x1x2x

−1
1 σ1(a)x1x

−1
2 x−1

1 = x1β2σ1(a)β−1
2 x−1

1

= x1σ1(a)x−1
1 = (σ1(a))t ,

since σ1(a) is expressed as product of βν and the elements βi commute modulo R′
0. ��

4.3 The profinite Burau representation

Since the action of elements σ ∈ Gal(Q̄/Q) on elements xi involves N (σ ) ∈ Z�, we cannot
define an action of the absoluteGalois group on H1(Cs, Z�) = H1(Cs, Z)⊗ZZ� = Z�[Z]s−2,
in the same way we defined the action of the braid group on H1(Cs, Z).

Recall that we denote by Z� the group Z� written multiplicatively, i.e. Z�
∼= 〈tα, α ∈ Z�〉.

It turns out that instead of the ordinary group algebra Z�[Z] we need the completed group
algebra Z�[[Z�]].

In this way we see the profinite Burau representation as a linear representation:

ρBurau : Gal(Q̄/Q) → GLs−2(Z�[[Z�]]).

Remark 18 The Z�-algebra Z�[[Z�]] is a ring defined as the inverse limit

Z�[[Z�]] = lim←
n

Z�[Z/�nZ]

of the ordinary group algebra, see [27, p. 171]. It contains the Z-algebra Z[Z] ∼= Z[t, t−1]
which appears in the discrete topological Burau representation as a dense subalgebra.

Lemma 19 Let α = ∑∞
ν=0 aν�

ν ∈ Z�, 0 ≤ aν < � for all 0 ≤ ν. Set

An =
(
1 + t + t2 + . . . + t (

∑n
ν=0 aν�ν )−1

)
.

Then the sequence above converges and we will denote its limit by (tα − 1)/(t − 1), that is

lim
n→∞

(
1 + t + t2 + . . . + t (

∑n
ν=0 aν�ν )−1

)
= tα − 1

t − 1
.
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Proof The algebra Z�[Z/�nZ] is identified by the set of all expressions
∑�n−1

ν=0 bν tνn , where
tn is a generator of the cyclic group Z/�nZ and bν ∈ Z�. In the inverse limit defining the ring
of �-adic numbers the generator tn+1 of Z/�n+1Z is sent to the generator tn of Z/�nZ. The
corresponding map in the group algebras (by identifying tn = tn+1 = t) is given by sending

Z�[Z/�n+1Z] �
�n+1−1∑

ν=0

bν t
ν �−→

�n−1∑

ν=0

bν t
ν ∈ Z�[Z/�nZ].

We compute now for m < n

An − Am =
a0+a1�+···+an�n∑

ν=a0+a1�+···+am�m

tν = ta0+a1�+···+am�m
am+1�

m+1+···+an�n∑

ν=0

tν

Therefore, the sequence is Cauchy and converges in the complete group algebra
Z�[[Z�]]. ��
Lemma 20 We have for α ∈ N, βk = xkx

−1
1 .

xα
k x

−α
1 = βk · β t

k · β t2
k · · · β tα−1

k . (18)

For α ∈ Z� we have

xα
k x

−α
1 = β

tα−1
t−1

k . (19)

Proof We will prove first the result for α = n ∈ Z. Indeed, for α = 1 the result is trivial
while by induction

xnk x
−n
1 = xkβk · · · β tn−2

k x−1
1 = xkx

−1
1 x1βk · · · β tn−2

k x−1
1 = βk · β t

k · β t2
k · · · β tn−1

k

Now for α = ∑∞
ν=0 aν�

ν ∈ Z� we consider the sequence cn = ∑n
ν=0 aν�

ν → α. We have

xα
k x

−α
1 = lim

n
xcnk x−cn

1 = lim
n

β
tcn −1
t−1

k = β
tα−1
t−1

k .

��
Lemma 21 For every i �= 1, and N ∈ Z� we have

x−1
i x−N

1 = x−N
1 x−1

i · β1−t N
i .

More generally for a ∈ Z∗
�

x−a
i x−N

1 = x−N
1 x−a

i · β
ta−1
t−1 (1−t N )

i

Proof We compute

x−1
i x−N

1 = x−N
1 x−1

i · xi x N1 x−1
i x−N

1

= x−N
1 x−1

i · xi x−1
1 xN1 (xi x

−1
1 )−1x−N

1

= x−N
1 x−1

i · βiβ
−t N
i

= x−N
1 x−1

i · β1−t N
i .
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The second equality is proved the same way

x−a
i x−N

1 = x−N
1 x−a

i · xai x N1 x−a
i x−N

1

= x−N
1 x−a

i · xai x−a
1 xN1 (xai x

−a
1 )−1x−N

1

= x−N
1 x−a

i · β
ta−1
t−1 (1−t N )

i .

��
Lemma 22 For a given word x−as−1

s−1 · · · x−a1
1 we have

(
x−as−1
s−1 · · · x−a1

1

)
x−N
1 = x−N

1

(
x−as−1
s−1 β

tas−1−1
t−1 (1−t N )

s−1 · · · x−a2
2 β

ta2−1
t−1 (1−t N )

2 x−a1
1

)
.

Proof We use Lemma 21 inductively to have

x−as−1
s−1 · · · x−a1

1 x−N
1 = x−as−1

s−1 · · · x−a3
3 x−N

1 x−a2
2 β

ta2−1
t−1 (1−t N )

2 x−a1
1

= x−as−1
s−1 · · · x−a4

4 x−N
1 x−a3

3 β
ta3−1
t−1 (1−t N )

3 x−a2
2 β

ta2−1
t−1 (1−t N )

2 x−a1
1

= · · ·

= x−N
1 x−as−1

s−1 β
tas−1−1

t−1 (1−t N )

s−1 · · · x−a2
2 β

ta2−1
t−1 (1−t N )

2 x−a1
1 .

��
For simplicity denote N (σ ) by N andwi (σ ) byw. We will considerwxNi w−1x−N

1 , where

w−1 = x−as−1
s−1 · · · x−a1

1 . We have

wxNi w−1x−N
1 = β

t
∑s−1

ν=1 aν t N−1
t−1

i β
t
∑s−2

ν=1 aν tas−1−1
t−1 (1−t N )

s−1 · · · β ta1 ta2−1
t−1 (1−t N )

2 .

An arbitrary element w ∈ Fs−1 can be written in a unique way as

w = B · xa11 · · · xas−1
s−1 , ai ∈ Z�

where B is an element in the group R0 generated by the elements βi , i = 2, . . . , s − 1.
Observe now that for every βi , and N ∈ Z� we have

βi x
−N
1 = x−N

1 xN1 βi x
−N
1 = x−N

1 β t N
i .

By considering a sequence of words in βi tending to B we see that

Bx−N
1 = x−N

1 BtN ,

for every element B in the pro-� completion of R0.
This means that

wxNi w−1x−N
1 = B(xa11 · · · xas−1

s−1 )xNi (x−as−1
s−1 · · · x−a1

1 )B−1x−N
1

= B
(
x
a1
1 ···xas−1

s−1

)
xNi x−N

1

(
x

−as−1
s−1 β

(1−t N ) t
as−1−1
t−1

s−1 ···x−a2
2 β

(1−t N ) t
a2−1
t−1

2 x
−a1
1

)
B−t N

= Bβ
ta1+···as−1 t N−1

t−1
i β

(1−t N )ta1+···+as−2 tas−1−1
t−1

s−1 · · · β(1−t N )ta1 ta2−1
t−1

2 B−t N .

The above in R0/R′
0 evaluates to

wxNi w−1x−N
1 =β

ta1+···+as−1 t N−1
t−1

i β
(1−t N )ta1+···+as−2 tas−1−1

t−1
s−1 ···β(1−t N )ta1 ta2−1

t−1
2 B−t N+1. (20)
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Theorem 23 For σ ∈ Gal(Q̄/Q) and 1 ≤ i ≤ s − 1 we have that σ(xi ) =
wi (σ )xN (σ )

i wi (σ )−1, where N (σ ) is the cyclotomic character N : Gal(Q̄/Q) → Z∗
� . Con-

sider the multiplicative group Z� which is isomorphic to Z� and has topological generator t
given by Z�

∼= 〈tα, α ∈ Z�〉. Let us write
wi (σ ) = Bi (σ )x

a1,i (σ )

1 · · · xas−1,i (σ )

s−1 , aν,i (σ ) ∈ Z�,

where Bi (σ ) ∈ R0/R′
0 is expressed as

Bi (σ ) = β
b2,i (σ )

2 · · · βbs−1,i (σ )

s−1 C,

with bi, j (σ ) ∈ Z� and C ∈ R′
0. The matrix representation of ρBurau with respect to the basis

β j = x j x
−1
1 , j = 2, . . . , s − 1 has the following form:

ρBurau(σ ) = t N (σ ) − 1

t − 1
L(σ ) + (

1 − t N (σ )
)
M(σ ) + (

1 − t N (σ )
)
K (σ ),

where L, M, K are (s − 2) × (s − 2) matrices given by

L(σ ) = diag
(
t
∑s−1

ν=1 aν,2(σ ), . . . , t
∑s−1

ν=1 aν,s−2(σ )
)

M(σ ) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�(a2,2) · ta1,2(σ ) · · · �(as,s−1) · ta1,s−1(σ )

�(a3,2) · ta1,2(σ )+a2,2(σ ) · · · �(a3,s−1) · ta1,s−1(σ )+a2,3(σ )

...
...

�(as−2,2) · ta1,2(σ )+···+as−1,2(σ ) · · · �(as−2,s−1) · ta1,s−1(σ )+···+as−1,s−1(σ )

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

K (σ ) =

⎛

⎜⎜⎜⎝

b2,2(σ ) b2,3(σ ) · · · b2,s−1(σ )

b3,2(σ ) b3,3(σ ) · · · b3,s−1(σ )
...

...
...

bs−1,2(σ ) bs−1,3(σ ) · · · bs−1,s−1(σ )

⎞

⎟⎟⎟⎠ .

In the above theorem the term

�(a) := (ta − 1)/(t − 1)

for a ∈ Z�, is defined in Lemma 19.

Proof We will find the matrix ρ corresponding to the action given by σ(xi ) = wi (σ )xN (σ )
i

wi (σ )−1. Let us write each wi (σ ) as

wi (σ ) = Bi (σ )x
a1,i (σ )

1 · · · xas−1,i (σ )

s−1 ,

where Bi (σ ) ∈ R0/R′
0 is expressed as

Bi (σ ) = β
b2,i (σ )

2 · · · βbs−1,i (σ )

s−1 C,

with bi, j (σ ) ∈ Z�[[Z�]] and C ∈ R′
0.

Let us now consider the action of σ on βi for i = 2, . . . , s − 1 and recall that just after
Eq. (7) we have selected a normalization by an inner automorphism w1(σ ) = 1, so that
σ(x1) = xN (σ )

1 . Therefore

σ(βi ) = σ(xi x
−1
1 ) = wi (σ )xN (σ )

i wi (σ )−1x−N (σ )
1 .
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The matrix form of ρBurau as given in Theorem 23 follows by Eq. (20). More preciselly the
matrix L(σ ) comes from the coefficients of the factor β

a1+···+as−1
i , the matrix M(σ ) comes

from the next factor

β
(1−t N )ta1+···+as−2 (tas−1−1)/(t−1)
s−1 · · · β(1−t N )ta1 (ta2−1)/(t−1)

2

and the matrix K (σ ) comes from the final factor B−t N+1. ��

5 Examples—complete curves

5.1 The compactification of cyclic covers

Every topological cover of the Riemann surface P1\{P1, . . . , Ps} gives rise to a Riemann
surface X0, which can compactified to a compact Riemann surface X , see [8, prop. 19.9].
Moreover if the topological cover is Galois with Galois group G, then the corresponding
function field C(X)/C(x) form a Galois extension with the same Galois group. We know
that every Kummer extension of the rational function field, totally ramified above s points,
corresponds to the cyclic cover of the projective line given by:

yn =
s∏

i=1

(x − bi )
di , (di , n) = 1. (21)

For different choices of exponents d1, . . . , ds the curves are in general not isomorphic, see
[13]. Without loss of generality we can assume that the infinity point of this model is not

ramified and this is equivalent to the condition
s∑

i=1
di ≡ 0 mod n, see [16, p. 667]. This

means the ramified points {P1, . . . , Ps−1, Ps = ∞} in our original setting are now mapped
to the points {b1, . . . , bs}.

Conversely, the cover given inEq. (21) determines equivalently a cyclicKummer extension
of the rational function field C(x) and since the exponents di are prime to n we have that
the points P1, . . . , Ps are all fully ramified see [16]. Therefore, the open curve obtained by
removing the s points Q1, . . . , Qs which map onto P1, . . . , Ps is a topological cyclic cover,
which can be considered with the tools developed so far.

However, we will show that the assumption made so far in this article lead to the selection
di = 1 for all 1 ≤ i ≤ s − 1. Let Qi be the unique point of X above bi and let ti be a local
uniformizer at Qi . We can select ti so that x − bi = tni . Indeed, valuation of x − bi in the
local ring at Qi is n and by Hensel’s lemma any unit is an n-power that can be absorbed by
reselecting the uniformizer ti if necessary. We can replace the factor (x −bi )di in the original
defining Eq.(21) of the curve in order to arrive at the following equation

yn = tndii U , U =
s∏

ν=1
ν �=i

(x − bν)
dν ∈ k[x], vQi (U ) = 0. (22)

The element U is invariant under the action of 〈σ 〉 and so is its n-th root u ∈ k[[ti ]]. Indeed,
since σ(un) = σ(U ) = un we have that σ(u) = ζ au, for some a, 0 ≤ a < n. But u is a unit,
therefore u ≡ a0 mod ti k[[ti ]], for some element a0 ∈ k, a0 �= 0. Also σ(a0) = a0, so by
considering σ(u) = ζ au modulo ti k[[ti ]] we obtain a0 = ζ aa0. This implies that a = 0 and
u is a σ -invariant element.
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Since x − bi = tni the generator σ of Gal(X/P1) acts on ti by sending σ(ti ) = ζ �ti for
some � ∈ N. This � equals d∗

i for some 0 < d∗
i < n, where did∗

i ≡ 1 mod n. Indeed, by

taking the n-root in Eq. (22), we have y = tdii u for some σ -invariant unit in k[[ti ]]. Then the
action of σ gives us that ζ = ζ �di , so �di ≡ 1 mod n. So in the short exact sequence

1 → Rn → Fs−1 → Z/nZ → 1

the elements xi , which correspond to loops winding once around each branch point, map to
the element σ d∗

i ∈ Z/nZ. This is not compatible with the selection of the winding number
function α given in Eq. (12) unless all di are equal. Without loss of generality we can assume
that di = 1 for all 1 ≤ i ≤ s − 1.

Riemann-Hurwitz theorem implies that

g = (n − 1)(s − 2)

2
, (23)

which is compatible with the computation of r = 2g + s − 1 given in Eq. (17).
This curve can be uniformized as a quotientH/� of the hyperbolic spacemodulo a discrete

free subgroup of genus g, which admits a presentation

� = 〈a1, b1, a2, b2, . . . , ag, bg|[a1, b1][a2, b2] · · · [ag, bg] = 1〉.
On the other hand side, when we remove the s branch points we obtain a topological cover
of the space Xs defined in the previous section. This topological cover corresponds to the
free subgroup Rn < Fs−1 given by

Rn = 〈a1, b1, a2, b2, . . . , ag, bg, γ1, . . . , γs |γ1γ2 · · · γs · [a1, b1] · · · [ag, bg] = 1〉.
ThegroupGal(X/P1) ∼= Z/nZ = 〈σ 〉 is a subgroupof the automorphismgroupAut(X) ⊂

Mod(X). Therefore the generator σ acts on Rn .
Since by Lemma 12 the group Rn is the fundamental group of Yn the space Rn/R′

n is
the first homology group of the open curve Yn . By Proposition 14 its structure is given by
H1(Yn, Z) = Z[Z/nZ]s−1 ⊕Z.

Let R̂n, R̂′
n be the pro-� completions of Rn and R′

n respectively. Since the quotient Rn/R′
n

is torsion free, the completion functor is exact, see [6, p. 35 exer. 21,22] and [27, pp. 81–85].
This allows us to see that

R̂n/R̂′
n = ̂H1(Yn, Z) = H1(Yn, Z�).

Lemma 24 With notation as above, the Gal(X/P1)-invariant elements of H1(Yn, Z) (resp.
H1(Yn, Z�)) is the group generated by the elements

{xni : 1 ≤ i ≤ s − 1}.
Proof Wewill use the decomposition of Proposition 14 for H1(Yn, Z) and the corresponding
decomposition of H1(Yn, Z�) = H1(Yn, Z) ⊗Z Z�. Observe that an element in the group
algebraZ[〈σ 〉] is σ -invariant if and only if it is of the form

∑n−1
i=0 aσ i for some a ∈ Z. Hence

the invariant elements are multiples (powers in the multiplicative notation) by

β jβ
σ
j β

σ 2

j · · · βσ n−1

j = xnj x
−n
1 .

The action of 〈σ 〉 = Gal(X/P1) is given by conjugation with x1, therefore xn1 is invariant
under this conjugation action and the result follows. ��

123



Geometriae Dedicata

The elements γi are lifts of the loops xi around each hole in the projective line. Thus γi
are Z/nZ-invariant. Set γi = xni . The quotient Z[Z/nZ]/〈∑n−1

i=0 σ i 〉 is the co-augmentation
module, see [25, sec. 1].

Lemma 25 We have

xnk xi x
−n
k x−1

1 = βk · βσ
k · βσ 2

k · · · βσ n−1

k · βσ n

i · β−σ n

k · β−σ n−1

k · · · β−σ 2

k · β−σ
k

Moreover in the abelian group R/R′ we have

xnk xi x
−n
k x−1

1 = βσ n

i β1−σ n

k .

Proof Write

xnk xi x
−n
k x−1

1 = xnk x
−n
1 · xn1 xi x−1

1 x−n
1 xn+1

1 x−n
k x−1

1

= βk · βσ
k · βσ 2

k · · · βσ n−1

k · xn1βi x
−n
1 x1

(
βk · βσ

k · βσ 2

k · · · βσ n−1

k

)−1
x−1
1

= βk · βσ
k · βσ 2

k · · · βσ n−1

k · βσ n

i · β−σ n

k · β−σ n−1

k · · · β−σ 2

k · β−σ
k

��
Lemma 26 The subgroup of H1(Yn, Z) = Rn/R′

n generated by the following two sets of
Z/nZ-invariant elements

{xn1 , xnj x
−n
1 : 2 ≤ j ≤ s − 1}, {xnj : 1 ≤ j ≤ s − 1}

is invariant under the action of the braid group.
The subgroup of H1(Yn, Z�) generated by the same elements is invariant under the braid

group and under the action of the group Gal(Q̄/Q).

Proof We consider first the braid action. The proof is the same in the discrete and in the pro-�
setting. By Lemma 20 we have

σ1(x
n
1 ) = (x1x2x

−1
1 )n = x1 · xn2 · x−1

1 = x1 · xn2 x−n
1 · xn−1

1

= x1 · β2 · βσ
2 · βσ 2

2 · · · βσ n−1

2 · x−1
1 · xn1 = βσ

2 · βσ 2

2 · · · βσ n

2 · xn1
= β2 · βσ

2 · · · βσ n−1

2 · xn1 = xn2 x
−n
1 · xn1 = xn2

σ1(x
n
2 ) = xn1 , σ1(x

n
i ) = xni (i > 2).

For j ≥ 2 : σ j (x
n
j x

−n
1 ) = (x j x j+1x

−1
j )nx−n

1 = x j · xnj+1 · x−1
j · x−n

1

= x j x
−1
1 · x1(xnj+1x

−n
1 )x−1

1 · xn1 · x1x−1
j · x−n

1

= xnj+1x
−n
1

σ j (x
n
j ) = σ j (x

n
j x

−n
1 )σ j (x

n
1 ) = xnj+1.

Wewill now consider the action ofGal(Q̄/Q), whichmakes sense only in the pro-� setting.
Each element τ ∈ Gal(Q̄/Q) acts on xi by

τ(xi ) = wi (τ )xN (τ )
i wi (τ )−1,

Therefore, for i = 2, . . . , s − 1 we have

τ(xni x
−n
1 ) = τ(β jβ

σ
j · · · βσ n−1

j )

= (
τ(β j )

)1+σ+···+σ n−1
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which is an element invariant under the action of Z/nZ = 〈σ 〉, therefore it belongs to
the desired group by Lemma 24. We have assumed that we will normalize by an inner
automorphism the element τ so that τ(xn1 ) = xN (τ )n

1 , that is w1(τ ) = 1. ��

Consider now the space

H1(Ȳn, Z) = Rn

R′
n · 〈γ1, . . . , γs〉 = Rn

R′
n · 〈xn1 , . . . , xns 〉 .

Observe that Rn/R′
n · 〈x1〉 = Z[Z/nZ]s−2. Since 〈γ1, . . . , γs〉 is both Z/nZ and Bs stable

we have a natural defined action of Bs on the quotient. We compute now the action of the
braid group on βσ i

j = xi1x j x
−i−1
1 . We can pick as a basis of the Z-module H1(Ȳn, Z) the

elements

{βσ i

j = xi1x j x
−1−i
1 : 2 ≤ j ≤ s − 1, 0 ≤ i ≤ n − 2}

and Eq. (18) written additively implies that βσ n−1

j = −∑n−2
ν=0 βσν

j , recall that all powers xni
are considered to be zero.

Let JZ/nZ be the co-augmentationmodule. Observe thatβ tν−1
j = [xν

1 , x j ]. It is well known
(see, [25, Prop. 1.2]) that Z[Z/nZ] = JZ/nZ ⊕ Z. We have

H1(Ȳn, Z) = J s−2
Z/nZ. (24)

Notice that the above Z-module has the correct rank 2g = (n − 1)(s − 2). The direct sum
in Eq. (24) is in the category of Z-modules not in the category of Bs-modules. Also on the
co-augmentation module JZ/nZ the generator of the Z/nZ is represented by the matrix:

A :=

⎛

⎜⎜⎜⎜⎝

0 · · · 0 −1

1
. . .

...
...

0
. . . 0 −1

0 0 1 −1

⎞

⎟⎟⎟⎟⎠
(25)

which is the companion matrix of the polynomial xn−1 + · · · + x + 1. Notice that for n = p
prime we can represent JZ/nZ is in terms of the Z-module Z[ζ ], where ζ is a primitive p-th
root of unity, i.e.

Z[ζ ] =
p−2⊕

ν=0

ζ νZ,

and the Z[Z/nZ]-module structure is given by multiplication by ζ .
Since the Z/nZ-action and the braid action are commuting we have a decomposition

(notice that 1 does not appear in the eigenspace decomposition below)

H1(Ȳn, Z) ⊗Z C =
n−1⊕

ν=1

Vν

where Vν is the eigenspace of the ζ ν-eigenvalue. Each Vν is a Bs-module of dimension
s − 2. In order to compute the spaces Vν we have to diagonalize the matrix given in Eq. (25).
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Consider the Vandermonde matrix given by:

P =

⎛

⎜⎜⎜⎝

1 ζ1 ζ 2
1 · · · ζ n−2

1
1 ζ2 ζ 2

2 · · · ζ n−2
2

...
...

...

1 ζn−1 ζ 2
n−1 · · · ζ n−2

n−1

⎞

⎟⎟⎟⎠ ,

where {ζ1, . . . , ζn−1} are all n-th roots of unity different than 1. Observe that

P · A = diag(ζ1, ζ2, . . . , ζn−1) · P.

Thus the action of the braid group on the eigenspace Vν of the eigenvalue ζ ν can be computed
by a base change as follows: Consider the initial base 1, β j , β

t
j , . . . , β

tn−2

j for 2 ≤ j ≤ s−1.
The eigenspace of the ζ ν eigenvalue has as basis the k-elements of the 1 × (n − 2) matrix

(
1, β j , β

σ
j , . . . , β

σ n−2

j

)
· P−1

for all j such that 2 ≤ j ≤ s − 1. These elements are C-linear combinations of the elements
β j and the action of the braid generators on them can be easily computed.

Since the action of Gal(Ȳn/P1) = 〈σ 〉 commutes with the action of Bs (resp. Gal(Q̄/Q))
each eigenspace is a Bs (resp. Gal(Q̄/Q)) module. The action of the operator t on each Vn
is essentially the action of σ , which by definition of eigenspace, acts by multiplication by
ζν . Therefore, the matrix representation corresponding to each eigenspace Vn is the matrix
of the Burau (resp. pro-� Burau) evaluated at t = ζν .

Similarly in the pro-� case we have

Z�[[Z�]]s−2 ⊗Z�
Q̄� =

�k−1⊕

ν=1

Vν, (26)

which after reducing Z�[[Z�]] → Z�[Z�/�
kZ�] = Z�[Z/�kZ] sending t �→ ζν gives rise to

the representation in Vν .
The decomposition in (26) is a decomposition ofZ�-module. The Galois module structure

and theZ� action do not commute in this case. Indeed, the Eq. (7) implies that σ ∈ Gal(Q̄/Q)

acts on the pro-� generator by

σ t = t N (σ )σ.

Therefore, the modules Vν defined above are kerN -modules.

5.2 Relation to actions on holomorphic differentials

Let S be a compact Riemann-surface of genus g. Consider the first homology group H1(S, Z)

which is a freeZ-module of rank 2g. Let H0(S,�S) be the space of holomorphic differentials
which is a C-vector space of dimension g. The function

H1(S, Z) × H0(S,�S) → R

(γ, ω) �→ 〈γ, ω〉 = Re
∫

γ

ω

induces a duality H1(S, Z) ⊗ R to H0(S,�S)
∗, see [17, th. 5.6], [9, Sect. 2.2 p. 224].

Therefore an action of a group element on H1(S, Z) gives rise to the contragredient action
on holomorphic differentials, see also [7, p. 271].
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C. Mc Mullen in [20, sec. 3] considered the Hodge decomposition of the DeRham coho-
mology as

H1(X) = HomC(H1(X , Z), C) = H1,0(X) ⊕ H0,1(X) ∼= �(X) ⊕ �̄(X).

Of course this decomposition takes place in the dual space of holomorphic differentials, and
is based on the intersection form

〈α, β〉 = i/2
∫

X
α ∧ β̄, i2 = −1. (27)

In this article we use the group theory approach and we focus around the homology group
H1(X , Z). Homology group is equippedwith an intersection form and a canonical symplectic
basis a1, . . . , ag, b1, . . . , bg such that

〈ai , b j 〉 = δi j , 〈ai , a j 〉 = 〈bi , b j 〉 = 0.

Every two homology classes γ, γ ′ can be written as Z-linear combinations of the canonical
basis

γ =
g∑

i=1

(λi ai + μi bi ) γ ′ =
g∑

i=1

(λ′
i ai + μ′

i bi )

and the intersection is given by

〈γ, γ ′〉 = (λ1, . . . , λg, μ1, . . . , μg)

(
0 Ig

−Ig 0

)
(λ′

1, . . . , λ
′
g, μ

′
1, . . . , μ

′
g)

t .

This gives rise to a representation

ρ : Bs−1 → Sp(2g, Z) (28)

since 〈σ(γ ), σ (γ ′)〉 = 〈γ, γ ′〉. Indeed, it is known [14, sec. 3.2.1] that the action of the
braid group keeps the intersection multiplicity of two curves. The relation to the unitary
representation on holomorphic differentials (and the signature computations) is given by
using the diagonalization of

(
0 Ig

−Ig 0

)
= P · diag(i, . . . , i︸ ︷︷ ︸

g

,−i, . . . ,−i︸ ︷︷ ︸
g

) · P−1,

and the extra“i” put in front of Eq. (27).

5.2.1 Arithmetic intersection

In order to define an analogous result in the case of absolute Galois group we have first to
define an intersection form in H1(X , Z�), which can be defined as the limit of the intersection
forms in H1(X , Z/�nZ). For every σ ∈ Gal(Q̄/Q) and γ, γ ′ ∈ H1(X , Z�) we have

〈σ(γ ), σ (γ ′)〉 = χ�(σ )〈γ, γ ′〉,
where χ�(σ ) is the �-cyclotomic character.

Indeed, consider the Jacobian variety J (X) for the curve X . By construction of the Jacobian
variety as a quotient of its tangent space at the identity element it is clear that H1(J (X), Z) =

123



Geometriae Dedicata

H1(X , Z) and after tensoring withZ� the same equality holds for the pro-� homology groups.
Consider the following diagram

H1(X , Z) × H1(X , Z)
〈·,·〉

Z

T�(J (X)) × T�(J (X))
eλ

Z�(1) = lim← μ�n ⊂ Q̄,

where the down horizontal array is given by the Weil pairing eλ with respect to the canonical
polarization λ, and the upper map is the homology intersection form. The arrows pointing
down on the left are the obvious ones, while the down pointing arrow Z → lim← μ�n is given

by Z � m �→ (. . . , e
2π im
�n , . . .). The above diagram is known to commute with a negative

sign, see [24, p. 237], [22, ex. 13.3 p. 58] that is

eλ(a, a′) =
(

. . . , e− 2π i〈a,a′〉
�n , . . .

)

By selecting a primitive �n-root of unity for every n, say e2π i/�
n
we can write Z�(1) as an

additive module, that is we can send

Z�(1) � α = (. . . , e2π ian/�
n
, . . .) �→ (. . . , an, . . .) ∈ Z�.

It is known that the Weil pairing induces a symplectic pairing in T�(J (X)) ∼= H1(X , Z�),
[21, prop. 16.6], [1,18] so that

〈σa, σa′〉 = χ�(σ )〈a, a′〉.
In this way we obtain a representation

ρ : Gal(Q̄/Q) → GSp(2g, Z�)

which is the arithmetic analogue of the representation given in Eq. (28).
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