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CONSTRUCTING CLASS INVARIANTS

ARISTIDES KONTOGEORGIS

Abstract. Shimura reciprocity law allows us to verify that a modular func-
tion gives rise to a class invariant. Here we present a new method based on
Shimura reciprocity that allows us not only to verify but to find new class
invariants from a modular function of level N .

1. Introduction

It is well known that the ring class field of imaginary quadratic orders can be
generated by evaluating the j-invariant at certain algebraic integers. There are
many modular functions that can be used for the generation of the ring class field.
In a series of articles [5], [7], [6], [19] A. Gee and P. Stevenhagen developed a method
based on Shimura reciprocity law, in order to check whether a modular function
gives rise to a class invariant. A necessary condition for this is the invariance of
the modular function under the action of the group GN = (O/NO)∗/O∗, where O
is an order of a quadratic imaginary field.

So far it seems that all known class invariants were found out of luck or by
extremely ingenious people like Ramanujan. The aim of this article is to provide
a more systematic method for finding class invariants. In order for our method to
work we need a finite dimensional vector space V consisting of modular functions
of level N and an action of the group GL(2,Z/NZ) on V . We can take as V the
space of generalized Weber functions defined in eq. (4.2) in section 4.1. We will use
a combination of techniques from classical invariant theory [15] and Galois descent
[2].

The structure of this article is as follows: In section 2 we give a very quick
description of the technique based on Shimura reciprocity law for checking whether
a modular function is a class invariant. The interested reader should consider the
more detailed explanations found in [5], [7], [6], [19]. In section 3 we explain our
main observation. The action of GN is given in terms of matrices but the function
ρ sending elements of the group GN to matrices is not a linear representation but
a cocycle. Then we break the computation into two parts. The first part considers
a subgroup H of GN such that ρ when restricted to H is a linear representation.
Classical invariant theory provides us with a set of H-invariant elements. The
second part makes the observation that the quotient GN/H is isomorphic to the
Galois group Gal(Q(ζN )/Q), where ζN is a primitive N -th root of unity. Then
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Hilbert’s 90th theorem ensures us that we can find a set of GN invariants. In
section 4 we use our technique in the case of generalized Weber functions. We
selected these modular functions since a lot of work has been done on them and
also the action of SL(2,Z) on them is well understood. For a given prime number
N and a discriminant D we are able to construct a whole Q-vector space consisting
of class invariants. A lot of examples are given and the magma code [1] used to
compute them is freely available upon request.

2. Shimura reciprocity law

Let Γ(N) be the kernel of the map SL(2,Z) �→ SL (2,Z/NZ). The group SL(2,Z)
acts on the upper half plane H in terms of linear fractional transformations and is
known to be generated by the elements S : z �→ − 1

z and T : z �→ z + 1.
It is known that the quotient Riemann surface Γ(N)\H∗ can be defined over the

field Q(ζN ), where ζN is a primitive N -th root of unity. We consider the function
field FN of the corresponding curve defined over Q(ζN ). The function field FN is
acted on by

Γ(N)/{±1} ∼= Gal(FN/F1(ζN )).

For an element d ∈
(

Z
NZ

)∗
we consider the automorphism σd : ζN �→ ζdN . Since the

Fourier coefficients of a function h ∈ FN are known to be in Q(ζN ), we consider
the action of σd on FN by applying σd on the Fourier coefficients of h. In this way
we define an arithmetic action of

Gal(F1(ζN )/F1) ∼= Gal(Q(ζN)/Q) ∼=
(

Z

NZ

)∗
,

on FN . We have an action of the group GL
(
2, Z

NZ

)
on FN that fits in the following

short exact sequence:

1 → SL

(
2,

Z

NZ

)
→ GL

(
2,

Z

NZ

)
det−→

(
Z

NZ

)∗
→ 1.

A. Gee and P. Stevehagen [5], [7], [6], [19] proved the following theorem which was
based on the work of Shimura [17]:

Theorem 1. Let O = Z[θ] be the ring of integers of an imaginary quadratic number
field K of discriminant d < −4. Suppose that a modular function h ∈ FN does not
have a pole at θ and Q(j) ⊂ Q(h). Denote by x2+Bx+C the minimum polynomial
of θ over Q. Then there is a subgroup WN,θ ⊂ GL

(
2, Z

NZ

)
with elements of the form:

WN,θ =

{(
t−Bs −Cs

s t

)
∈ GL

(
2,

Z

NZ

)
: tθ + s ∈ (O/NO)∗

}
.

The function value h(θ) is a class invariant if and only if the group WN,θ acts
trivially on h.

Proof. [5, cor. 4]. �

The above theorem can be applied in order to show that a modular function gives
rise to a class invariant and was used with success in order to prove that several
functions were indeed class invariants. Also A. Gee and P. Stevenhagen provided us
with an explicit way of describing the Galois action of Cl(O) on the class invariant
so that we can construct the minimal polynomial of the ring class field.
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We will now describe an algorithm that will allow us to find class invariants. As
a result we will obtain a whole Q-vector space of class invariants.

Let V be a finite dimensional vector space consisting of modular functions of level
N so that GL(2,Z/NZ) acts on V . Notice that every element a ∈ GL(2,Z/NZ) can

be written as b·
(
1 0
0 d

)
, d ∈ Z/NZ∗ and b ∈ SL(2,Z/NZ). The group SL(2,Z/NZ)

is generated by the elements S =

(
0 1
−1 0

)
and T =

(
1 1
0 1

)
. The action of S on

functions g ∈ V is defined to be g ◦S = g(−1/z) ∈ V and the action of T is defined
as g ◦ T = g(z + 1) ∈ V .

Here a technical difficulty arises: how can one compute efficiently the decompo-
sition of an element in SL(2,Z/NZ) as a product of the generators S, T? Observe
that by the Chinese remainder theorem we can write

GL(2,Z/NZ) =
∏
p|N

GL(2,Z/pvp(N)Z),

where vp(N) denotes the power of p that appears in the decomposition in prime
factors. Working with the general linear group over a field has advantages and
one can use lemma 6 in [5] in order to express an element of determinant one in
SL(2,Z/pvp(N)Z) as word in elements Sp, Tp where Sp and Tp are 2 × 2 matrices

which reduce to S and T modulo pvp(N) and to the identity modulo qvq(N) for prime
divisors q of N , p �= q.

This way the problem is reduced to the problem of finding the matrices Sp, Tp

(this is easy using the Chinese remainder theorem), and expressing them as products
of S, T . For example, a matrix S7 in GL(2,Z/24 · 7Z) that reduces to S modulo

7 but to the identity modulo 24 can be easily computed, S7 =

(
49 48
120 49

)
. This

matrix has determinant −3359 ≡ 1 mod 24 · 7. In order to decompose such a
matrix as a product of S, T elements we observe that left multiplication by S
interchanges the rows of a 2 × 2 matrix and also multiplies the first row by −1
while left multiplication by T k adds the second row multiplied by k to the first.
So by successive divisions and interchanges we can arrive at an upper triangular

matrix of the form

(
±1 a
0 ±1

)
. Then we can multiply by S2 = −Id if necessary in

order to arrive at a matrix of the form T a. This algorithm was explained to me by
V. Metaftsis. For the cases N = 24 · 5 and N = 24 · 7 using magma [1] we were able
to compute that

T3 = T
−80

,

T8 = T
−15

,

T5 = T
−24

,

S3 = S · T−10 · S · T18 · S−1 · T10 · S−1 · T−18 · S · T−10 · S · T−10 · S · T−21 ·

·S−1 · T9 · S−1 · T77 · S · T5 · S · T2 · S · T5 · S,

S8 = S
−1 · T−10 · S · T−10 · S · T−21 · S−1 · T9 · S−1 · T59 · S · T3 · S · T−4 · S−1 ·

·T9 · S−1 · T−6 · S · T8 · S · T2 · S
S5 = S

−1 · T11 · S · T11 · S−1 · T11 · S · T−10 · S · T18 · S−1 · T10 · S−1 · T−18 ·

·S · T−10 · S · T−10 · S · T−21 · S−1 · T9 · S−1 · T64 · S · T5 · S · T5 · S



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

1480 ARISTIDES KONTOGEORGIS

and

T3 = T
−56

,

T8 = T
−63

,

T7 = T
−48

,

S3 = S
−1 · T41 · S · T41 · S−1 · T101 · S · T4 · S · T4 · S · T4 · S

S8 = S
−1 · T41 · S · T41 · S−1 · T41 · S · T11 · S2 · T−8 · S · T−40 ·

·S−1 · T40 · S−1 · T19 · S−1 · T−37 · S · T3 · S · T3 · S · T3 · S
S7 = S

−1 · T41 · S · T41 · S−1 · T41 · S · T−8 · S · T−40 · S−1 · T40 · S−1 · T8 · S ·

·T−8 · S · T−40 · S−1 · T40 · S−1 · T22 · S · T4 · S · T2 · S · T4 · S,

respectively.

The action of the matrix

(
1 0
0 d

)
is given by the action of the elements σd ∈

Gal(Q(ζN )/Q) on the Fourier coefficients of the expansion at the cusp at infinity
[5]. Since every element in SL(2,Z/NZ) can be written as a word in S, T we obtain
a function ρ:

(2.1)
( O
NO

)∗
ρ

��
φ
�� GL(2,Z/NZ) �� GL(V ),

where φ is the natural homomorphism given by Theorem 1.

3. Finding class invariants

The map ρ defined in eq. (2.1) in the previous section is not a homomorphism.
Indeed, if e1, . . . , em is a basis of V , then the action of σ is given in matrix notation
as

ei ◦ σ =

m∑
ν=1

ρ(σ)ν,ieν ,

and then since (ei ◦ σ) ◦ τ = ei ◦ (στ ) we obtain

ei ◦ (στ ) =
m∑

ν,μ=1

ρ(σ)τν,iρ(τ )μ,νeμ.

Notice that the elements ρ(σ)ν,i ∈ Q(ζN ) and τ ∈ GL(2,Z/NZ) act on them as
well by the element σdet(τ) ∈ Gal(Q(ζN)/Q). So we arrive at the following:

Proposition 2. The map ρ defined in eq. ( 2.1) satisfies the cocycle condition

(3.1) ρ(στ ) = ρ(τ )ρ(σ)τ

and gives rise to a class in H1(G,GL(V )), where G = (O/NO)∗. The restriction
of the map ρ in the subgroup H of G defined by

H := {x ∈ G : det(φ(x)) = 1}

is a homomorphism.

Remark 3. Notice that H1(G,GL(V )) has the structure of a group only if GL(V )
is abelian, i.e., only if dimV = 1. In the case dimV ≥ 2 the set H1(G,GL(V )) has
only the structure of a set with a distinguished element.
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The basis elements e1, . . . em are modular functions so there is a natural notion of
multiplication for them. We will consider the polynomial algebra Q(ζN )[e1, . . . , em].
The group H acts on this algebra in terms of the linear representation ρ (recall that
ρ when restricted to H is a homomorphism).

Classical invariant theory provides us with effective methods (Reynolds operator
method, linear algebra method [10]) in order to compute the ring of invariants
Q(ζN )[e1, . . . , em]H . Also, there is a well defined action of the quotient group
G/H ∼= Gal(Q(ζN )/Q) on Q(ζN )[e1, . . . , em]H .

Define the vector space Vn of invariant polynomials of given degree n:

Vn := {F ∈ Q(ζN )[e1, . . . , em]H : degF = n}.

Remark 4. For the applications in elliptic curves construction or in effective gen-
eration of the Hilbert class field we have to take the smallest degree n such that
Vn �= {0}. Indeed, it is known that there is a polynomial relation F (f, j) among the
functions j, f , where j is the j-invariant, since the function field FN has transcen-
dence degree 1. It is known that this polynomial relation controls asymptotically
the logarithmic height H(Pf ), H(Pj) of the minimal polynomial of f and j in the
following way:

lim
h(j(τ))→∞

H(Pj)

H(Pf )
=

degf F (f, j)

degj F (f, j)
=: r(f)

where the limit is taken over all CM-points SL(2,Z)τ ∈ H [4]. So the best result
comes when the degf F (f, j) is large compared to degj F (f, j).

The action of G/H on Vn gives rise to a cocycle

ρ′ ∈ H1(Gal(Q(ζN ))/Q),GL(Vn)).

The multidimensional Hilbert 90 theorem asserts that there is an element P ∈
GL(Vn) such that

(3.2) ρ′(σ) = P−1P σ.

Let v1, . . . , v� be a basis of Vn. The elements vi are by construction H invariant.
The elements wi := viP

−1 are G/H invariant since

(viP
−1) ◦ σ = (vi ◦ σ)(P−1)σ = viρ(σ)(P

−1)σ = viP
−1P σ(P−1)σ = viP

−1.

The above computation together with Theorem 1 allows us to prove

Proposition 5. Consider the polynomial ring Q(ζN )[e1, . . . , em] and the vector
space Vn of H-invariant homogenous polynomials of degree n. If P is a matrix
such that eq. ( 3.2) holds, then the images of a basis of Vn under the action of P−1

are class invariants.

How can we compute the matrix P so that eq. (3.2) holds? We will use a version
of the Glasby-Howlett probabilistic algorithm [8]. We consider the sum

(3.3) BQ :=
∑

σ∈G/H

ρ(σ)Qσ.

If we manage to find a 2 × 2 matrix in GL(2,Q(ζN )) such that BQ is invertible,

then P := B−1
Q . Indeed, we compute that

(3.4) Bτ
Q =

∑
σ∈G/H

ρ(σ)τQστ ,
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and the cocycle condition ρ(στ ) = ρ(σ)τρ(τ ), together with eq. (3.4) allows us to
write:

Bτ
Q =

∑
σ∈G/H

ρ(στ )ρ(τ )−1Qστ = BQρ
−1
τ ,

i.e.

ρ(τ ) = BQ

(
Bτ

Q

)−1
.

In order to obtain an invertible element BQ we feed eq. (3.4) with random matrices
Q until BQ is invertible. Since noninvertible matrices are rare (they form a Zariski
closed subset in the space of matrices) our first random choice of Q always worked!

4. Examples

Consider the generalized Weber functions g0, g1, g2, g3 defined in the work of A.
Gee in [6, p. 73] as

g0(τ ) =
η( τ3 )

η(τ )
, g1(τ ) = ζ−1

24

η( τ+1
3 )

η(τ )
, g2(τ ) =

η( τ+2
3 )

η(τ )
, g3(τ ) =

√
3
η(3τ )

η(τ )
,

where η denotes the Dedekind eta function:

η(τ ) = e2πiτ/24
∏
n≥1

(1− qn) τ ∈ H, q = e2πiτ .

These are modular functions of level 72. In our previous work [14] we investigated
the action of the group WN,θ for the n ≡ 19 mod 24 case on these modular func-
tions and we showed that the group G := W72,θ induces an action of the generalized
symmetric group μ(12)� S4 on them. Any element g of G induces a matrix action
by expressing gi

g, i = 0, 1, 2, 3, as a linear combination of the functions g0, g1, g2, g3.
This way we obtain a map

(4.1) ρ : G → GL(4,Q(ζ72)) = Aut
(
〈g0, g1, g2, g3〉Q(ζ72)

)
.

In order to overcome the cocycle problem we raised everything to the 12-th power.
This way the corresponding action

ρ12 : G → GL(4,Q(ζ72)) = Aut
(
〈g120 , g121 , g122 , g123 〉Q(ζ72)

)
becomes a group representation and we were able to find invariants of the action
that lead to class invariants by just applying the methods of classical invariant
theory for linear actions. This approach has a disadvantage; the class invariants we
produce give rise to class polynomials with large coefficients.

We consider the subgroup H of G defined by H := G ∩ SL
(
2, Z

72Z

)
. When

we restrict the map ρ of eq. (4.1) we obtain a linear action and then we can
construct the invariant polynomials of this action. Notice that there are no invariant
polynomials of degree 1 for H. But we can find invariant polynomials of degree 2.
For example for n = −571 the group H has order 144 and G has order 3456. We
find that the polynomials

I1 := g0g2 + ζ672g1g3, I2 := g0g3 + (−ζ1872 + ζ672)g1g2

are indeed invariants of the action of H. Then we consider the action of G/H,
which is an abelian group of order 24 isomorphic to the group Gal(Q(ζ72)/Q). The
quotient map gives rise to an action of

ρ̄ : G/H → GL
(
2,Q(ζ72)

)
= Aut

(
〈I1, I2〉Q(ζ72)

)
.
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Table 1. Minimal polynomials using the g0, . . . , g3 functions.

Invariant polynomial

Hilbert t5 + 400497845154831586723701480652800t4+

818520809154613065770038265334290448384t3+

4398250752422094811238689419574422303726895104t2

−16319730975176203906274913715913862844512542392320t

+15283054453672803818066421650036653646232315192410112

t5 − 5433338830617345268674t4 + 90705913519542658324778088t3

g
12
0 g

12
1 + g

12
2 g

12
3 −3049357177530030535811751619728t2

−390071826912221442431043741686448t

- 12509992052647780072147837007511456

e1 t5 − 936t4 − 60912t3 − 2426112t2 − 40310784t − 3386105856

e2 t5 − 1512t4 − 29808t3 + 979776t2 + 3359232t − 423263232

The map ρ̄ is again a cocycle in

H1(G/H,GL(2,Q(ζ72))) = H1(Gal(Q(ζ72)/Q),GL(2,Q(ζ72))) = 0

by the multidimensional Hilbert 90 theorem. Therefore there is an element P ∈
GL(2,Q(ζ72)) such that

ρ̄(σ) = P σP−1.

The elements (I1, I2) · P =: (e1, e2) given by

e1 := (−12ζ1872 + 12ζ672)g0g3 + 12ζ672g0g3 + 12g1g2 + 12g1g3,

e2 := 12ζ672g1g2 + (−12ζ1872 + 12ζ672)g0g3 + (−12ζ1272 + 12)g1g3 + 12ζ1272g1g3

generate a Q-vector space of class invariants.
In Table 1 we write down the Hilbert polynomial corresponding to the j-invariant,

the invariant corresponding to g120 g121 + g122 g123 and the polynomials corresponding
to e1 and e2. We also examine the polynomial g120 g121 + g122 g123 since it is one of the
few class invariants known in the D ≡ 5 mod 24 case.

4.1. Generalized Weber functions. The Weber and gi functions are special
cases of the so-called generalized Weber functions defined as:

(4.2) νN,0 :=
√
N

η ◦
(
N 0
0 1

)

η
and νk,N :=

η ◦
(
1 k
0 N

)

η
, 0 ≤ k ≤ N − 1.

These are known to be modular functions of level 24N [6, th. 5, p. 76]. Notice that√
N ∈ Q(ζN ) ⊂ Q(ζ24·N ) and an explicit expression of

√
N in terms of ζN can be

given by using Gauss sums [3, 3.14 p. 228].
The group SL(2,Z) acts on the (N + 1)-th dimensional vector space generated

by them. In order to describe this action we have to describe the action of the two
generators S, T of SL(2,Z) given by S : z �→ − 1

z and T : z �→ z + 1. Keep in mind
that

η ◦ T (z) = ζ24η(z) and η ◦ S(z) = ζ−1
8

√
izη(z).

We compute that (see also [6, p.77])

νN,0 ◦ S = ν0,N and νN,0 ◦ T = ζN−1
24 νN,0,

ν0,N ◦ S = νN,0 and ν0,N ◦ T = ζ−1
24 ν1,N ,
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Table 2. Invariants for the group of elements of determinant 1
for N = 7 and n = 91

I1 = νN,0
2 − ν0,N

2
+

(
−ζ

42
+ ζ

14
)
ν1,N

2
+

(
ζ
28 − 1

)
ν2,N

2 − ζ
42

ν3,N
2 − ζ

14
ν5,N

2
+ ν6,N

2
,

I2 = νN,0 ν0,N + ζ
35

νN,0 ν1,N − ζ
28

ν0,N ν2,N + ζ
35

ν1,N ν6,N − ζ
35

ν2,N ν5,N +
(
ζ
42 − ζ

14
)
ν3,N ν5,N + ζ

21
ν3,N ν6,N ,

I3 = νN,0 ν2,N +
(
ζ
28 − 1

)
νN,0 ν6,N + ζ

7
ν0,N ν1,N +

(
−ζ

35
+ ζ

7
)
ν0,N ν5,N

+ζ
28

ν1,N ν3,N +
(
ζ
35 − ζ

7
)
ν2,N ν3,N − ζ

21
ν5,N ν6,N ,

I4 = νN,0 ν3,N +
(
−ζ

42
+ ζ

14
)
νN,0 ν5,N + ζ

42
ν0,N ν3,N +

(
−ζ

35
+ ζ

7
)
ν0,N ν6,N − ζ

42
ν1,N ν2,N +

(
ζ
35 − ζ

7
)
ν1,N ν5,N +

(
−ζ

45
+ ζ

37
+ ζ

33 − ζ
25

+ ζ
17

+ ζ
13 − ζ

5 − ζ
)
ν2,N ν6,N ,

I5 = νN,0 ν4,N + ζ
42

ν0,N ν4,N +
(
−ζ

45
+ ζ

37
+ ζ

33 − ζ
25 − ζ

21
+ ζ

17
+ ζ

13 − ζ
5 − ζ

)
ν1,N ν4,N −

ζ
28

ν2,N ν4,N +
(
ζ
35 − ζ

7
)
ν3,N ν4,N +

(
−ζ

45
+ ζ

37
+ ζ

33 − ζ
25

+ ζ
17

+ ζ
13 − ζ

5 − ζ
)
ν4,N ν5,N + ν4,N ν6,N ,

I6 = ν4,N
2

for 1 ≤ k < N − 1 and N is prime:

νk,N ◦ S =

(
−c

n

)
i
1−n
2 ζ

N(k−c)
24 and νk,N ◦ T = ζ−1

24 νk+1,N ,

where c = −k−1 mod N . The computation of the action of S on η is the most
difficult, see [9, eq. 8, p. 443].

Assume that N = 5 and D = −91. We compute that the group H of determinant
1 has invariants

ν5,0 + (ζ25 − ζ5)ν3,5 and ν0,5 + (ζ31 − ζ23 − ζ19 − ζ15 + ζ7 + ζ3)ν1,5.

Using our method we arrive at the final invariants:

I1 = (−1224ζ
28

+ 612ζ
20

+ 2740ζ
16

+ 1516ζ
4 − 612)ν5,0

+(4256ζ
28 − 2128ζ

20 − 1516ζ
16

+ 2740ζ
4
+ 2128)ν0,5

+(−1224ζ
31 − 2740ζ

27
+ 612ζ

15
+ 1224ζ

11
+ 1516ζ

3
)ν1,5

+(1516ζ
29 − 612ζ

25
+ 1224ζ

13 − 1516ζ
9 − 2740ζ)ν3,5,

I2 = (−1952ζ
28

+ 976ζ
20

+ 2128ζ
16

+ 176ζ
4 − 976)ν5,0

+(2304ζ
28 − 1152ζ

20 − 176ζ
16

+ 2128ζ
4
+ 1152)ν0,5

+(−1952ζ
31 − 2128ζ

27
+ 976ζ

15
+ 1952ζ

11
+ 176ζ

3
)ν1,5

+(176ζ
29 − 976ζ

25
+ 1952ζ

13 − 176ζ
9 − 2128ζ)ν3, 5.

The Q-vector space generated by these two functions consists of class functions.
We can now compute the corresponding polynomials:

t2 − 3060t− 28090800 and t2 − 4880t− 71443200.

Just for comparison the Hilbert polynomial corresponding to the j invariant is:

t2 + 10359073013760t− 3845689020776448.

For N = 7 and n = 91 we have computed the invariants for the group H of elements
of determinant 1 and we present the results in Table 2. On these invariants the
group Gal(Q(ζ24·7)/Q) acts and we finally arrive at six invariant functions that over
Q generate a vector space of invariant polynomials. We present in Table 3 just one
of them.
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Table 3. An invariant coming from generalized Weber functions
for N = 7

F1 = (−4ζ
44

+ 4ζ
36

+ 4ζ
32

+ 4ζ
16 − 4ζ

4
+ 48)ν

2
N,0

+(4ζ
46

+ 12ζ
42 − 4ζ

38 − 4ζ
34 − 4ζ

30
+ 4ζ

26
+ 4ζ

22 − 4ζ
14

+ 4ζ
6
+ 4ζ

2
)νN,0ν0,N

+(−8ζ
45

+ 4ζ
41

+ 8ζ
37

+ 8ζ
33 − 8ζ

25 − 8ζ
21

+ 12ζ
17

+ 8ζ
13 − 12ζ

5 − 8ζ)νN,0ν1,N

+(−4ζ
36

+ 16ζ
28 − 4ζ

16
+ 4ζ

8
+ 4ζ

4
)νN,0ν2,N

+(16ζ
47 − 28ζ

35
+ 16ζ

27 − 16ζ
19

+ 28ζ
7
+ 16ζ

3
)νN,0ν3,N

+(−8ζ
38 − 8ζ

34
+ 8ζ

26
+ 16ζ

14
+ 8ζ

6
)νN,0ν4,N

+(12ζ
45 − 28ζ

37 − 12ζ
33

+ 28ζ
25 − 12ζ

17 − 12ζ
13

+ 12ζ
5
+ 28ζ)νN,0ν5,N

+(−4ζ
44

+ 4ζ
36

+ 4ζ
32

+ 4ζ
16 − 4ζ

4 − 16)νN,0ν6,N

+(4ζ
44 − 4ζ

36 − 4ζ
32 − 4ζ

16
+ 4ζ

4 − 48)ν
2
0,N

+(−4ζ
43

+ 16ζ
35 − 4ζ

23
+ 4ζ

15
+ 4ζ

11
)ν0,Nν1,N

+(−4ζ
46 − 12ζ

42
+ 4ζ

30 − 4ζ
22

+ 12ζ
14 − 4ζ

2
)ν0,Nν2,N

+(16ζ
45

+ 16ζ
41 − 16ζ

33
+ 28ζ

21 − 16ζ
13

)ν0,Nν3,N

+(−8ζ
44

+ 8ζ
32

+ 24ζ
28

+ 8ζ
8 − 24)ν0,Nν4,N

+(−4ζ
47 − 4ζ

43
+ 4ζ

35 − 4ζ
27 − 4ζ

23
+ 4ζ

19
+ 4ζ

15
+ 4ζ

11
+ 12ζ

7 − 4ζ
3
)ν0,Nν5,N

+(16ζ
46 − 12ζ

42 − 16ζ
38 − 16ζ

34 − 16ζ
30

+ 16ζ
26

+ 16ζ
22 − 16ζ

14
+ 16ζ

6
+ 16ζ

2
)ν0,Nν6,N

+(4ζ
46 − 48ζ

42 − 4ζ
30

+ 4ζ
22

+ 48ζ
14

+ 4ζ
2
)ν

2
1,N

+(−16ζ
45 − 16ζ

41
+ 16ζ

33 − 28ζ
21

+ 16ζ
13

)ν1,Nν2,N

+(−4ζ
44

+ 4ζ
32

+ 16ζ
28

+ 4ζ
8 − 16)ν1,Nν3,N

+(8ζ
47

+ 8ζ
43 − 8ζ

35
+ 8ζ

27
+ 8ζ

23 − 8ζ
19 − 8ζ

15 − 8ζ
11 − 16ζ

7
+ 8ζ

3
)ν1,Nν4,N

+(−16ζ
46

+ 12ζ
42

+ 16ζ
38

+ 16ζ
34

+ 16ζ
30 − 16ζ

26 − 16ζ
22

+ 16ζ
14 − 16ζ

6 − 16ζ
2
)ν1,Nν5,N

+(−8ζ
45

+ 4ζ
41

+ 8ζ
37

+ 8ζ
33 − 8ζ

25 − 8ζ
21

+ 12ζ
17

+ 8ζ
13 − 12ζ

5 − 8ζ)ν1,Nν6,N

+(4ζ
44 − 4ζ

32
+ 48ζ

28 − 4ζ
8 − 48)ν

2
2,N

+(4ζ
47

+ 4ζ
43 − 4ζ

35
+ 4ζ

27
+ 4ζ

23 − 4ζ
19 − 4ζ

15 − 4ζ
11 − 12ζ

7
+ 4ζ

3
)ν2,Nν3,N

+(−8ζ
46 − 24ζ

42
+ 8ζ

38
+ 8ζ

34
+ 8ζ

30 − 8ζ
26 − 8ζ

22
+ 8ζ

14 − 8ζ
6 − 8ζ

2
)ν2,Nν4,N

+(8ζ
45 − 4ζ

41 − 8ζ
37 − 8ζ

33
+ 8ζ

25
+ 8ζ

21 − 12ζ
17 − 8ζ

13
+ 12ζ

5
+ 8ζ)ν2,Nν5,N

+(16ζ
36

+ 12ζ
28

+ 16ζ
16 − 16ζ

8 − 16ζ
4
)ν2,Nν6,N

+(4ζ
46 − 48ζ

42 − 4ζ
38 − 4ζ

34 − 4ζ
30

+ 4ζ
26

+ 4ζ
22 − 4ζ

14
+ 4ζ

6
+ 4ζ

2
)ν

2
3,N

+(−16ζ
45

+ 8ζ
41

+ 16ζ
37

+ 16ζ
33 − 16ζ

25 − 16ζ
21

+ 24ζ
17

+ 16ζ
13 − 24ζ

5 − 16ζ)ν3,Nν4,N

+(4ζ
36 − 12ζ

28
+ 4ζ

16 − 4ζ
8 − 4ζ

4
)ν3,Nν5,N

+(4ζ
47

+ 8ζ
35

+ 4ζ
27 − 4ζ

19 − 8ζ
7
+ 4ζ

3
)ν3,Nν6,N

+(−12ζ
36

+ 12ζ
28 − 12ζ

16
+ 12ζ

8
+ 12ζ

4
)ν

2
4,N

+(8ζ
47

+ 16ζ
35

+ 8ζ
27 − 8ζ

19 − 16ζ
7
+ 8ζ

3
)ν4,Nν5,N

+(−8ζ
38 − 8ζ

34
+ 8ζ

26
+ 16ζ

14
+ 8ζ

6
)ν4,Nν6,N

+(−4ζ
38 − 4ζ

34
+ 4ζ

26 − 52ζ
14

+ 4ζ
6
)ν

2
5,N

+(16ζ
45 − 12ζ

37 − 16ζ
33

+ 12ζ
25 − 16ζ

17 − 16ζ
13

+ 16ζ
5
+ 12ζ)ν5,Nν6,N

+(−4ζ
44

+ 4ζ
36

+ 4ζ
32

+ 4ζ
16 − 4ζ

4
+ 48)ν

2
6,N ,

The corresponding polynomials for each class invariant are

t2 + (420− 8
√
−91)t− 20048, t2 + (672 + 40

√
−91)t− 57344,

t2 + (672 + 112
√
−91)t− 137984, t2 + (1218 + 30

√
−91)t− 171136,

t2 + (630− 66
√
−91)t− 74592, t2 + (798 + 54

√
−91)t− 91168.

Notice that the class polynomials have coefficients in O = Z[θ]. Only if the value
of the class function at θ is real, then the class polynomial is in Z[t]. For the
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construction of elliptic curves this is not a problem; we still can take the coefficients
modulo a prime ideal of O above p and the values are either in Fp or in Fp2 .

5. Comparison — conclusions

How effective are the polynomials constructed by this method compared to other
methods? Let us compute the Hilbert class field of Q(

√
−299) = Q(

√
D). Using

our method we arrive at the following invariants

I1 = 12ζ12g20 + (−12ζ12 + 12)g21 + 36g2g3,

I2 = 36ζ12g20 + 12g2g3,

I3 = 24ζ12g20 + (−12ζ18 + 24ζ6)g0g1 + 24g2g3,

I4 = 12ζ12g20 + (−12ζ18 + 24ζ6)g0g1 + 36g2g3,

with corresponding minimal polynomials

P1 = T
8 − 132T

7 − 3600T
6 − 1057536T

5
+ 67578624T

4
+ 2988223488T

3
+

159765073920T
2
+ 5279816908800T + 59659100356608,

P2 = T
8
+ (−36

√
D − 240)T

7
+ (−1080

√
D + 37656)T

6
+ (163296

√
D + 6612192)T

5
+

(19346688
√
D + 50471424)T

4
+ (630415872

√
D − 19422706176)T

3
+

(−5925685248
√
D − 990861465600)T

2
+ (−1731321298944

√
D + 1227669405696)T −

75541764243456
√
D − 516837998592,

P3 = T
8
+ (−24

√
D − 612)T

7
+ (−864

√
D + 27504)T

6
+ (−82944

√
D + 4126464)T

5
+

(26002944
√
D + 3939840)T

4
+ (376233984

√
D − 5667397632)T

3
+

(−14941863936
√
D − 771342372864)T

2
+ (−264582070272

√
D + 27642125795328)T +

13454127267840
√
D − 355534235172864,

P4 = T
8
+ (−12

√
D − 516)T

7
+ (−504

√
D − 72)T

6
+ (10368

√
D + 3680640)T

5
+

(20476800
√
D + 273849984)T

4
+ (−430728192

√
D − 22758423552)T

3
+

(−39195518976
√
D − 559365875712)T

2
+ (−114339299328

√
D + 36926863884288)T +

55540735672320
√
D + 99976764063744

These are smaller than the coefficients of the Hilbert polynomial by a factor of
logarithmic height up to 6 but are not as efficient as the Ramanujan class invariant
corresponding to

g2g3 =
1

48
I2 −

1

16
I3 +

1

16
I4,

which has a very small minimal polynomial

T 8 + T 7 − T 6 − 12T 5 + 16T 4 − 12T 3 + 15T 2 − 13T + 1.

How can we select the most efficient class invariant? Notice that every element
in the Q-vector space generated by the invariants Ii constructed by our algorithm
is a class invariant. Also all elements in the Z-module generated by Ii will give
rise to class invariants with coefficients in O. Of course (as the above example
in Q(

√
−299) indicates) there might be elements of the form

∑
λiIi with some

λi ∈ Q − Z. So far it seems a difficult problem to select the most efficient class
function among all class functions. This problem is equivalent to minimizing the
logarithmic height function on a lattice and seems out of reach for now. For the case
of generalized Weber functions it seems that monomials of the Weber invariants are
the best choices. However there are cases, for example the D ≡ 5 mod 24 case,
where no monomial invariants exist. Our method in this case provides much better
invariants than the invariants constructed in [14], as one can see from Table 1.
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