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Abstract We study the relation between convergence of partition functions (seen
as general Dirichlet series) and convergence of spectra and their multiplicities. We
describe applications to convergence in physical models, e.g., related to topology
change and averaging in cosmology.
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1 Introduction

In this paper, we study the relation between closeness of spectra of operators and of
spectral partition functions. Spectra of operators play a central role in physical theories,
as outcomes of a physical measurement. As motivation for our problem, we provide
two examples where questions about closeness of spectra of operators (as describing
specific physical models) come up naturally in cosmology.

The first one arises in connection with the averaging problem in cosmology (com-
pare [4,18]) and the question of topology change under evolution of the universe. It is
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clear that spectra contain topological information, cf. e.g., [14]. How to make mathe-
matical sense (in terms of spectra) of such statements as “the universe is homogeneous
on average”, or “a sudden change of topology in the universe (e.g., from orientable to
non-orientable) is unlikely?”.

Seriu [17] proposes to use eigenvalues of the Laplace–Beltrami operator on spatial
sections of a cosmologicalmodel to construct ametric on the space of suchRiemannian
manifolds up to some notion of “large scale isospectrality”. He argues that the use
of the plain difference of spectra as a measure is flawed: large energy contributions
(corresponding to small-scale geometry) should carry a lowerweight, and the dominant
weight should be put on the small spectrum (corresponding to large-scale geometry).
Therefore, he introduces a cut-off N and introduces a metric that compares the first
N eigenvalues. Second, the eigenvalue difference is not a dimensionless quantity, and
because of this, he suggests comparing quotients of spectra. However, as N → +∞,
the distance he proposes diverges.

We argue in this paper that it is natural not to use a cut-off function, but to rather
use a distance between the zeta functions (which, like partition functions, give more
weight to low energy in their region of convergence), considered as complex functions;
here, one may use classical notions of distance between complex functions [6] used in
the study of limits of holomorphic or meromorphic functions. Also, the zeta functions
are dimensionless. We explain this in Sect. 2.

The second set of examples relates to the use of eigenvalues as dynamical variables
in gravity. Gravity coupled to matter can be given a spectral description using the
framework of noncommutative geometry [5]. Even by ignoring the matter part, one
arrives at an interesting description of classical gravity (general relativity) in terms of
spectral data. These spectra form a diffeomorphism-invariant set of coordinates on the
space of manifolds, up to isospectrality. Diffeomorphism invariant coordinates are an
important prerequisite for certain programmes to quantize gravity (although ’t Hooft
[19] has argued that “deterministic quantum mechanics” might require a preferred
coordinate frame that becomes irrelevant by information loss). In this way, spectra
were used as dynamical variables for classical gravity by Landi and Rovelli [12]; see
also [1].

The distance above (and its generalizations) provides a topology on the space of
partition functions and it is a natural question to study the meaning of convergence of
partition functions of models in terms of the spectrum itself. This is exactly what we
study more abstractly: our Theorem 3.2 shows that it is a certain �1-convergence of
sequences of (suitable powers of) the eigenvalues. The same problem makes sense for
generalized Dirichlet series/partition functions, and in the final sections of the paper,
we study this problem from various perspectives, including via the Laplace-Stieltjes
transform. At the end of Sect. 4, we give an example of how to describe convergence
of eigenfunctions in terms of convergence of certain spectral zeta functions.

Finally, we remark that in recent years, Bayesian inference has been applied suc-
cessfully to the comparison of cosmological models [11]. For example, Niarchou and
Jaffe [15] have used cosmic microwave background radiation measurements to study
the most likely topology of the universe. In brief, the Bayesian method investigates,
under certain hypotheses, which is the most likely of a finite list of cosmological mod-
els (in [15], five different topologies) to match observational data (in [15], WMAP
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data). By contrast, the spectral distance seems a more theoretical tool, that can show
how a characteristic of a model (e.g., in [17], orientability) is stable or unstable by a
small perturbation of the model. It seems this is related to the discussion on the final
page of [15] on the nature of the primordial power spectrum, and whether it is possible
to keep the spectrum identical at small scales (matching observations), but perturbed
at large scales (changing topology). Whereas in the Bayesian paradigm, one weighs
finitely many possible points in the space of all models, spectral distances relate to
navigating continuously in the space of all models.

2 A spectral distance for cosmological models

Aswe explained in the introduction, it is useful to have a metric between cosmological
models. We will describe our construction for closed Riemannian spatial sections of
Lorentzian spacetimes (it will work equally well for Euclidean gravity models, but
not for metric of general signature). To compare spatial sections, one needs a met-
ric between Riemannian manifolds. If X is such a closed (= compact, no boundary)
smooth Riemannianmanifold with Laplace–Beltrami operator�X and non-zero spec-
trum λ1 ≤ λ2 ≤ · · · , its spectral zeta function is ζX (s) := Tr(�−s

X ) = ∑
ν≥1 λ−s .

The spectral zeta function ζX converges absolutely for �(s) > d/2, where d is the
dimension of X [16]. We propose the following function as a distance on suitable
spaces of Riemannian geometries up to isospectrality:

Proposition 2.1 LetM denote a space of Riemannian manifolds up to isospectrality,
with

sup{dim(X) : X ∈ M} < 2γ

finite. Then, for any X1, X2 ∈ M, the function

d(X1, X2) := sup
γ<s<γ+1

∣
∣
∣
∣log

∣
∣
∣
∣
ζX1(s)

ζX2(s)

∣
∣
∣
∣

∣
∣
∣
∣

where �(s) > γ is a common plane of convergence for the spectral zeta functions of
X1 and X2, defines a metric on M.

Proof The function d is positive, and if d(X1, X2) = 0, then |ζX1(s)| = |ζX2(s)| for
all s in the interval ]γ, γ + 1[. Since this set has accumulation points, and since the
zeta function is positive real for such values of s, we find that ζX1 = ζX2 as complex
functions. Hence, the identity theorem for Dirichlet series [10] implies that X1 and
X2 are isospectral. The function d is symmetric, since

∣
∣log(x−1)

∣
∣ = |log(x)|. Finally,

the triangle inequality follows from ζX1(s)/ζX3(s) = ζX1(s)/ζX2(s) · ζX2(s)/ζX3(s)
and the usual properties of the absolute value. �	

This is a distance that weighs correctly the energy contributions (large-scale geome-
tries contribute more), but does not depend on a cut-off in the spectrum, nor diverges
if a cut-off tends to infinity.

123



G. Cornelissen, A. Kontogeorgis

Remark 2.2 Taking the supremum over γ < s < γ + 1 is quite random: any set with
an accumulation point and avoiding the poles of the zeta functions will do. Also, the
distance d can be replaced by d/(1+ d) to have it take values in the unit interval. The
exact numerical values of the metric are not so relevant, but rather, their interrelation
and the topology and uniformity that they induce.

Example 2.3 If Sr denotes a circle of radius r , then d(Sr1 , Sr2) = 4 |log(r1/r2)| . This
example shows that the distance can be non-differentiable in the parameter space of a
family.

Example 2.4 Let us compute the spectral distance between a sphere S and a real
projective space RP2 with the same volume 4π ; this example was considered in [17]
to argue that topological change of spatial slices during cosmological evolution is not
unlikely. The zeta functions are

ζS =
∞∑

ν=1

2ν + 1

νs(ν + 1)s
and ζRP2 =

∞∑

ν=1

4ν + 1

νs(2ν + 1)s
.

A numerical experiment suggests that the maximum in the distance formula is attained
at s = 2, and there we get d(S,RP2) = log(4 − π2/3) ≈ 0.342.

Remark 2.5 A distance between Riemannian manifolds up to isometry was con-
structed by the first author and de Jong, who have, furthermore, given a spectral
characterization of when a diffeomorphism of closed, smooth Riemannian manifolds
is an isometry, in terms of equality of more general zeta functions under pullback by
the map [7]. Also, this distance is based on a dimensionless object (zeta functions).
However, such distance is much more involved than the one above (it uses infinitely
many zeta functions), and the one above suffices from the spectral point of view.

The natural question arises as to what the relation is between convergence in the
topology defined by this spectral distance and natural metrics in the space of values of
the spectrum itself. The same problem exists for more general models based on spectra
of operators as dynamical values (such as in the gravitational models discussed in the
introduction, or statistical mechanical models). We recast this into a problem about
general Dirichlet series, as follows: suppose that we have pointwise convergence of a
sequence of general Dirichlet series

Dn(s) =
∑

ν≥1

an,νe
−sμn,ν → D(s) =

∑

ν≥1

aνe
−sμν , (1)

all of which converge absolutely in a common half-plane �(s) > γ , with a∗ complex
coefficients, and μ∗ is a strictly increasing sequence of real numbers. Examples: if all
coefficients aν are one, D(s) is the partition function of a classical discrete canonical
ensemble with total energy μν in the ν-th microstate for s = 1/kT (T temperature, k
Boltzmann constant); if all coefficients are integers, D(s) is the partition function of
a discrete quantum system whose Hamiltonian has eigenvalues μν with multiplicity
aν (or a classical system with degeneracies), etc.
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In this paper, we study what this implies about “convergence” of the sequences
(an,ν) and (μn,ν). First, we consider the case of classical Dirichlet series, where
a∗ = 1 andμ∗ = log λ∗, and in Theorem 3.2, we prove that (1) is equivalent to the �1-
convergence of (λ

γ
n,ν) to (λ

γ
ν ), for any real γ strictly larger than the common abscissa

of absolute convergence of the series Dn . In Theorem 4.3, we consider the case where
μn,ν = μν is independent of n; then, for every n, (an,ν) converges to (an). The most
general case is studied in Sect. 5 from the point of view of the Perron’s formula for
Dirichlet series (where we give a concrete result under some hypotheses), and from
the point of view of the Laplace–Stieltjes transform in Sect. 6, where we prove the
equivalence to Lipschitz convergence of some step functions.

Specifically, if {Xn}∞n=1 ∪ {X} is a sequence of connected, closed, smooth Rie-
mannian manifolds such that d := sup dim Xn is finite, convergence of their zeta
functions implies convergence of their spectra in the sense of Theorem 3.2.

3 Convergence of Dirichlet series

Notation 3.1 Let us, once and for all, introduce the following convenient notation: if
s ∈ C and 	 = (λν)

∞
ν=1 is a sequence of positive real numbers, we denote by 	s the

sequence (λsν)
∞
ν=1.

Theorem 3.2 Suppose that

Dn(s) =
∑

ν≥1

λ−s
n,ν and D(s) :=

∑

ν≥1

λ−s
ν

is a family of (generalized) Dirichlet series for n = ∅, 1, 2, . . ., where, for each n,
	n := (λn,ν)

∞
ν=1 forms a sequence of increasing positive real numbers with finite

multiplicities. Assume that all series Dn(s) are convergent in a common right half-
plane �(s) > γ̃ > 0. Then, the following are equivalent:

(i) As n → +∞, the functions Dn(s) converge to D(s), pointwise in s with �(s) >

γ̃ ;
(ii) For every fixed ν, any bounded subsequence of {λn,ν}∞n=1 converges to the same

element λ ∈ 	, and

#{(λn,ν)
∞
n=1 : lim

n→∞ λn,ν = λ} = #{λν : λν = λ}.

(iii) For some (equivalently, all) γ > γ̃ , 	−γ
n converges to 	−γ in �1.

Remark 3.3 The assumption that all series Dn(s) are convergent in a common right
half-plane �(s) > γ̃ is a minimal necessary assumption, since if this is not the case,
the questions we ask are void.

The series Dn (when divergent at s = 0), converges for �(s) > γn , where (see
Chapter 1, Section 6 of [10]):

γn = lim sup
ν→∞

log ν

log λn,ν

. (2)

The hypothesis says that γ̃ := sup γn is finite.

123



G. Cornelissen, A. Kontogeorgis

Proof of Theorem 3.2 Since we later want to interchange some limits, we will first
prove:

Lemma 3.4 The sequences Sn,N (s) := ∑N
ν=1 λ−s

n,ν converge to Dn(s) for N → +∞
uniformly in n.

Proof of Lemma 3.4 The uniform convergence means that

∀ε > 0, ∃N0 ≥ 1,∀N > N0,

∣
∣
∣
∣
∣

N∑

ν=1

λ−s
n,ν − Dn(s)

∣
∣
∣
∣
∣
≤ ε

where N0 does not depend on n.
Suppose �(s) > γ̃ is a common plane of convergence for all Dn , and set �(s) =

γ̃ + δ for δ > 0. By Eq. (2), λn,ν ≥ γ̃
√

ν. Hence, the tails of Dn are bounded as
follows:

∞∑

ν=N+1

λ−s
n,ν ≤

∞∑

ν=N+1

ν−γ /γ̃ ,

and with γ /γ̃ = 1 + δ/γ̃ > 1, this tail is convergent and bounded above by ε for
sufficiently large N , independent of n (compare also the proof on page 7 of [10]).

Next, we will show that unbounded subsequences do not contribute to the limit.
For this, suppose that, for some fixed κ , (λnk ,κ )k∈N is an unbounded subsequence,
with limk→∞ λnk ,κ = ∞ and, by enlarging the subsequence if necessary, such that
the sequence (λn,κ )n∈(N−{nk :k∈N}) is either bounded or the empty set. Now, since
λnk ,κ ≤ λnk ,μ for μ ≥ κ , all sequences (λnk ,μ)k∈N for μ ≥ κ tend to infinity as well.
Observe now that the series

D≥κ
nk (s) :=

∞∑

ν=κ

1

λsnk ,ν

tends to the zero function as nk tends to infinity: limnk→∞ D≥κ
nk (s) = ∑∞

ν=κ limnk→∞
1

λsnk ,ν
= 0, for s real positive (hence for all s by analytic continuation). In the above

equation, we were allowed to interchange the order of the limits (in nk and the summa-
tion variable of Dnk ) since the series converge uniformly in nk . Since we assume that
Dn is a convergent sequence of functions, it has the same limit as its the subsequence
Dnk .

Since we have now proven that unbounded subsequences do not contribute to the
limit, we can assume that λn,ν is bounded in n, for all ν, i.e., ∀n ∈ N λn,ν ≤ cν . Then,
we can select a subsequence so that for all ν, the limit limk→∞ λnk ,ν = �ν exists. Not
to overload notation, we will momentarily relabel the convergent subsequence λnk ,ν
as λn,ν . In particular, λn,1 converges to �1. We will prove that λn,1 converges to λ1.
Let us rewrite
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Dn(s) = 1

λsn,1

( ∞∑

ν=1

(
λn,1

λn,ν

)s
)

and

D(s) = 1

λs1

( ∞∑

ν=1

(
λ1

λν

)s
)

.

We now assume that s is an integer s > γ̃ . Since Dn(s) → D(s), we have that

lim
n→∞

(
λ1

λn,1

)s

=

∞∑
ν=1

(
λ1
λν

)s

limn→∞
∞∑

ν=1

(
λn,1
λn,ν

)s ≤
∞∑

ν=1

(
λ1

λν

)s

(3)

For the last inequality, we have used the fact that λn,ν > 0 and that the denominator
is ≥ 1.

Set � := limn→∞ λ1/λn,1.Wenowconsider the limit as s → ∞ (along the integers)
in Eq. (3), to find lims→∞ �s ≤ #{λi = λ1}. With

lim
s→∞ �s =

⎧
⎨

⎩

1 if � = 1
0 if � < 1
∞ if � > 1,

we find � ≤ 1.
We also have the inequality

�s = lim
n→∞

(
λ1

λn,1

)s

=
∑∞

ν=1

(
λ1
λν

)s

limn→∞
∑∞

ν=1

(
λn,1
λn,ν

)s ≥ 1
∑∞

ν=1

(
�1
�ν

)s . (4)

In the inequality, we have used that we can interchange limit and summation in the
denominator, by uniform convergence. By taking the limit s → ∞ (along the integers),
we arrive at lims→∞ �s ≥ 1

#{�n=�1} > 0. We conclude from all the above that � = 1,
and hence that

1 = #{λi = λ1}
#{�n = �1} .

Now recall that we have relabelled before, so that we have actually shown that every
convergent subsequence (λnk ,1)k∈N of (λn,1)n∈N tends to some limit, and since � = 1,
all these subsequences converge to the same limit λ1. Therefore, (λn,1)n∈N itself is
convergent to λ1. We conclude that in general (viz., before erasing all unbounded
subsequences), every bounded subsequence of (λn)n∈N converges to λ1.
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We now use an inductive argument to treat the general term. Namely, consider the
Dirichlet series D≥2

n (s) := Dn(s) − λ−s
n,1 which (by what we have proven) converges

to D≥2(s) := D(s) − λ−s
1 . These are still sequences of Dirichlet series of the same

form, but with first eigenvalues λn,2 and λ2. We can repeat the argument with this
series, to conclude λn,2 → λ2, etc. This finishes the proof that (i) implies (ii).

Since we assume that�(s) > γ̃ is a common half-plane of convergence of all series
Dn (n = ∅, 1, 2, . . .), for any γ > γ̃ , the sums

∑∞
ν=1 λ

−γ
n,ν converge, and hence, the

sequences 	
−γ
n (n = ∅, 1, 2, . . .) belong to the Banach space �1. We will now prove

that 	−γ
n → 	−γ as elements of �1.

To do so, we have to prove that for every ε > 0, there is an n0 ∈ N such that n > n0
implies

∞∑

ν=1

∣
∣
∣
∣

1

λ
γ
n,ν

− 1

λ
γ
ν

∣
∣
∣
∣ ≤ ε

It is known that if (aν) is a sequence of positive real numbers so that
∑∞

ν=1 aν con-
verges, then all of its “tails” tend to zero: limN→∞

∑∞
ν=N aν = 0. So, given an ε > 0,

there is an n0, which does not depend on n (using the same γ for all n), such that for
N ≥ n0

∞∑

ν=N

∣
∣
∣
∣

1

λ
γ
n,ν

∣
∣
∣
∣ +

∞∑

ν=N

∣
∣
∣
∣
1

λ
γ
ν

∣
∣
∣
∣ < ε/2.

Therefore,

∞∑

ν=1

∣
∣
∣
∣

1

λ
γ
n,ν

− 1

λ
γ
ν

∣
∣
∣
∣ ≤

N∑

ν=1

∣
∣
∣
∣

1

λ
γ
n,ν

− 1

λ
γ
ν

∣
∣
∣
∣ +

∞∑

ν=N

∣
∣
∣
∣

1

λ
γ
n,ν

∣
∣
∣
∣ +

∞∑

ν=N

∣
∣
∣
∣
1

λ
γ
ν

∣
∣
∣
∣

≤
N∑

ν=1

|λγ
ν − λ

γ
n,ν |

λ
γ
n,νλ

γ
ν

+ ε

2

≤
N∑

ν=1

|λγ
ν − λ

γ
n,ν |

C
+ ε

2
, (5)

where 0 �= C = inf1≤ν≤N (λ
γ
1,νλ

γ
ν ) ≤ (λ

γ
n,νλ

γ
ν ). Now, the finite number (ν =

1, . . . , N ) of sequences (λ
γ
n,ν)n∈N can be made to uniformly converge to λ

γ
ν , that

is, for every ε > 0, there is an n1 such that n > n1 implies |λγ
ν − λ

γ
n,ν | ≤ εC

2N and
inequality (5) gives us the desired result for all n ≥ max{n0, n1}.

This proves that (ii) implies (iii). Finally, if	−γ
n converges to	−γ for some γ ∈ R,

we have for every s ∈ C with �(s) > γ that 	−s
n converges to 	−s , and it follows

easily that Dn(s) converges to D(s), pointwise in s. This proves that (iii) implies (i)
and finishes the proof of the theorem.

For an application to the meaning of convergence in the cosmological distance
from the previous section, suppose that X = (X, gX ) and Y = (Y, gY ) are two
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isospectral, connected, smooth, closed Riemannian manifolds, i.e., suppose their
Laplace–Beltrami operators �X and �Y have the same spectrum with multiplici-
ties: 	X = 	Y [16]. The spectrum 	X is considered as a sequence (λν)

∞
ν=1 with

0 ≤ λ1 ≤ λ2 ≤ . . ., with finite repetitions.
The identity theorem forDirichlet series [10] shows that such isospectrality can also

be described as themanifolds having the same zeta function: ζX = ζY , where ζX (s) :=
tr(�−s

X ) = ∑
0 �=λ∈	X

λ−s, since connectedness implies that the zero eigenvalue has
multiplicity one. The function ζX converges absolutely for �(s) > d/2, where d is
the dimension of X [16]. In this context, Theorem 3.2 says the following:

Proposition 3.5 Suppose {Xn}∞n=1 is a sequence of connected, closed, smooth, Rie-
mannian manifolds such that d := sup dim Xn is finite, and suppose that X is another
closed, smooth, Riemannian manifold. Then, the following statements are equivalent:

(i) For �(s) > d/2, the functions ζXn (s) converge pointwise to ζX (s);
(ii) For some γ ∈ C with Re(γ ) > d/2, the sequence of eigenvalues 	

−γ

Xn
converges

to 	
−γ

X in �1.

Remark 3.6 If themanifolds are closed and smooth and of odd dimension, but possibly
disconnected, the equality ζX = ζY implies that also the multiplicity of the zero
eigenvalue is equal for X and Y , namely, it is minus the value at 0 of the analytic
continuation of ζX ([16], 5.2).

The circle of radius r has � = −r2∂2θ (with θ ∈ [0, 2π) the angle coordinate),
spectrum λr,ν = r−2�ν/2�2 and zeta function ζr (s) = r2sζ(2s), where ζ is the
Riemann zeta function. For varying r → r0, the convergence in the theorem happens
for γ > 1/2.

Already in the case of families of Riemannian manifolds, it can happen that (λn,κ )

has unbounded subsequences for some fixed κ; for example, a family of circles whose
radius tends to zero. However, for fixed κ , we have bounds on the eigenvalues of the
form ([3])

C1
d
√

κ2 ≤ λn,κ ≤ C2

vol(Xn)

d
√

κ2,

where the constantsCi depend on the dimension d, the diameter D, and a lower bound
R on the Ricci curvature of the manifolds under consideration. This implies that (at
least if we fix the data d, D and R, so we are in the Gromov precompact moduli space
[9]) in unbounded subsequences, the volume should shrink to zero.

4 Series with general coefficients

In this section, we study what happens if we have pointwise convergence of general
Dirichlet series in the sense of Eq. (1).

The previous case occurs when {μ∗} = {log λ∗} and a∗ counts the multiplicities in
(λ∗). We start by discussing two special cases.
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4.1 (Taylor series) The case appears when μn,ν = ν for all n = ∅, 1, 2, . . .. In
this case, we set z = e−s and we get a (pointwise) convergence of Taylor series
Dn(z) = ∑

ν≥0 an,νzν → D(z) = ∑
ν≥0 aνzν . In this case, the individual series D∗

converge in � := {z > e−γ } to a holomorphic function (by assumption). Evaluation
at zero gives limn→+∞ an,0 = a0, and we can proceed by induction to conclude that
limn→+∞ an,ν = aν for all ν.

Alternatively, one can use the representation of the coefficients by a complex con-
tour integral to deduce the result “in a more complicated way”. Namely, fix ε > 0, and
let n0 satisfy that |Dn(z) − D(z)| < ε for n > n0, uniformly in z ∈ K ⊂ �, where K
is a compact set. For a contour C ⊂ K around z = 0 (independent of n), we have

|an,ν − aν | ≤ 1

2π

∫

C
|Dn(z) − D(z)||z|−n−1dz ≤ ε.

4.2 (Constant exponents) The reason for providing this second proof is that it leads us
to the next special case, in which we use the analogue of the integral representation for
the coefficients for general Dirichlet series, also called Perron’s formula. This formula
gives a representation of the terms of a general Dirichlet series by integration over a
vertical line in the complex plane, and since this integration domain, unlike the contour
in the Taylor series proof, is not compact, we will need to work more to establish the
result (or assume uniform convergence on an entire half-line, which seems too strong
an assumption). This second special case occurs ifμn,ν is constant in n. Then we have
the following result:

Theorem 4.3 Assume that Dn (n = ∅, 1, 2, . . .) is a set of Dirichlet series that con-
verge absolutely in a common half-plane �(s) > γ̃ , and such that Dn(s) → D(s)
converges pointwise there. Assume that μn,ν = μν is independent of n. Then, for
every n, we have limn→+∞ an,ν = aν; actually, for σ1 > γ , we have a convergence
of sequences (an,νe−σ1μν )∞ν=1 → (aνe−σ1μν )∞ν=1 in �∞.

Proof Consider the difference Bn(s) := Dn(s) − D(s) = ∑
ν≥1 bn,νe−sμν , where

bn,ν := an,ν − aν . According to Theorem I.3.1 in [13], we have the following integral
representation for every n and every fixed ν:

∣
∣bn,νe

−σ1μν
∣
∣ =

∣
∣
∣
∣ lim
T→∞

1

T

∫ T

0
Bn(σ1 + i t)eμν i t dt

∣
∣
∣
∣

≤ lim
T→∞

1

T

∫ T

0
|Bn(σ1 + i t)| dt

We could finish the proof here by assuming that Dn converges uniformly to D on the
entire line �(s) = σ1. However, we can avoid this (strong) hypothesis by proving the
following lemma: �	
Lemma 4.4 For every ε > 0, there is a t0 ∈ R such that

∀t ∈ R,∀n, |Bn(σ1 + i t)| ≤ ε + |Bn(σ1 + i t0)|.
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We are then finished with the proof of Theorem 4.3, since now, given any ε > 0,
the pointwise convergence at t0 implies that there exists n0 such that for all n > n0,

|Bn(σ1 + i t)| ≤ ε + |Bn(t0)| ≤ 2ε

and then, the above inequality becomes
∣
∣bn,νe−σ1μν

∣
∣ ≤ 2ε. Since σ1 and ν are fixed,

e−σ1μν is a non-zero constant, and this proves that bn,ν → 0 as n → +∞. Since the
ε-bound holds uniformly in ν, we do find the �∞ convergence as stated.

Proof of Lemma 4.4 Since the series Dn are absolutely convergent on a common half-
plane, their sequences of tails tend to zero uniformly in n, that is, for every ε > 0,
there is an N , that is independent of n, such that

∞∑

ν=N+1

|an,νe
−sμν | +

∞∑

ν=N+1

|aνe
−sμν | < ε.

Hence,

|Bn(s)| ≤
∣
∣
∣B≤N

n (s) + D>N
n (s) − D>N (s)

∣
∣
∣ ≤

∣
∣
∣B≤N

n (s)
∣
∣
∣ + ε (6)

We will now estimate the sum of the first N terms on a vertical line �(s) = σ1.
Consider the function f : R → (

S1
)N

given by t �→ (eitμ1 , . . . , eitμN ) and the

function F :
(
S1

)N → C sending (P1, . . . , PN ) �→ ∑N
ν=1 e

−σ1μν Pν . The function
F is continuous on a compact set; therefore, it attains a maximal value M at a point
A0 := (P0

1 , . . . , P0
N ).

Lemma 4.5 There exists t0 ∈ R such that all the numbers {t0μν}∞ν=1 are irrational.

Proof The set of multiples {bρ} of a given real number ρ ∈ R such that bρ ∈ Q is
just 1

ρ
Q and this set is denumerable. A denumerable union of denumerable sets cannot

exhaust the set of reals and the result follows. �	
This proves that the set f (R) is dense in

(
S1

)N
. Therefore, for every δ > 0, there

exists t0 ∈ R such that | f (t0) − A0| ≤ δ, and hence, since F is continuous,

|B≤N
n (t0) − M | = |F( f (t0)) − F(A0)| < ε. (7)

Since M is the maximum, for all t ∈ R, we have

|B≤N
n (σ1 + i t)| ≤ M ≤ |B≤N

n (σ1 + i t0)| + |B≤N
n (σ1 + i t0) − M |. (8)

By Eqs. (6), (7) and (8) we now have

|Bn(σ1 + i t)| ≤ ε + |B≤N
n (σ1 + i t)|

≤ ε + |B≤N
n (σ1 + i t0)| + |B≤N

n (σ1 + i t0) − M |
≤ 2ε + |B≤N

n (σ1 + i t0)|,

and this finishes the proof of lemma and of the Theorem 4.4.
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4.6 We give an application on how to deduce convergence of eigenfunctions from a
spectral convergence, following a method introduced in [7], 2.5–2.7. Let X denote a
closed, smooth, Riemannian manifold and let a ∈ C∞(X) denote a smooth function.
Define a generalized Dirichlet series by ζX,a := tr(a�−s

X ), cf. [7]. Then,

ζX,a =
∑

0 �=λ∈	X

1

λs
·
∫

X
aσX,λ,

where	X is the spectrumwithoutmultiplicities, andσX,λ := ∑
λ�� |�|2 is the sumof

the elements� of an orthonormal basis of eigenfunctions that belong to the eigenvalue
λ.

Now assume that we have a compact manifold X and a family {gr } (r ∈ R) of
isospectral metrics with simple eigenvalues on X (cf. Gordon and Wilson [8] for the
existence of such families). Denote by �r,λ the normalized real eigenfunction for the
metric gr corresponding to the eigenvalue λ. If all zeta functions converge in the sense
that

ζX,gr ,a → ζX,g0,a for all a (9)

pointwise, for alla, thenwefind from the above result that
∫
a�2

r,λdμr → ∫
a�2

0,λdμ0
for all functions a ∈ C∞(X), where μr is the measure belonging to the metric gr , so
a weak convergence of measures �2

r,λdμr → �2
0,λdμ0. Taking residues at dim(X)/2

in (9) for a = 1, we find that the volume of (X, gr ) is constant in r , and then taking
residues for general a, we find that for all a ∈ C∞(X),

∫
adμr → ∫

adμ0: there is a
weak convergence of measures μr → μ0. Hence, we have a (pointwise) convergence
of squared eigenfunctions: �2

r,λ → �2
0,λ.

5 General case

Finally, in the most general case of varying coefficients and varying exponents, we
prove a theorem about accumulation points. First, we do some preparation.

Definition 5.1 For a fixed strictly positive real function g, define for a real function
f , the g-sup norm as

|| f ||∞,g := sup
x∈R

∣
∣
∣
∣
f (x)

g(x)

∣
∣
∣
∣ ,

when it is defined. We say that a sequence of functions { fn} converges multiplicatively
to a real function f if there exists a strictly positive real function g that is integrablewith
respect to the multiplicative Haar measure on R∗ (i.e., such that

∫
R g(x) dx|x | < +∞),

such that || fn(x) − f (x)||∞,g → 0 for n → +∞.
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Definition 5.2 For f , a complex function defined for �(s) = c, and x ∈ R, denote
by

I cx ( f ) :=
∫

�(s)=c
f (s)exs

ds

s
.

The relevance of this integral for the theory of Dirichlet series lies in the following
formula of Perron [10, th. 13]: if D(s) = ∑

ν≥1 aνe−sμν is convergent for s = β + iγ
and c > 0, c > β, x ∈ R, x ≥ β, n ∈ N such that μn ≤ x < μn+1, then

n∑

ν=1

aν = 1

2π i
I cx (D),

with the convention that the last summand on the left-hand side is multiplied by 1/2
if x equals μn .

Since I cx (D) does not depend on c once it satisfies the conditions for Perron’s
formula, we will now write Ix (D) for I cx (D) with any suitable c.

Lemma 5.3 If { fn(c + i t)} converges multiplicatively to f (c + i t) in t , then for all
x ∈ R,

lim
n

Ix ( fn) = Ix (lim
n

fn) = Ix ( f ).

Proof We have

|Ix ( fn) − Ix ( f )| ≤
∫

R

∣
∣
∣
∣
fn(c + i t) − f (c + i t)

c + i t
ex(c+i t)

∣
∣
∣
∣ dt

≤ ecx
(∫

R

g(t)√
c2 + t2

dt

)

· || fn(c + i t) − f (c + i t)||∞,g

≤ ecx
(∫

R

g(t)

|t | dt

)

· || fn(c + i t) − f (c + i t)||∞,g

≤ Cε,

with C = ecx
(∫

R
g(t)
|t | dt

)
finite constant, for n sufficiently large. This proves the

desired result. �	
Before stating the main result of this section, we need to introduce some notation:

Notation 5.4 Write μn, j = log λn, j , and assume that all sequences (λn, j )
∞
n=1 are

bounded. Let �( j)
i , i ∈ I j be the accumulation points of sequence (λn, j )

∞
n=1.

We consider a subsequence nk such that for all j limnk→∞ λnk , j = �
( j)
i j

for a
selection i j ∈ I j . Notice that the sequences (λnk , j )

∞
k=1 and (λnk , j+1)

∞
k=1 satisfy

λnk , j < λnk , j+1, but they can tend to the same accumulation point.
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For the infinite vector of convergent sequences
(
(λnk , j )

∞
k=1

)
j≥1 converging to the

infinite vector
(
�
( j)
i j

)
j≥1, we consider the sequence m1,m2, . . . , such that

�
(1)
i1

= �
(2)
i2

= · · · = �
(m1)
im1

, �
(m1+1)
im1+1

= �
(m1+2)
im1+2

= · · · = �
(m2)
im2

, etc.

(λnk ,1) (λnk ,m1) (λnk ,m1+1) (λnk ,m2)

�
(1)
i1

�
(m1+1)
im1+1

· · ·

Theorem 5.5 We use the notation of (5.4). Assume that Dn converges multiplicatively
to D(s) = ∑

j≥1 a j e−s log λ j . Then, λ j are accumulation points for some sequence
(λn, j ′)∞n=1.

Consider the set of subsequences
(
(λn, j )

∞
n=1

)
j≥1 converging to the infinite vector

(
�
( j)
i j

)
j≥1. Suppose that the sequences (λnk , j )

∞
n=1 for j = mμ+1, . . . ,mμ+1 converge

to �. Set

A(μ)
nk :=

mμ+1∑

j=mμ+1

ank , j , for μ ≥ 0.

Then,

lim A(μ)
nk =

{
ai if � = λi ,

0 otherwise.
(10)

Proof Assume that the set of subsequences
(
(λnk , j )

∞
k=1

)
j≥1 converges to the set of

accumulation points (�
( j)
i ).

Consider the first eigenvalue λ1 of D. If � is the first element in the set �
( j)
i that

is smaller than λ1, then by choosing x such that � < x < λ1, by Perron’s formula,
we have that Ix (Dnk ) = ∑m1

j=1 ank , j = A(0)
nk should tend to Ix (D) = 0 since x <

λ1. This proves that A(0)
nk tends to zero as desired. We proceed, now, to the next

accumulation point that is smaller than λ1, and by the same argument, we prove that
limnk→∞

∑m2
j=1 ank , j = 0. Then, since the limit of the sum of the first m1 terms tends

to zero, we have that

lim
nk→∞

m2∑

j=m1+1

ank , j = 0,

and so, the desired result is proved for all � < λ1.
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We will prove now that λ1 is an accumulation point. Indeed, for sufficiently small
ε > 0, the quantity Iλ1−ε(D) − Iλ1+ε(D) = a1 �= 0. Using the above equation and
lemma 5.3, we obtain

lim
nk→∞

(
Iλ1−ε(Dnk ) − Iλ1+ε(Dnk )

) = a1 = lim
∑

λ1−ε<λnk , j<λ1+ε

ank , j .

So, by taking small ε, we can find a subsequence tending to λ1, so λ1 is one of the
accumulation points of the sequence

(
(λnk , j )

∞
k=1

)
j≥1. Notice that, as a result, Eq. (10)

is also proved.
We continue the proof by induction by taking � to be between λ1 and λ2, so that

the corresponding sum tends to zero; then, we take � to be λ2, then between λ2 and
λ3 etc. �	

6 Relation with Laplace–Stieltjes transform

The notion of Dirichlet series and Laplace transforms can be unified in terms of the
Riemann–Stieltjes integrals (Widder [20], compare [2]).

Definition 6.1 Suppose ω ≥ 0 is a real number.

1. The space Lipω is defined as the set of functions F : R≥0 → R with bounded
norm

||F ||Lip,ω := sup
0≤s<t

|F(t) − F(s)|
(t − s)eωt

< ∞.

2. The space Widω is defined as the space of smooth function (ω,∞) → R with
bounded norm

||D||Wid,ω := sup
s>ω
k∈N

(s − ω)k+1

k!
∣
∣
∣
∣
dk D

dsk
(s)

∣
∣
∣
∣ < ∞.

The main result is now that the so-called Laplace–Stieltjes transform F �→∫ ∞
0 e−st dF(t) induces an isometric isomorphism Lipω → Widω ([2], Thm. 2.4.1).
Widder ([20], Theorems 11.2 12.4) proved that aDirichlet series of the form D(s) =∑
ν aνe−sμν convergent for �(s) > ω is in the space Widω. Also, such D is the

Laplace–Stieltjes transform of F(t) = ∑∞
ν=0 aνH(t −μν), where H is the Heaviside

step function. Thus, we immediately conclude the following:

Theorem 6.2 Suppose Dn(s) = ∑
ν≥1 an,νe−sμn,ν is a sequence of Dirichlet series

each converging absolutely in a common half-plane �(s) > γ ; then for any ω > γ ,
Dn converges to a Dirichlet series D(s) = ∑

ν≥1 aνe−sμν in Widω-norm if and only
if

∑∞
ν=0

(
an,νH(t − μn,ν) − aνH(t − μν)

) → 0 in Lipω-norm.

It would be interesting to deduce Theorems 4.3 and 5.5 from Theorem 6.2.
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