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1. Introduction. In this paper we discuss some basic problems on the
modular curves X(N). By X(N) we mean a geometrically connected curve
defined over Q, which over the complex field C is given as a Riemann surface
by the quotient of H∗ modulo the modular subgroup

Γ (N) =

{(
a b

c d

)
∈ SL2(Z)

∣∣∣∣ (a b

c d

)
≡
(

1 0

0 1

)
(mod N)

}
,

where as usual we denote by H∗ the union of the upper half-plane H together
with the so-called cusps Q∪{∞}. The modular curve X(N) is defined over Q
as the moduli space parametrizing generalized elliptic curves together with
a full N -level structure. Concerning the definition of X(N), we adopt the
point of view of [8, Section 4] (see Section 2 for a detailed discussion).

One of the problems we solve is the determination of the integers N ≥ 7
such that X(N) is hyperelliptic or bielliptic. We show in Section 4 that none
of these curves is hyperelliptic (Theorem 4.1) and they are bielliptic only
for N = 7 and 8 (Theorem 4.2).

The study of this problem for some other families of modular curves
was initiated by Ogg (see [22] and [2]) with the case of the curves X0(N),
and followed by the modular curves X1(N) in [20] and [14], and the curves
X1(N,M) in [13] and [15].

In the last section we apply our results on hyperellipticity and biellip-
ticity to study the finiteness of quadratic points of X(N). In particular we
can prove that the set of quadratic points of X(N) over the cyclotomic field
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Q(ζN ) is always finite for N > 6, where ζN denotes, as usual, a primitive
Nth root of unity.

In Section 3 we consider another important issue concerning the curve
X(N): the explicit determination of its automorphism group over C, which
we denote by Aut(X(N)).

Recall that, for a modular curve X of genus greater than one and with
modular group Γ ≤ SL2(Z), the quotient of the normalizer of Γ in PSL2(R)
by ±Γ always gives a subgroup of Aut(X). We denote this subgroup by
Norm(Γ )/±Γ . It is a quite difficult problem to determine when Norm(Γ )/±Γ
coincides with the full group of automorphisms of the corresponding modular
curve X (if it is of genus greater than one). An automorphism v ∈ Aut(X) \
(Norm(Γ )/±Γ ) is called exceptional.

Kenku and Momose [19] determined the full automorphism group for
X0(N) with N 6= 63; Elkies [7] obtained Aut(X0(63)), and finally Harri-
son [12] corrected the Kenku–Momose statement for Aut(X0(108)) (1). In
particular, there are exceptional automorphisms for X0(N) only for N =
37, 63 and 108. For the modular curve X1(N) and N square-free, Momose
proved in [21] that there are no exceptional automorphisms.

Finally, let us explain briefly the history concerning Aut(X(N)).
J.-P. Serre in a letter to B. Mazur [25] computed that the automorphism
groups of the modular curves X(p) for p prime ≥ 7 are isomorphic to the
simple groups PSL2(Z/pZ). Back in 1997, in a conference held in Sant Feliu
de Gúıxols, the second author met G. Cornelissen, who wanted to compute
the automorphism group of the Drinfeld modular curves [6, Sec. 10] and
asked if there is a generalization for composite N . After finishing the com-
putation, the second author communicated the generalization to J.-P. Serre,
who answered that he proved the theorem in the letter to Mazur, and the
generalization for composite N should be known to the pioneers of modular
forms; but we were not able to find a reference in the literature. Since there
is new interest (see [4], [24]) in the automorphisms of the modular curves
X(N) and we are not aware of any reference for this computation, we believe
that writing down a proof might be useful to the mathematical community.

2. Preliminary results on the curve X(N). The (non-complete) Rie-
mann surface Y (N)(C) is constructed as the quotient of the upper half-plane
H modulo the modular subgroup Γ (N). The set Y (N)(C) parametrizes the
pairs (E, (P1, P2)), where E is an elliptic curve defined over C, and P1 and
P2 are points of order exactly N in E(C), which generate the subgroup of
N -torsion points and satisfy e(P1, P2) = exp(2πi/N), where e denotes the
Weil pairing.

(1) We would like to mention that this correction does not affect the results in [2].
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This interpretation can be used to give a model of the modular curve
Y (N) (and its completion X(N)) over other fields of characteristic not di-
viding N (or general schemes over Spec(Z[1/N ])). We have two options:
either we ignore the last condition on the Weil pairing, obtaining a non-
geometrically connected curve, or we modify the moduli problem introduc-
ing the Weil pairing in some way. The first option is essentially the one taken
by Deligne and Rappoport [3], and also by Katz and Mazur [18]. We con-
sider here the second option, following for example Elkies [8, Section 4]. Over
fields containing all the N -roots of unity µN the second curve is isomorphic
to a connected component of the first.

Thus, we take the full modular curve Y (N) (for N > 2) as the (geo-
metrically connected) curve which over any field K (of characteristic not
dividing N) parametrizes pairs (E, φ), where E is an elliptic curve over K
and φ is a Weil-equivariant isomorphism of group schemes between E[N ],
the kernel of the multiplication by N on E, and Z/NZ×µN . This means that

〈 , 〉 ◦ (φ× φ) = e

where e : E[N ] × E[N ] → µN is the Weil pairing and 〈 , 〉 is the natural
(symplectic) self-pairing of Z/NZ× µN given by

〈(m, ξ), (n, η)〉 := ξnη−m.

The map φ is called the N -level structure. We denote by X(N) the com-
pletion of Y (N); it also has a moduli interpretation like Y (N) by allowing
generalized elliptic curves. For the cases N = 1 and 2 one takes the usual
coarse moduli space (in both cases isomorphic to the projective line).

There are other options one can take to get a model of the curve X(N);
for example, one can take a fixed elliptic curve Ẽ, and consider the N -
level structures φ given as Weil-equivariant isomorphisms between E[N ]
and Ẽ[N ]. One gets a twisted form of X(N), usually denoted by XẼ(N)
(see for example [10]).

Recall that the curve X(1) is isomorphic (via the j-function) to the
projective line P1. The canonical cover X(N) → X(1) that forgets the N -
level structure is Galois over any field containing all the N -roots of unity,
and with Galois group PSL2(Z/NZ). The degree of this cover is equal to

δN :=

{
(N3/2)

∏
p|N (1− p−2) if N > 2,

6 if N = 2.

Moreover the genus gN of X(N) is equal to [27, p. 23]

(2.1) gN = 1 + δN
N − 6

12N
.

We see that the curves X(2), X(3), X(4) and X(5) are rational, while X(6)
is elliptic. For all other values N ≥ 7 the curves X(N) have genus > 1.
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We now want to relate the curve X(N) to some other modular curves.
First, observe that we have natural “forgetful” maps f1 : X(N) → X1(N)
given, in the moduli interpretation, by sending the pair (E, φ) to the pair
(E, φ−1((1, 1))), since φ−1((1, 1)) is a point of exact order N . Thus, we have
maps f0 : X(N) → X0(N) obtained by composing the map f1 with the
forgetful map % : X1(N) → X0(N). There is also another independent
map f ′0 : X(N) → X0(N), which can be defined in terms of the moduli
interpretation, as the map sending the pair (E, φ) to the pair (E, φ−1({0}×
µN )). If we see the curve X(N) as the compactified quotient of H by a
discrete subgroup, then we can interpret these maps f1 and f ′0 as the quotient
maps of X(N) by the subgroups

Γ1(N) =

{(
1 ∗
0 1

)}
and Γ 0(N) =

{(
∗ 0

∗ ∗

)}
of PSL2(Z/NZ), respectively.

Over a field containing a primitive N -root of unity ζN , there is a map
f ′1 : X(N) → X1(N), which depends on ζN , given by assigning to the pair
(E, φ), in the notation above, the N -torsion point φ−1((0, ζN )). The map f ′0
can be factored as f ′0 = % ◦ f ′1.

We now recall a construction of natural maps from X1(N
2) to X(N) and

from X(N) to X0(N
2), for which we do not know a precise reference (see,

however, [18, Section 11.3.5], for the second morphism in the case N = pn,
p a prime).

Lemma 2.1. Let N ≥ 3 be an integer. Then there exist morphisms of
curves π1 : X1(N

2) → X(N) of degree N and π0 : X(N) → X0(N
2) of

degree ϕ(N)/2 defined over Q, such that the composition π0◦π1 : X1(N
2)→

X0(N
2) is the natural forgetful map. Moreover, the maps make the following

diagram commutative:

X1(N
2)

��

π1 ��
X(N)

f1

��

π0

{{
f ′0

��

X0(N
2)

��

oo
ωN2 // X0(N

2)





X1(N)

��
X0(N) oo

ωN //

**

X0(N) X0(N) oo
ωN // X0(N)

tt
X(1)
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where ωN and ωN2 denote the Atkin–Lehner involutions, and the maps with-
out label are the usual projection maps given by the forgetful maps.

Proof. We will construct the maps from X1(N
2) to X0(N) and from

X(N) to X0(N
2) in two equivalent ways. First, over the complex numbers,

the map is deduced by observing that

Γ1(N
2) ≤ U−1Γ (N)U ≤ Γ0(N2), where U =

(
1 0

0 1/N

)
.

These maps can be defined over Q (or any field with characteristic prime
to N) by using the moduli interpretation. First, the map from X(N) to
X0(N

2) can be described on Y (N) by sending the point of Y (N) given
by an elliptic curve E and the N -level structure φ : E[N ] → Z/NZ × µN
to the N2-cyclic isogeny obtained by composing the dual of the N -isogeny
E → E/F1 with the N -isogeny E → E/F2, where we consider the subgroups
F1 := φ−1(Z/NZ× {1}) and F2 := φ−1({0} × µN ).

The morphism π0 can also be interpreted as the natural map from X(N)
to X(N)/C, where C is the full Cartan subgroup of PSL2(Z/NZ) (formed
by the diagonal matrices).

The map from X1(N
2) to X(N) can be analogously described in the

moduli interpretation for the points in Y1(N
2) over a field K, given as pairs

(E,P ) where E is an elliptic curve over K and P is a point of exact order
N2: Consider the point Q := [N ]P , which has order N , and the elliptic
curve E′ := E/〈Q〉. Then E′ has two natural cyclic isogenies of degree N ,
the quotient E′ → E/〈P 〉 and the dual isogeny of E → E′. The kernel F1

of the first map is canonically isomorphic to Z/NZ, i.e. F1
∼= Z/NZ, where

the isomorphism is given by the point P . We denote by F2 the kernel of the
second isogeny E′ → E, dual of E → E′. Then the two subgroups F1 and
F2 have zero intersection and hence there must be a canonical isomorphism
F2
∼= µN given by the Weil pairing. Therefore we have a Weil-equivariant

isomorphism φ : E′[N ] = F1 ⊕ F2
∼= Z/NZ× µN .

The commutativity of the diagram is clear from the definition of the
maps via the moduli interpretation of the curves. Recall that the natural
projection map from X0(N

2) to X0(N) sends a non-cuspidal point (E,ϕ)
of Y0(N

2) to the point (E,ϕ1), where ϕ = ϕ2 ◦ ϕ1 is the decomposition of
the degree N2 cyclic isogeny ϕ : E → E′ as composition of two cyclic degree
N isogenies, and that the Atkin–Lehner involution sends an isogeny to its
dual.

Finally, the assertions on the degrees are easy over C, taking into account
that the subgroup Γ0(N

2) contains −Id2, but Γ (N) and Γ1(N
2) do not.

Remark 2.2. This lemma implies that, for N = 3, 4 and 6, the moduli
curves X(N) and X0(N

2) are identical over Q(ζN ). This is analogous to the
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case of the curves X1(N) and X0(N) for N = 3, 4 and 6. Note that this does
not imply that given an elliptic curve E over a field K and a cyclic subgroup
scheme F of order 3 defined over K, then F contains a point of order 3; but
there exists a (unique) quadratic twist E′ of E such that the corresponding
subgroup scheme F ′ of E′ contains a point of order 3. Equivalently, there
exists a point P in F , defined over a (quadratic) extension L, such that the
pair {P,−P} is defined over K. The same is true for N = 4 and 6, and, in
general, for the elliptic curves whose j-invariant is in the image of the map

Y1(N)(K)→ Y (1)(K)
j→ K.

Corollary 2.3. The curve X(N) is isomorphic over Q to the fiber
product of X1(N) and X0(N

2) over X0(N), with respect to the natural map

X1(N) → X0(N) and the map X0(N
2) → X0(N)

ωN−−→ X0(N) given by the
composition of the natural map with the Atkin–Lehner involution ωN .

Proof. From the previous lemma and the universal property of the fiber
product we have a natural map from X(N) to the fiber product. In order
to show it is an isomorphism we will prove they both parametrize the same
moduli problem. The moduli problem parametrized by the fiber product is
easily seen to be the triplets (E,P, ϕ) where E is an elliptic curve, P is a
point of order exactly N , ϕ : E′′ → E/〈P 〉 is a degree N2 cyclic isogeny
such that ϕ = ϕ2 ◦ ϕ1, where ϕ1 : E → E/〈P 〉 is the quotient isogeny.
Now, the kernel of the dual of ϕ2 is a subgroup scheme F of order N in E.
From the condition E/F → E → E/〈P 〉 being a cyclic isogeny of degree
N2, we deduce that the subgroups F and 〈P 〉 have zero intersection. Hence
E[N ] ∼= F × 〈P 〉 ∼= F × Z/NZ. The Weil pairing then implies that F ∼= µN
and that this isomorphism is compatible with the Weil pairing.

3. The automorphism group of X(N). Recall that the curves X(N)
have genus greater than two if N ≥ 7, and their automorphism groups are
bounded by the Hurwitz bound:

(3.1) |Aut(X(N))| ≤ 84(gN − 1).

It is also known that exactly three points of X(1) are ramified in the cover
X(N) → X(1), namely j(i), j(ω) and j(∞), with ramification indices 2, 3
and N , respectively (j denotes the natural j-invariant isomorphism between
P1 and X(1)). The main result of this section is the following:

Theorem 3.1. The automorphism group of X(N) over C for values N
such that gN ≥ 2 equals PSL2(Z/NZ).

We will prove the theorem in several steps.

Lemma 3.2. Suppose PSL2(Z/NZ) C Aut(X(N)) then PSL2(Z/NZ) =
Aut(X(N)).
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Proof. Since PSL2(Z/NZ) C Aut(X(N)), we can restrict automor-
phisms in Aut(X(N)) to automorphisms of X(1) ∼= P1 and these automor-
phisms should fix the three ramification points. Therefore the restriction is
the identity.

Let m be the index of PSL2(Z/NZ) = Gal(X(N)/X(1)) in Aut(X(N)).
The equation for the genus (2.1) for N 6= 2 can be written as

(3.2) 84(gN − 1) = |PSL2(Z/NZ)|(7− 42/N),

and this combined with (3.1) gives the following bounds for the index m:

(3.3)

m ≤ 2 for 7 ≤ N < 11,

m ≤ 3 for 11 ≤ N < 14,

m ≤ 4 for 14 ≤ N < 21,

m < 7 for N ≥ 21.

Therefore, for 7≤N<11 we have Aut(X(N))∼=PSL2(Z/NZ) by Lemma 3.2.

The following lemma is elementary.

Lemma 3.3. Consider the coset decomposition

Aut(X(N)) = a1PSL2(Z/NZ) ∪ · · · ∪ amPSL2(Z/NZ),

and define the representation

β : PSL2(Z/NZ)→ Sm

by

σ 7→ {σa1PSL2(Z/NZ), . . . , σamPSL2(Z/NZ)}.

Then PSL2(Z/NZ) C Aut(X(N)) if and only if β is the trivial homomor-
phism.

Lemma 3.4. If N = p is a prime ≥ 7 then β = 1.

Proof. Since PSL2(p) is simple, kerβ is either PSL2(p) or {1}. The last
case is impossible since there are no elements of order p in Sm, for m ≤ 6.

Let us now consider the curves X(pe) where p is prime ≥ 7.

Lemma 3.5. For X(pe) with p ≥ 7 we have Aut(X(pe)) = PSL2(p
e).

Proof. We will prove that β = 1 for the map β defined in Lemma 3.3.
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We consider the following tower of covers:

X(pe)

H
��

PSL2(Z/peZ)

��

X(p)

PSL2(p)
��

X(1)

Consider H := Gal(X(pe)/X(p)); then |H| = p3(e−1), and, since p ≥ 7, we
have H < kerβ. Therefore, we can define the homomorphism β̃ so that the
following diagram is commutative:

PSL2(Z/peZ)

��

β // Sm

PSL2(p)
β̃

66

Again, since PSL2(p) is simple, we obtain β̃ = 1 and so β = 1 too.

Corollary 3.6. Let N be a composite integer prime to 2, 3, 5. Then
Aut(X(N)) = PSL2(Z/NZ).

Proof. The homomorphism β is trivial in this case as well, since

PSL2(Z/NZ) ∼=
s⊕
i=1

PSL2(Z/paii Z),

where N =
∏s
i=1 p

ai
i is the prime factorization of N .

End of proof of Theorem 3.1. In order to study the case of general N
we will need better bounds for the index

m := [Aut(X(N)) : PSL2(Z/NZ)].

We consider the tower of covers

X(N)

PSL2(Z/NZ)
��

Aut(X(N))

��

2 3 N

X(1)

��

j(i) j(ω) j(∞)

X(N)Aut(X(N))

Observe that if PSL2(Z/NZ) is not a normal subgroup of Aut(X(N)) then
the cover X(1) ∼= P1 → X(N)Aut(X(N)) is not Galois. From the proof of
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inequality (3.1) in [9, p. 260], we see that if the number r of points of X(1)
ramified in the cover X(N) → X(N)Aut(X(N)) is r > 3, then Hurwitz’s
bound is improved to

|Aut(X(N))| ≤ 12(gN − 1).

This proves that m ≤ 1, so PSL2(Z/NZ) C Aut(X(N)), a contradiction.

Therefore the number of ramified points is r = 3. Now Hurwitz’s bound
for X(N)→ X(N)Aut(X(N)) gives

(3.4) 2(gN − 1) = |Aut(X(N))|
(

1− 1

ν1
+ 1− 1

ν2
+ 1− 1

ν3
− 2

)
,

where νi are the ramification indices of the ramified points of the cover
X(N)→ X(N)Aut(X(N)). We distinguish the following cases:

Case 1: The three points j(i), j(ω), j(∞) restrict to different points
p1, p2, p3 with ramification indices e(j(i)/p1)=κ, e(j(ω)/p2)=λ, e(j(∞)/p3)
= µ. Equation (3.4) in this case reads

2(gN − 1) = |Aut(X(N))|
(

1− 1

2κ
+ 1− 1

3λ
+ 1− 1

Nµ
− 2

)
≥ |Aut(X(N))|

(
1− 1

2
+ 1− 1

3
+ 1− 1

N
− 2

)
≥ |Aut(X(N))|

(
1

6
− 1

N

)
,

which in turn gives the desired result

|Aut(X(N))| ≤ 12N

N − 6
(gN − 1) = δN .

Case 2: Some of the three points j(i), j(ω), j(∞) restrict to the same
point X(N)Aut(X(N)). We will consider the case N ≥ 11. First, let us
see that the points j(i) and j(∞) could not restrict to the same point of
X(N)Aut(X(N)). Since the cover X(N)→ X(N)Aut(X(N)) is Galois we should
have 2κ = Nµ (with the notation used in Case 1). But the degree of the
cover X(1) → X(N)Aut(X(N)) is at most m ≤ 6, so κ ≤ m ≤ 6 and µ = 1,
and this means that j(i) and j(∞) could not restrict to the same point,
unless N ≤ 12. But if N ≤ 12 then κ ≤ m ≤ 3, so N ≤ 6, which contradicts
N ≥ 11. Using the same argument we can show that the points j(ω) and
j(∞) restrict to different points of X(N)Aut(X(N)).

Hence, we can suppose that only the points j(i) and j(ω) restrict to
the same point p1 of X(N)Aut(X(N)). Thus, there should be another point p
of X(N)Aut(X(N)) which ramifies only in the cover X(1) → X(N)Aut(X(N))

with ramification index 2 ≤ ν ≤ 6. The point p1 should have ramification
index in X(N) → X(N)Aut(X(N)) equal to 6ψ = 2ψ1 = 3ψ2, where ψ1 and
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ψ2 are ≤ 6 and denote the ramification indices of j(i) and j(ω) in the cover
X(1)→ X(N)Aut(X(N)). The Hurwitz bound implies

2(gN − 1) = |Aut(X(N))|
(

1− 1

6ψ
+ 1− 1

φN
+ 1− 1

ν
− 2

)
ν≥2,ψ=1or 2
≥ |Aut(X(N))|

(
1

3
− 1

N

)
N≥11
≥ |Aut(X(N))|

(
1

3
− 1

11

)
,

which gives

|Aut(X(N))| ≤ 33
4 (gN − 1)

and in turn gives the desired result m ≤ 1.

Recall that Aut(H) is isomorphic to PSL2(R), and Γ (N) is torsion-free
if N ≥ 5, thus the automorphism group of Y (N) = H/Γ (N) is the quotient
of the normalizer of Γ (N) in PSL2(R) by ±Γ (N).

Corollary 3.7. For N ≥ 7 we have Aut(Y (N)) ∼= SL2(Z/NZ)/±1
and the order of the group of automorphisms of Y (N) is given by

1
2Nϕ(N)ψ(N)

where ϕ(N) := N
∏
p|N (1 − p−1) and ψ(N) := N

∏
p|N (1 + p−1) with p

prime.
In particular the normalizer of Γ (N) in PSL2(R) is given by PSL2(Z)

and Norm(Γ (N))/±Γ (N) ∼= PSL2(Z/NZ).

Proof. Clearly for N ≥ 5, ±Γ (N)≤PSL2(Z)≤Norm(Γ (N))≤PSL2(R).
It is known that for any Riemann surface Y with universal cover H such
that Y = H/K with K ≤ PSL2(R), the group Aut(Y ) is the normalizer
of K in PSL2(R) modulo K, in particular Aut(Y (N)) is the normalizer of
±Γ (N) in PSL2(R) modulo ±Γ (N). Recall also that if X is any compact
Riemann surface and Y = X−{v1, . . . , vn} with vi certain points of X, then
any automorphism of Y lifts to an automorphism of X, in particular always
Aut(Y (N)) ≤ Aut(X(N)). Thus

PSL2(Z)/±Γ (N) ≤ Norm(Γ (N))/±Γ (N) = Aut(Y (N)) ≤ Aut(X(N));

but PSL2(Z)/±Γ (N) is isomorphic to Aut(X(N)) for N ≥ 7, giving the
result.

4. Hyperelliptic and bielliptic modular curves X(N). Recall that
a non-singular projective curve C of genus gC > 1 over an algebraically
closed field of characteristic zero is hyperelliptic if it has an involution v ∈
Aut(C), called a hyperelliptic involution, which fixes 2gC + 2 points (see, for
example, [26, §1]). This involution v is unique if gC ≥ 2. Similarly, the curve
C is bielliptic if it has an involution w ∈ Aut(C), named bielliptic, which
fixes 2gC − 2 points. This involution is unique if gC ≥ 6.
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In this section we want to determine for exactly which integers N ≥ 7
the curve X(N) is hyperelliptic or bielliptic over C. Since X(N) is naturally
isomorphic over the cyclotomic field Q(ζN ) to the curve X1(N,N), these
results can also be deduced from the results of Ishii–Momose [13] in the
hyperelliptic case, and of Jeon–Kim [15] in the bielliptic case (2). Here we
present a distinct and direct proof.

Theorem 4.1. For N ≥ 7 the modular curve X(N) is not hyperelliptic.

Theorem 4.2. For N ≥ 7 the modular curve X(N) is bielliptic only
when N = 7 or N = 8.

Before we proceed to the proof of the theorems, we collect some results
we will use. Observe first that, given a morphism of non-singular projective
curves, φ : X → Y , which is a Galois cover (in the sense that it is given
by a quotient map of the form X → X/H, for H a subgroup of the group
of automorphisms of X), and given ν an involution on X, if ν satisfies
νH = Hν, then either ν induces, via φ, an element of the Galois group H
of the cover, or it induces an involution on Y .

Lemma 4.3. Consider a Galois cover φ : X → Y of degree d between
two non-singular projective curves of genus gX ≥ 2 and gY , respectively.
Suppose that gY ≥ 2 or d is odd.

(1) Suppose that 2gX + 2 > d(2gY + 2). Then X is not hyperelliptic.
(2) Denote by nι the number of fixed points of an involution ι of Y .

Suppose 2gX − 2 > dnι for any involution ι on Y . Then, if gX ≥ 6,
X is not bielliptic.

(3) Suppose 2gX − 2 > d(2gY + 2). Then, if gX ≥ 6, X is not bielliptic.

Proof. If v, a hyperelliptic or bielliptic involution, is in the group of the
Galois cover φ, then we have the following factorization of φ:

X → X/〈v〉 → Y,

which is impossible if d is odd, since X → X/〈v〉 has degree 2, and also if
gY ≥ 2, since X/〈v〉 has genus ≤ 1.

Suppose now that X has a hyperelliptic or bielliptic involution v, which
induces an involution ṽ on Y . Then the involution v can have fixed points
only among the points lying above the fixed points of ṽ on Y , and hence the
map v has at most dnṽ fixed points, where nṽ denotes the number of fixed
points of ṽ on Y . By Hurwitz’s formula, the involution v must have 2gX + 2

(2) The proofs of some results in [13] use the claim that there do not exist exceptional
automorphisms for intermediate modular curves [21], but Andreas Schweizer informed us
that this claim is false (see the forthcoming work [16]). This correction does not affect the
result on X1(N,N) in [13] and [15], but here we present a proof without using any of the
statements in [21].



294 F. Bars, A. Kontogeorgis and X. Xarles

fixed points in the hyperelliptic case, or 2gX −2 fixed points in the bielliptic
case. We get the result under our hypothesis, since hyperelliptic involutions
and bielliptic involutions on X are (unique and) in the center of Aut(X)
(see [26, Proposition 1.2]).

The following lemmas can be easily proved over C by observing that both
curves attain the maximal order of the group of automorphisms for their
genus. Recall that from the main result in Section 3 we have SL2(Z/NZ)/±1
∼= Aut(X(N)). Now, the maximal order of the automorphism group for a
genus 3 curve is 164 (given by the Hurwitz bound), and |SL2(Z/7Z)/±1|
= 164; moreover, the maximal order of this group for genus 5 is 192 and
|SL2(Z/8Z)/±1| = 192. The first lemma is proved by Elkies [8].

Lemma 4.4. The curve X(7) is a genus 3 curve isomorphic over Q to
the Klein quartic which is a bielliptic curve and is not hyperelliptic.

Recall that the Klein curve is the curve over Q defined by the quartic
equation

x3y + y3z + z3x = 0.

Similarly, we take the model W defined over Q of the Wiman curve (which
has the maximal order of the automorphism group for a genus 5 curve
over C) given as the intersection of the following three quadrics in P4:

x20 = x3x4, x23 = 4x21 + x22, x24 = x1x2.

Lemma 4.5. The curve X(8) is a genus 5 curve isomorphic over Q to
the Wiman curve W , which is a bielliptic curve and is not hyperelliptic.

Proof. One can easily see that W is a curve with the same group of
automorphisms as X(8) over C. Since there is only one such curve over C,
we infer that they are isomorphic over C.

Consider the involution of W over Q given by

ι1(x0, x1, x2, x3, x4) = (x0, x1, x2,−x3,−x4).
The quotient curve W/ι1 has equation

x40 = x1x2(4x
2
1 + x22)

and is isomorphic to the curve X0(64) over Q (e.g. by a computation via [5]).

Hence X(8) and W are curves over Q, isomorphic over C, and both
unramified degree two covers of the same curve over Q. Moreover, one can
see that there is only one involution of W defined over C whose quotient is
X0(64): in fact, there are four involutions without fixed points; three of them
give quotients of genus three that are hyperelliptic and one gives X0(64) (see
also [17, Subsection 3.2]). We deduce that the cover f : W → X0(64) must
be a twisted form (over Q) of the cover X(8)→ X0(64).
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The twisted forms of a fixed (degree 2) unramified covering are well-
known. In our case they can be described as the curves Wd given by

x20 = x3x4, dx23 = 4x21 + x22, x24 = dx1x2,

where d is a squarefree integer, together with the natural map f to X0(64)
given by fd(x0, x1, x2, x3, x4) = (x0, x1, x2). Now, since the covering f is
unramified, the subsets fd(Wd(Q)) do not intersect for distinct covers and
they give a partition of the set X0(64)(Q). This implies that only a finite
number of covers do have rational points. In our case, since X0(64) has four
Q-rational points corresponding to the cusps, a simple computation shows
that only W = W1 and W2 have Q-rational points; both have four Q-rational
points, each one covering two points of X0(64)(Q).

Since X(8) does have rational points (some cusps), the curve X(8) is
isomorphic to either W or W2 over Q. But, although W and W2 produce
distinct coverings of X0(64) over Q, they are isomorphic as curves over Q.
An explicit isomorphism ψ : W2 →W is given by

ψ(x0, x1, x2, x3, x4) = (2x0−2x4, 2x3−4x2, 2x1+x3+2x2,−4x1+2x3+4x2).

Remark 4.6. A computation with MAGMA reveals that the curve W
is also isomorphic over Q to the model of X(8) over Q given by Yang in [29,
Table, p. 507]. Moreover, it has a degree 2 map to an elliptic curve isogenous
to X0(32). In fact, X(8) has three different bielliptic involutions (see [17] or
the next section).

Finally, we recall that the curve X0(N
2) has genus > 1 if and only if

N ≥ 8. For them we have the following special case of a result cited in the
Introduction.

Proposition 4.7 (Ogg–Bars, [22], [2]). The curve X0(N
2) with gX0(N2)

≥ 2 is never hyperelliptic, and it is bielliptic exactly for N = 8 and 9.

Now we can proceed to the proof of the main theorems of the section.

Proof of Theorem 4.1. First of all, recall that, if f : C → C ′ is a non-
constant morphism between non-singular projective curves such that the
genus of C ′ is ≥ 2, and C is hyperelliptic, then C ′ is hyperelliptic.

Since X0(N
2) is never hyperelliptic if the genus is larger than 1 by Propo-

sition 4.7, i.e. if N > 7, we see that X(N) cannot be hyperelliptic unless
N = 7. But this case was already considered in Lemma 4.4.

Proof of Theorem 4.2. Recall the following result by Harris and Silver-
man [11]: Let φ : C → C ′ be a non-constant morphism between non-singular
projective curves such that the genus of C ′ is ≥ 2. If C is bielliptic then C ′

is bielliptic or hyperelliptic.
Now, the result follows for N > 9 by using the map to X0(N

2) given in
Lemma 2.1 and the result in Proposition 4.7. The cases N = 7 and 8 were
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already considered in Lemmas 4.4 and 4.5. It only remains to show that
X(9) is not bielliptic.

Recall that the genus of X(9) is 10 > 6. We will construct a map ρ,
which is a Galois cover (over C) and satisfies the conditions of Lemma 4.3(3).
Consider the (singular) model of X(9) given by y6−x(x3+1)y3 = x5(x3+1)2

[29, p. 507] (although this model is defined over Q, we do not know if it is
isomorphic to X(9) over Q). Now let E′ be the curve given by the equation

z2 − x(x3 + 1)z = x5(x3 + 1)2.

We get a map ρ from X(9) to E′ by taking z = y3, which has degree 3
(hence odd) and is Galois. The curve E′ is an elliptic curve isomorphic to
E : t2 − t = x3 by writing t := z/(x(x3 + 1)). By applying Lemma 4.3(3),
and since

2g(X(9))− 2 = 2 · 10− 2 = 18 > deg(ρ)(2g(E) + 2) = 3 · (2 · 1 + 2) = 12,

we conclude that X(9) is not bielliptic.

Remark 4.8. It is possible to describe theoretically the construction in
the last proof for the case X(9). First, consider the map f0 : X(9)→ X0(81)
given by Lemma 2.1; it is a degree 3 map to a curve of genus 4. Then, consider
the degree 3 map π : X0(81)→ X0(27), where the target is an elliptic curve.
Finally, let E be the elliptic curve, given by the simple equation y2−y = x3.
The curve E is 3-isogenous (over Q) to the curve X0(27). The map ρ makes
the following diagram commutative:

X(9)

ρ

��

f1 // X0(81)

π
��

E // X0(27)

An analogous construction (but with degree 2 maps) can also be done for
the curve X(8).

5. On quadratic points for X(N). Let C be a non-singular curve of
genus greater than one, defined over a number field K. Mordell’s conjecture,
proved by Faltings, states that the set of K-rational points C(K) of C is
always finite. In order to generalize this, it is natural to consider the set

Γd(C,K) =
⋃

[L:K]≤d

C(L)

of points of degree d of C over K. For quadratic points, that is, d = 2,
Harris and Silverman [11] showed that Γ2(C,F ) is not finite for some finite
extension F of K if and only if the curve C is either hyperelliptic or bielliptic.
Hence, the following result is a direct consequence of Theorems 4.1 and 4.2.
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Corollary 5.1. The only modular curves X(N) of genus ≥ 2 such
that there exists a number field L where the set Γ2(X(N), L) is not finite
are X(7) and X(8).

Now, we can ask if, for N = 7 or N = 8, there are infinitely many
quadratic points over the cyclotomic field Q(ζN ) (which is the smallest field
where they can have non-cuspidal rational points).

Theorem 5.2. For all N ≥ 7, the number of quadratic points of X(N)
over F := Q(ζN ) is always finite.

Proof. By the corollary above, we only need to study N = 7 or N = 8.
If C(F ) 6= ∅, then by [1] we have: #Γ2(C,F ) =∞ with C a non-singular

curve over F if and only if C is hyperelliptic or has a degree 2 morphism
ϕ : C → E all defined over F , with E an elliptic curve of rankZE(F ) ≥ 1.

It is known (see for example [23]) that Jac(X(7)) over Q(ζ7) is isomorphic
to E3, where E is the elliptic curve y2 + 3xy + y = x3 − 2x − 3, which is
isomorphic to X0(7

2). Therefore, since X(7) is non-hyperelliptic, we have an
infinite number of quadratic points over Q(ζ7) only if there is a degree 2 map
X(7)→ E′ defined over Q(ζ7), where E′ is an elliptic curve of positive rank
over Q(ζ7). But then, necessarily, E′ is isogenous to E and, in particular,
rankZE

′(Q(ζ7)) = rankZE(Q(ζ7)). But the last rank is zero, as a (2-Selmer)
computation with MAGMA [5] or SAGE [28] reveals.

For N = 8, consider the equations over Q given above. Some computa-
tions with MAGMA show that the group of automorphisms over Q is abelian
and isomorphic to (Z/2Z)3, and the quotient X(N)/〈σ〉 with respect to two
of the elements σ of Aut(X(8)) gives the elliptic curve E with equation
y2 = x3 − x of conductor 32, and by a third element gives the elliptic curve
E′ with equation y2 = x3 + x of conductor 64. By [17] there are exactly
three bielliptic involutions for X(8), so these are all of them. The elliptic
curves E and E′ become isomorphic over Q(ζ8). Hence, they have the same
rank. Finally, a (2-Selmer) computation with MAGMA or SAGE reveals that
rankZE(Q(ζ8)) = 0, proving the result.

Remark 5.3. A computation with MAGMA shows that

#Γ2(X(8),Q(ζ8)) = 24,

corresponding to the cusps. This result is obtained by computing all the
quadratic points of X0(8

2) over Q(ζ8). The curve X0(8
2) is a genus 3 curve,

with Jacobian isogenous to the cube of the elliptic curve X0(32) over Q(ζ8),
which has only a finite number of points over Q(ζ8). Then we compute the
inverse image with respect to the the degree 2 map X(8) → X0(32). We
find that although there are points in Γ2(X0(32),Q(ζ8)) which do not come
from cusps (there are more than one hundred points), none of them lift to
a quadratic point of X(8).
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