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AUTOMORPHISMS AND THE CANONICAL IDEAL

ARISTIDES KONTOGEORGIS, ALEXIOS TEREZAKIS, AND IOANNIS TSOUKNIDAS

Abstract. The automorphism group of a curve is studied from the viewpoint
of the canonical embedding and Petri’s theorem. A criterion for identifying
the automorphism group as an algebraic subgroup the general linear group is
given. Furthermore the action of the automorphism group is extended to an
action of the minimal free resolution of the canonical ring of the curve X.

1. Introduction

Let X be a non-singular complete algebraic curve defined over an algebraically
closed field of characteristic p ≥ 0. If the genus g of the curve X is g ≥ 2 then
the automorphism group G = Aut(X) of the curve X is finite. The theory of
automorphisms of curves is an interesting object of study, see the surveys [3], [7]
and the references therein.

On the other hand the theory of syzygies which originates in the work of Hilbert
and Sylvester has attracted a lot of researchers and it seems that a lot of geometric
information can be found in the minimal free resolution of the ring of functions of
an algebraic curve. For an introduction to this fascinating area we refer to [9].

In this article we aim to put together the theory of syzygies of the canonical
embedding and the theory of automorphism of curves. For this we assume that X
is a non-hyperelliptic, not trigonal and a non-singular quintic of genus 6 and we
also assume p 6= 2. These conditions are needed for Petri’s theorem to hold, while
the p 6= 2 condition is needed to ensure the faithful action of the automorphism
group on the space of holomorphic differentials H0(X,ΩX).

More precisely, in section 2.1 we use Petri’s theorem in order to give a necessary
and sufficient condition for an element in GL(H0(X,ΩX)) to act as an automor-
phism of our curve. In section 3 we show that the automorphism group G of the
curve acts on a minimal free resolution F of the ring SX . Notice that an action
of a group G on a graded module M gives rise to a series of linear representations
ρd : G→Md to all linear spaces Md of degree d for d ∈ Z. For the case of the free
modules Fi of the minimal free resolution F we relate the actions of the group G
in both Fi and in the dual Fg−2−i in terms of an inner automorphism of G. This
information is used in order to show that the action of the group G on generators
of the modules Fi sends generators of degree d to the set of generators of degree d.

In the theory of syzygies in order to provide an invariant that does not depend
on the selection of the minimal resolution, the TorSi (k, SX) is used, which is again

a graded module. The degree d-part will be denoted by TorSi (k, SX)d, which is a
vector space of dimension bi,d and we prove that it is also a G-module. Moreover,
the representations to the d graded space of each Fi, ρi,d : G → GL(Fi,d) can be

expressed as a direct sum of the G-modules TorSi (k, SX)d. We conclude by showing
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that the G-module structure of all Fi is determined by knowledge of the G-module
structure of H0(X,ΩX) and the G-module structure of each TorSi (k, SX) for all
0 ≤ i ≤ g − 2.

Acknowledgment: The authors would like to thank K. Karagiannis for useful
discussion concerning this article and his suggestions and corrections. The first
author would like to also thank G. Cornelissen for introducing him to Petri’s theo-
rem. I. Tsouknidas received financial support from the Greek National scholarship
foundation (IKY).

2. Automorphisms of curves and Petri’s theorem

Consider a complete non-singular non-hyperelliptic curve of genus g ≥ 3 over an
algebraically closed field K. Let ΩX denote the sheaf of holomorphic differentials
on X .

Theorem 1 (Noether-Enriques-Petri). There is a short exact sequence

0 → IX → SymH0(X,ΩX) →

∞
⊕

n=0

H0(X,Ω⊗n
X ) → 0,

where IX is genereted by elements of degree 2 and 3. Also if X is not a non-singular
quintic of genus 6 or X is not a trigonal curve, then IX is generated by elements
of degree 2.

For a proof of this theorem we refer to [19], [12]. The ideal IX is called the

canonical ideal and it is the homogeneous ideal of the embedded curve X → Pg−1
k .

The automorphism group of the ambient space Pg−1 is known to be PGLg(k), [13,
example 7.1.1 p. 151]. On the other hand every automorphism of X is known to
act on H0(X,ΩX) giving rise to a representation

ρ : G→ GL(H0(X,ΩX)),

which is known to be faithful, when X is not hyperelliptic and p 6= 2, see [14]. The
representation ρ in turn gives rise to a series of representations

ρd : G→ GL(Sd),

where Sd is the vector space of degree d polynomials in the ring S := k[ω1, . . . , ωg].
Let X ⊂ Pr be a projective algebraic set. Is it true that every automorphism

σ : X → X comes as the restriction of an automorphism of the ambient projective
space, that is by an element of PGLk(r). For instance such a criterion for complete
intersections is explained in [15, sec. 2]. In the case of canonical embedded curves
X ⊂ Pg−1 it is clear that any automorphism σ ∈ Aut(X) acts also in Pg−1 =
ProjH0(X,ΩX). In this way we arrive to the following

Lemma 2. Every automorphism σ ∈ Aut(X) corresponds to an element in PGLg(k)
such that σ(IX ) ⊂ IX and every element in PGLg(k) such that σ(IX) ⊂ IX gives
rise to an automorphism of X.

In the next section we will describe the elements σ ∈ PGLg(k) such that σ(IX) ⊂
IX .
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2.1. Algebraic equations of automorphisms. For now on we will assume that
the canonical ideal IX is generated by polynomials in k[ω1, . . . , ωg] = SymH0(X,ΩX)

of degree 2. Consider such a set of quadratic polynomials Ã1, . . . , Ãr generating
IX .

A polynomial of degree two Ãi can be encoded in terms of a symmetric g × g
matrix Ai = (aν,µ) as follows. Set ω̄ = (ω1, . . . , ωg)

t. We have

Ãi(ω̄) = ω̄tAiω̄.

Write σ(Ai) for the symmetric g × g matrix such that σ(Ãi) = ω̄tσ(A)iω̄.

Lemma 3. For an element σ ∈ GLg(k), σ(IX) ⊂ IX holds if and only if for all
1 ≤ i ≤ r, σ(Ai) ∈ spank{A1, . . . , Ar}.

Proof. (⇐) If σ(Ai) =
∑

j λ
i
jAj , then

ω̄tσtAiσω̄ =
∑

j

λijω̄
tAjω̄ ⇒

(σω̄)
t
Ai (σω̄) =

∑

j

λijÃj

Hence σ(Ãi) = σ(ω̄tAiω̄) ∈ IX .
(⇒) If σ(IX) ⊆ IX , there are gij(X) ∈ S such that

σ(Ãi) =
∑

j

gij(X)Ãj .

Since σ respects the degree of the polynomials, deg(gij(X)) = 0 for all i, hence

gij(X) = λij ∈ k.

ω̄tσ(Ai)ω̄ = σ(ω̄tAiω̄) = σ(Ãi) =

=
∑

j

λijÃj =
∑

j

λij
(

ω̄tAjω̄
)

= ω̄t





∑

j

λijAj



 ω̄

Since the matrices are symmetric it follows that σ(Ai) ∈ spank{Ã1, . . . , Ãr}. �

The above lemma gives rise to a new representation

Proposition 4. Let σ = (σij) ∈ GLg(k). The element σ gives rise to an au-

tomorphism of the curve with canonical ideal generated by Ãi, i = 1, . . . , r if and
only

(1) σ
(

Ãi

)

=

r
∑

j=1

λ(σ)jiÃj .

On the other hand σ acts on ω̄ by

σ(ω̄) = (σµ,ν)ω̄

therefore eq. (1) can be written as

(σµ,ν)
tAi(σµ,ν) =

r
∑

j=1

λ(σ)jiAj for every 1 ≤ i ≤ j.
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Finding g × g matrices (σµ,ν) and elements (λi,j) so that the above equation
holds will be called the matrix automorphism problem.

2.2. The automorphism group as an algebraic set. Consider a set A1, . . . , Ar

of linear independent elements in the vector space of g×g symmetric matrices. For
each invertible matrix σ = (σij) ∈ GLg(k) we consider the r-elements σtAiσ,
1 ≤ i ≤ r. Fixing a basis for the space of g × g symmetric matrices we can write
any element Ai as g(g + 1)/2× 1 column matrix Āi, that is

·̄ : Symmetric g × g matrices −→ k
g(g+1)

2

A 7−→ Ā

We can now put together the r elements Āi as a g(g+1)/2× r matrix
(

Ā1| · · · |Ār

)

,
which has full rank r, since {A1, . . . , Ar} are assumed to be linear independent.

We have that σ is an automorphism if the g(g + 1)/2× 2r-matrix

B(σ) = [Ā1, . . . , Ār, σtA1σ, . . . , σtArσ]

has rank r, which means that (r+1)×(r+1)-minors of B(σ) are zero. This provides
us with a description of the automorphism group as a determinantal variety.

A simpler way to obtain algebraic equations, in order to see the automorphism
curve as a finite algebraic group in GLg(k) is using Gauss elimination to find a
g(g+1)

2 × g(g+1)
2 invertible matrix Q which puts the matrix

(

Ā1| · · · |Ār

)

in echelon
form, that is

Q
(

Ā1| · · · |Ār

)

=

(

Ir
O( g(g+1)

2 −r)×r

)

.

But then for each 1 ≤ i ≤ r we have

σtAiσ =

r
∑

j=1

λjiĀi

if and only if the lower ( g(g+1)
2 − r) × r bottom block matrix of the matrix

(2)
(

σtA1σ, . . . , σtArσ
)

is zero, while the top r × r block matrix gives rise to the representation

ρ1 : G→ GLr(k),

defined in proposition 4. Assuming that the lower ( g(g+1)
2 − r) × r bottom block

matrix gives us r( g(g+1)
2 − r) equations where the entries σ = (xij) are seen as

indeterminates. In this way we can write down elements of the automorphism
group as a zero dimensional algebraic set, satisfying certain algebraic equations.

2.2.1. An example: Fermat curve. Consider the projective non singular curve given
by equation

Fn : xn1 + xn2 + xn0 = 0

This curve has genus g = (n−2)(n−1)
2 . Set x = x1/x0, y = x2/x0. For ω = dx

yn−1 =

− dy
xn−1 we have that the set

(3) xiyjω for 0 ≤ i+ j ≤ n− 3
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forms a basis for holomorphic differentials, [16], [20], [21]. These g differentials are
ordered lexicographically according to (i, j), that is

ω0,0 < ω0,1 < · · · < ω0,n−3 < ω1,0 < ω1,1 < · · · < ω1,n−4 < · · · < ωn−3,0.

The case n = 2 is a rational curve, the case n = 3 is an elliptic curve, the case
n = 4 has genus 3 and gonality 3, the case n = 5 has genus 6 and is quintic so the
first Fermat curve which has canonical ideal generated by quadratic polynomial is
the case n = 6 which has genus 10. The appendix is devoted to the proof of the
following

Proposition 5. The canonical ideal of the Fermat curve Fn consists of two sets of
relations

(4) G1 = {ωi1,j1ωi2,j2 − ωi3,j3ωi4,j4 : i1 + i2 = i3 + i4, j1 + j2 = j3 + j4},

and

(5) G2 =

{

ωi1,j1ωi2,j2 + ωi3,j3ωi4,j4 + ωi5,j5ωi6,j6 = 0 :
i1+i2=n+a,
i3+i4=a,
i5+i6=a,

j1+j2=b
j3+j4=n+b
j5+j6=b

}

where 0 ≤ a, b are selected such that 0 ≤ a+ b ≤ n− 3.

2.2.2. Automorphisms of the Fermat curve. The group of automorphisms of the
Fermat curve in is given by [22],[17]

G =

{

PGU(3, ph), if n = 1 + ph

(Z/nZ× Z/nZ)⋊ S3, otherwise

The action of the automorphism group is given in terms of a 3×3 matrix A sending

x = (x1/x0) 7→

∑2
i=0 a1,ixi

∑2
i=0 a0,ixi

y = (x2/x0) 7→

∑2
i=0 a2,ixi

∑2
i=0 a0,ixi

,

In characteristic 0, the matrix A is a monomial matrix, that is, it has only one
non-zero element in each row and column and this element is an n-th root of unity.
Two matrices A1, A2 give rise to the same automorphism if and only if they differ
by an element in the group {λI3 : λ ∈ k}. In any case the group G is naturally
a subgroup of PGL3(k). Finding the representation matrix of G as an element in
PGLg−1(k) is easy when n 6= 1+ ph and more complicated in n = 1+ ph case. We
have two different embeddings of the Fermat curve Fn in projective space

Pg−1
k Fn

//oo P2
k.

In both cases the automorphism group is given as restriction of the automorphism
group of the ambient space.

The computation of the automorphism group in terms of the vanishing of the
polynomials given in equation (2) is quite complicated. The following program
gives an idea of the complexity of this approach. The automorphism group for the
n = 6 case is described as an algebraic set described by g2 = 100 variables and 756
equations.

1 FERMATCURVE(6, RATIONALS()) ;

2 x_{7, 8}∗x_{10, 10} − 2∗x_{9, 8}∗x_{9, 10} + x_{10, 8}∗x_{7, 10},

3 .................756 equations....................
4 >x_{7, 9}∗x_{10, 10} − 2∗x_{9, 9}∗x_{9, 10} + x_{10, 9}∗x_{7, 10}
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3. Syzygies

3.1. Free resolutions. Recall that S = k[ω1, . . . , ωg] is the polynomial ring in g
variables. Let M be a graded S-module generated by the elements m1, . . . ,mr of
corresponding degrees a1, . . . , ar. We consider the free S-module F0 =

⊕r
j=1 S(−aj)

together with the onto map

F0 =
⊕

j

S(−aj)
π

−→M.

Let us denote by M1, . . . ,Mr elements of F0, such that π(Mi) = mi, assuming also
that deg(Mi) = deg(mi), for 1 ≤ i ≤ r. In the above formula we have used the
isomorphism

r
⊕

j=1

S(−aj) −→

r
⊕

j=1

MiS(6)

(s1, . . . , sr) 7−→
s
∑

j=1

siMi.

We introduced the shifts in the grading so that degS(−aj) sj = degM (sjMj), that

is degS(−aj) sj = degS(sj) + deg(Mj) = degS(sj) + aj .
The kernel of the map π is again a finite generated S-module and by continuing

this operation we arrive at a free resolution of M , that is, at a sequence of free
S-modules

(7) 0 // Fg

φg
// · · · // F1

φ1
// // F0 ,

where coker(φ1) = F0/Imφ1 = F0/kerπ ∼=M .
Let m be the maximal ideal of S generated by 〈ω1, . . . , ωg〉. The pair (S,m)

behaves in many aspects like a local ring, see [11]. The graded free resolution in
eq. (7) is called minimal if for each i the image of φi is contained in mFi−1 or
equivalently if the reduced maps φ̄i : Fi/mFi → Fi−1/mFi−1 are zero. From now
on all free resolutions, we will use, are assumed to be minimal.

Each free module in the resolution can be written as

Fi =
⊕

j

S(−j)βi,j .

The integers βi,j are called the Betti numbers of the resolution. The Betti diagram
of the free resolution is given by the following table:

0 1 · · · r
i β0,i β1,i+1 · · · βr,i+r,

i+ 1 β0,i+1 β1,i+2 · · · βr,i+r+1

...
...

...
...

j β0,j β1,j+1 · · · βr,j+r

For example the Fermat curve for n = 6, that is g = 10 gives rise to the following
Betti diagram, as we can compute using the magma algebra system, [6]:
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0 1 2 3 4 5 6 7 8
0 1 0 0 0 0 0 0 0 0
1 0 28 105 189 189 105 27 0 0
2 0 0 27 105 189 189 105 28 0
3 0 0 0 0 0 0 0 0 1

We observe that the above table is highly symmetrical and this is not a coincidence.
Observe also that only the first three rows are non zero and this is due to a general
result stating that the Casteluovo-Mumford regularity for the ring S/IX is three,
see [9, 9B]. Also 28 = β1,2 =

(

g−2
2

)

. The evident symmetry in the above matrix
(top to down, left to right) is part of a general theory as we will see in section 3.4.
We will introduce group actions on free resolutions first.

3.2. Extending group actions. Let M be a finitely generated graded S-module
acted on by the group G. Let m1, . . . ,mr be minimal generators of M of corre-
sponding degrees ai. Every element σ ∈ G sends every generator Mi of the free
module F0

(8) σ(Mi) =
r
∑

ν=1

aν,iMi, for some aν,i ∈ S.

Remark 6. We would like to point out here that unlike the theory of vector spaces,
an element x ∈ F0 might admit two different decompositions

x =
r
∑

i=1

aimi =
r
∑

i=1

bimi,

that is
r
∑

i=1

(ai − bi)mi = 0,

and if ai0 − bi0 6= 0 we cannot assume that it is invertible, so we can’t express Mi0

as an S-linear combination of the other elements Mi, for i0 6= i, 1 ≤ i ≤ r. We can
only deduce that {ai − bi}i=1,...,r form a syzygy.

Therefore one might ask if the matrix expression given in eq. (8) is unique. In
proposition 12 we will prove that the elements aν,i which appear as coefficients in
eq. (8) are in the field k and therefore the expression is indeed unique.

Observe that we have extended the natural action of Aut(X) on H0(X,ΩX) to
an action on the ring S = SymH0(X,ΩX), so that σ(xy) = σ(x)σ(y). Therefore
if M = IX then for all s ∈ S, m ∈ IX = M we have σ(sm) = σ(s)σ(m). All the
actions in the modules we will consider will have this property.

We can extend the action of G on the free S-module

F0 =M1S ⊕ · · · ⊕MrS

by the rule σ(sMi) = σ(s)σ(Mi). As we did in the isomorphism in eq. (6) we
would like to transfer the action to the direct sum of the shifted ring

⊕r
j=1 S(−aj).

Observe that

σ





r
∑

j=1

sjMj



 =

r
∑

j=1

σ(sj)

r
∑

ν=1

aν,j(σ)Mν =

r
∑

ν=1





r
∑

j=1

aν,j(σ)σ(sj)



Mν ,
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where degS aν,j + aν = degS mj . This means that under the action of σ ∈ G the
r-tuple (s1, . . . , sr)

t is sent to






s1
...
sr







σ
7−→







a1,1(σ) a1,2(σ) · · · a1,r(σ)
...

...
...

ar,1(σ) ar,2(σ) · · · ar,r(σ)













σ(s1)
...

σ(sr)






.

If A(σ) =
(

ai,j(σ)
)

is the matrix corresponding to σ then for σ, τ ∈ G the following
cocycle condition holds:

A(στ) = A(σ)A(τ)σ .

If we can assume that G acts trivially on the matrix A(τ) for every τ ∈ G (for
instance when A(τ) is a matrix with entries in k for every τ ∈ G), then the above
cocycle condition becomes a homomorphism condition.

Also if A(σ) is a principal derivation, that is there is an r × r matrix Q, such
that

A(σ) = σ(Q) ·Q−1

then after a basis change of the generators we can show that the action on the
coordinates is just given by

(s1, · · · , sr)
t σ
7−→ (σ(s1), · · · , σ(sr))

t,

that is the matrix A(σ) is the identity. We will call the action on the free resolution
F obtained by extending the action on M the standard action.

3.3. Group actions on free resolutions. Assume thatM is acted on by a group
G and let

(9) 0 → Fn
δn−→ Fn−1 → · · ·Fi

δi−→ Fi−1 → · · ·F1 →M → 0

be a minimal free resolution, that is each Fi is a free graded S-module and the
image of each δi is in mFi−1, or equivalently δi maps the basis of Fi to a minimal
set of generators of the image of δi, see [9, sec. 1B]. The image of each δi is the i-th
module of syzygies.

Assume that each Fi is acted on by G and that the maps δi are G-equivariant.
Then a series of representations can be defined:

(10) ρi : G→ GL(TorSi (k,M)).

Indeed, from the resolution given in eq. (7) we can consider the complex

(11) · · · → k ⊗ Fi
1k⊗δi−→ k ⊗ Fi−1 → · · ·

Since the δi maps are zero modulo m all maps in the above complex are zero. On
the other hand the homology of the complex (11) is by definition TorSi (k,M) so

TorSi (k,M) = k ⊗ Fi.
We will now study the action of the group G on the generators of Fi. First of

all we have that

Fi =

ri
⊕

ν=1

bi,ν
⊕

µ=1

ei,ν,µS ∼=

ri
⊕

ν=1

S(−di,ν)
bi,ν .

In the above formula we assumed that Fi is generated by elements ei,ν,µ such that
the degree of ei,ν,µ = di,ν for all 1 ≤ µ ≤ bi,ν . We also assume that

di,1 < di,2 < · · · < di,ri .
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The action of σ is respecting the degrees, so an element of minimal degree di,1 is
sent to a linear combination of elements of minimal degree di,1. In this way we
obtain a representation

ρi,1 : G→ GL(bi,1, k).

In a similar way an element ei,2,µ of degree di,2 is sent to an element of degree di,2
and we have that

σ(ei,2,µ) =

bi,2
∑

j1=1

λi,2,µ,j1ei,2,j1 +

bi,1
∑

j2=1

λ′i,2,µ,j1ei,1,j2 ,

where all λi,2,µ,j1 ∈ k and all λ′i,1,µ,j2 ∈ S/mdi,2−di,1+1. In this case we have a
representation with entries in an Artin algebra instead of a field, which has the
form:

ρi,2 : G→ GL(bi,1 + bi,2, S/m
di,2−di,1+1),

σ 7→

(

A1(σ) A1,2(σ)
0 A2(σ)

)

,

where A1(σ) ∈ GL(bi,1, k) and A2(σ) ∈ m
di,2−di,1GL(bi,2, k).

By induction the situation in the general setting gives rise to a series of nested
representations:

ρi,j : G→ GL(bi,1 + bi,2, S/m
di,j−di,1+1)

(12) σ 7→ A(σ) =











A1(σ) A1,2(σ) · · · A1,j(σ)
0 A2(σ) A2,j(σ)
...

. . .
...

0 · · · 0 Aj(σ)











where Aν(σ) ∈ GL(bi,ν , k) and Aκ,λ(σ) is an bi,κ × bi,λ matrix with coefficients in

m
bi,λ−bi,κ . The representation ρi,ri taken modulo m reduces to TorSi (k,M), seen as

a k[G]-module.

Remark 7. Using the same construction as in the Maschke theorem, see [1, p.13] we
can prove that this representation is equivalent to a block diagonal representation, if
the characteristic p ∤ |G|. We will see in proposition 12 that under mild hypotheses
this requirement can be removed.

3.4. Gorenstein symmetry. For the canonical embedding X →֒ Pg−1 we have
r = g − 1, therefore S(−r − 1) = S(−g). The S-module S(−r − 1) is special, for
instance since X is smooth we have by [2, th. 3.1] that the sheaf corresponding to
the module S(−g) is canonically isomorphic to ∧g−1Ω1

X thus it is naturally acted
by the automorphism group of X .

If F is a free resolution

F : 0 // Fr

φr
// · · ·

φi+1
// Fi

φi
// Fi−1

φi−1
// · · · // F1

φ1
// F0

of S/IX then we twist it by S(−r − 1) in order to obtain a new free resolution
HomS(Fi, S(−g)) of S/IX :

F∗ : 0 Fr
oo · · ·

φ∗

r
oo Fi

φ∗

i+1
oo Fi−1

φ∗

i
oo · · ·

φ∗

i−1
oo F1

oo F0

φ∗

1
oo

The ring SX := S/IX is Cohen-Macauley of codimension r − 1 = g − 2 therefore

ExtiS(SX , S(−g)) = 0 for i 6= g − 2.
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This means that F is a free resolution of Extg−2
S (SX , S(−g)), which in turn is

isomorphic to SX(1), see [9, prop. 9.5].

Lemma 8. We have

HomS(S(−a), S(−b)) ∼= S(−b+ a).

Proof. There are elements ea, eb of degrees a, b respectively such that eaS ∼= S(−a)
and ebS ∼= S(−b), where the S-module isomorphisms are given by sending ef 7→
f . This means that degeaS(eaf) = degS(−a) f and degebS(ebf) = degS(−b) f . In

particular degS(−a) 1S = a or in other words S(−a)d = S−a+d, see also [18, prop.

2.3].
The set HomS(N,M) where N,M are graded S-modules with N finitely gen-

erated equals
⊕

i∈Z
Homi(N,M), where Homi(N,M) consists of all morphisms of

degree i, see [18, prop. 2.7].
A homomorphism φ satisfies φ(eaf) = fφ(ea) and is described completely by

φ(ea) ∈ ebS. If φ is of degree 0 we furthermore have φ(ea) = ebFφ, where the degree
of Fφ satisfies the equation a = b+degS(Fφ), that is deg(Fφ) = a− b. This proves
that Hom0(S(−a), S(−b)) ∼= Sa−b, thus HomS(S(−a), S(−b)) ∼= S(−b+ a). �

Corollary 9. For b = g we have

HomS(S(−a), S(−g)) = S(−g + a)

Since F ∗ is a free resolution of SX(1) (shifted by one) we arrive at the symmetry

(13) βi,j = βg−2−i,g+1−j .

This symmetry can also be interpreted in terms of of Koszul cohomology, see [10,
prop. 4.1]. In general the Betti table for a canonical model is given by

0 1 · · · a a+ 1 · · · b− 1 b · · · g − 3 g − 2
0 1 0 · · · 0 0 · · · 0 0 · · · 0 0
1 0 β1 · · · βa βa+1 · · · βg−3−a 0 · · · 0 0
2 0 0 · · · 0 βg−3−a · · · βa+1 βa · · · β1 0
3 0 0 · · · 0 0 · · · 0 0 · · · 0 1

In the above table the i, j-entry corresponds to βi,i+j . The Green conjecture states
that the integer a is equal to Cliff(X) − 1. Notice that the Green conjecture is
known to fail in positive characteristic, see [5].

3.5. Unique actions. Let us consider two actions of the automorphisms group
G on H0(X,ΩX), which can naturally be extended on the symmetric algebra
SymH0(X,ΩX). We will denote the first action by g ⋆ v and the second action
by g ◦ v, where g ∈ G, v ∈ SymH0(X,ΩX).

Proposition 10. If the curve X satisfies the conditions of faithful action of G =
Aut(X) on H0(X,ΩX), that is X is not hyperelliptic and p > 2, [14, th. 3.2] and
moreover both actions ⋆, ◦ restrict to actions on the canonical ideal IX , then there
is an automorphism i : G→ G, such that g ⋆ v = i(g) ◦ v.

Proof. Both actions of G on H0(X,ΩX) introduce automorphisms of the curve X .
That is sinceG⋆IX = IX andG◦IX = IX , the groupG is mapped into Aut(X) = G.
This means that for every element g ∈ G there is an element g∗ ∈ Aut(X) = G
such that g ⋆ v = g∗v, where the action on the right is the standard action of the
automorphism group on holomorphic differentials. By the definition of the group



AUTOMORPHISMS AND THE CANONICAL IDEAL 11

action for every g1, g2 ∈ G we have (g1g2)
∗v = g∗1g

∗
2v for all v ∈ H0(X,ωX) and

the faithful action of the automorphism group provides us with (g1g2)
∗ = g∗1g

∗
2 , i.e.

the map i∗ : g 7→ g∗ is a homomorphism. Similarly the map corresponding to the
◦-action, i◦ : g 7→ g◦ is a homomorphism and the desired homomorphism i is the
composition of i∗i

−1
◦ . �

So far we have introduced the map HomS(Fi, S(−g)) which induces a symmetry
of the free resolution F by sending Fi to Fg−2−i. Then each free module Fi of the
resolution F is equipped by the extension of the action on holomorphic differentials,
according to the construction of section 3.3. On the other hand since S(−g) is a
G-module we have that Fg−2−i

∼= HomS(Fi, S(−g)) is equipped by a second action
namely every φ : Fi → S(−g) is acted naturally by G in terms of φ 7→ φσ = σ−1φσ.
How are the two actions related?

Lemma 11. Denote by ⋆ the action of G on Fi induced by taking the S(−g)-dual.
The standard and the ⋆-actions are connected in terms of an automorphism ψi of
G, that is for all v ∈ Fi g ⋆ v = ψi(g)v.

Proof. Assume that i ≤ g − 2 − i. Consider the standard action of G on the free
resolution F. The module Fg−2−i obtains a new action g ⋆ v for g ∈ G, v ∈ Fi. By
3.3 this ⋆ action is transfered to an action on all Fj for j ≥ g − 2 − i, including
the final term Fg−2 which is isomorphic to S(−1). This gives us two actions on
H0(X,ΩX) which satisfy the requirements of proposition 10. The desired result
follows. �

Proposition 12. Under the faithful action requirement we have that all automor-
phisms σ ∈ G send the direct summand S(−j)βi,j of Fi to itself, that is the repre-
sentation matrix in eq. (12) is block diagonal.

Proof. Consider Fi =
⊕ri

ν=1Mi,νS, where Mi,1i , . . . , Xffli,ri are assumed to be
minimal generators of Fi with descending degrees ai,ν = deg(mi,ν), 1 ≤ ν ≤ ri.
The action of an element σ is given in terms of the matrix A(σ) given in equation
(12). The element φ ∈ HomS(Fi, S(−g)) is sent to

h : HomS(Fi, S(−g))
∼=
−→ Fg−2−i

φ 7−→
(

φ(Mi,1), . . . , φ(Mi,ri)
)

Each φ(Mi,ν) can be considered as an element in S(−g − 1 + deg(mi,ν)) inside
Fg−2−i. Observe that the element φ ∈ HomS(Fi, S(−g)) is known if we know all
φ(Mi, ν) for 1 ≤ ν ≤ ri. From now on we will identify such an element φ as
a ri-tuple

(

φ(Mi, ν)
)

1≤ν≤ri
. We can consider as a basis of Hom(Fi, S(−g)) the

morphisms φµ given by

φµ(Mj) = δµ,j · E,

where E is a basis element of degree g of the rank 1 module S(−g) ∼= S · E. This
is a different basis than the basis Mg−2−i,ν , 1 ≤ n ≤ rg−2−i of Fg−2−i we have
already introduced.

Recall that if A,B are G-modules, then there is an natural action on Hom(A,B),
sending φ ∈ Hom(A,B) to σφ which is the map

σφ : A ∋ a 7→ σφ(σ−1a)
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We have also a second action on the module Fg−2−i. We compute σφ(Mi,ν) for
all base elements Mi,ν in order to descrive σφ:

σ
(

φ(σ−1Mi,ν)
)

1≤ν≤κ
=

(

ri
∑

µ=1

σ
(

αµ,ν(σ
−1)
)

σφ(Mi,µ)

)

1≤ν≤ri

=

(

ri
∑

µ=1

σ
(

αµ,ν(σ)
)

χ(σ)φ(Mi,µ)

)

1≤ν≤ri

where in the last equation we have used the fact that φ(Mi) are in rank one G-
module S(−g) ∼= ∧g−1Ω1

X hence the action of σ ∈ G is given by multiplication by
χ(σ), where χ(σ) is an invertible element is S.

In order to simplify the notation consider i fixed, and denote Mν =Mi,ν , r = ri,
ai,j = aj .

According to eq. (13) ifMj has degree aj then the element φj has degree g+1−aj.
Assume that Mr has maximal degree ar. Then, φr has minimal degree. Moreover,
in order to describe σφr we have to consider the tuple (σφr(M1), . . . ,

σ φr(Mr)). We
have

(σ
φr(Mν)

)

1≤ν≤r
=

(

r
∑

µ=1

σ
(

α(i)
µ,ν(σ

−1)
)

χ(σ)φr(Mµ)

)

1≤ν≤r

=
(

σ
(

α(i)
r,ν(σ

−1)
)

χ(σ)E
)

1≤ν≤r

and we finally conclude that

σφr =
r
∑

ν=1

σ−1
(

α(i)
r,ν(σ

−1)
)

χ(σ)φν .

In this way every element x ∈ Fg−2−i is acted on by σ in terms of the action

σ ⋆ x = h
(σ
h−1(x)

)

.

On the other hand the elements h(φr) are in Fg−2−i and by lemma 11 there is an
element σ′ ∈ G such that

σ′h(φr) =

r
∑

ν=1

α(g−2−i)
ν,r (σ′)h(φν).

Since the element φν has maximal degree among generators of Fi the element h(φr)
has minimal degree. This means that all coefficients

α(g−2−i)
ν,r (σ′) = σ

(

α(i)
r,ν(σ

−1)
)

χ(σ)

are zero for all ν such that degmν < deg µr. Therefore all coefficients a
(i)
ν,r(σ) for

ν such that degmν < degmr are zero. This holds for all σ ∈ G. By considering in
this way all elements φr−1, φr−2, . . . , φ1, which might have greater degree than the
degree of φr the result follows. �
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4. Representations on the free resolution

Each S-module Fi in the minimal free resolution can be seen as a series of
representations of the group G. Indeed, the modules Fi are graded and there is an
action of G on each graded part, given by representations

ρi,d : G→ GL
(

Fi,d

)

,

where Fi,d is the degree d part of the S-module Fi. In equation (10) we have already

considered the representation on GL(TorSi (k, SX)) which is ρi,d. Proposition 12
shows us that there is a decomposition

TorSi (k, SX) =
⊕

j∈Z

TorSi (k, SX)j ,

where TorSi (k, SX)j is the k-vector space generated by generators of Fi that have
degree j. This is a vector space of dimension bi,j .

Denote by Ind(G) the set of isomorphism classes of indecomposable k[G]-modules.
If k is of characteristic p > 0 and G has no-cyclic p-Sylow subgroup then the set
Ind(G) is infinite, see [4, p.26]. Suppose that each TorSi (k, SX)j admits the follow-
ing decomposition in terms of U ∈ Ind(G):

TorSi (k, SX)j =
⊕

U∈Ind(G)

ai,j,UU where ai,j,U ∈ Z.

We obviously have that

bi,j =
∑

U∈Ind(G)

ai,j,U dimk U.

The G-structure of Fi is given by

TorSi (k, SX)⊗ S,

that is the G-module structure of Fi,d is given by

Fi,d =
⊕

d∈Z

⊕

j∈Z

TorSi (k, SX)d−j ⊗ Sj.

Notice that structure of Sd can be expressed in terms of the decomposition of
H0(X,ΩX) in terms of indecomposable modules using the operations in the Grothendieck
ring of G.

Appendix

In what follows we will study the canonical ideal of the Fermat curve, for n ≥
6,following the method developed in [8] and we will prove proposition 5.

Observe that the holomorphic differentials given in eq. (3) are in 1-1 correspon-
dence with the elements of the set A = {(i, j) : 0 ≤ i + j ≤ n− 3} ⊂ N2. First we
introduce the following term order on the polynomial algebra S := SymH0(X,ΩX).

Definition 13. Choose any term order ≺t for the variables {ωN,µ : (N,µ) ∈ A}
and define the term order ≺ on the monomials of S as follows:

(14) ωN1,µ1ωN2,µ2 · · ·ωNd,µd
≺ ωN ′

1,µ
′

1
ωN ′

2,µ
′

2
· · ·ωN ′

s,µ
′

s
if and only if

• d < s or



14 A. KONTOGEORGIS, A. TEREZAKIS, AND I. TSOUKNIDAS

• d = s and
∑

µi >
∑

µ′
i or

• d = s and
∑

µi =
∑

µ′
i and

∑

Ni <
∑

N ′
i

• d = s and
∑

µi =
∑

µ′
i and

∑

Ni =
∑

N ′
i and

ωN1,µ1ωN2,µ2 · · ·ωNd,µd
≺t ωN ′

1,µ
′

1
ωN ′

2,µ
′

2
· · ·ωN ′

s,µ
′

s
.

T

Lemma 14. The number of natural numbers 0 ≤ i, j such that 0 ≤ i+ j ≤ E ∈ N
equals (E + 1)(E + 2)/2.

Proof. Evaluate
∑E

i=0

∑E−i
j=0 1. �

We will use the following lemma

Lemma 15. Let J be the ideal generated by the elements G1, G2 and let I be the
canonical ideal. Assume that the cannonical is generated by elements of degree 2.
If dimL (S/in≺(J))2 ≤ 3(g − 1), then I = J .

We extend the correspondence between the variables ωi,j and the points of A to
a correspondence between monomials in S of standard degree 2 and points of the
Minkowski sum of A with itself, defined as

(15) A+A = {(i+ i′, j + j′) | (i, j), (i′, j′) ∈ A} ⊆ N2.

Proposition 16. Let A be the set of exponents of the basis of holomorphic differ-
entials, and let A + A denote the Minkowski sum of A with itself, as defined in
(15). Then

(ρ, T ) ∈ A+A ⇔ ∃ ωi,jωi′,j′ ∈ S such that mdeg(ωi,jωi′,j′) = (2, ρ,T).

For each n ∈ N we write Tn for the set of monomials of degree n in S and
proceed with the characterization of monomials that do not appear as leading terms
of binomials in G1 ⊆ J .

Proposition 17. Let σ be the map of sets

σ : A+A → T2

(ρ, T ) 7→ min
≺

{ωi,jωi′,j′ ∈ T2 | (ρ, T ) = (i+ i′, j + j′)}

Then

σ(A+A) = {ωi,jωi′,j′ ∈ T2 | ωi,j · ωi′,j′ 6= in≺(f), ∀ f ∈ G1}

The above proposition gives a characterization of the monomials that do not
appear as initial terms of elements of G1. However, some of these monomials
appear as initial terms of polynomials in G2:

Proposition 18. Let

C = {(ρ, b) ∈ A+A | ρ = n+ a, 0 ≤ a+ b ≤ n− 6, a, b ∈ N}

Then

σ(C) ⊆ {ωi,jωi′,j′ ∈ T2 | ∃ g ∈ G2 such that ωi,jωi′,j′ = in≺(g)}

Moreover #C = #σ(C) = (n− 5)(n− 4)/2.
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Proof. By the form of the equations of G2 we have that

i1 + i2 = n+ a = ρ, j1 + j2 = b

so

i3 + i4 = a = ρ− n, j3 + j4 = n+ b, i5 + i6 = a = ρ− n, j5 + j6 = b = T

We should have

0 ≤ a+ b ≤ n− 6

and by lemma 14 we have that the cardinality of C equals (n− 5)(n− 4)/2. �

We now compute that

3(g − 1)− (#(A+A)− C) = 3 (g − 1)−
(2n− 5)(2n− 4)

2
+

(n− 5)(n− 4)

2
= 0,

so by lemma 15 we have that I = J .

References

[1] J. L. Alperin. Local representation theory, volume 11 of Cambridge Studies in Advanced
Mathematics. Cambridge University Press, Cambridge, 1986. Modular representations as an
introduction to the local representation theory of finite groups.

[2] Allen Altman and Steven Kleiman. Introduction to Grothendieck duality theory. Lecture
Notes in Mathematics, Vol. 146. Springer-Verlag, Berlin-New York, 1970.

[3] Jannis A. Antoniadis and Aristides Kontogeorgis. Automorphisms of Curves, pages 339–361.
Springer International Publishing, Cham, 2017.

[4] David J. Benson. Modular representation theory, volume 1081 of Lecture Notes in Mathe-
matics. Springer-Verlag, Berlin, 2006. New trends and methods, Second printing of the 1984
original.

[5] Christian Bopp and Frank-Olaf Schreyer. A version of green’s conjecture in positive charac-
teristic, 2018.

[6] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system I: The user
language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational algebra and number
theory (London, 1993).

[7] A. Broughton, T. Shaska, and A. Wootton. On automorphisms of algebraic curves. In Alge-
braic curves and their applications, volume 724 of Contemp. Math., pages 175–212. Amer.
Math. Soc., Providence, RI, 2019.

[8] Hara Charalambous, Kostas Karagiannis, and Aristides Kontogeorgis. The relative canonical
ideal of the Artin-Schreier-Kummer-Witt family of curves, 2019.

[9] David Eisenbud. The geometry of syzygies, volume 229 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 2005. A second course in commutative algebra and algebraic
geometry.

[10] Gavril Farkas. Progress on syzygies of algebraic curves. In Moduli of curves, volume 21 of
Lect. Notes Unione Mat. Ital., pages 107–138. Springer, Cham, 2017.

[11] Shiro Goto and Keiichi Watanabe. On graded rings. I. J. Math. Soc. Japan, 30(2):179–213,
1978.

[12] Mark Green and Robert Lazarsfeld. A simple proof of Petri’s theorem on canonical curves.
In Geometry today (Rome, 1984), volume 60 of Progr. Math., pages 129–142. Birkhäuser
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