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ACTIONS ON SYMMETRIC CURVES FROM THE ARITHMETIC

TOPOLOGY VIEWPOINT

ARISTIDES KONTOGEORGIS AND PANAGIOTIS PARAMANTZOGLOU

Abstract. We give an explanation of the MKR dictionary in Arithmetic
topology using Ihara’s theory of profinite braid groups. Motivated by the anal-
ogy we perform explicit computations for representations of both braid groups
and the absolute Galois group Gal(Q̄/Q) for cyclic covers of the projective line
and generalized Fermat curves.

1. Introduction

Arithmetic topology is concerned with the similarities between several notions
and theorems in algebraic number theory and the theory of 3-manifolds. In this the-
ory there is the Mazur-Kapranov-Reznikov dictionary (MKR-dictionary for short)
and a short part of it is displayed at the next table:

Number Theory Topology

prime ideals knots
ideals links
Number Fields 3-manifolds
class group H1(M,Z)
Riemann’s ζ-function Selberg’s ζ-function
Algebraic extensions Ramified Topological covers
Galois groups, πet

1 (X) π1(X, x0)

For a nice introduction and a detailed explanation see [35]. Motivated by arith-
metic topology we would like to provide and expand a common framework, so that
representation of Braid groups and Galois representations fit together. As far as
the authors know there is no explanation of the existence of MKR-dictionary. We
will attempt such an explanation in section 2 by interpreting both primes and knots
as certain conjugation classes.

Knot theorists study braid groups representations, in order to provide invariants
of knots (after Markov equivalence, see 2.2) and number theorists study Galois
representations in order to understand the absolute Galois group Gal(Q̄/Q).

Of course understanding braid groups and knots has the advantage that also
3-manifolds can be understood, either by surgery representations of 3-manifolds or
by presenting them as ramified extensions of S3 with ramification locus a link by
Alexander theorem, [38, th. 22.3].

Y. Ihara in a series of articles [23], [24] proposed a method to treat elements in
the automorphism group of the profinite free group as “profinite braids” and in this
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2 A. KONTOGEORGIS AND P. PARAMANTZOGLOU

way he got a series of Galois representations similar to classical Braid representa-
tions. The main focus of Ihara was the understanding of the absolute Galois group
Gal(Q̄/Q) and for this aim the theory of coverings of P1

Q − {0, 1,∞} was enough
by Belyi’s theorem. Here we mainly focus on the similarity of equivalence classes
of Braids (i.e. topological links) and primes (equivalence classes of Frobenious ele-
ments) so we have to extend our point of view to ramified covers of the projective
line minus s-points removed, s ≥ 3. In other words the braid group B2 which acts
on covers of P1

Q −{0, 1,∞} is not a very interesting braid group. Notice that when
the number s of points we remove is s > 3, then we expect that their configuration
might also affect our study. So in this article we study in an explicit way represen-
tations of both Braid groups and the absolute Galois groups on homology groups
of highly symmetrical curves. More precisely:

In section 2 we focus on Arithmetic Topology and motivated by Ihara’s theory
we give an explanation for the similar behaviour of knots and braids. They can
both be realized as conjugacy classes of elements in the automorphism group of
the profinite free group. From this point of view the absolute Galois group is an
arithmetic analogon of the mapping class group as it is explained in 3.6.

In section 3 we introduce Ihara’s ideas on representations on automorphisms
groups of pro-ℓ groups following [27]. We pursue this analogy further: Actions of the
absolute Galois group on vector spaces coming out naturally from algebraic curves,
for example (co)homology groups, is a very active topic of Arithmetic Geometry.
The same holds for actions of mapping class groups. Algebraic curves over the
field of complex numbers are equivalent to Riemann surfaces, which in turn can
be described as ramified covers of the projective line or - if their genus g ≥ 2 - as
quotients of the hyperbolic plane by a discrete subgroup.

Finding the fundamental group of such a Riemann surface involves the Reide-
meister - Schreier method and this will be explained in section 4. We will be able to
compute this group for covers of the projective line ramified above s-points. If the
fundamental group of a surface is known, then the action of both the braid group
Bs−1 and the absolute Galois group can be computed. A tool which unifies these
actions in terms of module action of certain commutative rings was developed by
R. Crowell [11] for the discrete case and has also a pro-ℓ analogon [27, sec. 9.4].

Section 5 is devoted to examples and explicit computations. As we explain in
4.1.3 if we know how a group acts on homology we can pass to the dual space of
holomorphic differentials. In this way we explain how we can recover certain results
of C. McMullen on cyclic covers of the projective line by computing explicitly the
fundamental group of both open and closed curves using the Reidemeister -Schreier
method. In 5.3.1 we give an arithmetic analogon of the fact that the braid action
on the homology of the curve respects the canonical intersection form.

In 5.4 we study the Fermat curve, this curve gives rise to one of the most in-
teresting Diophantine equations but it is clear that it also plays a significant role
within the theory of abelian covers of the projective line minus three points as Ihara
proved, see [23, part II, p.63]. This curve fits within the theory of cyclic covers of
the projective line but it has much more algebraic automorphisms, see [41]. The
action on homology of Fermat curves is recently studied in [12], [1], [3]. We then
proceed to the case of generalized Fermat curves, which will play the role of the
Fermat curves in the setting of covers of the projective line minus s points, s ≥ 3.
These curves are highly symmetric and the group of their algebraic automorphisms
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was recently studied, see [17], [21]. Also holomorphic differentials and the Jacobian
are interesting objects of study, see [20], [9].

The Tate module for the generalized Fermat curves is also studied in terms
of the corresponding Alexander module Aψ, which can be seen as an A -module
over a complete polynomial ring introduced by Ihara, see definition 6 and section
4.1. The situation is different in comparison to the classical Fermat curves. More
precisely, the Tate module is not a free A -module as in the case of Fermat curves
but it contains a free A -submodule Tprim of rank s − 1. We therefore have a
representation

F : Gal(Q̄/Q(µℓ∞)) → GLs−1(A ),

which is an interpolation of the analogous Braid representation

ρ : Bs−1 → GLs−1(A),

where A = k[x1, . . . , xs]. We then show how the computations for the generalized
Fermat curves fit together with the theory of cylic covers of the projective line.

As Ihara observed in [24] the profinite braid action corresponding to Fs−1/F
′
s−1

gives rise to the analogon of the profinite Galois Gassner representation and simi-
larly on the action on the Tate module of the Jacobian. The reduction to the case
of cyclic covers is the passage from the Gassner to the Burau representation. We
believe this is a fascinating similarity illustrating the unity of Mathematics.

In conclusion, it seems that geometric group theory, i.e. understanding free
subgroups of a free group (both in the classical and pro-ℓ) cases, seems to be a
tool to handle arithmetic questions concerning the Tate module, the homology and
group actions on them.

2. Primes and Braids

In order to give an explanation for MKR-dictionary we will give some alternative
but equivalent definitions for primes and knots.

2.1. What is a prime? Consider a number field K, i.e. an algebraic extension
of the rational field Q. Let OK denote the ring of algebraic integers of K. It is
a Dedekind ring, so every ideal is uniquelly decomposed into a finite product of
prime ideals. In scheme theory the set of primes Spec(OK), which equals to the set
of prime ideals of OK , gives rise to a geometric point of view of primes of K.

On the other hand every such prime ideal gives rise to an non-archimedean valua-
tion and the set of non-archimedean valuations is completed by adding the “infinite
primes” to the set of all valuation of the field archimedean and non-archimedean.

Consider a prime ideal pZ of Z = OQ. This ideal can be extended to an ideal
pOK and this ideal is decomposed into prime ideals P1, . . . Pr , so that

pOK = P e11 · · ·P err .

Choose a P among the prime ideals Pi, i = 1, . . . , r. The extension Gal
(

OK

P

/
Z
pZ

)

is a cyclic extension of finite fields generated by the Frobenius map σP,p : x 7→ xp.
Assume now that K/Q is a Galois extension with Galois group G. We have the
following short exact sequence of groups:

1 → I(P ) → G(P ) → Gal

(
OK

P

/ Z

pZ

)
→ 1,
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where

G(P ) = {σ ∈ G : σ(P ) = P}

I(P ) = {σ ∈ G(P ) : σ(x) − x ∈ P}.

The generator of the cyclic group σP,p lifts to an element FP of G(P ) ⊂ G. This
element depends on the choice of the prime P which lies above pZ. We know that if
P, P ′ are both prime ideals lying above pZ, then the elements FP , F

′
P are conjugate.

By taking the inverse limit in all Galois groups of all Galois extensions of Q we
can define Frobenius elements in GQ = Gal(Q̄/Q). Such a selection corresponds to
a selection of a prime ideal PK in all number fields K, which are Galois extensions
of Q. But the conjugate class of FP in GQ depends only on the prime pZ.

Therefore, it seems natural to identify the set of primes to the set of conjugate
classes of Frobenius elemens in GQ. So we can see a “geometric element” p ∈
Spec(Z) as a conjugation class inside a group. We will see that the same situation
holds for knots, which will be mapped as conjugation classes of braid groups.

Definition 2.1

A prime is a conjugation class of Frobenius elements in Gal(Q̄/Q).

2.2. What is a knot? It is known that every knot in the three-dimensional sphere
S3 can be obtained as the closure of a braid in the braid group Bs for some s ∈ N.
Moreover by Markov theorem two braids give equivalent knots if one corresponds
to the other by a sequence of Markov moves. One Markov move involves adding an
extra strand on the braid and the other move is conjugation. For more information
on the representation of knots and links as closure of braids we refer to [42, III.6.7].

Definition 2.2

A knot in S3 is a Markov equivalence class of braids Bn. If two knots have
the same number of strands then they are Markov equivalent if and only if
the corresponding braids are in the same conjugation class.

To summarize, we have the following table which illustrates how geometric ob-
jects (elements in SpecO or knots) become algebraic objects in certain groups (the
braid group or the absolute Galois group) but at the cost of having to consider
conjugation classes.

Number Theory Topology

Geometric Object prime ideals knots

Algebraic Object
conjugacy classes in
absolute Galois groups

conjugacy classes
in Braid groups

We will explain one more similarity in 3.6, but first we have to introduce the
pro-ℓ braids.

3. Profinite actions

In this paragraph we review the theory of Ihara’s representation following the
exposition of [27].
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3.1. Artin representation. The group of braids can be identified with the sub-
group of automorphisms of the free group Fs−1 in terms of the Artin representation.
More preciselly the group Bs−1 can be defined as the subgroup of Aut(Fs−1) gen-
erated by the elements σi for 1 ≤ i ≤ s− 1, given by

σi(xk) =





xk if k 6= i, i+ 1,

xixi+1x
−1
i if k = i,

xi if k = i+ 1.

The free group Fs−1 is the fundamental group of Xs defined as

(1) Xs = P1 − {P1, . . . , Ps−1,∞}.

In this setting the group Fs−1 is given as:

(2) Fs−1 = 〈x1, . . . , xs|x1x2 · · ·xs = 1〉,

the elements xi correspond to homotopy classes of loop circling once clockwise
around each removed point Pi, and distinguish the homotopy class y = xs of the
loop circling around infinity.

3.2. Pro-ℓ case. Let ℓ be a prime number. Let S be a set of s, s ≥ 3, points in
Q̄ on the projective line P1

Q̄
. Consider the field K := Q(S\{∞}) generated by the

coordinates of the points in S\{∞}. The set S is assumed to be acted on by the
group Gal(Q̄/Q), i.e. ∏

P∈S−∞

(x − P ) ∈ Q[x].

The group πpro−ℓ
1 (P1

Q̄
\S) ∼= Fs−1. If the elements in S − {∞} do not satisfy any

algebraic relations then the induced action on S is just the symmetric group Ss−1,
otherwise it is a subgroup of Ss−1.

Assumption: We will assume from now on that P ∈ Q for all P ∈ S−{∞}, so
that the action on S is the trivial one. In this way the absolute Galois group cor-
responds to “pure braids”. Ihara in [23] introduced the monodromy representation

IhS : Gal(k̄/k) → Aut(Fs−1).

Here the group Fs−1 admits a presentation, similar to eq. (2),

(3) Fs−1 = 〈x1, . . . , xs|x1x2 · · ·xs = 1〉 .

Ihara was mainly interested for the case S = {0, 1,∞} and k = Q, since by Belyi’s
theorem [5] the branched covers of P1 − {0, 1,∞} are exactly the curves defined
over Q̄. The image of the Ihara representation is inside the group

P̃ (Fs−1) :=
{
φ ∈ Aut(Fs−1)|φ(xi) ∼ x

N(φ)
i (1 ≤ i ≤ s) for some N(φ) ∈ Z∗

ℓ

}
,

where∼ denotes the conjugation equivalence. This group is the arithmetic analogon
of the Artin representation of ordinary braid groups inside Aut(Fs−1). Notice that
the exponent σ(xi) ∼= xai depends only on σ and not on xi. Moreover the map

N : P̃ (Fs−1) → Z∗
ℓ

is a group homomorphism and N ◦ IhS : Gal(Q̄/Q) → Z∗
ℓ coincides with the cyclo-

tomic character.

Remark 1. The relation x1 · · ·xs−1xs = 1 implies that P̃ (Fs−1) also acts on the
free group Fs since xs = (x1 · · ·xs−1)

−1.
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3.3. The outer Galois representation. Consider the free group Fs−1 on s − 1
letters x1, . . . , xs−1 which admits a presentation given in eq. (2) and Fs−1 the pro-ℓ
completion of Fs−1. Any abstract automorphism of Fs−1 is bicontinuous [13, cor.
1.22] and Aut(Fs−1) is virtually a pro-ℓ group [13, th. 5.6].

Consider the group H := Fs−1/[Fs−1,Fs−1]. We will denote by [f ] the image of
f ∈ Fs−1 in the abelianization H . We will write H as an additive Zℓ-module. So
H is the free Zℓ-module generated by [x1], . . . , [xs−1] with the relation:

[x1] + · · ·+ [xs−1] + [xs] = 0.

Every automorphism φ ∈ Aut(Fs−1) gives rise to a linear automorphism of the free
Zℓ-module H and we will denote it by [φ] ∈ GL(H). The effect of changing a base
point of P1

Q\S is given by an inner automorphism of Fs−1. We finally arrive at a
continuous outer representation

ΦS : Galk → Out(Fs−1) := Aut(Fs−1)/Inn(Fs−1).

3.4. Belyi’s lifts. Consider the subgroups P (Fs−1) < P̃ (Fs−1) of Aut(Fs−1) de-
fined by
(4)

P (Fs−1) =

{
φ ∈ Aut(Fs−1)

∣∣∣∣∣
φ(xi) ∼ x

N(φ)
i , (1 ≤ i ≤ s− 2), φ(xs−1) ≈ x

N(φ)
s−1

φ(xs) = x
N(φ)
s , for some N(φ) ∈ Z×

ℓ

}
,

where ≈ denotes conjugacy by an element of the subgroup of Fs generated by the
commutator F′

s and x1, . . . , xs−3. We also denote by P 1(Fs−1) the kernel of N
restricted to the subgroup P (Fs−1).

Proposition 2. The natural homomorphism Aut(Fs−1) → Aut(Fs−1)/Inn(Fs−1)

induces an isomorphism P (Fs−1) ∼= P̃ (Fr−1)/Inn(Fs−1).

Proof. See [23, prop.3 p.55], [27, prop. 2.2.2]. �

We can describe the above construction in terms of Galois theory as follows:
Consider the maximal pro-ℓ extension M of Q(t) unramified outside the set S.
The Galois group Gal(M /Q̄(t)) is known to be the pro-ℓ free group Fs−1 of rank
s − 1. A selection of generators x1, . . . , xs−1 corresponds to an isomorphism i :
Fs−1 → Gal(M /Q̄(t)), such that i(xν) (1 ≤ ν ≤ s) generates the inertia group of
some place ξν of M extending the place Pi of Q̄(t).

We have the following exact equence:

(5) 1 // Gal(M /Q̄(t)) // Gal(M /Q(t)) // Gal(Q̄(t)/Q(t)) //

∼=
��

1

Fs−1 Gal(Q̄/Q)

Every element ρ ∈ Gal(Q̄/Q) gives rise to an element ρ∗ ∈ Gal(M /Q(t)), and to an

automorphism x 7→ ρ∗xρ−1 ∈ P̃ (Fs−1), as it is proved by Ihara [22, p.52] . Using
a Möbious transformation we can assume that the set S consists of the elements
0, 1, λ1, · · · , λs−3,∞.
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3.5. The profinite representations.

3.5.1. Magnus embedding. We will explain now the Magnus embedding following
[27]. This is given by the map

Fs−1 → Zℓ[[u1, u2, . . . , us−1]]nc

of Fs−1 into the “non-commutative” formal power series algebra (xi → 1 + ui for
1 ≤ i ≤ s− 1). Let H denote the abelianization of Fs−1, and H the abelianization
of Fs−1

H := gr1(Fs−1) = H1(Fs−1,Z) H =: gr1(Fs−1) = H1(Fs−1,Zℓ) = H ⊗Z Zℓ.

The term gr1 above has its origin on the graded Lie algebra corresponding to a
(pro-ℓ) free group, see [23, p. 58] and [31]. Following [27], [35] we consider the
tensor algebras

T (H) =
⊕

n≥0

H⊗n, T (H) =
⊕

n≥0

H⊗n,

where H0 = Zℓ and H⊗n := H ⊗Zℓ
· · · ⊗Zℓ

H (n-times) (resp. H0 = Z, H⊗n =
H ⊗Z · · · ⊗Z H) ). If u0, . . . , us−1 is a Zℓ basis of the free Zℓ-module H, then

T (H) = Zℓ〈u1, . . . , us−1〉,

is the non-commutative polynomial algebra over Zℓ.

We will denote by T̂ (H) the completion of T (H) with respect to the m-adic
topology, where m is the two sided ideal generated by u1, . . . , us−1 and ℓ. This
algebra is the algebra of non-commutative formal power series over Zℓ with variables
u1, . . . , us−1:

T̂ (H) =
∏

n≥0

H⊗n = Zℓ〈〈u1, . . . , us−1〉〉.

Let Zℓ[[Fs−1]] be the complete group algebra of Fs−1 over Zℓ, and let

ǫZℓ[[Fs−1]] : Zℓ[[Fs−1]] → Zℓ

be the augmentation homomorphism. Denote by IZℓ[[Fs−1]] := ker ǫZℓ[[F]] the aug-
mentation ideal. The correspodence xi 7→ 1 + ui for 1 ≤ i ≤ s − 1 induces an
isomorphism of topological Zℓ-algebras, the pro-ℓ Magnus isomorphism.

Θ : Zℓ[[Fs−1]]
∼=
−→ T̂ (H).

For an multiindex I = (i1, . . . , is−1) we set xI = xi1 · · ·xis−1 . The coefficient of xI
in Θ(α) is called the Magnus coefficient of α and it is denoted by

Θ(α) = εZℓ[[Fs−1]](α) +
∑

|I|≥1

µ(I, α)xI .

For certain properties of the Magnus embedding and a fascinating application to ℓ-
adic Milnor invariants we refer to [35, chap. 8], [27, sec. 3.2]. Consider the Magnus
powerseries of wi(g)

(6) wi(g) = 1 +
∑

I=(i1,...,it)
1≤i1,...,it≤s−1

µ(g, I)[x]I ,

the coefficients µ(g, I) are called the ℓ-adic Milnor numbers of g ∈ Gal(k̄/k).
The group P 1(Fs−1) can be fully described in terms of the map:

(7) D : P 1(Fs−1) ∋ σ 7→ D(σ) = (w1(σ), w2(σ), . . . , ws−1(σ)),
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with the additional condition

(8) σ(x1 · · ·xs−1) = x1 · · ·xs−1.

Remark 3. Observe that each wi(σ) satisfies the derivation condition:

(9) wi(στ) = σwi(τ)wi(σ).

3.5.2. The commutative Magnus ring. In this article we will consider actions of
Aut(Fs−1) or Aut(Fs−1) on certain Z-modules (Zℓ-modules)M defined as quotients
of subgroups of the (pro-ℓ) free group. For example on F ab

s−1 or on Fab
s−1. SinceM is

an abelian group (we also choose to write M additively) we have that M = R/R′,
where R < Fs−1 (or R < Fs−1).

Remark 4. For us the commutator is given by [a, b] = aba−1b−1.

By considering the action of ui ∈ T (H) on Fs−1 (resp, the action of ui ∈ T̂ (H)
on Fs−1) by conjugation by the element xi = 1 + ui we can see that the conjuga-

tion action of the free group is equivalent to a T (H)-module (resp. T̂ (H)-module)
structure on M . We would like to have the following property:

(10) ab ·m = ba ·m, for all a, b ∈ T (H) and m ∈M.

Lemma 5. If M = R/R′ and F′
s−1 ⊂ R (resp. F ′

s−1 ⊂ R). then the induced
conjugation action on M satisfies eq. (10).

Proof. We compute

abrb−1a−1 = ba[a−1, b−1]r[a−1, b−1]−1a−1b−1.

So a necessary condition for eq. (10) to hold is [R,F′
s−1] ⊂ R′′ (resp. [R,F ′

s−1] ⊂
R′′). This condition is satisfied if F′

s−1 ⊂ R (resp. Fs−1 ⊂ R) then eq. (10)
holds. �

Therefore, if the assumption of lemma 5 holds, instead of considering the action
of the non-commutative ring T (H) (resp. T̂ (H)) it makes sense to consider the
action of the corresponding abelianized ring.

Definition 6. Consider the commutative Zℓ-algebra of formal power series

A = Zℓ[[ui : 1 ≤ i ≤ s]]/ 〈(1 + u1)(1 + u2) · · · (1 + us)− 1〉
∼= Zℓ[[ui : 1 ≤ i ≤ s− 1]].(11)

The algebra A is the symmetric algebra of H over Zℓ, and there is a natural map
T̂ (H) → Sym(H) = A .

Remark 7. As we noticed already the action of σ ∈ Gal(Q̄/Q) can be described
in terms of the cocycles w1(σ), . . . , ws−1(σ). But then we can find elements

̟1(σ), . . . , ̟s−1(σ) ∈ A

such that

(12) σ(xi) = ̟i(σ) · x
ℓ(σ)
i .

Therefore, in order to understand the action of Gal(Q̄/Q) onM (keep in mind that
M is a quotient of Fs−1) it makes sense to consider the A -module structure of M .

If M is not a quotient of Fs−1 but a quotient of a subgroup of R⊳ Fs−1, fitting
in a short exact sequence

1 → R → Fs−1 → Γ → 1
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then we will consider instead of the ring A the ring A R,Γ = Zℓ[[R/Γ]], see section
4.1. Notice also that the ring A R,Γ is commutative if and only if R/Γ is abelian.

Remark 8. We can also consider the ring

A = Z[ui : 1 ≤ i ≤ s]/ 〈(1 + u1)(1 + u2) · · · (1 + us)− 1〉
∼= Z[ui : 1 ≤ i ≤ s− 1].(13)

The later ring can play the role of A for the case of mapping class group actions
on surfaces. The inclusion A ⊂ A is in the formal closure with respect to the zero
ideal, [19, II.9].

Remark 9. In the classical theory of Magnus representations we consider auto-
morphisms a of the free group Fs−1 and a map φ : Fs−1 → A (resp. Fs−1 → A ),
such that a keeps invariant the fibres of φ, see [6, p. 115]. This restriction implies
that the multipication interpretation of the braid and absolute Galois group gives
rise to a linear representation on the module M , i.e. the ring A (resp. A ) is left
invariant under the action of braid (resp. absolute Galois group). For instance the
action as given in eq. (12) is not given by a module action, unless ℓ(σ) = 1. In
particular such an action does not give representations in general linear groups but
cocycles.

Following Ihara we will analyse several Braid and Galois representations using
the ring A as we will explain in section 5.6.1.

3.6. Absolute Galois group as a mapping class group. Consider a surface
S (connected, closed, orientable), and let Homeo+(S) be the group of orientation
preserving homeomorphisms of S and let Homeo0(S) be the connected component
of the identity in the compact-open topology. The mapping class group Mod(S) is
the quotient

Mod(S) = Homeo+(S)/Homeo0(S).

Let Ds−1 denote the disc with s − 1 marked points and D̄s−1 be the disc with
n-holes seen as boundary components.

The mapping class group Mod(D̄s−1) is the pure braid group, while the mapping
class group Mod(Ds−1) is the framed pure braid group Hs−1 = Zs−1 ⋊ Ps−1, [7],
[42, th. 7.6], [14, chap. 2 p. 45].

Remark 10. The spaces Ds−1 and D̄s−1 have the same fundamental group, but
different mapping class groups.

Remark 11. We would like to point out that the framed pure braid group Hs−1 is
a subgroup of the frammed braid group Zs−1 ⋊Bs−1. The quotients Z/dZ⋊Bs−1

were proposed by Kapranov and Smirnov [25] as analoga of GLs−1(F1d [t]), where
F1 is the mythical “field with one element”. In this sense Zℓ⋊Bs−1 is the analogon
of GLs−1(F̄1). We believe that arithmetic topology should provide intuition for a
definition of F1.

We can now provide one more similarity between knots and braids: Both are
isomorphism classes of group elements in either Bs−1 or Gal(Q̄/Q). Moreover
elements in the braid group are acting like elements in the mapping class group of
the punctured disk i.e. on the projective line minus s-points. The braid group acts
like the symmetric group on the set of removed points Σ and acts like a complicated
homeomorphism on the complement Ds−1 of the s− 1 points. In exactly the same
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way, the group Gal(Q̄/Q) acts by permutations on the set of the s − 1-points
(infinity is invariant) according to the action of the galois group Gal(K/Q) and on
the complement P1

Q̄
− Σ acts in a quite mysterious way.

Remark 12. The pro-ℓ free group and the corresponding automorphism group is
an interpolation of the discrete group, i.e. Fs−1 →֒ Fs−1. The situation is analogous
to rigid or formal geometry, [19, chap. 9], [16].

4. Uniformization of ramified covers of P1

Consider a curve Y which can be seen as Galois ramified cover π : Y → P1 with
Σ = {P1, . . . , Ps} ramified points and with Galois group Gal(Y/P1) = G. The open
curve Y0 = Y − π−1(Σ) is a topological cover of Xs = P1 −Σ and can be seen as a

quotient of the universal covering space X̃s by a free subgroup R0 of the free group
π1(Xs, x0) = Fs−1, where s = #Σ.

The free group R0 can be effectively computed using the Reidemeister-Schreier
method [33, sec. 2.3 th. 2.7]. Notice that there is also a profinite version of
the Reidemeister-Schreir method, see [39, th. 3.6.1]. In this way we arrive at a
presentation of the groupR0. We also know that the groupR0 admits a presentation

R0 = 〈a1, b1, . . . , ag, bg, γ1, . . . , γs|γ1γ2 · · · γs · [a1, b1][a2, b2] · · · [ag, bg] = 1〉,

where g is the genus of Y . By the short exact sequence

1 → R0 → Fs−1 → G→ 1,

we see that there is an action of G on R0 modulo inner automorphisms of R0 and
in particular to a well defined action of G on R0/R

′
0 = H1(Y0,Z). Therefore the

space H1(Y0,Z) can be seen as a direct sum of indecomposable Z[G]-modules. But
H1(Y0,Z) is not just a Z[G]-module. It is also equipped with an action of the braid
group. For example the Burau representation appears in this way.

We will use two methods in order to see the group Rab
0 as a G-module. The

first one is to compute in an explicit form R0 as a subgroup of the free group using
the Reidemeister-Schreier method and the other one is using the Crowell exact
sequence.

The completed curve Y has a fundamental group which admits a presentation
of the form

R = 〈a1, b1, a2, b2, . . . , ag, bg|[a1, b1][a2, b2] · · · [ag, bg] = 1〉

=
R0

〈γ1, . . . , γs〉
.

There is the following short exact sequence relating the two homology groups:

(14) 0 // 〈γ1, . . . , γs〉 // H1(Y0,Z) //

∼=��

H1(Y,Z) //

∼=��

0

R0/R
′
0

// R/R′ = R0/R
′
0〈γ1, . . . , γs〉

We are also interested for the action of the group G, and the action of the braid
group and the action of the absolute galois group on the homology of the complete
curve Y .

Convention 13. Given e1, . . . , et elements inside a group E we will denote by
〈e1, . . . , et〉 the closed normal group generated by these elements. In the case of
usual groups the extra “closed” condition is automatically satisfied, since these
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groups have the discrete topology. This condition has an meaning only in the pro-ℓ
case.

The elements γ1, . . . γs are fixed by some 1 6= g ∈ G. Indeed, every such element
circles around a branch point so it is fixed by an element of the Galois group G.
This is in accordance to the fact that the action of the automorphism group of a
compact Riemann surface on the homology is faithful [15, V.3 p.269], so the fixed
elements have to be factored out. More precisely we can compute the group Γ as
follows: The elements x1, . . . , xs correspond to small paths circling around each
point in S. Therefore we can take γi = xeii , where ei is the ramification index in
the branched cover Y → P1. Consider the group

Γ = the smallest closed normal subgroup of Fs−1

containing all γi for 1 ≤ i ≤ s. Conversely, the group R0 is given by R · 〈γ1, . . . , γs〉.
Consider the space Xs = P1 − {P1, . . . , Ps} with fundamental group

π1(P
1 − {P1, . . . , Ps}) = 〈x1, . . . , xs|x1 · x2 · · ·xs = 1〉 ∼= Fs−1.

The open curve is a quotient of the universal covering space X̃s by R0 and the
closed curve is given as the quotient H/R,

X̃s

R0
  
❅❅

❅❅
❅❅

❅❅
H

R
����
��
��
��

Y

For the sake of simplicity we will write only the pro-ℓ case and the case of usual
discrete groups can be treated in a similar way, one has to replace all Zℓ with Z in
the discrete case.

4.1. Crowell exact sequence. The group Fs−1 is isomorphic to Fs/〈x1 · · ·xs〉.
We have the short exact sequence

(15) 1 → R0/Γ = R → Fs−1/Γ
ψ

−→ H → 1.

If we also assume that F′
s−1 ⊂ R0, then the group G = Fs−1/Γ admits the presen-

tation:

(16) G = 〈x1, . . . , xs|x
e1
1 = · · · = xess = x1 · · ·xs = 1〉 ,

therefore the group H is isomorphic to a quotient the abelian group Z/e1Z× · · · ×
Z/es−1Z.

We will use the Crowell Exact sequence [35, sec. 9.2, sec. 94],

(17) 0 → (R)
ab

= R/R′ θ1−→ A
R,Γ
ψ

θ2−→ A
R,Γ εA−→ Zℓ → 0,

where

A
R,Γ = Zℓ[[H ]],

and A
R,Γ
ψ is the Alexander module, a free Zℓ-module

A
R,Γ
ψ =


⊕

g∈Fn

A
R,Γdg


 /

〈
d(g1g2)− dg1 − ψ(g1)dg2 : g1, g2 ∈ Fs−1

〉
A R,Γ .
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The map θ1 : Rab → A
R,Γ
ψ is given by

(18) Rab ∋ n 7→ dn.

Proposition 14. The module A
R,Γ
ψ admits the following free resolution as an

A R,Γ-module:

(19)
(
A
R,Γ

)s+1 Q
−→

(
A
R,Γ

)s
−→ A

R,Γ
ψ −→ 0

where s is the number of generators of G, given in eq. (16) and s+1 is the number
of relations. Let β1, . . . , βs+1 ∈ A R,Γ. The map Q is expressed in form of Fox
derivatives [6, sec. 3.1],[35, chap. 8], as follows




β1
...

βs+1


 7→




ψπ
(
∂x

e1
1

∂x1

)
ψπ

(
∂x

e2
2

∂x1

)
· · ·ψπ

(
∂xes

s

∂x1

)
ψπ

(
∂x1···xs

∂x1

)

ψπ
(
∂x

e1
1

∂x2

)
ψπ

(
∂x

e2
2

∂x2

)
· · ·ψπ

(
∂xes

s

∂x2

)
ψπ

(
∂x1···xs

∂x2

)

...
...

...

ψπ
(
∂x

e1
1

∂xs

)
ψπ

(
∂x

e2
2

∂xs

)
· · ·ψπ

(
∂xes

s

∂xs

)
ψπ

(
∂x1···xs

∂xs

)







β1
...

βs+1


 ,

where π is the natural epimorphism Fs → G defined by the presentation given in
eq. (16).

Proof. See [35, cor. 9.6]. �

If in eq. (17) R = F′
s−1 and Γ = {1}, then A

F
′
s−1,{1} = Zℓ[[u1, . . . , us−1]] = A ,

as defined in eq. (11).

To summarize, the Alexander module A
R,Γ
ψ can be computed as a cokernel of

the function Q:

(20) A
R,Γ
ψ = cokerQ,

(
A
R,Γ

)s+1
= Zℓ[[H ]]s+1 Q

−→ Zℓ[[H ]]s =
(
A
R,Γ

)s
.

The exponents in the above formula reflect the fact that the group G is generated
by s+ 1-relations over s-free variables.

Proposition 15. If Γ = {1} in eq. (15) the Crowell exact sequence gives the
Blanchfield-Lyndon exact sequence:

0 → (R)ab →
(
A
R,{1}

)s−1 d1−→ A
R,{1} e

R,{1}
A−→ Zℓ → 0.

Proof. See [35, p.118] for the discrete case and the pro-ℓ case follows similarly. �

Example 16. Assume that in eq. (15) the group H = (Z/ℓkZ)s−1. Let Rk be the

smallest closed normal subgroup of Fs−1 generated by xℓ
k

1 , . . . , x
ℓk

s−1. The group
G = Fs−1,k = Fs−1/Rk admits the presentation:

Fs−1,k =
〈
x1, . . . , xs|x

ℓk

1 = · · · = xℓ
k

s = x1 · · ·xs = 1
〉
.

Denote the images of the elements xi in H by x̄i. It is clear that A
Fs−1,Rk

ψ is a

free Zℓ-module of rank s(ℓk)(s−1) − rank(Q). Observe that A Fs−1,Rk ∼= Zℓ[[H ]] is
a free Zℓ-module of rank (ℓk)s−1 since it contains elements

(21)
ℓk−1∑

i1,...,is−1=0

ai1,...,is−1 x̄
i1
1 · · · x̄

is−1

s−1 , where ai1,...,is−1 ∈ Zℓ.
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By induction for 1 ≤ j ≤ s can prove

∂xℓ
K

i

∂xj
= δij(1 + xi + x2i + · · ·+ xℓ

k−1
i )

∂x1x2 · · ·xs
∂xj

= x1 · · ·xj−1(22)

Set Σi = 1 + xi + · · ·+ xℓ
k−1
i . The map Q in eq. (20) is given by the matrix [35,

cor. 9.6]

(23)




Σ1 0 · · · 0 1

0 Σ2
. . .

... x1
...

. . .
. . . 0

...
0 · · · 0 Σs x1x2 · · ·xs−1







β1
...

βs+1


 =




Σ1β1 + βs+1

Σ2β2 + x1βs+1

...
Σsβs + x1 · · ·xs−1βs+1




where βi ∈ A Fs−1,Rk for 1 ≤ i ≤ s. Let x̄i denote the image of xi in the group H .
Observe that

(1 + x̄i + x̄2i + · · ·+ x̄ℓ
k−1
i )x̄νi = 1 + x̄i + · · ·+ x̄ℓ

k−1
i

If βi is expressed by eq. (21), then the product βiΣi is given by

βiΣi =
ℓk−1∑

i1,...,̂i,...,is−1=0

x̄i11 · · · ̂̄xiii · · · x̄
is−1

s−1

ℓk−1∑

ν=1

Σix̄
ν
i ai1,...,is−1 .

=
ℓk−1∑

i1,...,̂i,...,is−1=0

x̄i11 · · · ̂̄xiii · · · x̄
is−1

s−1

ℓk−1∑

ν=1

Σiai1,...,is−1 .

In the above product the ·̂ symbol denotes omitting the corresponding factor.
Therefore, the space of the above quantities depends on (ℓk)s−2 parameters and
is an element of the module

Σi · Zℓ[[(Z/ℓ
kZ)s−1]] ∼= Zℓ[[(Z/ℓ

kZ)s−2]].

The image of the map Q equals to the space generated by elements



Σ1β1
Σ2β2
...

Σsβs


+ βs+1




1
x1
...

x1 · · ·xs−1


 .

The first summand is a free Zℓ-module of rank s(ℓk)s−2 and the second summand
is a free Zℓ-module of rank (ℓk)s−1. Also their intersection is just Zℓ.

We therefore arrive at the computation of the rank of A
Fs−1,Rk

ψ :

rankZℓ
A

Fs−1,Rk

ψ = s(ℓk)s−1 − s(ℓk)s−2 − (ℓk)s−1 + 1(24)

= (s− 1)(ℓk)s−1 − s(ℓk)s−2 + 1.

From the exact sequence given in eq. (17) and the rank computation given in eq.
(24) in example 16 we have:

rankF′
s−1/F

′′
s−1 = rankZℓ

A
Fs−1,Rk

ψ − rankZℓ
A

Fs−1,Rk + 1(25)

= (s− 2)(ℓk)s−1 + 2− s(ℓk)s−2.
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This result coincides with the formula given in eq. (42).

Example 17. Let us now compute A
R

ℓk
,Rk

ψ and Rℓk is the the pro-ℓ completion
of the group generated by

{xi1xjx
−i−1
1 : 2 ≤ j ≤ s− 1, 0 ≤ i ≤ ℓk − 1}.

These groups will be studied in detail in section 5.3. We have the short exact
sequence

1 → Rℓk → Fs−1/Rk → Z/ℓkZ → 0.

We compute A R
ℓk
,Rk = Zℓ[Z/ℓ

kZ], which is an Zℓ-module of rank ℓk. On the other

hand observe that the Zℓ-module A
R

ℓk
,Rk

ψ is given by exactly the same cokernel as

the module A Fs−1,Rk . The only difference is that A
Fs−1,Rk

ψ is a Zℓ[[(Z/ℓ
kZ)s−1]]-

module while A
Fs−1,Rk

ψ is a Zℓ[[Z/ℓ
kZ]]-module.

So following exactly the same method as in example 16 we conclude that

rankZℓ
A
R

ℓk
,Rk

ψ = s · ℓk − s− ℓk + 1 = (s− 1)ℓk − s+ 1.

Also, as in the previous example exact sequence given in eq. (17) and the rank
computation given in eq. (24) in example 16 we have:

rankRℓk/R
′
ℓk = rankZℓ

A
R

ℓk
,Rk

ψ − rankZℓ
A
R

ℓk
,Rk + 1 = (s− 2)(ℓk − 1).

This result gives twice the genus of the curve corresponding to Rℓk and is in accor-
dance with the formula given in eq. (32).

4.1.1. Alexander modules after quotients. Let Γ be a normal closed subgroup of
Fs−1. Consider the diagram:

1 // F′
s−1

//

��

Fs−1
//

��

Fs−1/F
′
s−1

//

��

1

1 //
F
′
s−1·Γ

Γ
// Fs−1

Γ
// Fs−1

F′s−1·Γ
// 1

We have

A
F
′
s−1,Γ = Zℓ[[Fs−1/F

′
s−1 · Γ]]

and

A
F
′
s−1,{1} = Zℓ[[F

ab
s−1]]

∼= Zℓ[[u1, . . . , us−1]] = A .

We also consider the free resolution of Alexander modules

A
Q1

// A s ψ1
//

φ2

��

A s−1 //

φ3

��

0

(
A

F
′
s−1,Γ

)s+1 Q2
//

(
A

F
′
s−1,Γ

)s ψ2
// A

F
′
s−1,Γ

ψ
// 0

where Q1, Q2 are the maps appearing in eq. (19). In particular the map Q1 sends

A ∋ β 7→ β · (1, x1, . . . , x1 · x2 · · ·xs−1)

according to the computation done in eq. (22). The vertical map φ2 is onto. The

image φ3(a) for a ∈ A
F
′
s−1,{1}

ψ is defined by selecting b ∈ A s such that ψ1(b) = a,
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and then φ3(a) = ψ2 ◦ φ2(a). This definition is independent from the selection of
b. The vertical maps are reductions modulo Γ. We have

(26) ker(φ3) = ψ1(φ
−1
2 Im(Q2)).

The corresponding Crowell sequences are given:
(27)

0 //
F
′
s−1

F′′s−1

//

φ
��

A s−1 //

φ3

��

A //

modΓ

��

Zℓ // 0

0 //

(
F
′
s−1·Γ

Γ

)ab

=
F
′
s−1·Γ

F′′s−1·Γ
// A

F
′
s−1,Γ

ψ
// A

F
′
s−1,Γ // Zℓ // 0

We have

kerφ =
F′′
s−1 · Γ ∩ F′

s−1

F′′
s−1

.

4.1.2. Relating Alexander Modules. Assume that F′
s−1 ⊂ R ⊂ Fs−1. To the com-

mutative diagram

1 // R // Fs−1/Γ
ψ

// Fs−1/R · Γ // 1

1 // F′
s−1

//
?�

OO

Fs−1/Γ
ψ

// Fs−1/F
′
s−1 · Γ //

OO

1

we can attach two related Crowell sequences:

0 // Rab // A
R,Γ
ψ

// A R,Γ // Zℓ // 0

0 // F′
s−1/F

′′
s−1

//
?�

θ1

OO

A
F
′
s−1,Γ

ψ
//

θ2

OO

A
F
′
s−1,Γ //

OO

Zℓ //

OO

0

The map θ1 is well defined with kernel R′/F′′
s−1. The map θ2 is defined from the

two corresponding free resolutions:

Zℓ[[R/Γ]]
s+1 Q1

// Zℓ[[R/Γ]]
s π1 // A

R,Γ
ψ

// 0

Zℓ[[F
′
s−1/Γ]]

s+1 Q2
//

φ1

OO

Zℓ[[F
′
s−1/Γ]]

s π2 //

φ2

OO

A
F
′
s−1,Γ

ψ

θ2

OO

// 0

Indeed, for a ∈ A
F
′
s−1,Γ we select any b ∈ Zℓ[[F

′
s−1/Γ]]

s and we set

θ2(a) = π1 ◦ φ2(b).

Then θ2 is well defined, i.e. independent from the selection of b. The kernel of θ2 is

ker(θ2) = π2φ
−1
2 (Im(Q1)).

The map θ2 is onto. Indeed, for a y ∈ A
R,Γ
ψ we choose an element b ∈ π−1

1 ({y}) ⊂

Zℓ[[R/Γ]]
s and since φ2 is onto and element b′ ∈ φ−1

2 (b). Then, θ2(π2(b
′)) = y.
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Observe also that both A
R,Γ
ψ and A

F
′
s−1,Γ are the cokernel of the same set of

equations since the matrix Q depends only on the quotient Fs−1/Γ. The difference
is that they are modules over different rings.

4.1.3. Holomorphic Differentials. We can pass to representations to spaces of holo-
morphic differentials by dualizing:

H1(Y,Zℓ) = Rab = (R0/Γ)
ab = R0/R

′
0Γ = H1(Y0,Zℓ)/Γ.

Short exact sequence in eq. (17) can be dualized to an exact sequence as

0 // HomQℓ
(ker(εA ),Qℓ) // HomQℓ

(Aψ,Qℓ) // HomQℓ

(
Rab ⊗Z Qℓ,Qℓ

)
// //

∼=
��

0

H0(Y,ΩY )

5. Applications to cyclic covers of the projective line

In this section we will perform explicit computations for the case of cyclic ram-
ified covers of the projective line. The first author considered the automorphism
group of these in [28] and also considered the field of moduli versus field of definition
in [4], [29].

There is a recent interest for these curves with respect to the action of mapping
class groups. In [34] C. McMullen considered unitary representations of the braid
group acting on global sections of differentials of cyclic covers of the projective
line. Also W. Chen in [10] motivated by the fibration of cyclic groups studied the
homology H∗(Bs, Vs), where Vs = C[t, t−1]s−2, where Bs acts on C[t, t−1] in terms
of the Burau representation.

Here we will see a more natural approach using the action on homology and
Ihara’s philosophy. This aproach was also mentioned in the article of McMullen on
page 914 after th. 5.5. We believe that the details of this computation are worth
studying.

Let S be a compact Riemann-surface of genus g. Consider the first homology
group H1(S,Z) which is a free Z-module of rank 2g. Let H0(S,ΩS) be the space of
holomorphic differentials which is a C-vector space of dimension g. The function

H1(S,Z) ×H0(S,ΩS) → R

γ, ω 7→ 〈γ, ω〉 = Re

∫

γ

ω

induces a duality H1(S,Z)⊗R to H0(S,ΩS)
∗, see [30, th. 5.6], [18, sec. 2.2 p. 224].

Therefore an action of a group element on H1(S,Z) gives rise to the contragredient
action on holomorphic differentials, see also [15, p. 271].

Recall that Xs denotes the projective line minus s-points and X̃s denotes the
universal covering space. Let Y be the covering coresponding to the commutator
group F ′

s−1, therefore Gal(Y/Xs) ∼= Fs−1/F
′
s−1 = H1(S,Z). The braid group

Bs−1 ⊂ Aut(Fs−1) acts on H1(Xs,Z) and leaves a rank 1 subspace I invariant.
In this section we choose to work with the discrete groups Fs−1. The pro-ℓ case

follows similarly.

Definition 18. Consider the projection

0 → I → H1(Xs,Z)
w

−→ Z → 0
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and let Cs be the curve given as quotient Y/I, so that Gal(Cs/Xs) = Z. The map
w is the winding number map which can be defined both at the fundamental group
and its abelianization by: (1 ≤ i1, . . . , it ≤ s, ℓi1 , . . . , ℓit ∈ Z)

w : π1(Xs) −→ Z x
ℓi1
i1
x
ℓi2
i2

· · ·x
ℓit
it

7→

t∑

µ=1

ℓiµ .

We have the following commutative diagram:

X̃s

Fs−1

��

F ′s−1

PPP
PPP

''PP
PPP

P

R0

��
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶

Y

H1(Xs,Z)

qq

I

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

Cs
Z

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤

Xs

Then H1(Cs,Z) = R0/R
′
0, where R0 = π1(Cs) is the

free subgroup of Fs−1 corresponding to Cs. Moreover
H1(Cs,Z) is a Z[Z]-module acted on also by Bs−1 giv-
ing rise to the so called Burau representation:

ρ : Bs−1 → GL(s− 1,Z[t, t−1]).

It is known that the space H1(Cs,Z) is a free Z[Z]-
module of rank s − 2. Keep in mind that Z[Z] ∼=
Z[t, t−1]. In what follows will give a proof using the
Reidemeister-Schreier algorithm.

Lemma 19. The group R0 (is an infinite rank group) is given by

(28) R0 = {xi1xjx
−i+1
1 : i ∈ Z, j ∈ 2, . . . , s− 1}.

Proof. Consider the epimorphisms

Fs−1
p′

//

w

33
Fs−1/F

′
s−1

p′′
// Z = H1(Y,Xs)/I.

Set w = p′′ ◦ p′ Let y be an element in w−1(1Z). By the properties of the winding
number we can take as y = x1. Moreover w(xj) = y for all 1 ≤ j ≤ s − 1
since the automorphism xi ↔ xj is compatible with I and therefore introduces an

automorphism of Z, so w(xj) = y±1, and we rename the generators xi to x
−1
i if

necessary.
Let T := {yi : i ∈ Z} ⊂ Fs−1 be a set of representatives of classes in Fs−1/R0

∼=
Z. For every x ∈ Fs−1 we will denote by x̄ the representative in T . Moreover for

all i ∈ Z and 1 ≤ j ≤ s− 1 we have yixj = yi+1 and by the Reidemeister-Schreier
algorithm [33, sec. 2.3 th. 2.7] we see that

{yixj

(
yixj

)−1

= yixjy
−i−1} = {xi1xjx

−i−1
1 : i ∈ Z, j ∈ 2, . . . , s− 1}.

�

Remark 20. The action of y on R0/R
′
0 is given by conjugation. A generating set

for H1(Cs,Z) is given by the s − 2 elements βj := xjx
−1
1 . Moreover the action is

given by

tn · xix
−1
1 = xn1xix

−n−1
1 ,

i.e. that H1(Cs,Z) is a free Z[Z]-module of rank s− 2.
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Let us now consider a finite cyclic cover Yn of
Xs which is covered by Cs, i.e. we have the
diagram on the right bellow:

Lemma 21. The group Rn = π1(Yn) ⊃ R0 is
the kernel of the map wn

π1(X)
w //

wn

**

Z // Z/nZ.

Proof. This is clear from the explicit descrip-
tion of the group R0 given in eq. (28). �

X̃s

��

))❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙

R0

��
✺✺

✺✺
✺✺

✺✺
✺✺

✺✺

Y

H1(Xs,Z)
mm

I

{{✇✇
✇✇
✇✇

Cs

Z

��✠✠
✠✠
✠✠
✠✠
✠✠
✠✠

��

Yn

Z/nZ{{✈✈
✈✈
✈✈

Xs

Lemma 22. The group Rn is generated by

Rn = {xi1xjx
−i−1
1 : 0 ≤ i ≤ n− 2, 2 ≤ j ≤ s− 1} ∪ {xn−1

1 xj : 1 ≤ j ≤ s− 1}.

which is a free group on r = (s− 2)n+ 1 generators.

Proof. In this case the transversal set equals T = {yi : 0 ≤ i ≤ n− 1}. Moreover

yixj =

{
yi+1 if i < n− 1

1 if i = n− 1.

The desired result follows. �

Remark 23. The above computation is compatible with the Schreier index formula
[8, cor. 8.5 p.66] which asserts that

(29) r − 1 = n(s− 2).

Remark 24. The space H1(Yn,Z) is a free Z[Z/nZ]-module of rank s − 2 with
basis βj = xjx

−1
1 .

Proposition 25. The action of the braid group on H1(Yn,Z) is given by special-
ization of the Burau representation to t 7→ ζn.

Proof. Consider the short exact sequences for the free groups R0, Rn corresponding
to the curves Cs and Yn:

1 // R0
//

� _

��

Fs−1
// Z //

����

1

1 // Rn // Fs−1
// Z/nZ // 1

which gives rise to the sequence of Alexander modules

0 // H1(Cs,Z) = Rab
0

d0 //

��

Z[Z]s−1 //

θ1

��

Z[Z] //

θ2

��

Z // 0

0 // H1(Yn,Z) = Rab
n

dn // Z[Z/nZ]s−1 // Z[Z/nZ] // Z // 0

The image of the elements βj = xjx
−1
1 under d0 and dn are given by the vec-

tors (−1, 0, . . . , 0, 1, 0, . . . , 0) where the “1” is at the j-th position. The vertical
maps θ1, θ2 are both reduction mod n sending an element Z[Z] = Z[t, t−1] to the
corresponding element in Z[ζn] by evaluating t 7→ ζn. �
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5.1. The Burau Representation. Consider the action of a generator σi of Bs
seen as an automorphism of the free group, given for 1 ≤ i, j ≤ s− 1 as

σi(xj) =





xj if j 6= i, i+ 1

xi if j = i+ 1

xixi+1x
−1
i if j = i

Therefore the conjugation action on the generators βj = xjx
−1
1 of R, seen as a

Z[Z]-module, is given for j ≥ 2 by:

σj(βj+1) = σj(xj+1x
−1
1 ) = xjx

−1
1 = βj ,

σj(βj) = σj(xjx
−1
1 ) = xj · xj+1 · x

−1
j · x−1

1 = xjx
−1
1 · x1xj+1x

−2
1 x21x

−1
j · x−1

1

= βjx1βj+1x
−1
1 x1β

−1
j x−1

1 = βjβ
t
j+1β

−t
j

Also in the special case where j = 1 we compute:

σ1(β2) = σ1(x2x
−1
1 ) = x1 · x1x

−1
2 x−1

1 = β−t
2 ,

and if i > 2

σ1(βi) = σ1(xix
−1
1 ) = xi · x1x

−1
2 x−1

1 = xix
−1
1 · x1x1x

−1
2 x−1

1 = βiβ
−t
2

We now compute the action on the Z-module R/R′, so the βi, βj are commuting
and we arrive at the matrix of the action with respect to the basis {β2, . . . , βs−1}:

σj 7→




Id
1− t 1
t 0

Id


 , if j 6= 1 and σ1 7→




1− t −t −t
0 1 0
...

. . .
. . .

0 · · · 0 1


 .

Lemma 26. The action of t on βi commutes with the action of the braid group.

Proof. It is obvious that for σj j ≥ 2 and a ∈ R0 we have

σj(a
t) = σj(x1ax

−1
1 ) = x1σj(a)x

−1
1 = (σj(a))

t.

For σ1 we observe that

σj(a
t) = σ1(x1ax

−1
1 ) = x1x2x

−1
1 σ1(a)x1x

−1
2 x−1

1 = x1β2σ1(a)β
−1
2 x−1

1

= x1σ1(a)x
−1
1 = (σ1(a))

t,

since σ1(a) is expressed as product of βν and the elements βi commute modulo
R′

0. �

5.2. The profinite Burau representation. Let Cs be the curve given in defini-
tion 18. The fundamental group R0 of the curve Cs is computed in lemma 28 and
fits in the small exact sequence

1 → R0 → Fs−1 → Zℓ → 0.

We will now employ the Blanchfield-Lyndon exact sequence given in proposition
15:

0 → (R0)
ab θ1−→ (Zℓ[[Zℓ]])

s−1 d1−→ Zℓ[[Zℓ]]
eZℓ[[Zℓ]]−→ Zℓ → 0,

since A R0,{1} = Zℓ[[Zℓ]]. The image of Rab
0 in Zℓ[[Zℓ]], according to eq. (18) is

generated by the images of the elements, for 2 ≤ j ≤ s− 1

d(xj · x
−1
1 ) = dxj − ψ(xj)dx

−1
1 = dxj − dx1.
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The above elements form a basis of the image of θ1 in the free module Zℓ[[Zℓ]]
s−1.

In this way we see the profinite Burau representation as a linear representation:

ρ : Gal(Q̄/Q) → GLs−2(Zℓ[[Zℓ]]).

Remark 27. The Zℓ-algebra Zℓ[[Zℓ]] is a ring containing all formal infinite expres-
sions of the monomials tα, α ∈ Zℓ. It contains the Z-algebra Z[Z] ∼= Z[t, t−1] which
appears in the discrete topological Burau representation.

Lemma 28. We have

(30) xnkx
−n
1 = βk · β

t
k · β

t2

k · · ·βt
n−1

k .

Proof. Indeed, for n = 1 the result is trivial while by induction

xnkx
−n
1 = xkβk · · ·β

tn−2

k x−1
1 = xkx

−1
1 x1βk · · ·β

tn−2

k x−1
1 = βk · β

t
k · β

t2

k · · ·βt
n−1

k

�

We would like to study the dependence of the matrix of ρ with respect to the

Magnus powerseries in eq. (6). We have that σ(xi) = wi(σ)x
N(σ)
i wi(σ)

−1. Let us

analyse wi(σ) ∈ Fs−1: Assume that wi(σ) = limn→∞ w
(n)
i , with w

(n)
i ∈ Fs−1. We

write
w

(n)
i = x

a1,i
1 x

ai1,i

i1
· · ·x

ait,i
it

Let us introduce the following notation: For a word

w = x
a1,i
1 x

ai1,i

i1
· · ·x

aiµ,i

iµ
· · ·x

ait,i
it

denote the contribution to exponents corresponding to the generator xiµ by

viµ(w) =

iµ∑

ij=1

aij ,i

and the total contribution

v̄i(w) =
∑

iµ=i

tviµ−1 =
∑

iµ=i

t

iµ−1∑

ij=1

aij ,i

.

We have assumed that wi(σ) starts with a power of x1 with possibly a zero exponent.
We write

w
(n)
i = x

a1,i
1 x

ai1,i

i1
x
−ai1,i−a1,i
1 x

a1,i+ai1,i

1 · · ·x

∑it−1
ij=1 aij ,i

1 x
ait,i
it

x
−

∑it
ij=1 aij ,i

1 x

∑it
ij=1 aij ,i

1

= (βi1 · β
t
i1 · · ·β

t
ai1,i−1

i1 )t
a1,i

· · · (βit · β
t
it · · ·β

t
ait,i

−1

it )t
∑it−1

ij=1
aij,i

· x

∑it
ij=1 aij ,i

1

Therefore

βi = xix
−1
1

σ
7−→ w

(n)
i x

N(σ)
i

(
w

(n)
i

)−1

x
−N(σ)
1 = (βi1 · β

t
i1 · · ·β

t
ai1,i−1

i1 )t
a1,i

· · ·

· · · (βit · β
t
it · · ·β

t
ait,i

−1

it )t
∑it−1

ij=1
aij ,i

· (βi · β
t
i · · ·β

tN(σ)−1

i )t
∑it

ij=1
aij,i

·

(βit ·β
t
it · · ·β

t
ait,i

−1

it )−t
N(σ)+

∑it−1
ij=1

aij ,i

· · · (βi1 ·β
t
i1 · · ·β

t
ai1,i−1

i1 )−t
N(σ)+a1,i

·x
N(σ)
1 ·x

−N(σ)
1

= β
v̄2(w

(n)
i )(1−tN(σ))

∑a2,i−1

ν=0 tν

2 · · ·β
v̄s−1(w

(n)
i )(1−tN(σ))

∑a(s−1),i−1

ν=0 tν

s−1 ·β
t
vit

(w
(n)
i

) ∑N(σ)−1
ν=0 tν

i

We have proved the following:
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Proposition 29. The matrix of the representation of σ acting on H1(Cs,Z) is
given by:

(
1− tN(σ)

)
· lim
n→∞

An +

N(σ)−1∑

ν=0

tν · diag (tv2t , tv3t , . . . , tvit , . . . , tv(s−1)t ) ,

where

An =




v̄2(w
(n)
2 )

a2,2−1∑
ν=0

tν v̄3(w
(n)
2 )

a2,3−1∑
ν=0

tν · · · v̄s−1(w
(n)
2 )

a2,s−1−1∑
ν=0

tν

...
...

...

v̄2(w
(n)
i )

ai,2−1∑
ν=0

tν v̄3(w
(n)
i )

ai,3−1∑
ν=0

tν · · · v̄s−1(w
(n)
i )

ai,s−1−1∑
ν=0

tν

...
...

...

v̄2(w
(n)
s−1)

as−1,2−1∑
ν=0

tν v̄3(w
(n)
s−1)

as−1,3−1∑
ν=0

tν · · · v̄s−1(w
(n)
s−1)

as−1,s−1−1∑
ν=0

tν




5.3. The compactification of cyclic covers. Consider the complex compact
Riemann surface corresponding to the cyclic cover of the projective line given by:

(31) yn =

s∏

i=1

(x− bi)
di , (di, n) = 1

where
s∑
i=1

di ≡ 0 mod n, so that there is no ramification at infinity.

Riemann-Hurwitz theorem implies that

(32) g =
(n− 1)(s− 2)

2
,

which is compatible with the computation of r = 2g + s− 1 given in eq. (29) and
also with the results in example 17.

This curve can be uniformized as a quotient H/Γ of the hyperbolic space modulo
a discrete free subgroup of genus g, which admits a presentation

Γ = 〈a1, b1, a2, b2, . . . , ag, bg|[a1, b1][a2, b2] · · · [ag, bg] = 1〉.

On the other hand side, when we remove the s-branch points we obtain a topolog-
ical cover of the space Xs defined in the previous section. This topological cover
corresponds to the free subgroup of Rn < Fs−1 given by

Rn = 〈a1, b1, a2, b2, . . . , ag, bg, γ1, . . . , γs|γ1γ2 · · · γs · [a1, b1] · · · [ag, bg] = 1〉

Proposition 30. The Z-module Rn/R
′
n as Z[Z/nZ]-module is isomorphic to

Rn/R
′
n = Z[Z/nZ]s−2

⊕
Z.

Proof. Set βj = xjx
−1
1 for 2 ≤ j ≤ s− 1. Then the action of Z/nZ = 〈g〉 on βj is

given by

βg
ℓ

j = xℓ1xjx
−ℓ−1
1 .

It is clear that for each fixed j, 2 ≤ j ≤ s− 1, the elements βg
ℓ

j generate a copy of

the group algebra Z[Z/nZ]. By the explicit form of the basis generators given in
lemma 22 we have the alternative basis given by

(33) {xi1xjx
−i−1
1 : 2 ≤ j ≤ s− 1, 0 ≤ i ≤ n− 1} ∪ {xn1}.
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The result follows. �

Lemma 31. The Z/nZ-invariant elements of Rn/R
′
n are given by multiples of

{xni : 1 ≤ i ≤ s− 1}.

Proof. Observe that an element in the group algebra Z[〈g〉] is g-invariant if and

only if it is of the form
∑n−1
i=0 ag

i for some a ∈ Z. Hence the invariant elements are
multiples (powers in the multiplicative notation) by

βjβ
g
j β

g2

j · · ·βg
n−1

j = xnj x
−n
1 .

Since xn1 is invariant the result follows. �

The elements γi are lifts of the loops xi around each hole in the projective line.

Thus γi are Z/nZ-invariant. Set γi = xni . The quotient Z[Z/nZ]/〈
∑n−1

i=0 g
i〉 is the

augmentation representation.

Lemma 32. We have

xnkxix
−n
k x−1

1 = βk · β
t
k · β

t2

k · · ·βt
n−1

k · βt
n

i · β−tn

k · β−tn−1

k · · ·β−t2

k · β−t
k

Moreover in the abelian group R/R′ we have

xnkxix
−n
k x−1

1 = βt
n

i β
1−tn

k .

Proof. Write

xnkxix
−n
k x−1

1 = xnkx
−n
1 · xn1xix

−1
1 x−n1 xn+1

1 x−nk x−1
1

= βk · β
t
k · β

t2

k · · ·βt
n−1

k · xn1βix
−n
1 x1

(
βk · β

t
k · β

t2

k · · ·βt
n−1

k

)−1

x−1
1

= βk · β
t
k · β

t2

k · · ·βt
n−1

k · βt
n

i · β−tn

k · β−tn−1

k · · ·β−t2

k · β−t
k

�

Lemma 33. The subgroup of Rn/R
′
n generated by Z/nZ-invariant elements

{xn1 , x
n
j x

−n
1 : 2 ≤ j ≤ s− 1}

is invariant under the action of the braid group.

Proof. By lemma 28 we have

σ1(x
n
1 ) = (x1x2x

−1
1 )n = x1 · x

n
2 · x−1

1 = x1 · x
n
2x

−n
1 · xn−1

1

= x1 · β2 · β
t
2 · β

t2

2 · · ·βt
n−1

2 · x−1
1 · xn1 = βt2 · β

t2

2 · · ·βt
n

2 · xn1

= β2 · β
t
2 · · ·β

tn−1

2 · xn1 = xn2x
−n
1 · xn1 = xn2

σ1(x
n
2 ) = xn1 , σ1(x

n
i ) = xni (i > 2).

For j ≥ 2: σj(x
n
j x

−n
1 ) = (xjxj+1x

−1
j )nx−n1 = xj · x

n
j+1 · x

−1
j · x−n1

= xjx
−1
1 · x1(x

n
j+1x

−n
1 )x−1

1 · xn1 · x1x
−1
j · x−n1

= xnj+1x
−n
1

σj(x
n
j ) = σj(x

n
j x

−n
1 )σj(x

n
1 ) = xnj+1.

�
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Consider now the space

H1(Ȳn,Z) =
Rn

R′
n · 〈γ1, . . . , γs〉

=
Rn

R′
n · 〈xn1 , . . . , x

n
s 〉
.

Observe that Rn/R
′
n · 〈x1〉 = Z[Z/nZ]s−2. Since 〈γ1, . . . , γs〉 is both Z/nZ and Bs

stable we have a natural defined action of Bs on the quotient. We compute now

the action of the braid group on βg
i

j = xi1xjx
−i−1
1 . We can pick as a basis of the

Z-module H1(Ȳn,Z) the elements

{βt
i

j = xi1xjx
−1−i
1 : 2 ≤ j ≤ s− 1, 0 ≤ i ≤ n− 2}

and equation (30) written additively implies that βt
n−1

j = −
∑n−2
ν=0 β

tν

j .
Consider the augmentation map

Z[Z/nZ] // Z
∑n−1

i=0 aig
i ✤ //

∑n−1
i=0 ai

which has kernel the augmentation ideal IZ/nZ generated as a Z-module by elements

〈gν − 1 : 1 ≤ ν ≤ n − 1〉. Observe that βt
ν−1
j = [xν1 , xj ]. It is well known (see,

[36, Prop. 1.2]) that Z[Z/nZ] = IZ/nZ ⊕ Z. Therefore H1(Ȳn,Z) = Is−2
Z/nZ. Notice

that the above Z-module has the correct rank 2g = (n − 1)(s − 2). The direct
sum is in the category of Z-modules not in the category of Bs-modules. Also on
the augmentation module IZ/nZ the generator of the Z/nZ is represented by the
matrix:

(34) A :=




0 · · · 0 −1

1
. . .

...
...

0
. . . 0 −1

0 0 1 −1




which is the companion matrix of the polynomial xn−1 + · · ·+ x + 1. One way to
represent IZ/nZ is in terms of the Z-module Z[ζ], where ζ is a primitive n-th root
of unity, i.e.

Z[ζ] =
n−1⊕

ν=0

ζνZ,

and the Z[Z/nZ]-module structure is given by multiplication by ζ. This means that

each βt
i

j for 2 ≤ j ≤ s− 1 and 0 ≤ i ≤ n− 1 is mapped to ζi.
Since the Z/nZ-action and the braid action are commuting we have a decompo-

sition (notice that 1 does not appear in the eigenspace decomposition below)

H1(Ȳn,Z)⊗Z C =

n−1⊕

ν=1

Vν

where Vν is the eigenspace of the ζν-eigenvalue. Each Vν is a Bs-module of dimen-
sion s − 2. In order to compute the spaces Vν we have to diagonalize the matrix
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given in eq. (34). Consider the Vandermonde matrix given by:

P =




1 ζ1 ζ21 · · · ζn−1
1

1 ζ2 ζ22 · · · ζn−1
2

...
...

...
1 ζn−1 ζ21 · · · ζn−1

n−1


 ,

where {ζ1, . . . , ζn−1} are all n-th roots of unity different than 1. Observe that

P · A = diag(ζ1, ζ2, . . . , ζn) · P.

Thus the action of the braid group on the eigenspace Vν of the eigenvalue ζν can

be computed by a base change as follows: Consider the initial base βj , β
t
j, . . . , β

tn−1

j

for 2 ≤ j ≤ s− 1. The eigenspace of the ζν eigenvalue has as basis the k-element
of the 1× (n− 1) matrix

(
βj , β

t
j , . . . , β

tn−1

j

)
· P−1

for all j such that 2 ≤ j ≤ n− 2. These elements are C-linear combinations of the
elements βj and the action of the braid generators on them can be easily computed.

Remark 34. A cyclic cover given X in eq. (31) might have a bigger automorphism
group then the cyclic group of order n, if the roots bi form a special configuration.
Notice also that if the number s of branched points satisfies s > 2n then the
automorphism group G fits in a short exact sequence

(35) 1 → Z/nZ → G→ H → 1

where H is a subgroup of PGL(2, k) [28, prop. 1]. The first author in [28] classified
all such extensions.

Observe that the action of the mapping class group of homology is of topological
nature and hence independent of the special configuration of the roots bi. If these
roots have a special configuration then elements of the mapping class group become
automorphisms of the curve. This phenomenon is briefly explained on page 895 of
[34].

Similarly, the action of elements of Gal(Q̄/Q) which keeps invariant the set of
branch points {bi : 1 ≤ i ≤ s} on homology is the same for all cyclic covers. For
certain configurations of the branch points elements of Gal(Q̄/Q) can be seen as
automorphism of the curve.

If the branch locus {bi : 1 ≤ i ≤ s} is invariant under the groupH then H1(X,Z)
is a Z[G] module, where G is an extension of H with kernel Z/nZ given by eq. (35).
In next section we will treat such highly symmetrical curves.

C. Mc Mullen in [34, sec. 3] considered the Hodge decomposition of the DeRham
cohomology as

H1(X) = HomC(H1(X,Z),C) = H1,0(X)⊕H0,1(X) ∼= Ω(X)⊕ Ω̄(X).

Of course this decomposition takes place in the dual space of holomorphic differen-
tials, and is based on the intersection form

(36) 〈α, β〉 = i/2

∫

X

α ∧ β̄.
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In this article we use the group theory approach and we focus around the homology
group H1(X,Z). Homology group is equipped with an intersection form and a
canonical symplectic basis a1, . . . , ag, b1, . . . , bg such that

〈ai, bj〉 = δij , 〈ai, aj〉 = 〈bi, bj〉 = 0.

Every two homology classes γ, γ′ can be written as Z-linear combinations of the
canonical basis

γ =

g∑

i=1

(λiai + µibi) γ′ =

g∑

i=1

(λ′iai + µ′
ibi)

and the intersection is given by

〈γ, γ′〉 = (λ1, . . . , λg, µ1, . . . , µg)

(
0 Ig

−Ig 0

)
(λ′1, . . . , λ

′
g, µ

′
1, . . . , µ

′
g)
t

This gives rise to a representation

ρ : Bs−1 → Sp(2g,Z)

since 〈σ(γ), σ(γ′)〉 = 〈γ, γ′〉. Indeed, a topological homeomorphism keeps the in-
tersection multiplicity of two curves. The relation to the unitary representation on
holomorphic differentials (and the signature computations) is given by using the
diagonalization of

(
0 Ig

−Ig 0

)
= P · diag(i, . . . , i︸ ︷︷ ︸

g

,−i, . . . ,−i︸ ︷︷ ︸
g

) · P−1,

and the extra“i” put in front of eq. (36).

5.3.1. Arithmetic analogon:

Lemma 35 (Galois Descent). There is a canonical basis {ai, bi, 1 ≤ i ≤ g} such
that for all σ ∈ Gal(Q̄/Q) and for γ, γ′ in the canonical basis we have

〈σγ, σγ′〉 = 〈γ, γ′〉.

Proof. According to [26, 1.7.3] we have trivial Galois cohomology

H1
(
Gal(Q̄/Q), Sp2g(Q̄)

)
= {1}.

The desired result follows by Galois descent. �

Let us now consider the elements γ, γ′ given by

γ =

g∑

i=1

(λiai + µiβi), λi, µi ∈ Ẑ

γ′ =

g∑

i=1

(λ′iai + µ′
iβi), λ′i, µ

′
i ∈ Ẑ

in a Gal(Q̄/Q)-invariant symplectic canonical basis. The action of σ ∈ Gal(Q̄/Q)
on the intersection form is given by:

〈σγ, σγ′〉 =

g∑

i=1

σ(λiµ
′
i − µiλ

′
i)〈ai, bi〉 = 〈γ, γ′〉σ.
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5.4. Fermat Curves. These curves are ramified curves over P1 − {0, 1,∞} with
deck group Z/nZ × Z/nZ. We have π1(P

1 − {0, 1,∞}, x0) = F2 = 〈a, b〉. A
transversal set T for Z/nZ×Z/nZ in F2 is given by aibj , 0 ≤ i, j ≤ n− 1. We also
compute:

aibjb =

{
aibj+1 if j < n− 1

ai if j = n− 1

and

aibja =

{
ai+1bj if i < n− 1

bj if i = n− 1

Thus

aibjb
(
aibjb

)−1

=

{
aibjbb−j−1a−i = 1 if j < n− 1

aibna−i if j = n− 1

aibja
(
aibja

)−1

=





aibjab−ja−i−1 if i < n− 1, j 6= 0

1 if i < n− 1, j = 0,

an−1bjab−j if i = n− 1

Consider the generators α, β of the cyclic group Z/nZ × Z/nZ. Let RF be the
fundamental group of the Fermat curve, seen as a subgroup of the free group F2.
Observe that there is a well defined action of α (resp. β) on RF /R

′
F given by

conjugation, i.e.

xα = xa = axa−1 xβ = xb = bxb−1

for all x ∈ RF /R
′
F . Notice that this is indeed an action which implies that

(xα)β = xαβ = xβα = (xβ)α

i.e. the actions of α and β commute. We can consider the conjugation action of
Z/nZ = 〈α〉 and then we have the following sets of generators, of the free group
RF :

A1 =
{
(bn)a

i

: 0 ≤ i ≤ n− 1
}
, #A1 = n

A2 =
{
[bj , a]a

i

: 1 ≤ j ≤ n− 1, 0 ≤ i ≤ n− 2
}

#A2 = (n− 1)2

A3 = {an[a−1, bj] : 0 ≤ j ≤ n− 1} #A3 = n

We finally arrive at n2 + 1 generators as predicted by Schreier index formula since
#A1 +#A2 +#A3 = n+ (n− 1)2 + n = n2 + 1.

Lemma 36. For any two elements of a group and any positive integer j we have

(1) [xj , y] = [x, y]x
j−1

· [x, y]x
j−2

· · · [x, y]x · [x, y]

(2) [x, yj ] = [x, y] · [x, y]y · [x, y]y
j−1

.

Proof. See [13, 0.1 p.1]. �

Fix 0 ≤ i ≤ n− 2. We will prove that the Z-module generated by the elements

Σ1 := {[bj, a]α
i

, 1 ≤ j ≤ n − 1} is the same with the Z-module generated by the

elements Σ2 := {[b, a]α
iβj

1 ≤ j ≤ n − 2}. Indeed by lemma 36 (1) we have the
identities (written aditively):

[b, a]α
i

= [b, a]α
i
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[b2, a]α
i

= [b, a]βα
i

+ [b, a]α
i

· · · = · · ·

[bn−1, a] = [b, a]β
n−2αi

+ · · ·+ [b, a]βα
i

+ [b, a]α
i

,

i.e. for 1 ≤ j ≤ n− 1 and 0 ≤ i ≤ n− 2 we have

[bj , a]α
i

= [b, a](β
j−1+βj−2+β+1)ai

This proves that the elements of the set Σ1 are transofrmed to the elements of
the set Σ2 in terms of the invertible n× n matrix with entries in Z:




1 0 · · · 0

1 1
. . .

...
...

. . .
. . . 0

1 · · · 1 1




Therefore Σ1 and Σ2 generate the same Z-module.
Notice also that

(an)β
j

= bjan−1b−ja−n+1 · an−1bjab−j = [bj , an−1] + an−1bjab−j︸ ︷︷ ︸
∈A3

= [bj , a]α
n−2+αn−3+···α+1 + an−1bjab−j .

The above computation shows that (an)β
j

can be written as a Z-linear combination
of elements of Σ2 (which generate A2) and A3. Moreover

an[a−1, bj ] = (an)β
j

− [b, a](
∑j−1

k=0 β
k)(

∑n−2
λ=0 α

λ).

We have shown that

Lemma 37. The free Z-module RF /R
′
F can be generated by the n2 + 1 elements

(an)β
i

, (bn)α
i

, 0 ≤ i ≤ n− 1 and [a, b]α
i·βj

, 0 ≤ i, j ≤ n− 2.

We will now prove that in RF /R
′
F there are exacty 3n elements which are fixed

by an element of Z/nZ× Z/nZ.

The 2n elements are (an)β
i

(resp. (bn)α
i

) which are fixed by 〈α〉 (resp. 〈β〉).

The other n-elements are the elements ((ab)n)α
i

which are fixed by 〈ab〉. It is a

simple computation to verify that we can write the elements ((ab)n)α
i

as follows:

(ab)n = [b, a]α
n−1(

∑n−2
ν=0 β

ν)+···+α2(β+1)+αanbn

Hence

((ab)n)α
i

= [b, a]α
n−1+i(

∑n−2
ν=0 β

ν)+···+α2+i(β+1)+αi

an (bn)
αi .

We can now consider the homology group as the rank n2 + 1 free Z-module
RF /R

′
F . Since RF is a characteristic subgroup the group G = Z/nZ × Z/nZ =

〈a〉 × 〈b〉 acts on RF /R
′
F by conjugation making RF /R

′
F a G-module.

So far we have computed the open Fermat curve addmitting a presentetation

RF = 〈a1, b1, . . . , ag, bg, γ1, . . . , γ3n|γ1γ2 · · · γ3n · [a1, b1][a2, b2] · · · [ag, bg] = 1〉,

where g is the genous of the closed Fermat curve which equals to (n− 1)(n− 2)/2.
Every ramification point of the Fermat curve is surrounded by a path γi and there
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Figure 1. Open Fermat curve as cover of the projective line

are 3n such paths. For the computation of the genus of the closed curve, i.e. we
added the 3n missing points, we observe

2g + 3n− 1 = n2 + 1 ⇒ g =
n2 + 2− 3n

2
=

(n− 1)(n− 2)

2
.

We can see that the trasformation matrix from elements [bj , a]α
i

to elements

of the form [b, a]β
jαi

is invertible. This allows us to prove that the elements in
the sets A2 and A3 can be written as linear combinations of elements of the form

[b, a]α
iβj

and (an)β
j

for 1 ≤ j ≤ n− 1, 0 ≤ i ≤ n− 2. It is clear that the elements

(an)β
i

, (bn)α
i

, ((ab)n)α
i

as given in the table below are fixed by the cyclic group

mentioned in the third collumn. The elements γi are the n-elements (bn)α
i

fixed by

β, the n-elements (an)β
i

fixed by α and the n invariant elements ((ab)n)α
i

in the
module generated by commutators. In the following table we enumerate the fixed
elements γi:

Invariant element γi Index Fixed by

(an)β
i

1 ≤ i ≤ n 〈α〉

(bn)α
i

n+ 1 ≤ i ≤ 2n 〈β〉

((ab)n)α
i

2n+ 1 ≤ i ≤ 3n 〈ab〉

We have that

H1(X,Z) =
RF /R

′
F

〈γ1, . . . , γ3n〉
.

In order to compute the quotient we change the basis of RF /R
′
F by replacing each

one of the elements [b, a]α
n−1+iβn−2

by ((ab)n)α
i

for all 0 ≤ i ≤ n− 1. In this way
we form the following basis:

Proposition 38. A basis for the Z-module H1(X,Z) consists of the set:

{[b, a]α
iβj

mod Γ : 0 ≤ i ≤ n− 2, 0 ≤ j ≤ n− 3},

where Γ is the free Z-module generated by 〈γ1, . . . , γ3n〉.
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5.4.1. Braid group action. We will now consider the action of the Braid group B3

on H1(X,Z) of the closed Fermat surface. We recall first that the braid group in
three generators is generated by elements σ1, σ2 where

σ1(a) = aba−1 σ2(a) = a σ1(b) = a σ2(b) = a−1b−1

Notice that the above two automorphism in the abelianized free group with two
generators acts like the matrices

σ̄1 =

(
0 1
1 0

)
σ̄2 =

(
1 −1
0 −1

)
,

in GL(2,Z), reflecting the fact that B3/Z(B3) ∼= PSL(2,Z). Therefore,

σ1[a, b] = [aba−1, a] = [b, a]α = −[a, b]α

σ2[a, b] = [a, a−1b−1] = [b−1, a−1].

and more generally

σ1([b, a]
αiβj

) = [b, a]α
i+1βj

σ2([b, a]
αiβj

) = [b−1, a−1]α
iβj

We also compute

σ1((b
n)α

i

) = (an)β
i

σ1((a
n)β

j

) = (bn)α
j+1

σ2((b
n)α

i

) = ((ba)n)
−αi

σ2((a
n)β

j

) = (an)(βα)
−j

.

5.5. The Generalized Fermat Curve. A generalized Fermat curve of type (k, s−
1), where k, s− 1 ≥ 2 are integers, is a non-singular irreducible projective algebraic
curve Fk,s−1 defined over K admitting a group of automorphisms H ∼= (Z/kZ)s−1

so that Fk,s−1/H is the projective line with exactly s branch points, each one of
order k. Such a group H is called a generalized Fermat group of type (k, s − 1).
Let us consider a branched regular covering π : Fk,s−1 → P1, whose deck group
is H . By composing by a suitable Möbius transformation (that is, an element of
PSL2(K)) at the left of π, we may assume that the branch values of π are given by
the points

∞, 0, 1, λ1, . . . , λs−3,

where λi ∈ K − {0, 1} are pairwise different. A generalized Fermat curve of type
(k, s − 1) can be seen as a complete intersection in a projective space defined by
the following set of equations

(37) Ck(λ1, . . . , λs−3) :=





xk0 + xk1 + xk2 = 0
λ1x

k
0 + xk1 + xk3 = 0

...
...

...
λn−2x

k
0 + xk1 + xks−1 = 0





⊂ Ps−1.

The genus of Fk,n can be computed using the Riemann-Hurwitz formula:

(38) g(k,s−1) = 1 +
ks−2

2
((s− 2)(k − 1)− 2).

It is known [17] that generalized Fermat curves, have the orbifold uniformization
H/Γ in terms of the Fuchsian group

(39) Γ = 〈x1, x2, . . . , xs | x
k
1 = · · · = xks = x1x2 · · ·xs = 1〉.
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The surface group is given [17], [32] as Fs−1 · 〈x
k
1 , . . . , x

k
s−1, (x1 · · ·xs−1)

k〉. We will
compute the genus of the generalized Fermat curves by two more different methods
in eq. 42 and in section 5.6.3.

5.5.1. Application of the Reidemeister-Schreier method.

Consider the curve X = P1 − {0, 1,∞, λ1, . . . , λs−3}
with fundamental group Fs−1 = 〈x1, . . . , xs−1〉 and

univeral covering space X̃. We compute H1(X,Z) =
Zs−1. We have the picture on the right. We will
now employ the Reidemeister-Schreier method in or-
der to compute the free subgroup Rk,s−1 ⊂ Fs−1. A
transversal set is given by

T =
{
xi11 x

i2
2 · · ·x

is−1

s−1 , 0 ≤ ij ≤ k − 1, 1 ≤ j ≤ s− 1
}
.

X̃

Fs−1

��

F ′s−1

""Rk,s−1

��
✸✸

✸✸
✸✸

✸
✸✸

✸✸
✸✸

✸✸

Y

H1(X,Z)

pp

I

||②②
②②
②②
②②
②

Fk,s−1

Hk,s−1

||①①
①①
①①
①①

X
For given 1 ≤ ν ≤ s− 1 we have

xi11 x
i2
2 · · ·x

is−1

s−1 · xν =

{
xi11 x

i2
2 · · ·xiν+1

ν · · ·x
is−1

s−1 if iν < k − 1

xi11 x
i2
2 · · ·x

iν−1

ν−1 x
iν+1

ν+1 · · ·x
is−1

s−1 if iν = k − 1

Denote by x̄ī = xi11 x
i2
2 · · ·x

is−1

s−1 . We now compute
Case I For 1 ≤ ν ≤ s− 1:

x̄ī ·xν ·
(
x̄ī · xν

)−1

=

{
x̄ī · xν · x

−i1
1 x−i22 · · ·x−iν−1

ν · · ·x
−is−1

s−1 if iν < k − 1

x̄ī · xν · x
−i1
1 x−i22 · · ·x

−iν−1

ν−1 x
−iν+1

ν+1 · · ·x
−is−1

s−1 if iν = k − 1.

Case II For ν = s− 1:

x̄ī · xs−1 ·
(
x̄ī · xs−1

)−1

=

=




1 if is−1 < k − 1(
xi11 x

i2
2 · · ·x

is−2

s−2

)
· xks−1 ·

(
xi11 x

i2
2 · · ·x

is−2

s−2

)−1

if is−1 = k − 1.

The generators of the free group Rk,s−1 are falling in the following categories:

As−1 =
{
(xks−1)

x
i1
1 ···x

is−2
s−2

}
(40)

Aν =
{
x1,ν−1 · x

iν
ν xν+1,s−1 · xν · x

−1
ν+1,s−1 · x

−iν−1
ν · x−1

1,ν−1

}

=
{
[xν+1,s−1, xν ]

x1,ν−1·x
iν
ν

}

A′
ν =

{
xi11 · · ·x

iν−1

ν−1 · xk−1
ν · x

iν+1

ν+1 · · ·x
is−1

s−1 · xν · x
−1
ν+1,s−1 · x

−1
1,ν−1

}

=
{(
xkν [x

−1
ν , xν+1,s−1]

)x1,ν−1
}
,

where xℓ1,ℓ2 = x
iℓ1
ℓ1
x
iℓ1+1

ℓ1+1 · · ·x
iℓ2
ℓ2

. We now count the sizes of the above sets.

#As−1 = ks−2

#Aν = (k − 1) · kν−1 · (ks−1−ν − 1), for 1 ≤ ν ≤ s− 2

#A′
ν = kν−1 · ks−1−ν = ks−2, for 1 ≤ ν ≤ s− 2
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which gives in total

(41) #As−1 +

s−2∑

ν=1

#Aν +

s−2∑

ν=1

#A′
ν = (s− 2) · ks−1 + 1.

5.5.2. Elements stabilized. Observe first that the group generated by xs−1 stabilizes
(xks−1)

x1,s−2 . In this way we see that all ks−2 elements of As−1 have non trivial
stabilizer. Now we observe that

x1,ν−1 · x
k−1
ν · xν+1,s−1 · xν · x

−1
ν+1,s−1 · x

−1
1,ν−1 =

= [xk−1
ν , xν+1,s−1]

x1,ν−1 · (xkν)
x1,ν−1·xν+1,s−1.

Observe that 〈xν〉 stabilizes the k
s−2 elements of A′

ν of the form (xkν)
x1,ν−1·xν+1,s−1

and the element 〈x1 · · ·xs−1〉 stabilizes all elements ((x1 · · ·xs−1)
k)x1,s−2 , which are

ks−2.

Invariant element γi Cardinal Fixed by

(xks−1)
x1,s−2 ks−2 〈xs−1〉

(xkν)
x1,ν−1·xν+1,s−1 (s− 2)ks−2 〈xν 〉, where 1 ≤ ν ≤ s− 2

((x1 · · ·xs−1)
k)x1,s−2 ks−2 〈x1 · · ·xs−1〉

In total we have sks−2 fixed elements γi. Because of the above relations and the
following computation

[xν+1,s−1, xν ]
x1,ν−1·x

iν
ν =

([x
iν+1

ν+1 , xν ]
xν

iν

+ [x
iν+2

ν+2 , xν ]
xν

iν ·xν+1
iν+1

+ ...+ [x
is−1

s−1 , xν ]
xν,s−2)x1,ν−1 .

We can also take a new basis insteed of the old one. This is the following:

As−1 = {(xks−1)
x1,s−2}

Aν = {(xkν)
x1,ν−1·xν+1,s−1}, for 1 ≤ ν ≤ s− 2

A′
ν = {[xj , xν ]

x1,ν−1·x
iν
ν ·xν+1,s−1}, for 1 ≤ ν ≤ s− 2.

Remark 39. For the homology of the closed curve we have:

H1(Fk,s−1,Z) =
Rk,s−1/R

′
k,s−1

〈γ1, . . . , γsks−1〉
.

Using eq. (38) and the fact that rankH1(Fk,s−1,Z) = 2gFk,s−1
it is easy to verify

that

(42) (s− 2)ks−1 + 1− (s · ks−2 − 1) = 2gFk,s−1
.

In the above formula we have subtracted one from the number of invariant elements
γi since γ1 · · · γsks−2 = 1.

5.6. The group F′
s−1/F

′′
s−1 as an A -module.

5.6.1. Alexander modules for generalised Fermat curves. It is clear that the group
F′
s−1/F

′′
s−1 is generated as an A -module by the elements [xi, xj ] for 1 ≤ i < j ≤

s− 1.
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The structure of F′
s−1/F

′′
s−1 as an A -module is expressed in terms of the Crowell

exact sequence, see section 4.1, related to the short exact sequence:

1 → F′
s−1 → Fs−1

ψ
−→ Fab

s−1 → 1,

0 → (F′
s−1)

ab = F′
s−1/F

′′
s−1 → Aψ → Zℓ[[u1, . . . , us−1]] → Zℓ → 0,

where Aψ = A
F
′
s−1,{1}

ψ is the Alexander module and

A = A
Fs−1,{1} = Zℓ[[u1, . . . , us−1]].

Remark 40. The submodule of a free module is not necessarily a free module and
F′
s−1/F

′′
s−1 is not necessarily free. It contains the free module (see [37],[27, Th.

5.39])

Λs−1 = (F′

s−1/F
′′

s−1)
prim :=

{

(λju1 · · · ûj · · ·us−1)j=1,...,s−1 : λj ∈ A ,

s−1
∑

j=1

λj = 0

}

.

Set w = u1 · · ·us−1 a basis of Λs−1 is given by

v1 =

(
−
w

u1
,
w

u2
, 0, . . . , 0

)t
, . . . , vs−2 =

(
0, . . . , 0,−

w

us−2
,
w

us−2

)t
.

In the case of Fermat curves, i.e. s = 2 we have that Λ1 = (F′
s−1/F

′′
s−1)

prim =
F′
s−1/F

′′
s−1 and F′

s−1/F
′′
s−1 is a free A -module.

The injective map d : F′
s−1/F

′′
s−1

d
−→ A s−1 is given by sending a representative

[xi, xj ] → d([xi, xj ]) = (1 − xi)dxj − (1− xj)dxi

= ui · dxj − uj · dxi.

Set wij = w/(uiuj). The elements

wij · d([xi, xj ]) = w/uj · dxj − w/ui · dxi ∈ Λs−1.

This means that the image of the commutators d([xi, xj ]) there is some contribution
to the torsion part of F′

s−1/F
′′
s−1.

5.6.2. Application to Generalized Fermat curves. Consider the the smallest closed

normal subgroup Rk of Fs−1 containing all xℓ
k

i for 1 ≤ i ≤ s− 1. Define also

Fs−1,k = Fs−1/Rk.

Set λ̄ = {0, 1,∞, λ1, . . . , λs−3} and let M be the maximum pro-ℓ extension of
K = k̄(t) unramified outside the set of points λ̄. Consider the function field of the
generalized Fermat curves

Kk := K
(
t

1

ℓk , (t− 1)1/ℓ
k

, (t− λ1)
1/ℓk , . . . , (t− λs−3)

1/ℓk
)
.

Let Kur
k and Kurab

k be the maximal unramified and maximal abelian unramified
extensions of Kk respectively. Also let K ′ be the maximum unramified extension of
K and K ′′ be the maximum unramified extension of K ′. By covering space theory
the fields K ′, K ′′ correspond to the groups F′

s−1 and F′′
s−1, respectively. The

function field Kk corresponds to the group F′
s−1Rk and is equal to the function

field of the generalized Fermat curve.
We have

K ′ =
⋃

k

Kk, K ′ ∩Kur
k = Kk
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K ′′ =
⋃

k

Kurab
k , K ′′ ∩Kur

k = Kurab
k

The Galois correspondence is given as follows:

M

④④
④④
④④
④④

❋❋
❋❋

❋❋
❋❋

❋

K ′′

◗◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗◗
Kur
k

K ′

❇❇
❇❇

❇❇
❇❇

❇ Kurab
k

②②
②②
②②
②②

Kk

K

{1}

✈✈
✈✈
✈✈
✈✈
✈

❑❑
❑❑

❑❑
❑❑

❑❑
❑

F′′
s−1

❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚ Rk

F′
s−1

❍❍
❍❍

❍❍
❍❍

❍
F′′
s−1Rk

ss
ss
ss
ss
s

F′
s−1Rk

Fs−1

Using standard isomorphism theorems in group theory and the definitions we see

F′
s−1,k/F

′′
s−1,k

∼= F′
s−1/

(
F′
s−1 ∩ F′′

s−1Rk

)
∼= F′

s−1Rk/F
′′
s−1Rk

∼= Gal(Kurab
k /Kk)

is an abelian group, a free Zℓ-module of rank 2g, where g is the genus of the
generalized Fermat curve, Fℓk,s−1 so that

(43) 2g(ℓk,s−1) = 2 + ℓk(s−2)((s− 2)(ℓk − 1)− 2).

Observe that according to eq. (39) we have

F′
s−1,k/F

′′
s−1,k

∼= H1(Fk,s−1,Zℓ).

The last genus computation also follow from the following proposition which iden-
tifies unramified Z/ℓkZ extensions of a curve X with the group of ℓk-torsion points
of the Jacobian J(X).

Proposition 41. Let Y be a complete nonsingular algebraic curve defined over a
field of characteristic prime to ℓ. The étale Galois covers of Y with Galois group
Z/ℓkZ are classified by the étale cohomology group H1

et(Y,Z/ℓ
kZ) which is equal to

the group of ℓk-torsion points of Pic(Y ).

Proof. See [19, Ex. 2.7], [40, sec. 19]. �

5.6.3. Crowell sequence for generalized Fermat curves. Here we use the presentation
Fs−1 = Fs/〈x1 · · ·xs〉. Let Hk = (Z/ℓkZ)s−1. We have the short exact sequence

1 → F
′
s−1,k = (Fs−1/Rk)

′ → Fs−1/Rk
ψ

−→ Hk → 1

We will use the Crowell Exact sequence [35, chap. 9]

(44) 0 → (F′
s−1,k)

ab = F′
s−1,k/F

′′
s−1,k

θ1−→ A
Fs−1,Rk

ψ

θ2−→ A
Fs−1,Rk

εAk−→ Zℓ → 0,

where
A

Fs−1,Rk = Zℓ[[Hk]] = Zℓ[[(Z/ℓ
kZ)s−1]],

and

(45) A
Fs−1,Rk

ψ = cokerQ, Zℓ[Hk]
s+1 Q

−→ Zℓ[Hk]
s
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The Alexander module for Fs−1/Rk was computed on example 16. Notice that

A
Fs−1,Rk

ψ and the Crowell sequence know the genus of the generalised Fermat curve,

see eq. (25).

5.6.4. Representation theory on Generalized Fermat Curves. These are representa-
tions on the free Zℓ-modules

ρk : G→ GL(H1(Fk,s−1,Zℓ))

Where G is either the absolute Galois group or the braid group Bs−1 or Bs.
Let us now consider eq. (27) for Γ = Rk:

(46) 0 // (F′
s−1)

ab = F′
s−1/F

′′
s−1

//

��

A s−1 d1 //

��

A //

ω

��

Zℓ // 0

0 // (F′
s−1,k)

ab = F′
s−1,k/F

′′
s−1,k

θ //
(
A Fs−1,Rk

)s−1 d1,k
// A Fs−1,Rk // Zℓ // 0

It is clear that F′
s−1/F

′′
s−1 can be considered through the vertical map ω as an

A -module.
In order to understand F′

s−1/F
′′
s−1 we will use its θ embedding in

(
A Fs−1,Rk

)s−1
.

The map θ sends [xi, xj ] to d[xi, xj ] = (1− xi)dxj − (1− xj)dxi. Observe that the
elements of the form

n∑

ν=0

x̄νi , 1 ≤ i ≤ s

annihilate [xi, xj ]. We can see this by direct computations or by observing that

Σi · βi = βs+1x1 · · ·xi−1.

and the image θ[xi, xj ] has βs+1 = 0. The above observation generalises the defini-
tion of ideal an in eq. (8) in the article of Ihara, [23].

5.6.5. On Jacobian variety of Generalized Fermat curves. Consider the ℓ-adic Tate
module T (Jac(Fk,s−1)) of the Jacobian of the generalized Fermat curves Fk,s−1:

T (Jac(Fk,s−1)) = Hom(Qℓ/Zℓ, Jac(Fk,s−1))(Q̄) = H1(Fk,s−1,Z)⊗ Zℓ =
F′
s−1,k

F′′
s−1,k

.

Following Ihara we consider

T := lim
←
k

T (Jac(Fk,s−1)) = lim
←
k

F′
s−1,k

F′′
s−1,k

,

where the inverse limit is considered with respect to the maps T (Jac(Fk+1,s−1)) →
T (Jac(Fk,s−1)), which is induced by the map

(x0, . . . , xs−1) 7→ (xℓ0, . . . , x
ℓ
s−1).

Let F̄k,s−1 = Fk,s−1 ⊗SpecQ SpecQ̄. Consider also the inverse limit

lim
←
k

Gal(F̄k,s−1/P
1
Q̄
) = lim

←
k

(Z/ℓkZ)s−1 = Zs−1
ℓ .

Therefore

lim
←
k

Zℓ[Gal(F̄k/s/P
1
Q̄
)] ∼= A
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and T can be considered as an A -module. Using eq. (46) we obtain

F′
s−1

F′′
s−1

∼= T.

See [2, sec. 13] for the explicit isomorphism in the case of Fermat curves.
This construction leads to the definition of a subspace Tprim ⊂ T which is a free

A -module of rank s− 1.
An element in g ∈ Gal(Q̄/Q) induces an action on both T and Tprim. In partic-

ular the subspace Tprim is a free A -module. Thus we have a representation

ρ : G→ GLs−1(A )

σ 7−→ (aij(σ))

This matrix representation is defined by writing

σ(wijd[xi, xj ]) =
∑

ν<µ

aν,µ(σ)wνµd[xν , xµ].

5.6.6. From generalized Fermat curves to cyclic covers of P1. We will now relate
the Crowell sequences for the generalized Fermat curves and cyclic covers Ȳℓk of
the projective line as where defined in section 5 using the results of section 4.1.2.
Set

R̄ℓk = Rℓk/Γ =
〈
(x2x

−1
1 )x

ν
1 , . . . , (xs−1x

−1
1 )x

ν
1 : 0 ≤ ν < ℓk

〉

and recall that

R =
〈(
xjx

−1
1

)xν
1 : ν ∈ Z

〉

The fixed field of R/Γ is the function field Kℓk of the curve Ȳℓk , K(Cs) is the func-
tion field of the curve Cs. The group R′ corresponds to the maximal unramified
abelian extension K(Cs)

ur of K(Cs) while Γℓk corresponds to the maximal unram-
ified extension K(Cs)

unrab. The group R′ ·Γℓk corresponds to the maximal abelian
unramified Kunrab

ℓk extension of Kℓk . The groups F ′
s−1 · Γℓk and F ′′

s−1 · Γℓk corre-
spond to the generalized Fermat curve Fk,s−1 and the maximal unramified exten-
sion F unrab

k,s−1 . The groups F ′
s−1, F

′′
s−1 correspond to the maximal abelian unramified

extension of K0 and the maximal abelian unramified extension of K ′ respectively.

M

❋❋
❋❋

❋❋
❋❋

✄✄
✄✄
✄✄
✄

K ′′

✾✾
✾✾

✾✾
✾✾

K(Cs)
ab

③③
③③
③③
③③

K(Cs)
unrab

✈✈
✈✈
✈✈
✈✈
✈

K ′

✿✿
✿✿

✿✿
✿✿
F unrab
k,s−1 Kunrab

ℓk

H1(Cℓk
,Z)

// K(Cs)

✉✉
✉✉
✉✉
✉✉
✉✉

Fk,s−1

❊❊
❊❊

❊❊
❊❊

Kℓk
//

K0 = k(t)

{1}

❊❊
❊❊

❊❊
❊❊

❊

⑤⑤
⑤⑤
⑤⑤
⑤⑤

F ′′
s−1

❇❇
❇❇

❇❇
❇❇

Γℓk

②②
②②
②②
②②
②

R′

☎☎
☎☎
☎☎
☎☎

F ′
s−1

❇❇
❇❇

❇❇
❇❇
F ′′
s−1 · Γℓk

� � // R′ · Γℓk

H1(Cℓk
,Z)

R

F ′
s−1 · Γℓk

❋❋
❋❋

❋❋
❋❋

� � // R · Γℓk

Fs−1
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As in the case of generalized Fermat curves we can form the Tate module

TA := lim
←
k

(Jac(Yℓk)) = lim
←
k

(R̄ℓk/Rk)
ab

We now compare the Crowell sequences for the cyclic covers and the Fermat
covers:

0 0

0 // Rab = TR // A
R,Rk

ψ
//

OO

A R,Rk = Zℓ[[Z/ℓ
kZ]] //

OO

Zℓ // 0

0 // (F′
s−1)

ab = Tφ1 //

OO

A
F
′
s−1,Rk

ψ
//

φ2

OO

A
F
′
s−1,Rk = Zℓ[[(Z/ℓ

kZ)s−1]] //

φ3

OO

Zℓ //

OO

0

The map T → TR on Tate modules is given by the first vertical map. The action
module structure is given by the commutating diagram

A × T //

��

T

��

A R,Rk × TR // TR

where the horizontal maps are the module actions and the first vertical map sends
(a, t) 7→ (φ3(a), φ1(t)). The map φ3 is the reduction identifying the variables
x1, x2, . . . , xs−1. In particular from the reduction T → TR we obtain the diagram

G //

%%▲
▲▲

▲▲
▲▲

▲▲
▲▲ GLs−1(A )

��

GLs−1(A
R,Rk)
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