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GALOIS STRUCTURE OF THE HOLOMORPHIC DIFFERENTIALS OF CURVES

FRAUKE M. BLEHER, TED CHINBURG, AND ARISTIDES KONTOGEORGIS

Abstract. Let X be a smooth projective geometrically irreducible curve over a perfect field k of positive

characteristic p. Suppose G is a finite group acting faithfully on X such that G has non-trivial cyclic

Sylow p-subgroups. We show that the decomposition of the space of holomorphic differentials of X into a

direct sum of indecomposable k[G]-modules is uniquely determined by the lower ramification groups and

the fundamental characters of closed points of X which are ramified in the cover X −→ X/G. We apply

our method to determine the PSL(2, Fℓ)-module structure of the space of holomorphic differentials of the

reduction of the modular curve X (ℓ) modulo p when p and ℓ are distinct odd primes and the action of

PSL(2, Fℓ) on this reduction is not tamely ramified. This provides some non-trivial congruences modulo

appropriate maximal ideals containing p between modular forms arising from isotypic components with

respect to the action of PSL(2, Fℓ) on X (ℓ).

1. Introduction

Let k be a perfect field, and let X be a smooth projective geometrically irreducible curve over k. Denote

the sheaf of relative differentials of X over k by ΩX . The space of holomorphic differentials of X is the space

of global sections H0(X,ΩX). Suppose G is a finite group acting faithfully on the right on X over k. Then

G acts on the left on ΩX and on H0(X,ΩX). In particular, H0(X,ΩX) is a left k[G]-module of k-dimension

equal to the genus g(X) of X . It is a classical problem, which was first posed by Hecke [19], to determine

the k[G]-module structure of H0(X,ΩX). In other words, this amounts to determining the decomposition

of H0(X,ΩX) into its indecomposable direct k[G]-module summands. In the case when k is algebraically

closed and its characteristic does not divide #G, this problem was solved by Chevalley and Weil [8] using

character theory (see also [22]).

For the remainder of the paper, we assume that the characteristic of k is a prime p that divides #G. Two

main difficulties then arise. One is the appearance of wild ramification and the other is that one needs to

use positive characteristic representation theory. In particular, there are indecomposable k[G]-modules that

are not irreducible.

If k is algebraically closed and the ramification of the Galois cover X → X/G is tame, then Nakajima [31,

Thm. 2] and, independently, Kani [24, Thm. 3] determined the k[G]-module structure of H0(X,ΩX) for an

arbitrary group G. In particular, Nakajima showed that if E is any locally free G-sheaf of finite rank then

there is an exact sequence of k[G]-modules

(1.1) 0 −→ H0(X, E) −→ L0 −→ L1 −→ H1(X, E) −→ 0

where L0 and L1 are projective k[G]-modules.

The case when G is a cyclic group and the ramification of X −→ X/G is arbitrary was initiated by

Valentini and Madan [36, Thm. 1] who considered cyclic p-groups (and also revisited cyclic p′-groups [36,
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Thm. 2]). The case of general cyclic G was treated by Karanikolopoulos and the third author [25, Thm. 7].

In these papers, formulas are given of the multiplicities of the indecomposable direct k[G]-module summands

of H0(X,ΩX) in terms of invariants introduced by Boseck [6] when constructing bases of holomorphic differ-

entials. These Boseck invariants have also been used by Rzedowski-Calderón, Villa-Salvador and Madan [33]

and Marques and Ward [28] for some other groups under additional hypotheses on the cover X −→ X/G.

A different, general approach to determining the decomposition of coherent cohomology groups into inde-

composable direct summands was developed by Borne in [5], using the notion of rings with several objects.

Some formulas concerning the case of cyclic groups and curves are given in [5, §7.2].
The goal of this article is to determine the decomposition of H0(X,ΩX) into a direct sum of indecomposable

k[G]-modules for every groupG with non-trivial cyclic Sylow p-subgroups. Even though there are only finitely

many isomorphism classes of indecomposable k[G]-modules in this case, G can have quite a complicated

structure. For example, every finite simple non-abelian group has a non-trivial cyclic Sylow subgroup for at

least one prime (see, e.g., [20, Prop. 3] for a proof). Our main objective is to prove that the k[G]-module

structure of H0(X,ΩX) is uniquely determined by the ramification data and associated characters of closed

points of X which are ramified over X/G.

More precisely, for each closed point x ∈ X , let mX,x be the maximal ideal of the local ring OX,x and let

k(x) be the residue field of x. For i ≥ 0, the ith lower ramification subgroup Gx,i of G at x is the subgroup

of all elements σ ∈ G which fix x and which act trivially on OX,x/m
i+1
X,x. The fundamental character of the

inertia group Gx,0 of x is the character θx : Gx,0 −→ k(x)∗ = Aut(mX,x/m
2
X,x) giving the action of Gx,0 on

the cotangent space of x. Here θx factors through the maximal p′-quotient Gx,0/Gx,1 of Gx,0. Our main

result is as follows.

Theorem 1.1. Suppose G has non-trivial cyclic Sylow p-subgroups. Then the k[G]-module structure of

H0(X,ΩX) is uniquely determined by the lower ramification groups and the fundamental characters of closed

points x of X which are ramified in the cover X −→ X/G.

There are two main differences between Theorem 1.1 and previous literature on this subject. The first

is that we do not require the group G to be solvable or any restrictions on the ramification of the G-cover,

but we only require the Sylow p-subgroups of G to be cyclic. The second difference is that we work mostly

locally rather than globally and we phrase our results only in terms of ramification groups and fundamental

characters. In particular, our results do not involve invariants constructed from equations for successive

Artin-Schreier extensions of function fields. In previous work, such equations were involved in defining the

invariants necessary to calculate the Galois structure of the holomorphic differentials. Here we only use Artin-

Schreier extensions in our proof, but the statement of Theorem 1.1 does not involve invariants associated to

solutions of such equations.

Our work is relevant to the study of classical modular forms of weight two. Suppose N ≥ 3 is an integer

prime to p, and let Γ(N) be the principal congruence subgroup of SL(2,Z) of level N . Let F be a number

field that is unramified over p and that contains a primitive N th root of unity ζN . Suppose A is a Dedekind

subring of F that has fraction field F and that contains Z[ 1N , ζN ]. By [26, 27] (see also [23]), there is a

proper smooth canonical model X (N) of the modular curve associated to Γ(N) over A. The global sections

H0(X (N),ΩX (N)) are naturally identified with the A-lattice S(A) of holomorphic weight 2 cusp forms for

Γ(N) that have q-expansion coefficients in A at all the cusps, in the sense of [26, §1.6]. See §5 for details.

Let V(F, p) be the set of places v of F over p, and let OF,v be the ring of integers of the completion Fv of

F at v. We now suppose A is contained in OF,v for all v ∈ V(F, p). We further suppose that N = ℓ is an odd

prime number, and we let G = PSL(2,Z/N) = PSL(2,Fℓ). By analyzing the action of G on the holomorphic
2



differentials of the reduction of X (ℓ) modulo p, we will show the following result on the structure of the

holomorphic differentials of X (ℓ) as an OF,v[G]-module.

Theorem 1.2. Suppose A ⊂ OF,v for all v ∈ V(F, p), N = ℓ is an odd prime number with ℓ 6= p and p ≥ 3.

For all v ∈ V(F, p), the OF,v[G]-module

OF,v ⊗A H0(X (ℓ),ΩX (ℓ)) = OF,v ⊗A S(A)

is a direct sum over blocks B of OF,v[G] of modules of the form PB⊕UB in which PB is a projective B-module

and UB is either the zero module or a single indecomposable non-projective B-module. One can determine

PB and the reduction UB of UB modulo the maximal ideal mF,v of OF,v from the ramification data associated

to the action of G on X (ℓ) modulo p.

The fact that at most one non-projective indecomposable module UB is associated to each block B is

fortuitous. When p > 3 we show how this follows from work of Nakajima [31, Thm. 2], and in particular

from (1.1). When p = 3 the result is more difficult because the ramification of the action of G on X (ℓ)

modulo 3 is wild. We determine the module structure of the holomorphic differentials of X (ℓ) modulo 3 in

Theorem 1.4 below, and this leads to Theorem 1.2 in this case. Note that the Sylow 2-subgroups of G are

not cyclic, so the methods of this article are not sufficient to treat the case when p = 2.

We now describe one approach to defining congruences modulo p between modular forms. This basically

follows the approach in [32]. However, we consider weight 2 cusp forms for the principal congruence subgroup

Γ(N) (rather than for Γ0(N) or Γ1(N)) and we allow more general rings T of Hecke operators to act (see

below). We then show how Theorem 1.2 enables us to characterize when such congruences can arise from

the decomposition of F ⊗A S(A) into G-isotypic pieces. We refer to [34, Chap. 3] for a discussion of Hecke

operators and their actions on modular forms.

Define S(F ) = F ⊗A S(A) to be the space of weight two cusp forms that have q-expansion coefficients in

F at all cusps, in the sense of [26, §1.6]. Let T be a ring of Hecke operators acting on S(F ). Suppose there

is a decomposition

(1.2) S(F ) = E1 ⊕ E2

into a direct sum of F -subspaces that are stable under the action of T. Let a be an ideal of A. Following

[32], a non-trivial congruence modulo a linking E1 and E2 is defined to be a pair of forms f ∈ S(A) ∩ E1

and g ∈ S(A) ∩ E2 such that

f ≡ g mod a · S(A) but f 6∈ a · S(A).

Congruences of this kind have played an important role in the development of the theory of modular forms,

Galois representations and arithmetic geometry. For further discussion of them, see for example [14, 15].

Our results are relevant to a method for producing congruences of the above kind. Letting N = ℓ and

G = PSL(2,Fℓ) as before, we can form a decomposition (1.2) in the following way. Write 1 in F [G] as the

sum e1 + e2 of two orthogonal central idempotents. Define

(1.3) E1 = e1S(F ) and E2 = e2S(F ).

We will call a decomposition (1.2) of the form in (1.3) a G-isotypic T-stable decomposition of S(F ).
In an appendix in §7 we show how to construct non-trivial G-isotypic T-stable decompositions of S(F )

when T is the ring of Hecke operators that have index prime to ℓ (see Proposition 7.1). In this case, one can

take Ei = eiS(F ) when {e1, e2} is any pair of orthogonal central idempotents of F [G] such that 1 = e1 + e2

and each ei is fixed by the conjugation action of PGL(2,Fℓ) on G.
3



We will show the following theorem regarding non-trivial congruences arising from G-isotypic T-stable

decompositions of S(F ).

Theorem 1.3. With the assumptions of Theorem 1.2, suppose further that F contains a root of unity of

order equal to the prime to p part of the order of G. Let a be the maximal ideal over p in A associated to

v ∈ V(F, p). A T-stable decomposition (1.2) which is G-isotypic, in the sense that it arises from idempotents

as in (1.3), results in non-trivial congruences modulo a between modular forms if and only if the following is

true. There is a block B of OF,v[G] such that when PB and UB are as in Theorem 1.2, MB = PB⊕UB is not

equal to the direct sum (MB ∩e1MB)⊕ (MB ∩e2MB). For a given B, there will be orthogonal idempotents e1

and e2 for which this is true if and only B has non-trivial defect groups, and either PB 6= {0} or Fv⊗OF,v
UB

has two non-isomorphic irreducible constituents.

To describe the module structure of the holomorphic differentials of X (ℓ) modulo 3, let ℓ 6= 3 be an odd

prime number. Let P3 be a maximal ideal of A containing 3, define k(P3) = A/P3 to be the corresponding

residue field, and let k be an algebraically closed field containing k(P3). Define the reduction of X (ℓ) modulo

3 over k to be

X3(ℓ) = k ⊗k(P3) (k(P3)⊗A X (ℓ)) .

If ℓ = 5 then X3(ℓ) has genus 0. For ℓ ≥ 7, we obtain Theorem 1.4 below; for more detailed versions of part

(i) of this theorem, see Propositions 6.4.1 - 6.4.4. For a discussion of uniserial modules over Artin algebras,

see, e.g., [2, §IV.2].

Theorem 1.4. Let ℓ ≥ 7 be a prime number, and define G = PSL(2,Fℓ). Let P3, k(P3) and k be as above,

and define X = X3(ℓ) to be the reduction of X (ℓ) modulo 3 over k.

(i) Let ǫ = ±1 be such that ℓ ≡ ǫ mod 3. Write ℓ − ǫ = 2 · 3n ·m where 3 does not divide m, and let

δn,1 be the Kronecker delta. If T is a simple k[G]-module, then U
(G)
T,b denotes a uniserial k[G]-module

of length b whose socle is isomorphic to T . There exists a projective k[G]-module Qℓ such that the

following is true:

(1) Suppose ℓ ≡ 1 mod 4 and ℓ ≡ −1 mod 3. For 0 ≤ t ≤ (m− 1)/2, let T̃t be representatives of

simple k[G]-modules of k-dimension ℓ− 1 such that T̃0 belongs to the principal block of k[G]. As

a k[G]-module,

H0(X,ΩX) ∼= Qℓ ⊕ (1− δn,1)U
(G)

T̃0,(3n−1−1)/2
⊕

(m−1)/2⊕

t=1

U
(G)

T̃t,3n−1
.

(2) Suppose ℓ ≡ −1 mod 4 and ℓ ≡ 1 mod 3. Let T1 be a simple k[G]-module of k-dimension q.

For 1 ≤ t ≤ (m − 1)/2, let T̃t be representatives of simple k[G]-modules of k-dimension ℓ + 1.

As a k[G]-module,

H0(X,ΩX) ∼= Qℓ ⊕ (1− δn,1)U
(G)
T1,2·3n−1+1 ⊕

(m−1)/2⊕

t=1

U
(G)

T̃t,2·3n−1
.

(3) Suppose ℓ ≡ 1 mod 4 and ℓ ≡ 1 mod 3. Let T1,1 be a simple k[G]-module of k-dimension q.

For 1 ≤ t ≤ (m/2 − 1), let T̃t be representatives of simple k[G]-modules of k-dimension ℓ + 1.

There exists a simple k[G]-module T0,1 of k-dimension (ℓ + 1)/2 such that, as a k[G]-module,

H0(X,ΩX) ∼= Qℓ ⊕ (1− δn,1)U
(G)
T1,1,2·3n−1+1 ⊕ U

(G)
T0,1,2·3n−1 ⊕

m/2−1⊕

t=1

U
(G)

T̃t,2·3n−1
.
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(4) Suppose ℓ ≡ −1 mod 4 and ℓ ≡ −1 mod 3. For 0 ≤ t ≤ (ℓ/2 − 1), let T̃t be representatives

of simple k[G]-modules of k-dimension ℓ− 1 such that T̃0 belongs to the principal block of k[G].

There exists a simple k[G]-module T0,1 of k-dimension (ℓ − 1)/2 such that, as a k[G]-module,

H0(X,ΩX) ∼= Qℓ ⊕ (1− δn,1)U
(G)

T̃0,(3n−1−1)/2
⊕ U

(G)
T0,1,3n−1 ⊕

m/2−1⊕

t=1

U
(G)

T̃t,3n−1
.

The multiplicities of the projective indecomposable k[G]-modules in Qℓ are known explicitly. The

isomorphism classes of the uniserial k[G]-modules occurring in parts (1) through (4) are uniquely

determined by their socles and their composition series lengths. In parts (3) and (4), there are

two conjugacy classes of subgroups of G, represented by H1 and H2, that are isomorphic to the

symmetric group Σ3 such that the conjugates of H1 (resp. H2) occur (resp. do not occur) as inertia

groups of closed points of X. This characterizes the simple k[G]-module T0,1 in parts (3) and (4)

as follows. The restriction of T0,1 to H1 (resp. H2) is a direct sum of a projective module and

a non-projective indecomposable module whose socle is the trivial simple module (resp. the simple

module corresponding to the sign character).

(ii) Let k1 be a perfect field containing k(P3) and let k be an algebraic closure of k1. Define X1 =

k1 ⊗k(P3) (k(P3)⊗A X (ℓ)). Then

k ⊗k1 H0(X1,ΩX1)
∼= H0(X,ΩX)

as k[G]-modules, and the decomposition of H0(X1,ΩX1) into indecomposable k1[G]-modules is uniquely

determined by the decomposition of H0(X,ΩX) into indecomposable k[G]-modules. The k1[G]-module

H0(X1,ΩX1) is a direct sum over blocks B1 of k1[G] of modules of the form PB1 ⊕UB1 in which PB1

is a projective B1-module and UB1 is either the zero module or a single indecomposable non-projective

B1-module. Moreover, one can determine PB1 and UB1 from the ramification data associated to the

cover X −→ X/G.

The main ingredients in the proof of Theorem 1.4 are Theorem 1.1 together with a description of the

blocks of k[G] and their Brauer trees in [7].

We now describe the main ideas of the proof of Theorem 1.1.

We first use the Conlon induction theorem [11, Thm. (80.51)] to reduce the problem of determining the

k[G]-module structure of H0(X,ΩX) to the problem of determining the k[H ]-module structure of restrictions

of H0(X,ΩX) to the so-called p-hypo-elementary subgroups H of G. These p-hypo-elementary subgroups

are semi-direct products of the form H = P ⋊ C, where P is a normal cyclic p-subgroup of H and C is a

cyclic p′-group.

We then prove Theorem 1.1 in the case when G = H is p-hypo-elementary. The proof in this case is

constructive and can be used as an algorithm to determine the decomposition of H0(X,ΩX) into a direct

sum of indecomposable k[H ]-modules, see Remark 4.4. More precisely, let H = P⋊C be a p-hypo-elementary

group as above, and let χ : C −→ F∗
p be the character determining the action of C on P . Let I ≤ P be the

(cyclic, characteristic) subgroup of P generated by all inertia groups of the cover X −→ X/P , say I = 〈τ〉. If
M is a k[I]-module or a quasi-coherent sheaf of k[I]-modules, we use the notation M (j), for 0 ≤ j ≤ #I − 1,

to denote the kernel of the action of (τ − 1)j on M . We prove that the quotient sheaves Ω
(j+1)
X /Ω

(j)
X are line

bundles for OX/I isomorphic to χ−j ⊗k ΩX/I(Dj) for effective divisors Dj on X/I which may be explicitly

determined by the lower ramification groups of the cover X −→ X/I. Using a dimension count, we show

that there is an isomorphism

(1.4) H0(X,ΩX)(j+1)/H0(X,ΩX)(j) ∼= H0(X,Ω
(j+1)
X /Ω

(j)
X )
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of k[H/I]-modules for 0 ≤ j ≤ #I−1. Then we use thatX/I −→ X/H is tamely ramified, together with (1.1),

to prove that the k[H/I]-module structure of H0(X,Ω
(j+1)
X /Ω

(j)
X ), for 0 ≤ j ≤ #I−1, is uniquely determined

by the p′-parts of the (non-trivial) inertia groups of the cover X −→ X/H and their fundamental characters.

Finally, we argue, using (1.4), that this is sufficient to obtain the k[H ]-module structure of H0(X,ΩX).

The paper is organized as follows. In §2, we recall some well known definitions regarding finite groups

acting on schemes and sheaves. In §3, we show how to reduce the proof of Theorem 1.1 to the case of p-hypo-

elementary subgroups H of G, using the Conlon induction theorem (see Lemma 3.2). We also reduce to the

case when k is algebraically closed. In §4, we first prove Theorem 1.1 when G = H is p-hypo-elementary; see

Propositions 4.1 and 4.3 for the key steps. We then summarize these key steps of the proof in Remark 4.4.

In §5, we discuss the holomorphic differentials of the reductions of the modular curves X (ℓ) modulo p, and

we prove Theorems 1.2 and 1.3 when p > 3. In §6, we fully determine the k[PSL(2,Fℓ)]-module structure of

H0(X3(ℓ),ΩX3(ℓ)) when k is an algebraically closed field containing F3; see Propositions 6.4.1 - 6.4.4 for the

precise statements. In particular, this proves Theorem 1.4, which we then use to prove Theorems 1.2 and

1.3 when p = 3.

2. Finite groups acting on schemes and sheaves

In this section, we recall some well known definitions regarding finite groups acting on schemes and sheaves.

We will also set some notation which will be used later in this paper.

Let X be a Noetherian scheme, locally separated over a field k, and let H be a finite group acting on the

right on X over k. Let ϑ : X×kH −→ X , (x, h) 7→ x ·h, denote this group action, and let p1 : X×kH −→ X

denote the natural projection. We viewH as a constant group scheme over k, and we writem : H×kH −→ H

for the group law and e : k −→ H for the identity section of H .

We recall from [35, §1.2] (see also [30, §1.3]) the notion of a quasi-coherent OX -H-module F . The concept

of an OX -H-module goes back to Grothendieck (see, for example, [16, Chap. V]). Such an F is also called a

quasi-coherent H-sheaf (or H-equivariant sheaf) on X . An F of this kind is defined to be a quasi-coherent

sheaf of OX -modules, together with an isomorphism of OX×kH -modules

φ : ϑ∗F −→ p∗1F .

This isomorphism φ must be associative, in the sense that it satisfies the cocycle condition

(2.1) (p∗12φ) ◦ ((ϑ× 1H)∗φ) = (1X ×m)∗φ

on X ×k H ×k H , where p12 : X ×k H ×k H −→ X ×k H denotes the projection onto the first and second

components. On the stalk level, the cocycle condition says that the isomorphism Fx·hh′
∼= Fx is the same

as the composition F(x·h)·h′
∼= Fx·h ∼= Fx, i.e., the associativity of the group action. The unitarity of

the group action is also a consequence. Namely, applying (1X × e × e)∗ to both sides of (2.1) we get

(1X × e)∗φ ◦ (1X × e)∗φ = (1X × e)∗φ and so (1X × e)∗φ is the identity.

Equivalently (compare with [9, §1.2.5]), a quasi-coherent OX -H-module can be defined to be a quasi-

coherent sheaf F of OX -modules with a compatible action of H in the following sense. Suppose x ∈ X and

h ∈ H . The action of h ∈ H on X and on F gives isomorphisms of stalks OX,x·h −→ OX,x and Fx·h −→ Fx,
which we will both denote by h. We require h(α · f) = h(α) · h(f) for α ∈ OX,x·h and f ∈ Fx·h.

If F is moreover coherent (resp. locally free coherent) as an OX -module, we will call F a coherent (resp.

locally free coherent) OX -H-module.

The concept of an OX -H-module can be viewed as the sheafification of the concept of modules for skew

group algebras. More precisely, if B is a k-algebra and H acts by left k-algebra automorphisms on B, we
6



can form the skew group algebra

B ⋊ [H ] =

{
∑

h∈H
bh · h ; bh ∈ B

}
.

Here addition on B ⋊ [H ] is natural and multiplication is defined distributively using h · b = h(b) · h, where
h(b) denotes the image of b ∈ B under the action of h ∈ H . If U = Spec(B) is an affine open set of X that

is taken to itself by the action of H , and F is an OX -H-module, then F(U) is just a module for the skew

group algebra B ⋊ [H ].

An important example of a coherent OX -H-module, which will be of interest to us, is the sheaf ΩX of

relative differentials of X over k with the natural action of H on ΩX resulting from the action of H on OX .

If X is a smooth projective curve over k, then ΩX is moreover locally free of rank one as an OX -module.

By [17, Exposé V, Prop. 1.8], a necessary and sufficient condition for the existence of a quotient scheme

Z = X/H is that the H-orbit of every point of X is contained in an open affine subset of X . Equivalently,

X can be covered by affine open sets of the form U = Spec(B) that are taken to themselves by the action of

H . This will always be the case, for example, if X is quasi-projective.

Suppose now that the quotient scheme Z = X/H exists, and let I be a subgroup of H . By [17, Exposé

V, Cor. 1.7], the quotient scheme Y = X/I also exists, and we let π : X −→ Y = X/I denote the quotient

morphism. Let F be a quasi-coherent OX -H-module. Then π∗OX is a sheaf of rings on Y , and π∗F is

a quasi-coherent sheaf of π∗OX -modules with an action of H that is compatible with the action of H on

π∗OX over OY . We have a natural homomorphism OY −→ π∗OX of sheaves of rings on Y . Therefore, we

can view π∗F as a quasi-coherent OY -H-module. Note that if F is coherent (resp. locally free coherent) as

an OX -module, then so is π∗F as an OY -module. Moreover, if G is a quasi-coherent OY -H-module then

π∗F ⊗OY
G is also a quasi-coherent OY -H-module by letting H act diagonally.

Suppose finally that I is a normal subgroup of H , and that J is an ideal of k[I] that is taken to itself

by the conjugation action of H on I. Since I acts trivially on OY , we can regard π∗F as a module for the

sheaf of group rings OY [I] on Y . We define the kernel K = K(F , I, J) of J acting on π∗F to be the sheaf of

OY -modules having sections over each open set V of Y equal to the kernel of J acting on π∗F(V ). Since J

was assumed to be taken to itself by the conjugation action of H on k[I], K will in fact be a quasi-coherent

OY -H-module.

3. Reduction to p-hypo-elementary subgroups and algebraically closed base fields

Let k be a perfect field of positive characteristic p, and suppose G is a finite group such that p divides

#G. In this section, we show how we can reduce the problem of finding the k[G]-module structure of a

finitely generated k[G]-module M to determining the k[H ]-module structure of the restrictions of M to all

p-hypo-elementary subgroups H of G. We follow [11, §80D] and [4, §5.6]. At the end of this section, we show

how we can further reduce to the case when k is algebraically closed.

Definition 3.1. (a) Let a(k[G]) be the representation ring, also called the Green ring, of k[G]. This

is the ring consisting of Z-linear combinations of symbols [M ], one for each isomorphism class of

finitely generated k[G]-modules M , with relations

[M ] + [M ′] = [M ⊕M ′].

Multiplication is defined by the tensor product over k

[M ] · [M ′] = [M ⊗kM ′]
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where G acts diagonally on M ⊗kM ′. Since the Krull-Schmidt-Azumaya theorem holds for finitely

generated k[G]-modules, it follows that a(k[G]) has a Z-basis consisting of all [M ] with M finitely

generated indecomposable. Moreover, [M ] = [M ′] if and only if M ∼=M ′ as k[G]-modules. Define

A(k[G]) = Q⊗Z a(k[G])

which is called the representation algebra. Then a(k[G]) is embedded into A(k[G]) as a subring, and

both have the same identity element [kG], where kG denotes the trivial simple k[G]-module. We also

have induction maps

a(k[H ]) −→ a(k[G]) and A(k[H ]) −→ A(k[G])

for each subgroup H ≤ G.

(b) A p-hypo-elementary group is a group H such that H = P ⋊ C, where P is a normal p-subgroup

and C is a cyclic p′-group. We denote the set of p-hypo-elementary subgroups of G by H′.

The Conlon induction theorem [11, Thm. (80.51)] says that there is a relation

(3.1) [kG] =
∑

H∈H′

αH [IndGH(kH)]

in A(k[G]), for certain rational numbers αH . Since by [10, Cor. (10.20)],

M ⊗k IndGH(kH) ∼= IndGH(MH ⊗k kH) ∼= IndGH(MH)

for every finitely generated k[G]-module M , (3.1) implies that we have the relation

(3.2) [M ] =
∑

H∈H′

αH [IndGH(MH)]

in A(k[G]), for the same rational numbers αH as in (3.1). In other words, if M ′ is another finitely generated

k[G]-module such that [MH ] = [M ′
H ] in a(k[H ]) for all H ∈ H′, then [M ] = [M ′] in A(k[G]), and hence in

a(k[G]). In particular, this proves the following result.

Lemma 3.2. Suppose M is a finitely generated k[G]-module. Then the decomposition of M into its inde-

composable direct k[G]-module summands is uniquely determined by the decompositions of the restrictions

MH of M into a direct sum of indecomposable k[H ]-modules as H ranges over all elements in H′.

Remark 3.3. Suppose M is as in Lemma 3.2, and suppose we know the explicit decomposition of MH

into a direct sum of indecomposable k[H ]-modules for all H ∈ H′. If G does not have cyclic Sylow p-

subgroups, there might be infinitely many non-isomorphic indecomposable k[G]-modules of k-dimension less

than or equal to dimkM . To determine explicitly the decomposition of IndGH(MH) into a direct sum of

indecomposable k[G]-modules in (3.2), we have to test in principle all of these to see if they could be direct

summands.

However, if G has cyclic Sylow p-subgroups, then there are only finitely many isomorphism classes of

indecomposable k[G]-modules, and also only finitely many isomorphism classes of indecomposable k[H ]-

modules, for all H ∈ H′. Moreover, one can use the Green correspondence [10, Thm. (20.6)] to obtain

a different, more explicit, proof that the k[G]-module structure of M is uniquely determined by the k[H ]-

module structure of MH , as H ranges over all elements in H′.

Namely, if P is a cyclic Sylow p-subgroup of G (not necessarily unique), let P1 be the unique subgroup

of P of order p, and let N1 be the normalizer of P1 in G. The Green correspondence shows that induction

and restriction sets up a one-to-one correspondence between the isomorphism classes of indecomposable

non-projective k[G]-modules and the isomorphism classes of indecomposable non-projective k[N1]-modules.

By work of Dade [12] (and in particular, [12, Thm. 5]), it follows (in the case when k contains all (#G)th

8



roots of unity) that the indecomposable k[N1]-modules are all uniserial, and hence uniquely determined by

their top radical layer and their composition series length (see, e.g., [2, §IV.2] for a discussion of uniserial

modules). Using a filtration of the k[N1]-modules by powers of the augmentation ideal of k[P1], one then

proves that the k[N1]-module structure of M is uniquely determined by the restrictions MH to elements

H ∈ H′.

For the remainder of the paper, we assume, as in Theorem 1.1, that G has non-trivial cyclic Sylow

p-subgroups. Then every p-hypo-elementary subgroup H of G has a unique non-trivial cyclic Sylow p-

subgroup.

Suppose H = P ⋊ψ C, where P = 〈σ〉 ∼= Z/pn and C = 〈ρ〉 is a cyclic p′-group of order c. Then

Aut(P ) ∼= F∗
p×Q for an abelian p-group Q, and ψ : C −→ Aut(P ) factors through a character χ : C −→ F∗

p.

To emphasize this character, we write H = P ⋊χ C. Note that the order of χ divides (p− 1), which means

in particular that χp−1 = χ−(p−1) is the trivial one-dimensional character. For all i ∈ Z, χi defines a simple

k[C]-module of k-dimension one, which we denote by Tχi . We also view Tχi as a k[H ]-module by inflation.

Let k be a fixed algebraic closure of k, and let ζ be a primitive cth root of unity in k. For 0 ≤ a ≤ c− 1,

let Sa be the simple k[C]-module on which ρ acts as ζa. We also view Sa as a k[H ]-module by inflation.

Moreover, for i ∈ Z, define Sχi = k ⊗k Tχi and, for 0 ≤ a ≤ c− 1, define χi(a) ∈ {0, 1, . . . , c− 1} to be such

that Sχi(a)
∼= Sa ⊗k Sχi .

The following remark describes the indecomposable k[H ]-modules (see, e.g., [1, pp. 35-37 & 42-43]).

Remark 3.4. Let H = P ⋊χ C be a p-hypo-elementary group, where P = 〈σ〉, C = 〈ρ〉 and χ : C −→ F∗
p

is a character, and use the notation introduced in the previous two paragraphs. The projective cover of

the trivial simple k[H ]-module S0 is uniserial, in the sense that it has a unique composition series, with pn

ascending composition factors of the form

(3.3) S0, Sχ−1 , Sχ−2 , . . . , Sχ−(p−2) , S0, Sχ−1 , . . . , Sχ−(p−2) , S0.

More generally, the projective cover of the simple k[H ]-module Sa, for 0 ≤ a ≤ c − 1, is uniserial with pn

ascending composition factors of the form

(3.4) Sa, Sχ−1(a), Sχ−2(a), . . . , Sχ−(p−2)(a), Sa, Sχ−1(a), . . . , Sχ−(p−2)(a), Sa.

There are precisely #H isomorphism classes of indecomposable k[H ]-modules, and they are all uniserial. If

U is an indecomposable k[H ]-module, then it is uniquely determined by its socle, which is the kernel of the

action of (σ−1) on U , and its k-dimension. For 0 ≤ a ≤ c−1 and 1 ≤ b ≤ pn, let Ua,b be an indecomposable

k[H ]-module with socle Sa and k-dimension b. Then Ua,b is uniserial and its b ascending composition factors

are equal to the first b ascending composition factors in (3.4).

We next show how we can reduce to the case when k is algebraically closed when considering indecom-

posable k[H ]-modules.

Let Z1, . . . , Zd be the distinct orbits of {ζa : 0 ≤ a ≤ c− 1} under the action of Gal(k/k). For 1 ≤ j ≤ d,

let SZj
be the direct sum of the Sa for a ∈ Zj.

Proposition 3.5. Let H = P ⋊χ C be a p-hypo-elementary group as in Remark 3.4.

(i) The number of isomorphism classes of simple k[C]-modules is equal to d. Moreover, for each 1 ≤
j ≤ d, there exists a simple k[C]-module Tj with k ⊗k Tj ∼= SZj

.

(ii) The number of isomorphism classes of indecomposable k[H ]-modules is equal to d · pn. Moreover,

for each 1 ≤ j ≤ d and each 1 ≤ t ≤ pn, there exists a uniserial k[H ]-module Vj,t such that

k ⊗k soc(Vj,t) ∼= SZj
and such that k ⊗k Vj,t is a direct sum of indecomposable k[H ]-modules of

k-dimension t which all lie in a single orbit under the action of Gal(k/k).
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(iii) If M is a finitely generated k[H ]-module, then its decomposition into a direct sum of indecomposable

k[H ]-modules is uniquely determined by the decomposition of k ⊗k M into a direct sum of indecom-

posable k[H ]-modules

Proof. Let T be a simple k[C]-module. Since c is relatively prime to p, k ⊗k T is a direct sum of simple

k[C]-modules that lie in precisely one Galois orbit under the action of Gal(k/k). In other words, there exists

a unique j ∈ {1, . . . , d} with k ⊗k T ∼= SZj
. This proves part (i).

For part (ii), we use the description of the projective cover Q0 of the trivial simple k[H ]-module S0 in

Remark 3.4, and in particular the description of its ascending composition factors in (3.3). Since χ is a

character with values in F∗
p ⊆ k∗, this means that Q0 is realizable over k, i.e., Q0 = k⊗k P0, where P0 is the

projective cover of the trivial simple k[H ]-module. In particular, if SZ1 = {S0}, then, for all 1 ≤ t ≤ pn, there

exists an indecomposable k[H ]-module V1,t of k-dimension t with k ⊗k soc(V1,t) ∼= SZ1 . Let j ∈ {1, . . . , d}
be arbitrary. Then, for all 1 ≤ t ≤ pn, Tj ⊗k V1,t is a uniserial k[H ]-module of k-dimension equal to

(dimkTj)t = (#Zj)t, with t ascending composition factors Tj, Tχ−1 ⊗k Tj , Tχ−2 ⊗k Tj , . . .. Now suppose V is

an arbitrary indecomposable k[H ]-module. Write k ⊗k V as a direct sum of indecomposable k[H ]-modules.

The socle layers W1 and W2 of two of these summands are in the same Galois orbit if and only if for all

integers i ≥ 0, Sχ−i ⊗k W1 and Sχ−i ⊗k W2 are in the same Galois orbit. Since the socle layers of V are

k[H ]-modules, it follows that k ⊗k V is a sum of Galois orbits of indecomposable k[H ]-modules. Since the

sum of modules in a Galois orbit is an indecomposable k[H ]-module, we conclude that there can be only one

such orbit since V is indecomposable. Hence V is isomorphic to Tj⊗k V1,t for some 1 ≤ j ≤ d and 1 ≤ t ≤ pn.

This proves part (ii). Part (iii) is an immediate consequence of part (ii). �

4. Filtrations on differentials and ramification data

We assume throughout this section that k is an algebraically closed field of characteristic p > 0, and that

H = P ⋊χ C is a p-hypo-elementary group, where P = 〈σ〉 is a cyclic p-group of order pn, C = 〈ρ〉 is a

cyclic p′-group of order c, and χ : C −→ F∗
p is a character, as in the previous section. We again view χ as a

character of H by inflation, and denote, for all i ∈ Z, the one-dimensional k[H ]-module corresponding to χi

by Sχi .

Let X be a smooth projective curve over k, and fix a faithful right action of H on X over k. Then X is

a regular scheme of dimension one, and the sheaf ΩX of holomorphic differentials of X over k is a coherent

OX -H-module, as defined in §2, which is a locally free rank one OX -module. Throughout this section, we

adopt the conventions and notation from §2.
Recall that if x is a closed point of X and i ≥ 0, the ith lower ramification subgroup Hx,i of H is the

group of all elements in H which fix x and act trivially on OX,x/m
i+1
X,x. We will call the collection of groups

Hx,i, as x varies over the closed points of X and i ranges over all non-negative integers, the ramification

data associated to the action of H on X .

Let I = 〈τ〉 be the (cyclic) subgroup of P generated by the Sylow p-subgroups of the inertia groups of

all closed points of X . In particular, I is a normal subgroup of H . Let Y be the quotient curve X/I, and

let π : X −→ Y denote the quotient morphism. In particular, Y is a regular scheme of dimension one,

and hence a smooth projective curve over k, since k is perfect. Then π∗OX is an OY -H-module, and we

identify OY with the subsheaf of I-invariants of π∗OX . The Jacobson radical of the group ring k[I] is then

J = k[I](τ − 1). For all integers j ≥ 0, let Ω
(j)
X be the kernel of the action of J j = k[I](τ − 1)j on π∗ΩX .

Since J j is taken to itself by the conjugation action of H on I, it follows as in §2 that Ω
(j)
X is a quasi-coherent

OY -H-module. Since Y is a regular scheme of dimension one and Ω
(j)
X is a subsheaf of a locally free coherent

OY -module of finite rank, Ω
(j)
X is also a locally free coherent OY -module. Thus in the terminology of §2, Ω(j)

X
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is a locally free coherent OY -H-module. If D is a divisor on Y , then we will denote by ΩY (D) the tensor

product ΩY ⊗OY
OY (D).

Proposition 4.1. For 0 ≤ j ≤ #I − 1, the action of OY and of H on π∗ΩX makes the quotient sheaf

Lj = Ω
(j+1)
X /Ω

(j)
X into a locally free coherent OY -H-module. There exists an H-invariant divisor Dj on Y

with the following properties:

(i) The divisor Dj may be determined from the ramification data associated to the action of I on X.

(ii) We have D#I−1 = 0, and Dj is effective of positive degree for 0 ≤ j < #I − 1.

(iii) There is an isomorphism of locally free coherent OY -H-modules between Lj and Sχ−j ⊗k ΩY (Dj).

Proof. Let K be the function field of X , and let L = KI be the function field of Y = X/I. Let D−1
X/Y be

the inverse different of X over Y . In other words, D−1
X/Y is the largest OX fractional ideal in K such that

TrK/L(D−1
X/Y ) ⊆ OY . Note that D−1

X/Y is a coherent OX -H-module that is a locally free rank one OX -module.

By the projection formula [18, Ex. II.5.1], it follows that there are isomorphisms of OY -H-modules

(4.1) π∗ΩX ∼= π∗(D−1
X/Y ⊗OX

π∗ΩY ) ∼= π∗D−1
X/Y ⊗OY

ΩY .

Fix 0 ≤ j ≤ #I − 1, and consider the short exact sequences of coherent OY -H-modules

(4.2) 0 // Ω
(j)
X

// Ω
(j+1)
X

// Lj // 0

0 // D−1,(j)
X/Y

// D−1,(j+1)
X/Y

// Hj
// 0

where we again use the notation D−1,(j)
X/Y for the kernel of the action of J j = k[I](τ − 1)j on π∗D−1

X/Y .

In particular, since I acts trivially on OY and ΩY and since − ⊗OY
ΩY is right exact, we can identify

Lj = Hj ⊗OY
ΩY as coherent OY -H-modules.

We now show that Lj is a line bundle for OY . Let ηX (resp. ηY ) be the generic point on X (resp. Y ).

Then for all y ∈ Y and all j ≥ 0, there is a canonical homomorphism (Ω
(j)
X )y −→ (Ω

(j)
X )ηY between stalks.

Since (Ω
(j)
X )ηY is a vector space over L = k(Y ) and Ω

(j)
X is a locally free coherent OY -module, it follows that

this homomorphism is injective. On the other hand, we can identify the stalk (π∗ΩX)ηY = (ΩX)ηX with the

relative differentials Ω1
K/k of K/k. We can write Ω1

K/k = K dt for some t ∈ KH . For all integers j ≥ 0, we

again write (Ω1
K/k)

(j) for the kernel of the action of J j . In particular, we can identify (Ω
(j+1)
X )ηY = (Ω1

K/k)
(j).

We have a canonical injective homomorphism

(Lj)y =
(Ω

(j+1)
X )y

(Ω
(j)
X )y

→֒
(Ω1

K/k)
(j+1)

(Ω1
K/k)

(j)

whose image generates the right hand side as an L-vector space. Note that the module on the right is a one-

dimensional vector space over L = KI , since K ∼= L[I] as L[I]-modules, by the normal basis theorem, which

means that Ω1
K/k = K dt is also a free rank one L[I]-module. Hence (Lj)y is a non-zero OY,y-submodule of

a one-dimensional vector space over L = k(Y ) for all y ∈ Y and it is one-dimensional when y = ηY . This

implies that Lj is a line bundle for OY since Y is a regular scheme of dimension one.

Since Lj = Hj⊗OY
ΩY , we have that Hj is also a line bundle for OY . Because Hj = D−1,(j+1)

X/Y /D−1,(j)
X/Y , it

follows that the map given by (τ − 1)j sends Hj onto an OY -line bundle that is a subbundle of the constant

sheaf on Y associated to L = KI . We claim that there is an H-invariant divisor Dj on Y for which there is

an isomorphism

(4.3) (τ − 1)j : Hj −→ OY (Dj)
11



of OY -modules. To show this, first observe that since H/I stabilizes D−1,(j+1)
X/Y and D−1,(j)

X/Y , the class of Hj

in Pic(Y ) is fixed by the action of H/I. To show that there is an H-invariant divisor Dj on Y as in (4.3), it

will be enough to show that Div(Y )H/I −→ Pic(Y )H/I is surjective. We have a natural exact sequence

(4.4) 0 −→ k∗ −→ k(Y )∗ −→ Div(Y ) −→ Pic(Y ) −→ 0.

On taking the H/I cohomology of the two short exact sequences produced by (4.4) and using Hilbert’s

theorem 90, we conclude that it is enough to show H2(H/I, k∗) = 0. Here k is algebraically closed of

characteristic p and H/I is an extension of the cyclic p′-group H/P by the normal cyclic p-subgroup P/I.

Since Hq(P/I, k∗) = 0 for q > 0, we find, using the corresponding Lyndon-Hochschild-Serre spectral sequence,

that H2(H/I, k∗) = H2(H/P,H0(P/I, k∗)) = H2(H/P, k∗) = Ĥ0(H/P, k∗) = 0, where Ĥ0(H/P, k∗) denotes

the 0th Tate cohomology group. This establishes that there exists an H-invariant divisor Dj on Y as in

(4.3).

Let now V be an open set of Y that is taken to itself by the action of H and let f ∈ D−1,(j+1)
X/Y (V ) ⊂ L.

Since τ commutes with σ, we obtain

σ (τ − 1)jf = (τ − 1)j (σ f)

showing that (4.3) is an isomorphism of OY -P -modules. On the other hand, considering the generator ρ of

C and using that ρ σ ρ−1 = σχ(ρ), we see that

ρ (τ − 1)jf = ρ (τ − 1)j ρ−1 (ρ f)

= (τχ(ρ) − 1)j (ρ f)

= (τ − 1)j (χ(ρ)j ρ f)

since (τ − 1)j+1 D−1,(j+1)
X/Y (V ) = 0. Therefore, we obtain that

(4.5) (τ − 1)j : Hj −→ Sχ−j ⊗k OY (Dj)

is an isomorphism of OY -H-modules. In particular, (4.5) gives an isomorphism of OY -H-modules between

Lj and Sχ−j ⊗k ΩY (Dj).

It remains to show that, for j ∈ {0, 1, . . . ,#I − 1}, Dj may be determined from the ramification data

associated to the action of I on X , and to establish the statements of part (ii). Recall that L = KI is the

fixed field of I = 〈τ〉. Write #I = pnI , where nI ≤ n, and write

Dj =
∑

y∈Y
dy,j y.

Fix a point y ∈ Y and a point x ∈ X above y. Let Ix ⊆ I be the inertia group of x, which is cyclic of

order pn(x) ≤ pnI . Let i(x) = nI − n(x) and τx = τp
i(x)

, so that Ix = 〈τx〉. Define Lx = KIx ⊇ KI = L,

define Yx = X/Ix, and let yx ∈ Yx be a point above y and below x. Note that x is totally ramified over yx

for the action of Ix, and y splits into pi(x) points in Yx, where yx is one of them. By the tower formula for

inverse differents, we have

D−1
X/Y = D−1

X/Yx
⊗OX

f∗
x D−1

Yx/Y

where fx : X −→ Yx is the quotient map. Since the quotient map gx : Yx −→ Y is étale over y, it follows

that the stalk of D−1
Yx/Y

is equal to the stalk of the structure sheaf OYx
at all points of Yx over y. Hence at

all points of X over y, the stalks of D−1
X/Y and D−1

X/Yx
are the same. It follows that if we take the inverse

image Uy = (gx ◦ fx)−1(Vy) ⊂ X of a sufficiently small open neighborhood Vy of y, then we have an equality

(4.6)
(
D−1
X/Y

) ∣∣∣
Uy

=
(
D−1
X/Yx

) ∣∣∣
Uy

of the restrictions of the inverse differents D−1
X/Y and D−1

X/Yx
to Uy.
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We now determine dy,j using the filtration of D−1
X/Yx

coming from the powers of the Jacobson radical of

the group ring k[Ix], which is given as Jx = k[Ix](τx−1) = k[Ix](τ −1)p
i(x)

. For all integers t ≥ 0, let D−1,(t)
X/Yx

be the kernel of the action of J t
x = k[Ix](τx − 1)t = k[Ix](τ − 1)p

i(x)t on (fx)∗D−1
X/Yx

. In particular, D−1,(t)
X/Yx

is a coherent OYx
-H-module. Using the same arguments as in the first part of the proof, it follows that for

0 ≤ t ≤ #Ix − 1, there exists an H-invariant divisor D′
t,x on Yx such that

D−1,(t+1)
X/Yx

/D−1,(t)
X/Yx

∼= OYx
(D′

t,x)

as OYx
-modules. Writing

D′
t,x =

∑

y′∈Yx

d′y′,x,t y
′

we claim that

(4.7) dy,j = d′yx,x,t for all t, j satisfying pi(x)t ≤ j < pi(x)(t+ 1).

To see this, note that for all y′ ∈ Yx lying over y and for all t ≥ 0, we have d′y′,x,t = d′yx,x,t. This means

that locally, above y, the line bundle OYx
(D′

t,x) for OYx
is the pullback of a line bundle for OY . On the other

hand, if we consider two consecutive powers J t
x and J t+1

x of the radical Jx of k[Ix], then they generate in

k[I] the two powers J pi(x)t and J pi(x)(t+1) of the radical J of k[I]. Using (4.6), it follows that the restriction

of the OYx
-H-module

(4.8) D−1,(pi(x)(t+1))
X/Y /D−1,(pi(x)t)

X/Y

to g−1
x (Vy), for a sufficiently small neighborhood Vy of y, is as a module for OYx

(g−1
x (Vy)) given by OYx

(D′
t,x)

restricted to g−1
x (Vy).

Considering the quotient (4.8), there are pi(x) intermediate quotients D−1,(j+1)
X/Y /D−1,(j)

X/Y , for pi(x)t ≤ j <

pi(x)(t+1). Hence, to prove the claim in (4.7), it suffices to prove that in each of these intermediate quotients

the multiplicity of y in the corresponding divisor Dj, given by dy,j , is the same as the multiplicity of yx in

the divisor D′
t,x, given by d′yx,x,t. To see this, we take a line bundle for OYx

of the form g∗xOY (d
′
yx,x,t y),

where gx : Yx −→ Y = (Yx)/(I/Ix) is the quotient map, as above. Recall that gx is étale over a sufficiently

small neighborhood Vy of y in Y .

We now consider the action of I/Ix on g∗xOY (d
′
yx,x,t y). By the projection formula [18, Ex. II.5.1], we

have

(4.9) (gx)∗
(
g∗xOY (d

′
yx,x,t y)

) ∼= (gx)∗ OYx
⊗OY

OY (d
′
yx,x,t y)

where the action of I/Ix on OY (d
′
yx,x,t y) is trivial. We have a local normal basis theorem for the action of

I/Ix on (gx)∗ OYx
restricted to Vy, since gx : Yx −→ Y is étale over Vy. This means that (gx)∗ OYx

⊗OY
OY,y

is a free rank one module for OY,y[I/Ix]. Using this fact together with the isomorphism (4.9), it follows that

for all pi(x)t ≤ j < pi(x)(t + 1), the quotient of (gx)∗(g∗xOY (d
′
yx,x,t y)) with respect to the kernels of two

successive powers J j
and J j+1

is an OY -line bundle that looks like OY (d
′
yx,x,t y) in the neighborhood Vy

of y. Identifying the quotient with respect to the kernels of J j
and J j+1

with the quotient with respect to

the kernels of J j and J j+1, for pi(x)t ≤ j < pi(x)(t+ 1), the claim in (4.7) follows.

We next show how the integers d′yx,x,t in (4.7), for 0 ≤ t ≤ pn(x) − 1, are determined by the ramification

data associated to the action of Ix on X . If Ix is the trivial subgroup of I, then Yx = X and hence d′yx,x,t = 0

for all t ≥ 0. In particular, this means by (4.7) that if y ∈ Y does not ramify in X then dy,j = 0 for all j ≥ 0.

Assume now that Ix = 〈τx〉 is not the trivial subgroup of I. Recall that #(Ix) = pn(x) and Lx = KIx ⊇
KI = L. Consider the unique tower of intermediate fields

(4.10) Lx = L0 ⊂ L1 ⊂ · · · ⊂ Ln(x) = K
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with [Ll : Ll−1] = p for 1 ≤ l ≤ n(x). In particular, each extension Ll/Ll−1 is an Artin-Schreier extension,

meaning there exist zl ∈ Ll and λl ∈ Ll−1 such that Ll = Ll−1(zl) and zpl − zl = λl. By Artin-Schreier

theory, we may, and will, assume that the zl and λl have been chosen to satisfy:

(a) ordx(λl)/p
n(x)−l+1 is a negative integer that is relatively prime to p;

(b) τp
l−1

x (zl) = zl + 1, meaning (τx − 1)p
l−1

(zl) = 1.

This provides the following basis for K over Lx. For 0 ≤ t ≤ pn(x) − 1, write

t = a1,t + a2,t p+ · · ·+ an(x),t p
n(x)−1

with 0 ≤ a1,t, . . . , an(x),t ≤ p− 1, and define

wt = z
a1,t
1 z

a2,t
2 · · · zan(x),t

n(x) .

As in [36, Lemma 1], we obtain that for all 0 ≤ t ≤ pn(x) − 1,

(τx − 1)twt = (a1,t)! (a2,t)! · · · (an(x),t)!.

In particular, this implies

(τx − 1)iwt = 0 for t+ 1 ≤ i ≤ pn(x) − 1.

For 0 ≤ t ≤ pn(x) − 1, define K(t) to be the kernel of the action of J t
x = k[Ix](τx − 1)t. We obtain that

{w0, w1, . . . , wt−1}

is an Lx-basis for K
(t). Hence, we obtain an isomorphism

(τx − 1)t :
K(t+1)

K(t)
−→ Lx

which sends the residue class of wt to the non-zero scalar (a1,t)! (a2,t)! · · · (an(x),t)! in Lx. Since the stalk of

(fx)∗D−1
X/Yx

at yx is naturally identified with the stalk of D−1
X/Yx

at x, we obtain

(4.11) − d′yx,x,t = min{ordyx(ct) ; c0w0 + · · ·+ ctwt ∈ (D−1
X/Yx

)x for some c0, . . . , ct ∈ Lx}

for 0 ≤ t ≤ pn(x) − 1. Note that c0w0 + · · ·+ ctwt ∈ (D−1
X/Yx

)x if and only if

(4.12) ordx(c0w0 + · · ·+ ctwt) ≥ ordx(D−1
X/Yx

)

where

(4.13) ordx(D−1
X/Yx

) = −
∑

i≥0

(#Ix,i − 1)

and, as before, Ix,i denotes the i
th lower ramification subgroup of Ix. Since Ix is cyclic of order pn(x), there

are exactly n(x) jumps b0, b1, . . . , bn(x)−1 in the numbering of the lower ramification groups Ix,i. The jumps

bl are all congruent modulo p and relatively prime to p. Moreover, if 0 ≤ i ≤ b0, then Ix,i = Ix, and if

1 ≤ l ≤ n(x)− 1 and bl−1 < i ≤ bl, then #Ix,i = pn(x)−l. Hence

(4.14)
∑

i≥0

(#Ix,i − 1) =

n(x)∑

l=1

(p− 1) pn(x)−l (bl−1 + 1).

14



Because ordx(zl) = −pn(x)−l bl−1 for 1 ≤ l ≤ n(x), we obtain for all 0 ≤ s ≤ t,

ordx(csws) = ordx(cs) + ordx(ws)(4.15)

= pn(x) ordyx(cs) + ordx

(
z
a1,s
1 z

a2,s
2 · · · zan(x),s

n(x)

)

= pn(x) ordyx(cs) +

n(x)∑

l=1

al,s ordx(zl)

= pn(x) ordyx(cs)−
n(x)∑

l=1

al,s p
n(x)−l bl−1.

Since for all 1 ≤ l ≤ n(x), we have al,s ∈ {0, 1, . . . , p − 1} and bl−1 is not divisible by p, it follows that the

residue classes ordx(csws) mod pn(x) are all different for s ∈ {0, 1, . . . , t}. But this implies

ordx(c0w0 + · · ·+ ctwt) = min0≤s≤t ordx(csws).

Using (4.12) and (4.13), we obtain that c0w0 + · · ·+ ctwt ∈ (D−1
X/Yx

)x if and only if

ordx(csws) ≥ −
∑

i≥0

(#Ix,i − 1)

for all 0 ≤ s ≤ t. In particular, this is true for s = t. Therefore, letting s = t in (4.15), we obtain

(4.16) ordyx(ct) ≥
−∑i≥0 (#Ix,i − 1) +

∑n(x)
l=1 al,t p

n(x)−l bl−1

pn(x)

whenever c0w0 + · · ·+ ctwt ∈ (D−1
X/Yx

)x. But this means that the ramification data associated to the action

of Ix on X uniquely determines d′yx,x,t, for 0 ≤ t ≤ pn(x) − 1. More precisely, it follows from (4.7), (4.11)

and (4.16) that

(4.17) dy,j = d′yx,x,t =

⌊∑
i≥0 (#Ix,i − 1)−

∑n(x)
l=1 al,t p

n(x)−l bl−1

pn(x)

⌋

for all t, j ≥ 0 satisfying pi(x)t ≤ j < pi(x)(t+ 1) when i(x) = nI − n(x) and ⌊r⌋ denotes the largest integer

that is less than or equal to a given rational number r. Moreover, the formula in (4.17), together with (4.13)

and (4.14), shows that d′yx,x,t ≥ 1 for 0 ≤ t < pn(x) − 1, and d′yx,x,t = 0 for t = pn(x) − 1. Hence

dy,j ≥ 1 for 0 ≤ j < pi(x)(pn(x) − 1), and dy,j = 0 for pi(x)(pn(x) − 1) ≤ j < pi(x)pn(x) = #I.

Since I is cyclic, there is at least one point x0 in X with Ix0 = I. In particular, n(x0) = nI and i(x0) = 0.

Therefore, it follows that if x0 lies above the point y0 ∈ Y then dy0,j ≥ 1 for all 0 ≤ j < #I−1, which means

that Dj is effective of positive degree for 0 ≤ j < #I − 1. On the other hand, the above calculations show

that dy,#I−1 = 0 for all y ∈ Y , implying D#I−1 = 0. �

Lemma 4.2. For 0 ≤ j ≤ #I − 1, there is an isomorphism

H0(X,ΩX)(j+1)/H0(X,ΩX)(j) ∼= H0(Y,Ω
(j+1)
X /Ω

(j)
X ) ∼= Sχ−j ⊗k H0(Y,ΩY (Dj))

of k[H/I]-modules, where Dj is the divisor from Proposition 4.1.

Proof. By Proposition 4.1, we know that there is a k[H ]-module isomorphism

H0(Y,Ω
(j+1)
X /Ω

(j)
X ) ∼= H0(Y, Sχ−j ⊗k ΩY (Dj)) ∼= Sχ−j ⊗k H0(Y,ΩY (Dj)).

Since I acts trivially on all modules involved, these are also k[H/I]-module isomorphisms. The sequence

0 −→ Ω
(j)
X −→ π∗ΩX

(τ−1)j−−−−→ π∗ΩX
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of OY -H-modules is exact. Since H0(Y, π∗ΩX) ∼= H0(X,ΩX) as k[H ]-modules, the long exact cohomology

sequence

0 −→ H0(Y,Ω
(j)
X ) −→ H0(X,ΩX)

(τ−1)j−−−−→ H0(X,ΩX) −→ · · ·

is an exact sequence of k[H ]-modules. In particular, this shows that we have a commutative diagram

0 // H0(X,ΩX)
(j)

βj

��

// H0(X,ΩX)(j+1)

βj+1

��

// H0(X,ΩX)(j+1)/H0(X,ΩX)(j)

γj

��

// 0

0 // H0(Y,Ω
(j)
X ) // H0(Y,Ω

(j+1)
X ) // H0(Y,Lj) // H1(Y,Ω

(j)
X ) · · ·

where βj and βj+1 are isomorphisms and γj is injective. To show that γj is also an isomorphism of k[H ]-

modules, it suffices to show that the k-dimensions of H0(X,ΩX)(j+1)/H0(X,ΩX)(j) and H0(Y,Lj) coincide.
To do so, we first use the Riemann-Roch theorem to describe dimk H0(Y,Lj). By Proposition 4.1, D#I−1 = 0,

and hence L#I−1 = ΩY as OY -modules, meaning that

(4.18) dimk H
0(Y,L#I−1) = dimk H

0(Y,ΩY ) = g(Y ).

On the other hand, for 0 ≤ j < #I − 1, by Proposition 4.1, Dj is an effective divisor of positive degree,

which implies that

deg(Lj) = deg(ΩY (Dj)) = deg(Dj) + deg(ΩY ) > deg(ΩY ) = 2 g(Y )− 2.

Hence H1(Y,Lj) = 0, and we obtain by the Riemann-Roch theorem:

dimk H
0(Y,Lj) = deg(Lj) + 1− g(Y )(4.19)

= deg(Dj) + g(Y )− 1 for 0 ≤ j < #I − 1.

Using the Riemann-Roch theorem for π∗ΩX = π∗D−1
X/Y ⊗OY

ΩY (see (4.1)), we obtain

g(X)− 1 = dimk H
0(X,ΩX)− dimk H

1(X,ΩX)

= degOY
(π∗ΩX) + rankOY

(π∗ΩX)(1− g(Y ))

=

#I−1∑

j=0

(deg(Dj) + (2 g(Y )− 2)) + (#I)(1 − g(Y ))

= (#I)(g(Y )− 1) +

#I−1∑

j=0

deg(Dj).

In other words, we get

(4.20) g(X) = 1 + (#I)(g(Y )− 1) +

#I−1∑

j=0

deg(Dj).
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On the other hand, using (4.18) and (4.19), we have

g(X) = dimk H
0(X,ΩX)

=

#I−1∑

j=0

dimk

(
H0(X,ΩX)(j+1)/H0(X,ΩX)(j)

)

≤
#I−1∑

j=0

dimk H
0(Y,Lj)

=

#I−2∑

j=0

(deg(Dj) + g(Y )− 1) + g(Y )

=

#I−2∑

j=0

deg(Dj) + (#I)g(Y )− (#I − 1).

Since D#I−1 = 0, we obtain by (4.19) that the inequality in the third row must be an equality. But this

means that for all 0 ≤ j < #I − 1, we have

dimk

(
H0(X,ΩX)(j+1)/H0(X,ΩX)(j)

)
= dimk H

0(Y,Lj)

finishing the proof of Lemma 4.2. �

Proposition 4.3. For 0 ≤ j ≤ #I − 1, let Dj be the divisor from Proposition 4.1, which is determined by

the ramification data associated to the action of I on X. The k[H/I]-module structure of H0(Y,ΩY (Dj)) is

uniquely determined by the inertia groups of the cover X −→ X/H and their fundamental characters.

Proof. As before, let K be the function field of X , and let L = KI be the function field of Y = X/I.

Moreover, let Z = X/H . Then Y −→ Z is tamely ramified with Galois group H/I.

Let 0 ≤ j ≤ #I − 1. By (1.1), there exist finitely generated projective k[H/I]-modules P1,j and P0,j

together with an exact sequence of k[H/I]-modules

(4.21) 0 −→ H0(Y,ΩY (Dj)) −→ P1,j −→ P0,j −→ H1(Y,ΩY (Dj)) −→ 0.

By Serre duality, we obtain

H0(Y,ΩY (Dj)) = Homk(H
1(Y,OY (−Dj)), k),(4.22)

H1(Y,ΩY (Dj)) = Homk(H
0(Y,OY (−Dj)), k).

In other words, the k[H/I]-module structure of H0(Y,ΩY (Dj)) is uniquely determined by the k[H/I]-module

structure of H1(Y,OY (−Dj)). So it is enough to show that the latter is uniquely determined by the inertia

groups of the cover X −→ X/H = Z and their fundamental characters.

For 0 ≤ j < #I − 1, Dj is an effective divisor of positive degree by Proposition 4.1. This implies that

deg(ΩY (Dj)) > deg(ΩY ) = 2 g(Y )− 2, and hence H1(Y,ΩY (Dj)) = 0, for 0 ≤ j < #I − 1. Since D#I−1 = 0,

we obtain, using (4.22),

(4.23) H0(Y,OY (−Dj)) =

{
0 : 0 ≤ j < #I − 1,

k : j = #I − 1,

where k has trivial action by H/I, meaning k = S0 in the notation of Remark 3.4.

Applying Homk(−, k) to (4.21) and using (4.22), we obtain an exact sequence of k[H/I]-modules

(4.24) 0 −→ H0(Y,OY (−Dj)) −→ Q0,j −→ Q1,j −→ H1(Y,OY (−Dj)) −→ 0
17



for 0 ≤ j ≤ #I−1, where Qi,j = Homk(Pi,j , k) is a finitely generated projective and injective k[H/I]-module

for i = 0, 1. By (4.23) and using Remark 3.4, this implies the following:

(a) For 0 ≤ j < #I − 1, H1(Y,OY (−Dj)) is a projective k[H/I]-module.

(b) If j = #I − 1 and I = P , then H1(Y,OY (−Dj)) is a projective k[H/I]-module. If j = #I − 1 and p

divides #(H/I), then H1(Y,OY (−Dj)) ∼= Sχ−1 ⊕Qj, where Qj is a projective k[H/I]-module.

This implies that in all cases, the k[H/I]-module structure of H1(Y,OY (−Dj)) is uniquely determined by its

Brauer character. In other words, the character values of H1(Y,OY (−Dj)) on all elements of H/I of p′-order

uniquely determine H1(Y,OY (−Dj)) as a k[H/I]-module. We now show that these character values are

uniquely determined by the (p′-parts of the) inertia groups of the cover X −→ X/H and their fundamental

characters.

Let H = H/I, so that Y = X/I −→ Z = X/H is tamely ramified with Galois group H . Let Zram be the

set of points in Z that ramify in Y . For each z ∈ Zram, let y(z) ∈ Y and x(z) ∈ X be points above z so

that x(z) lies above y(z). Let Hy(z) ≤ H be the inertia group of y(z) inside H , and let Hx(z) ≤ H be the

inertia group of x(z) inside H . Since Y −→ Z is tamely ramified, it follows that Hy(z) is a cyclic p′-group.

Moreover, if Ix(z) ≤ I is the inertia group of x(z) inside I, then Hx(z)/Ix(z) ∼= Hy(z). The fundamental

character of the inertia group Hx(z) is the character θx(z) : Hx(z) −→ k∗ = Aut(mX,x(z)/m
2
X,x(z)) giving the

action of Hx(z) on the cotangent space of x(z). More precisely, if h ∈ Hx(z) then

θx(z)(h) =
h(π)

π
mod (π)

where π = πx(z) denotes the local uniformizer at x(z). Note that θx(z) factors through the maximal p′-

quotient of Hx(z), which is isomorphic to Hy(z). Similarly, we can define the fundamental character θy(z) :

Hy(z) −→ k∗. Since X/I −→ X/P is étale, we can identify

(4.25) θy(z) =
(
θx(z)

)#Ix(z)

on the maximal p′-quotient of Hx(z) which we identify with Hy(z).

For z ∈ Zram, we have that

OY (−Dj)y(z) ⊗OY,y(z)
k =

(
θy(z)

)ordy(z)(Dj)
.

Following [31, §3], we define ℓy(z),j ∈ {0, 1, . . . ,#Hy(z) − 1} by

(4.26) ℓy(z),j ≡ −ordy(z)(Dj) mod (#Hy(z)).

For a k[H ]-module M , let β(M) denote the Brauer character of M , and let β0 be the Brauer character of

the trivial simple k[H]-module. By (4.23) and (4.24), we have

(4.27) β
(
H1(Y,OY (−Dj))

)
= δj,#I−1 β0 + β (Q1,j)− β (Q0,j)

where δj,#I−1 is the usual Kronecker delta. By [31, Thm. 2 and Eq. (*) on p. 120], we have

β (Q1,j)− β (Q0,j) =
∑

z∈Zram

#Hy(z)−1∑

t=0

t

#Hy(z)

IndH
Hy(z)

((
θy(z)

)t)
(4.28)

−
∑

z∈Zram

ℓy(z),j∑

t=1

IndH
Hy(z)

((
θy(z)

)−t)

+ nj β(k[H ])
18



for some integer nj. Since the value of β(k[H ]) at any non-trivial element of H of p′-order is zero, nj is

determined by the values of all the involved Brauer characters at the identity element eH of H. These values

are as follows:

• the value of β(k[H ]) at eH is (#H);

• the value of IndH
Hy(z)

((
θy(z)

)±t)
at eH is (#H)/(#Hy(z)), for any integer t ≥ 0;

• by (4.21) – (4.24), the value of β (Q1,j)−β (Q0,j) at eH is dimk H
0(Y,ΩY (Dj))−dimk H

1(Y,ΩY (Dj)) =

deg(Dj) + g(Y )− 1.

In particular, this implies

(4.29) nj =
1

#H
(deg(Dj) + g(Y )− 1) +

∑

z∈Zram

1

#Hy(z)

(
ℓy(z),j −

#Hy(z) − 1

2

)
.

Therefore, it follows by (4.25) – (4.28) that the Brauer character of H1(Y,OY (−Dj)) is uniquely determined

by the (p′-parts of the) inertia groups of the cover X −→ X/H and their fundamental characters. �

Proof of Theorem 1.1. By Lemma 3.2, we can assume G = H is p-hypo-elementary. We write H = P ⋊χ C

and use the notation introduced at the beginning of §4. By Proposition 3.5, we can assume k is algebraically

closed. In particular, the above results in §4 apply. Let M = H0(X,ΩX). As before, let I = 〈τ〉, and, for all
integers 0 ≤ j ≤ #I− 1 letM (j) be the kernel of the action of J j = k[I](τ − 1)j. It follows from Proposition

4.1, Lemma 4.2 and Proposition 4.3 that the k[H/I]-module structure of the subquotient modules

(4.30)
M (j+1)

M (j)
, 0 ≤ j ≤ #I − 1,

is uniquely determined by the lower ramification groups and the fundamental characters of closed points x

of X which are ramified in the cover X −→ X/H . It remains to show that the k[H/I]-module structures of

the quotients in (4.30) uniquely determines the k[H ]-module structure of M . This follows basically from the

description of the indecomposable k[H ]-modules in Remark 3.4 (recall that we assume k = k).

To be a bit more precise, fix integeres a, b with 0 ≤ a ≤ c−1 and 1 ≤ b ≤ pn, and let n(a, b) be the number

of direct indecomposable k[H ]-module summands of M that are isomorphic to Ua,b, using the notation from

Remark 3.4. Let #I = pnI , and write b = b′ + b′′ pn−nI where 0 ≤ b′ < pn−nI , 0 ≤ b′′ ≤ pnI . As before, for

i ∈ Z, define χi(a) ∈ {0, 1, . . . , c− 1} to be such that Sχi(a)
∼= Sa ⊗k Sχi . We obtain:

• If b′ ≥ 1, then n(a, b) equals the number of direct indecomposable k[H ]-module summands of

M (b′′+1)/M (b′′) with socle Sχ−b′′ (a) and k-dimension b′.

• If b′ = 0, then b′′ ≥ 1. In this case, define n1(a, b) to be the number of direct indecomposable k[H ]-

module summands of M (b′′)/M (b′′−1) with socle Sχ−(b′′−1)(a) and k-dimension pn−nI . Also, define

n2(a, b) to be the number of direct indecomposable k[H ]-module summands of M (b′′+1)/M (b′′) with

socle Sχ−b′′ (a), where we set n2(a, b) = 0 if b′′ = pnI . Then n(a, b) = n1(a, b)− n2(a, b).

This completes the proof of Theorem 1.1. �

The following remark provides a summary of the key steps in the proof of Theorem 1.1 and can be

used as an algorithm to determine the decomposition of H0(X,ΩX) into a direct sum of indecomposable

k[H ]-modules.

Remark 4.4. We keep the notation introduced at the beginning of §4. LetM = H0(X,ΩX), and let #I = pnI .

(1) For 0 ≤ j ≤ #I − 1, let Dj =
∑

y∈Y dy,j y be the divisor from Proposition 4.1. For y ∈ Y , let x ∈ X

be a point above it, and let Ix ≤ I be its inertia group inside I of order pn(x). Let b0, b1, . . . , bn(x)−1

be the jumps in the numbering of the lower ramification subgroups of Ix. For 0 ≤ t ≤ pn(x) − 1,
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write t = a1,t + a2,t p + · · · + an(x),t p
n(x)−1 with 0 ≤ al,t ≤ p− 1. By the proof of Proposition 4.3,

we have

dy,j =

⌊∑n(x)
l=1 pn(x)−l (p− 1 + (p− 1− al,t) bl−1)

pn(x)

⌋

for all j ≥ 0 satisfying pi(x)t ≤ j < pi(x)(t + 1) when i(x) = nI − n(x) and ⌊r⌋ denotes the largest

integer that is less than or equal to a given rational number r. By Lemma 4.2, there is a k[H/I]-

module isomorphism M (j+1)/M (j) ∼= Sχ−j ⊗k H0(Y,ΩY (Dj)) for all 0 ≤ j ≤ #I − 1.

(2) Let Z = X/H and let Zram be the set of points in Z that ramify in the cover Y = X/I −→ Z = X/H .

Let H = H/I. For each z ∈ Zram, choose a point y(z) ∈ Y above z and a point x(z) ∈ X above y(z).

Let Hy(z) be the inertia group of y(z) inside H , and identify Hy(z) with the maximal p′-quotient of

the inertia group Hx(z). Define θx(z) : Hx(z) −→ k∗ by

θx(z)(h) =
h(πx(z))

πx(z)
mod (πx(z))

for h ∈ Hx(z). Then θx(z) factors through Hy(z). Define θy(z) =
(
θx(z)

)#Ix(z) . Moreover, define

ℓy(z),j ∈ {0, 1, . . . ,#Hy(z) − 1} by

ℓy(z),j ≡ −ordy(z)(Dj) mod (#Hy(z)).

Let 0 ≤ j ≤ #I − 1. By Lemma 4.2 and the proof of Proposition 4.3, the Brauer character of the

k-dual of Sχj ⊗k (M (j+1)/M (j)) is equal to

δj,#I−1 β0 +
∑

z∈Zram

#Hy(z)−1∑

t=0

t

#Hy(z)

IndH
Hy(z)

((
θy(z)

)t)

−
∑

z∈Zram

ℓy(z),j∑

t=1

IndH
Hy(z)

((
θy(z)

)−t)
+ nj β(k[H ])

where

nj =
1

#H
(deg(Dj) + g(Y )− 1) +

∑

z∈Zram

1

#Hy(z)

(
ℓy(z),j −

#Hy(z) − 1

2

)
.

Hence this can be used to determine the Brauer character ofM (j+1)/M (j). Recall thatM (j+1)/M (j)

is a projective k[H ]-module for 0 ≤ j < #I − 1. If I = P then M (#I)/M (#I−1) is also a projective

k[H]-module. If p divides #H thenM (#I)/M (#I−1) is isomorphic to a direct sum of the simple k[H ]-

module Sχ and a projective k[H ]-module. Thus, this provides the decomposition of M (j+1)/M (j)

into a direct sum of indecomposable k[H]-modules.

(3) Use the notation from Remark 3.4. Fix integeres a, b with 0 ≤ a ≤ c − 1 and 1 ≤ b ≤ pn. Write

b = b′ + b′′ pn−nI where 0 ≤ b′ < pn−nI , 0 ≤ b′′ ≤ pnI . Then, by the proof of Theorem 1.1, the

number n(a, b) of direct indecomposable k[H ]-module summands of M that are isomorphic to Ua,b

is given as follows:

(a) If b′ ≥ 1, then n(a, b) equals the number of direct indecomposable k[H]-module summands of

M (b′′+1)/M (b′′) with socle Sχ−b′′ (a) and k-dimension b′.

(b) If b′ = 0, then b′′ ≥ 1. In this case, define n1(a, b) to be the number of direct indecom-

posable k[H ]-module summands of M (b′′)/M (b′′−1) with socle Sχ−(b′′−1)(a) and k-dimension

pn−nI . Also, define n2(a, b) to be the number of direct indecomposable k[H ]-module sum-

mands of M (b′′+1)/M (b′′) with socle Sχ−b′′ (a), where we set n2(a, b) = 0 if b′′ = pnI . Then

n(a, b) = n1(a, b)− n2(a, b).
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5. Holomorphic differentials of the modular curves X (ℓ) modulo p

The geometric theory of modular forms and the associated arithmetic theory of moduli spaces of elliptic

curves was studied by Deligne-Rapoport [13], Katz [26] and Katz and Mazur in [27] (see also [23]).

Let N ≥ 3 be an integer, and let Γ(N) be the principal congruence subgroup of SL(2,Z) of level N .

The moduli problem associated to Γ(N) described in [27, §3.1] coincides with the “naive” level N moduli

problem discussed in [26, Chap. 1] when working over the ground ring Z[ 1
N ] (see [27, §3.7 and §4.6]). By

[26, §1.4] (see also [27, Cor. 4.7.2]), the naive level N moduli problem is representable by a smooth affine

curve M(N) over Z[ 1N ]. Moreover, M(N) is finite and flat over the affine j-line Spec(Z[ 1
N , j]), and étale

over the open set of the affine j-line where j and j − 1728 are invertible (see also [27, Thm. 8.6.8]). The

normalization of the projective j-line P1
Z[ 1

N
]
in M(N) is a proper and smooth curve M(N) over Z[ 1N ] and

the ring of global sections of the structure sheaf of M(N) is isomorphic to Z[ 1N , ζN ]. Since the inclusion

map Z[ 1N ] →֒ Z[ 1N , ζN ] is étale, this makes M(N) into a proper smooth curve over Z[ 1
N , ζN ]. Moreover, we

obtain as in [27, (9.1.4.5)] that M(N) is a scheme over the j-line Spec(Z[ 1N , ζN , j]). By [27, Prop. 9.1.7],

the canonical level N moduli problem over Z[ 1N , ζN ] defined in [27, §9.1 and §9.4] is representable by a

scheme M(N)can that is isomorphic to M(N) as Z[ 1
N , ζN , j]-schemes. Moreover, by [27, Prop. 9.3.1], we

obtain that the normalization M(N)can of the projective j-line P1
Z[ 1

N
,ζN ]

in M(N)can is isomorphic to M(N)

as proper smooth Z[ 1N , ζN ]-schemes over P1
Z[ 1

N
,ζN ]

. By [26, §1.4], the curve M(N) ⊗Z[ 1
N

] Z[
1
N , ζN ] (resp.

M(N) ⊗Z[ 1
N

] Z[
1
N , ζN ]) is a disjoint union of ϕ(N) affine (resp. proper) smooth geometrically connected

curves over Z[ 1N , ζN ] (see also [27, (9.4.3.1)]). In particular, this identifies M(N)can (resp. M(N)can) with

any one of these geometrically connected components of M(N)⊗Z[ 1
N

]Z[
1
N , ζN ] (resp. M(N)⊗Z[ 1

N
]Z[

1
N , ζN ]).

Note that by [27, (9.4.1) and (9.4.3.1)], we have a natural right action of SL(2,Z/N) on the canonical level

N moduli problem over Z[ 1
N , ζN ], and hence on M(N)can.

It follows from the extension of the Kodaira-Spencer isomorphism to M(N) in [26, §1.5] (see also [27,

Thm. 10.13.11]) that H0(M(N),ΩM(N)) equals the space of holomorphic weight 2 cusp forms of level N

defined over Z[ 1N ]. By [26, §1.2], each holomorphic weight 2 cusp form of level N defined over Z[ 1N ] has

q-expansion coefficients in Z[ 1N , ζN ] at all cusps. Since Z[ 1N ] →֒ Z[ 1
N , ζN ] is étale, the q-expansion principle

[27, Cor. 1.6.2] shows that the global sections H0(M(N)can,ΩM(N)can) are naturally identified with the

Z[ 1N , ζN ]-lattice S(Z[ 1
N , ζN ]) of holomorphic weight 2 cusp forms for Γ(N) that have q-expansion coefficients

in Z[ 1N , ζN ] at all the cusps. By [27, Cor. 10.13.12] (take Γ to be trivial), it follows that M(N)can has

geometrically connected fibers that all have the same genus.

If A is a Dedekind domain that contains Z[ 1
N , ζN ], then M(N)can ⊗Z[ 1

N
,ζN ] A defines a smooth projective

canonical model X (N) over A of the modular curve associated to Γ(N). By flat base change and using [26,

§1.6], we see that the global sections H0(X (N),ΩX (N)) are naturally identified with the A-lattice S(A) of

holomorphic weight 2 cusp forms for Γ(N) that have q-expansion coefficients in A at all the cusps. Using

flat base change on the residue fields, we moreover obtain that X (N) has geometrically connected fibers that

all have the same genus.

Let now ℓ 6= p be prime numbers and assume ℓ ≥ 3. Let F be a number field that is unramified over p

and that contains a primitive ℓth root of unity ζℓ. Suppose A is a Dedekind subring of F that has fraction

field F and that contains Z[ 1ℓ , ζℓ]. Let V(F, p) be the set of places v of F over p, and let OF,v be the ring of

integers of the completion Fv of F at v. We assume A is contained in OF,v for all v ∈ V(F, p). Let X (ℓ) be

the smooth projective canonical model over A of the modular curve associated to Γ(ℓ) constructed above.

For v ∈ V(F, p), let mF,v be the maximal ideal of OF,v. Define Pv = A ∩ mF,v which is a maximal ideal

over p in A, and define k(v) = A/Pv to be the corresponding residue field. Then

(5.1) Xv(ℓ) = k(v)⊗A X (ℓ)
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is a smooth projective curve over k(v), and

(A/pA)⊗A X (ℓ) =
∐

v∈V(F,p)

Xv(ℓ).

Since k(v) is a finite field for all v ∈ V(F, p), we can identify its algebraic closure k(v) with Fp. Let k be an

algebraically closed field containing Fp, and hence containing k(v) for all v ∈ V(F, p). Then the reduction of

X (ℓ) modulo p over k, which is denoted by Xp(ℓ) in [3], is defined as

(5.2) Xp(ℓ) = k ⊗k(v) Xv(ℓ)

for all v ∈ V(F, p). Since X (ℓ) has geometrically connected fibers that all have the same genus, it follows

that the injective maps

H0(X (ℓ),ΩX (ℓ))

Pv ·H0(X (ℓ),ΩX (ℓ))
−→ H0(Xv(ℓ),ΩXv(ℓ))

and
H0(X (ℓ),ΩX (ℓ))

p ·H0(X (ℓ),ΩX (ℓ))
−→

⊕

v∈V(F,p)

H0(Xv(ℓ),ΩXv(ℓ))

are isomorphisms. When k = Fp in (5.2) then this last isomorphism gives an isomorphism

Fp ⊗Z H0(X (ℓ),ΩX (ℓ)) = H0(Xp(ℓ),ΩXp(ℓ))
[F :Q]

which is equivariant with respect to the action of SL(2,Z/ℓ) on X (ℓ).

Let G = PSL(2,Z/ℓ) = PSL(2,Fℓ), let k be an algebraically closed field containing Fp, and let Xp(ℓ) be

the reduction of X (ℓ) modulo p over k. By [3, Thm. 1.1], if ℓ ≥ 7 then Aut(Xp(ℓ)) = G unless ℓ ∈ {7, 11}
and p = 3. Moreover, Aut(X3(7)) ∼= PGU(3,F3) and Aut(X3(11)) ∼=M11. If ℓ < 7 then Xp(ℓ) has genus 0.

The genus g(Xp(ℓ)) is given as (see, for example, [3, Cor. 3.2])

(5.3) g(Xp(ℓ))− 1 = (ℓ− 1)(ℓ+ 1)(ℓ− 6)/24.

Remark 5.1. Suppose ℓ ≥ 7, and define X = Xp(ℓ). By [29, Prop. 5.5], the genus of X/G is zero, and the

ramification data for the cover X → X/G is as follows:

(i) If p > 3, then X → X/G is branched at 3 points with inertia groups of order 2, 3 and ℓ.

(ii) If p = 3, then X → X/G is branched at 2 points with inertia groups Σ3 and Z/ℓ, where Σ3 denotes

the symmetric group on three letters. Moreover, in the first case the second ramification group is

trivial.

(iii) If p = 2, then X → X/G is branched at 2 points with inertia groups A4 and Z/ℓ, where A4 denotes

the alternating group on four letters. Moreover, in the first case the second ramification group is

trivial.

If p > 3, the ramification of X −→ X/G is tame and the k[G]-module structure of the holomorphic

differentials H0(X,ΩX) can be determined using [31, Thm. 2] or [24, Thm. 3]. If p = 3, we will determine

in §6.4 the k[G]-module structure of H0(X,ΩX) using Theorem 1.1. Since the Sylow 2-subgroups of G are

not cyclic, the methods of this article are not sufficient to treat this case.

When the ramification of X −→ X/G is tame, we obtain the following result.

Lemma 5.2. Suppose p > 3 and p 6= ℓ ≥ 7. Let X = Xp(ℓ), and let k be an algebraically closed field

containing Fp.

(i) The k[G]-module H0(X,ΩX) is a direct sum of a projective k[G]-module and a single uniserial non-

projective k[G]-module U that belongs to the principal block of k[G].
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(ii) Let v ∈ V(F, p), let k1 be a perfect field containing k(v), and let k be an algebraic closure of k1.

Define X1 = k1 ⊗k(v) Xv(ℓ) where Xv(ℓ) is as in (5.1). The k1[G]-module H0(X1,ΩX1) is a direct

sum of a projective k1[G]-module and a single indecomposable non-projective k1[G]-module U1 that

belongs to the principal block of k1[G]. Moreover, the k[G]-module U from part (i) is isomorphic to

k ⊗k1 U1.

The decompositions of H0(X,ΩX) as in (i) and of H0(X1,ΩX1) as in (ii) are both determined by the ramifi-

cation data associated to the cover X −→ X/G.

Proof. By (1.1), there exist finitely generated projective k[G]-modules P1 and P0 together with an exact

sequence of k[G]-modules

(5.4) 0 −→ H0(X,ΩX) −→ P1 −→ P0 −→ H1(X,ΩX) −→ 0.

Since H1(X,ΩX) is the trivial simple k[G]-module k, it follows that, as a k[G]-module, H0(X,ΩX) is isomor-

phic to the direct sum of a projective k[G]-module and the second syzygy U of the trivial simple k[G]-module

k. Recall that U is defined as follows (see, e.g., [2, §IV.3]). Letting P (k) be the projective k[G]-module cover

of k, define R(k) to be its Jacobson radical. Then the kernel of the natural projection of the projective k[G]-

module cover P (R(k)) of R(k) to R(k) is the second syzygy U of the trivial simple k[G]-module k. Since

syzygy modules of indecomposable non-projective k[G]-modules are always indecomposable non-projective

(see, e.g., [2, Prop. IV.3.6]), U is indecomposable non-projective. The explicit description of the blocks of

k[G] in [7] shows moreover that U is uniserial. Therefore, U is a uniserial non-projective k[G]-module be-

longing to the principal block of k[G]. The definition of U determines its Brauer character. Since projective

k[G]-modules are uniquely determined by their Brauer characters, it now follows from [31, Thm. 2] that

the decomposition of H0(X,ΩX) into a direct sum of indecomposable k[G]-modules is determined by the

ramification data associated to the cover X −→ X/G. This proves part (i) in addition to the last sentence

of the statement of Lemma 5.2 about the decomposition in part (i).

For part (ii), we note that tensoring with k over k1 sends a projective k1[G]-module cover of a k1[G]-

module V1 to a projective k[G]-module cover of k ⊗k1 V1. In particular, this implies that if P (k1) is the

projective k1[G]-module cover of the trivial simple k1[G]-module k1 then P (k) = k ⊗k1 P (k1), where P (k)
is as above. Therefore, if R(k1) is the Jacobson radical of P (k1) then R(k) = k ⊗k1 R(k1). Additionally,

if P (R(k1)) is the projective k1[G]-module cover of R(k1) then this implies that the kernel of the natural

projection P (R(k1)) −→ R(k1) is a k1[G]-module U1 that satisfies

(5.5) U ∼= k ⊗k1 U1

as k[G]-modules. In other words, U is realizable over k1. Since U is an indecomposable k[G]-module, it

follows that U1 is an indecomposable k1[G]-module. Note that U1 belongs to the principal block of k1[G].

Let now k2 be a finite field extension of k1 such that k2 ⊆ k and such that all the indecomposable k[G]-

modules occurring in the decomposition of H0(X,ΩX) are realizable over k2. Letting X2 = k2 ⊗k1 X1 and

using (5.5), we obtain that the k2[G]-module H0(X2,ΩX2) is a direct sum of a projective k2[G]-module and

the indecomposable k2[G]-module k2⊗k1 U1. Moreover, the decomposition of H0(X2,ΩX2) into a direct sum

of indecomposable k2[G]-modules is determined by the ramification data associated to the cover X −→ X/G.

We have

k2 ⊗k1 H0(X1,ΩX1)
∼= H0(X2,ΩX2)

as k2[G]-modules, and

H0(X2,ΩX2)
∼= H0(X1,ΩX1)

[k2:k1]
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as k1[G]-modules. Note that the restriction of each projective indecomposable k2[G]-module to a k1[G]-

module is a projective k1[G]-module. We can therefore use the Krull-Schmidt-Azumaya theorem to obtain

part (ii).

To prove the last sentence of the statement of Lemma 5.2 about the decomposition in part (ii), we note

that tensoring with k2 over k1 sends a projective indecomposable k1[G]-module cover of a simple k1[G]-

module S1 to a projective k2[G]-module cover of k2 ⊗k1 S1. Therefore, it follows that the decomposition of

H0(X1,ΩX1) into indecomposable k1[G]-modules is uniquely determined by the decomposition of H0(X2,ΩX2)

into indecomposable k2[G]-modules. As noted above, the latter is determined by the ramification data

associated to the cover X −→ X/G. This completes the proof of Lemma 5.2. �

Proof of Theorems 1.2 and 1.3 when p > 3. Suppose p > 3, and fix v ∈ V(F, p). Define MOF,v
to be the

OF,v[G]-module

MOF,v
= OF,v ⊗A H0(X (ℓ),ΩX (ℓ))

which is flat over OF,v. Note that the residue fields k(v) = A/Pv and OF,v/mF,v coincide. Define

Xv = Xv(ℓ) = k(v)⊗A X (ℓ).

ThenMOF,v
is a lift of the k(v)[G]-module H0(Xv,ΩXv

) overOF,v. As in (5.2), letX = Xp(ℓ) be the reduction

of X (ℓ) modulo p over k = k(v) = Fp. In other words, X = k⊗k(v)Xv and H0(X,ΩX) = k⊗kv H0(Xv,ΩXv
)

as k[G]-modules. Since H0(X,ΩX) = {0} for ℓ < 7, we can assume that ℓ ≥ 7.

By Lemma 5.2(ii), H0(Xv,ΩXv
) is a direct sum of a projective k(v)[G]-module and a single indecomposable

non-projective k(v)[G]-module Uv that belongs to the principal block of k(v)[G]. By the Theorem on Lifting

Idempotents (see [10, Thm. (6.7)] and [11, Prop. (56.7)]), it follows thatMOF,v
is isomorphic to a direct sum

of a projective OF,v[G]-module and a single indecomposable non-projective OF,v[G]-module U that is a lift

of Uv over OF,v and that belongs to the principal block of OF,v[G]. Since, by Lemma 5.2, the decomposition

of H0(Xv,ΩXv
) is determined by the ramification data associated to the cover X −→ X/G, this implies

Theorem 1.2 for p > 3.

We now turn to the proof of Theorem 1.3 when p > 3. In particular, we assume now that F contains

a root of unity of order equal to the prime to p part of the order of G. By the discussion in the previous

paragraph, MOF,v
is a direct sum over blocks B of OF,v[G] of modules of the form PB ⊕ UB in which PB is

projective and UB is either the zero module or a single indecomposable non-projective B-module. Moreover,

we know that UB is non-zero if and only if B is the principal block. Define MB = PB ⊕ UB.

Let a be the maximal ideal over p in A associated to v. In other words, a corresponds to the maximal

ideal mF,v of OF,v. Consider a T-stable decomposition (1.2) that is G-isotypic, in the sense that it arises

from idempotents as in (1.3). Since MOF,v
is the direct sum over blocks B of OF,v[G] of the modules MB

and since for different blocks B and B′ there are no non-trivial congruences modulo mF,v between MB and

MB′ , it follows that a G-isotypic T-stable decomposition (1.2) results in non-trivial congruences modulo a if

and only if there is a block B of OF,v[G] such that

(5.6) MB 6= (MB ∩ e1MB)⊕ (MB ∩ e2MB).

Now fix a block B of OF,v[G]. Since there are no non-trivial congruences modulo mF,v between PB and UB,

there will be orthogonal idempotents e1 and e2 for which (5.6) holds if and only if this holds when MB is

replaced by either PB or UB. If B has trivial defect groups, then UB = {0} and Fv ⊗OF,v
PB involves only

one G-isotypic component, which means that there are no orthogonal idempotents e1 and e2 for which (5.6)

holds for B. Assume now that B has non-trivial defect groups. If PB 6= {0} then PB is a direct sum of

non-zero projective indecomposable B-modules. When we tensor any non-zero projective indecomposable B-

module QB with Fv over OF,v, then the resulting Fv[G]-module Fv⊗OF,v
QB has at least two non-isomorphic
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irreducible constituents. This means that QB cannot be equal to the direct sum of the intersections of QB

with the G-isotypic components of Fv ⊗OF,v
QB. Therefore, there exist orthogonal idempotents e1 and e2

for which (5.6) holds when MB is replaced by PB. Now suppose UB 6= {0}. Then there exist orthogonal

idempotents e1 and e2 for which (5.6) holds when MB is replaced by UB if and only if UB is not equal to

the direct sum of the intersections of UB with the G-isotypic components of Fv ⊗OF,v
UB. But the latter

occurs if and only if Fv ⊗OF,v
UB has two non-isomorphic irreducible constituents. This completes the proof

of Theorem 1.3 for p > 3. �

6. Holomorphic differentials of the modular curves X(ℓ) modulo 3

Assume the notation of §5 for p = 3. In particular, ℓ 6= 3 is an odd prime number, k is an algebraically

closed field containing F3, and X = X3(ℓ) is the reduction of X (ℓ) modulo 3 over k, as in (5.2). Since X3(5)

has genus zero, we assume ℓ ≥ 7. Let G = PSL(2,Fℓ).

Our goal is to determine explicitly the k[G]-module structure of H0(X,ΩX). In particular, this will prove

part (i) Theorem 1.4. At the end of this section we will prove part (ii) of Theorem 1.4 and then use this to

prove Theorems 1.2 and 1.3 when p = 3.

We use that there is precise knowledge about the subgroup structure of G = PSL(2,Fℓ) (see, for example,

[21, §II.8]). Define ǫ ∈ {±1} such that

(6.1) ℓ ≡ ǫ mod 3.

Write

(6.2) ℓ− ǫ = 3n · 2 ·m such that 3 does not divide m.

Let P be a Sylow 3-subgroup of G, so P is cyclic of order 3n, and let P1 be the unique subgroup of P

of order 3. Let N1 be the normalizer of P1 in G. Then N1 is a dihedral group of order ℓ − ǫ. It follows

from the Green correspondence (see Remark 3.3) that the k[G]-module structure of H0(X,ΩX) is uniquely

determined by its k[N1]-module structure together with its Brauer character. The k[N1]-module structure

of H0(X,ΩX) can be determined from its k[H ]-module structure for the 3-hypo-elementary subgroups H of

N1 that are isomorphic to dihedral groups of order 2 · 3n, respectively to cyclic groups of order (ℓ − ǫ)/2.

Note that in all cases N1 has a unique cyclic subgroup of order (ℓ − ǫ)/2. If ℓ ≡ −ǫ mod 4 then N1 has a

unique conjugacy class of dihedral subgroups of order 2 · 3n, whereas if ℓ ≡ ǫ mod 4 then N1 has precisely

two conjugacy classes of dihedral subgroups of order 2 · 3n.
We determine the k[G]-module structure of H0(X,ΩX) following four key steps:

(1) Determine the ramification data X −→ X/Γ for Γ ≤ G such that either Γ is a cyclic group of order

(ℓ− ǫ)/2 or a dihedral group of order 2 · 3n, or Γ is a maximal cyclic group of order prime to 3.

(2) Determine the k[H ]-module structure of H0(X,ΩX) when H is a subgroup of N1 that is either

dihedral of order 2 · 3n or cyclic of order (ℓ− ǫ)/2. Use this to determine the k[N1]-module structure

of H0(X,ΩX).

(3) Determine the Brauer character of H0(X,ΩX) as a k[G]-module.

(4) Use (2) and (3), together with the Green correspondence to determine the k[G]-module structure of

H0(X,ΩX).

Step (1) is accomplished in §6.1 and is a computation based on Remark 5.1(ii) and the subgroup structure

of G = PSL(2,Fℓ) as given in [21, §II.8]. Steps 2 and 3 are accomplished in §6.2 and §6.3 using the key steps

in the proof of Theorem 1.1, which are summarized in Remark 4.4. For Step (4), which is accomplished in

§6.4, we use [7]. Note that we have to distinguish four different cases according to the congruence classes
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of ℓ modulo 3 and 4. The precise k[G]-module structure of H0(X,ΩX) in all four cases can be found in

Propositions 6.4.1 - 6.4.4.

6.1. The ramification data of X −→ X/Γ for certain Γ ≤ G. We first determine the ramification of

X −→ X/Γ for certain 3-hypo-elementary subgroups Γ of G. We need to consider two cases.

6.1.1. The ramification data when ℓ ≡ −ǫ mod 4. In this case there is a unique conjugacy class in G of

dihedral groups of order 2 · 3n. We fix subgroups of G as follows:

(a) a cyclic subgroup V = 〈v〉 of order (ℓ− ǫ)/2 = 3n ·m, where m is odd;

(b) a dihedral group ∆ = 〈v′, s〉 of order 2 · 3n, where v′ = vm ∈ V is an element of order 3n and

s ∈ NG(V )− V is an element of order 2;

(c) a cyclic subgroup W = 〈w〉 of order (ℓ+ ǫ)/2;

(d) a cyclic subgroup R of order ℓ.

Note that NG(V ) is a dihedral group of order ℓ − ǫ, NG(W ) is a dihedral group of order ℓ + ǫ, and NG(R)

is a semidirect product with normal subgroup R and cyclic quotient group of order (ℓ − 1)/2. We now use

Remark 5.1(ii) to determine the ramification data of X −→ X/Γ for Γ ∈ {V,∆,W,R}.
(1) Let x ∈ X be a closed point such that Gx ∼= Σ3. Let I be the unique subgroup of order 3 in V . Since

all subgroups of G isomorphic to Σ3 are conjugate in G, we can choose a closed point x ∈ X such

that Gx = 〈I, s〉 ∼= Σ3. If g ∈ G then Γgx = gGxg
−1 ∩ Γ can only be non-trivial if Γ ∈ {V,∆,W}.

Suppose first that Γ contains a subgroup of order 3. Then Γ ∈ {V,∆} and I ≤ Γ is the unique

subgroup of order 3 in Γ. Let g ∈ G. Then Γgx = gGxg
−1 ∩ Γ contains I if and only if Gx ≥ g−1Ig,

which happens if and only if I = g−1Ig. In other words, this happens if and only if g ∈ NG(I) =

NG(V ). Therefore,

#{gGx ; g ∈ G, I ≤ Γgx} = #(NG(V )/Gx) = (ℓ− ǫ)/6.

If Γ = ∆, we also need to analyze the case when Γgx ∼= Σ3. This happens if and only if g ∈ NG(V )

and gGxg
−1 ∩∆ contains an element of order 2. Since each element of order 2 in Gx is conjugate to

s by a unique element of I, this happens if and only if there exists a unique element τ ∈ I such that

gτ−1sτg−1 ∈ ∆. Since each element of order 2 in ∆ is conjugate to s by a unique element in 〈v′〉, this
happens if and only if there exists a unique g̃ ∈ 〈v′〉 with g̃−1gτ−1 ∈ CG(s). Since g̃

−1gτ−1 ∈ NG(V )

and NG(V ) ∩ CG(s) = {e, s} ≤ ∆, it follows that g ∈ NG(V ) satisfies g̃−1gτ−1 ∈ CG(s) if and only

if g ∈ ∆. Thus

#{gGx ; g ∈ G,∆gx
∼= Σ3} = #{gGx ; g ∈ ∆} = #(∆/Gx) = 3n−1.

We obtain

#{x′ ∈ X closed ; Vx′
∼= Z/3} = (ℓ − ǫ)/6 = 3n−1 ·m,(6.3)

#{x′ ∈ X closed ; ∆x′
∼= Z/3} = (ℓ − ǫ)/6− 3n−1 = 3n−1 · (m− 1),(6.4)

#{x′ ∈ X closed ; ∆x′
∼= Σ3} = 3n−1.(6.5)

If Γ = ∆, it can also happen that Γgx ∼= Z/2 for some g ∈ G. This happens if and only if

g ∈ G − NG(V ) and gGxg
−1 ∩∆ has order 2. Since each element of order 2 in Gx is conjugate to

s by a unique element of I, this happens if and only if there exists a unique element τ ∈ I such

that gτ−1sτg−1 ∈ ∆. Since each element of order 2 in ∆ is conjugate to s by a unique element

in 〈v′〉, this happens if and only if there exists a unique g̃ ∈ 〈v′〉 with g̃−1gτ−1 ∈ CG(s). We have

CG(s) = NG(s) is a dihedral group of order ℓ+ ǫ. Moreover, CG(s) ∩NG(V ) = {e, s}, which means
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that the number of g ∈ G − NG(V ) such that g̃−1gτ−1 ∈ CG(s) for unique g̃ ∈ 〈v′〉 and τ ∈ I is

equal to (#〈v′〉)(#CG(s)− 2)(#I). Hence

#{gGx ; g ∈ G,∆gx
∼= Z/2} = (#〈v′〉)(#CG(s)− 2)(#I)/6

meaning

(6.6) #{x′ ∈ X closed ; ∆x′
∼= Z/2} = 3n

(
ℓ+ ǫ

2
− 1

)
.

Suppose finally that Γ = W . Then it can only happen that Γgx ∼= Z/2 for some g ∈ G. This

happens if and only if g ∈ G and gGxg
−1 ∩W has order 2. Since W has a unique element of order

2 given by w′ = w(ℓ+ǫ)/4 and each element of order 2 in Gx is conjugate to s by a unique element

of I, this happens if and only if there exists a unique element τ ∈ I such that gτ−1sτg−1 = w′. Let

g0 ∈ G be a fixed element with g0w
′g−1

0 = s, then this happens if and only if g0gτ
−1 ∈ CG(s). Since

CG(s) = NG(s) is a dihedral group of order ℓ + ǫ and 3 does not divide ℓ + ǫ, it follows that the

number of g ∈ G such that g0gτ
−1 ∈ CG(s) is equal to (ℓ+ ǫ)(#I). Hence

#{gGx ; g ∈ G,Wgx
∼= Z/2} = (ℓ+ ǫ)(#I)/6

meaning

(6.7) #{x′ ∈ X closed ; Wx′
∼= Z/2} =

ℓ+ ǫ

2
.

(2) Let x ∈ X be a closed point such that Gx ∼= Z/ℓ. Since all subgroups of G of order ℓ are conjugate,

we can choose a closed point x ∈ X such that Gx = R. If g ∈ G then Γgx = gGxg
−1 ∩ Γ can only

be non-trivial if Γ = R. Moreover, Rgx is non-trivial if and only if it is equal to R, which happens if

and only if g ∈ NG(R). Thus

#{gGx ; g ∈ G,Rgx ∼= Z/ℓ} = #(NG(R)/Gx)

meaning

(6.8) #{x′ ∈ X closed ; Rx′
∼= Z/ℓ} = (ℓ− 1)/2.

6.1.2. The ramification data when ℓ ≡ ǫ mod 4. In this case ℓ − ǫ is divisible by 12, and m is even. There

are precisely two conjugacy classes in G of dihedral groups of order 2 · 3n. We fix subgroups of G as follows:

(a) a cyclic subgroup V = 〈v〉 of order (ℓ− ǫ)/2 = 3n ·m, where m is even;

(b) two non-conjugate dihedral groups ∆1 = 〈v′, s〉 and ∆2 = 〈v′, vs〉 of order 2 · 3n, where v′ = vm and

s ∈ NG(V )− V is an element of order 2;

(c) a cyclic subgroup W = 〈w〉 of order (ℓ+ ǫ)/2;

(d) a cyclic subgroup R of order ℓ.

Similar to §6.1.1, NG(V ) is a dihedral group of order ℓ − ǫ, NG(W ) is a dihedral group of order ℓ + ǫ, and

NG(R) is a semidirect product with normal subgroup R and cyclic quotient group of order (ℓ − 1)/2. We

now use Remark 5.1(ii) to determine the ramification data of X −→ X/Γ for Γ ∈ {V,∆1,∆2,W,R}.
(1) Let x ∈ X be a closed point such that Gx ∼= Σ3. Let I be the unique subgroup of order 3 in V .

There are two conjugacy classes of subgroups of G isomorphic to Σ3, which are represented by 〈I, s〉
and 〈I, vs〉. Since there is exactly one branch point in X/G such that the ramification points in

X above it have inertia groups isomorphic to Σ3, only one of these two conjugacy classes occurs

as inertia groups. Without loss of generality, assume there exists a closed point x ∈ X such that

Gx = 〈I, s〉 ∼= Σ3. If g ∈ G then Γgx = gGxg
−1 ∩ Γ can only be non-trivial if Γ ∈ {V,∆1,∆2,W}.
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Suppose first that Γ contains a subgroup of order 3. Then Γ ∈ {V,∆1,∆2} and I ≤ Γ is the

unique subgroup of order 3 in Γ. We argue as in §6.1.1 to see that

#{gGx ; g ∈ G, I ≤ Γgx} = #(NG(V )/Gx) = (ℓ− ǫ)/6.

If Γ = ∆1, we also need to analyze the case when Γgx ∼= Σ3. Arguing as in §6.1.1, we see this

happens if and only if there exist unique elements τ ∈ I and g̃ ∈ 〈v′〉 with g̃−1gτ−1 ∈ CG(s). If

z = v(ℓ−ǫ)/4 is the unique non-trivial central element of NG(V ), then CG(s) ∩NG(V ) = {e, s, z, zs}.
Since g̃−1gτ−1 ∈ NG(V ), it follows that g ∈ NG(V ) satisfies g̃−1gτ−1 ∈ CG(s) if and only if g ∈ ∆1

or g ∈ z∆1. Thus

#{gGx ; g ∈ G, (∆1)gx ∼= Σ3} = #{gGx ; g ∈ ∆1 or g ∈ z∆1} = 2 ·#(∆1/Gx) = 2 · 3n−1.

We obtain

#{x′ ∈ X closed ; Vx′
∼= Z/3} = (ℓ − ǫ)/6 = 3n−1 ·m,(6.9)

#{x′ ∈ X closed ; (∆1)x′
∼= Z/3} = (ℓ − ǫ)/6− 2 · 3n−1 = 3n−1 · (m− 2),(6.10)

#{x′ ∈ X closed ; (∆2)x′
∼= Z/3} = (ℓ − ǫ)/6 = 3n−1 ·m,(6.11)

#{x′ ∈ X closed ; (∆1)x′
∼= Σ3} = 2 · 3n−1.(6.12)

In all three cases Γ ∈ {V,∆1,∆2}, it can also happen that Γgx ∼= Z/2 for some g ∈ G. Arguing

similarly as in §6.1.1, we obtain

#{x′ ∈ X closed ; Vx′
∼= Z/2} =

ℓ− ǫ

2
= 3n ·m,(6.13)

#{x′ ∈ X closed ; (∆1)x′
∼= Z/2} = 3n

(
ℓ− ǫ

2
− 2

)
,(6.14)

#{x′ ∈ X closed ; (∆2)x′
∼= Z/2} = 3n

(
ℓ− ǫ

2

)
.(6.15)

Since #W is not divisible by any divisor of 6ℓ, it follows that Wx′ = {e} for all closed points x′ ∈ X .

(2) Let x ∈ X be a closed point such that Gx ∼= Z/ℓ. As in §6.1.1, we have that Γgx = gGxg
−1 ∩ Γ can

only be non-trivial if Γ = R. Moreover,

(6.16) #{x′ ∈ X closed ; Rx′
∼= Z/ℓ} = (ℓ− 1)/2.

6.2. The k[N1]-module structure of H0(X,ΩX). Recall that P is a Sylow 3-subgroup of G, P1 is the

unique subgroup of P of order 3, and N1 = NG(P1), so N1 is a dihedral group of order ℓ− ǫ. In this section,

we first determine the k[H ]-module structure of H0(X,ΩX) for the 3-hypo-elementary subgroups H of N1

that are isomorphic to dihedral groups of order 2 · 3n, respectively to cyclic groups of order (ℓ − ǫ)/2. We

then use this to determine the k[N1]-module structure of H0(X,ΩX). Again, we need to consider two cases.

6.2.1. The k[N1]-module structure when ℓ ≡ −ǫ mod 4. We use the notation from §6.1.1. In particular,

V = 〈v〉 is a cyclic group of order (ℓ − ǫ)/2 = 3n ·m, where m is odd, and ∆ = 〈v′, s〉 is a dihedral group

of order 2 · 3n, where v′ = vm and s ∈ NG(V ) − V is an element of order 2. Moreover, let I be the unique

subgroup of V of order 3. We use the key steps in the proof of Theorem 1.1, as summarized in Remark 4.4,

to determine the k[H ]-module structure of H0(X,ΩX) for H ∈ {V,∆}.
In both cases, it follows from §6.1.1 that the subgroup of the Sylow 3-subgroup PH = 〈v′〉 of H generated

by the Sylow 3-subgroups of the inertia groups of all closed points inX is equal to I = 〈τ〉, where τ = (v′)3
n−1

.

Moreover, there are precisely 3n−1 ·m closed points x in X with Hx ≥ I. In particular, the non-trivial lower

ramification groups for any closed point x ∈ X with I ≤ Hx are Hx,1 = I and Hx,2 = {e}. Let Y = X/I.

For 1 ≤ t ≤ m, let yt,1, . . . , yt,3n−1 ∈ Y be points that ramify in X . For 0 ≤ j ≤ 2, we obtain that Lj from
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Proposition 4.1 is given as Lj = ΩY (Dj), where, by the proof of Proposition 4.1 or by step (1) of Remark

4.4,

(6.17) Dj =





m∑

t=1

3n−1∑

i=1

yt,i , j = 0, 1,

0 , j = 2.

Since 3n−1 ·m points in Y = X/I ramify in X , the Riemann-Hurwitz theorem shows that

(6.18) g(Y )− 1 = 3n−1m · (ℓ+ ǫ)(ℓ− 6)− 8

12
.

(a) We first consider the case H = V , so H ∼= (Z/3n)× (Z/m), where 3 does not divide m. By §6.1.1, we
have either Vx = I or Vx = {e} for all closed points x ∈ X . If Z = X/V , then Y = X/I −→ X/V = Z

is unramified with Galois group V = V/I.

Hence Proposition 4.3, or step (2) of Remark 4.4, gives the following in this situation for M =

ResGV H0(X,ΩX). Let γ(j) be the Brauer character of the k-dual of (M (j+1)/M (j)) for j ∈ {0, 1, 2}.
Then

γ(j) = δj,2 β0 + nj(V )β(k[V ])

where

n0(V ) = n1(V ) =
1

#V

(
3n−1m+ g(Y )− 1

)
= 1 +

(ℓ+ ǫ)(ℓ− 6)− 8

12

and

(6.19) n2(V ) =
1

#V
(g(Y )− 1) =

(ℓ + ǫ)(ℓ− 6)− 8

12
.

In particular, n1(V ) = n2(V ) + 1. Since β0 and β(k[V ]) are self-dual, we obtain that the Brauer

character of M (j+1)/M (j), for j ∈ {0, 1, 2}, is equal to

β(M (1)/M (0)) = β(M (2)/M (1)) = (n2(V ) + 1)β(k[V ]),

β(M (3)/M (2)) = β0 + n2(V )β(k[V ]).

Using the notation of Remark 3.4, there are m isomorphism classes of simple k[V ]-modules, rep-

resented by S
(V )
0 , S

(V )
1 , . . . , S

(V )
m−1, where we use the superscript (V ) to indicate these are simple

k[V ]-modules.

Using the proof of Theorem 1.1, or step (3) of Remark 4.4, it follows that ResGV H0(X,ΩX) =

ResGV M is a direct sum of n2 copies of k[V ] together with an indecomposable k[V ]-module of k-

dimension 2 · 3n−1 + 1 with socle S
(V )
0 and m − 1 indecomposable k[V ]-modules of k-dimension

2 · 3n−1 with respective socles given by S
(V )
1 , . . . , S

(V )
m−1. Writing U

(V )
a,b for an indecomposable k[V ]-

module of k-dimension b with socle isomorphic to S
(V )
a , we have

ResGV H0(X,ΩX) ∼= n2(V ) k[V ]⊕ U
(V )
0,2·3n−1+1 ⊕

m−1⊕

t=1

U
(V )
t,2·3n−1

where n2(V ) is as in (6.19).

(b) We next consider the case H = ∆, so H ∼= (Z/3n) ⋊χ (Z/2). In particular, there are precisely

two isomorphism classes of simple k[∆]-modules, represented by S
(∆)
0 and S

(∆)
1 , and Sχ ∼= S

(∆)
1 .

By §6.1.1, the possible isomorphism types for non-trivial inertia groups ∆x for closed points x ∈
X are either Σ3 or Z/3 or Z/2. Moreover, there are precisely 3n−1 (resp. 3n−1(m − 1), resp.

3n((ℓ + ǫ)/2 − 1)) closed points x in X with ∆x
∼= Σ3 (resp. ∆x

∼= Z/3, resp. ∆x
∼= Z/2). Using

the notation introduced above, suppose that the inertia groups of the points in X above the points
29



y1,1, . . . , y1,3n−1 ∈ Y are isomorphic to Σ3, whereas the inertia groups of the points in X above

the remaining yt,1, . . . , yt,3n−1 ∈ Y , for 2 ≤ t ≤ m, are isomorphic to Z/3. If Z = X/∆, then

Y = X/I −→ X/∆ = Z is tamely ramified with Galois group ∆ = ∆/I.

The ramification data of the tame cover Y = X/I −→ Z = X/∆ is as follows. There are precisely

(ℓ + ǫ)/2 points in Z that ramify in Y . Moreover, the inertia group of each of the 3n−1(ℓ + ǫ)/2

points in Y lying above these points in Z is isomorphic to Z/2. Let z1 ∈ Z be the unique point that

ramifies in X with inertia group isomorphic to Σ3, and let z2, . . . , z(ℓ+ǫ)/2 be the points in Z that

ramify in X with inertia group isomorphic to Z/2. Define y1 = y1,1 ∈ Y and let y2, . . . , y(ℓ+ǫ)/2 ∈ Y

be points lying above z2, . . . , z(ℓ+ǫ)/2, respectively. For all i ∈ {1, 2, . . . , (ℓ+ǫ)/2}, it follows that ∆yi

is a subgroup of order 2 in ∆ and the fundamental character θyi is the unique non-trivial character

of ∆yi . In particular, the Brauer characters Ind∆
∆yi

(θyi), for i ∈ {1, 2, . . . , (ℓ + ǫ)/2}, are all equal

to the Brauer character of the projective indecomposable k[∆]-module whose socle is non-trivial.

Moreover, for j ∈ {0, 1, 2}, we have that ℓyi,j ∈ {0, 1} such that ℓyi,j ≡ −ordyi(Dj) mod (#∆yi) is

only non-zero for (i, j) ∈ {(1, 0), (1, 1)}. Let M = ResG∆ H0(X,ΩX), and fix j ∈ {0, 1, 2}. Following

Proposition 4.3, or step (2) of Remark 4.4, we obtain that the Brauer character of the k-dual of

Sχj ⊗k (M (j+1)/M (j)) is equal to

γ(j) = δj,2 β0 +

(
ℓ + ǫ

4

)
Ind∆

∆y1
(θy1)− (1− δj,2) Ind

∆
∆y1

(θy1) + nj(∆)β(k[∆])

where

n0(∆) = n1(∆) =
1

#∆

(
3n−1m+ g(Y )− 1

)
+

1

2

(
1− 1

2

)
+

1

2

(
ℓ+ ǫ

2
− 1

)(
−1

2

)

=
m+ 1

2
+
m((ℓ+ ǫ)(ℓ − 6)− 8)

24
− ℓ+ ǫ

8

and

(6.20) n2(∆) =
1

#∆
(g(Y )− 1) +

1

2

(
ℓ+ ǫ

2

)(
−1

2

)
=
m((ℓ + ǫ)(ℓ− 6)− 8)

24
− ℓ+ ǫ

8
.

In particular,

n1(∆) = n2(∆) + (m+ 1)/2.

Let P (∆, 0) (resp. P (∆, 1)) be a projective indecomposable k[∆]-module with trivial (resp. non-

trivial) socle. Then Ind∆
∆y1

(θy1) = β(P (∆, 1)) and β(k[∆]) = β(P (∆, 0)) + β(P (∆, 1)). Since β0,

β(P (∆, 0)) and β(P (∆, 1)) are self-dual, we obtain that the Brauer character of M (j+1)/M (j) is

equal to

β(M (1)/M (0)) =

(
n2(∆) +

m+ 1

2

)
β(P (∆, 0)) +

(
n2(∆) +

ℓ+ ǫ

4
− 1 +

m+ 1

2

)
β(P (∆, 1)),

β(M (2)/M (1)) =

(
n2(∆) +

m+ 1

2

)
β(P (∆, 1)) +

(
n2(∆) +

ℓ+ ǫ

4
− 1 +

m+ 1

2

)
β(P (∆, 0)),

β(M (3)/M (2)) = β0 + n2(∆)β(P (∆, 0)) +

(
n2(∆) +

ℓ+ ǫ

4

)
β(P (∆, 1))

= (n2(∆) + 1)β(P (∆, 0)) +

(
n2(∆) +

ℓ+ ǫ

4
− 1

)
β(P (∆, 1)) + β(Sχ),

where we rewrote the Brauer character of M (3)/M (2) to reflect the fact that, by step (2) of Remark

4.4, the quotient M (3)/M (2) is isomorphic to a direct sum of the simple k[∆]-module Sχ and a

projective k[∆]-module. As above, let S
(∆)
0 , S

(∆)
1 be representatives of the 2 isomorphism classes of

simple k[∆]-modules, such that Sχ ∼= S
(∆)
1 .
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Using the proof of Theorem 1.1, or step (3) of Remark 4.4, it follows that ResG∆ H0(X,ΩX) =

ResG∆M is a direct sum of n2(∆)+1 copies of the projective k[∆]-module with socle S0 and n2(∆)+
ℓ+ǫ
4 −1 copies of the projective k[∆]-module with socle S1 together together with an indecomposable

k[∆]-module of k-dimension 2 ·3n−1+1 with socle S
(∆)
1 and (m−1)/2 indecomposable k[∆]-modules

of k-dimension 2 · 3n−1 with socle S
(∆)
0 and (m− 1)/2 indecomposable k[∆]-modules of k-dimension

2 · 3n−1 with socle S
(∆)
1 . Writing U

(∆)
a,b for an indecomposable k[∆]-module of k-dimension b with

socle isomorphic to S
(∆)
a , we have

ResG∆H0(X,ΩX) ∼= (n2(∆) + 1)U
(∆)
0,3n ⊕

(
n2(∆) +

ℓ+ ǫ

4
− 1

)
U

(∆)
1,3n ⊕

U
(∆)
1,2·3n−1+1 ⊕

(
m− 1

2

)
U

(∆)
0,2·3n−1 ⊕

(
m− 1

2

)
U

(∆)
1,2·3n−1

where n2(∆) is as in (6.20).

We now want to use (a) and (b) above to determine the k[N1]-module structure of H0(X,ΩX). Using

the notation introduced in §6.1.1, P = 〈v′〉 is a Sylow 3-subgroup of G and P1 = I is the unique subgroup

of P of order 3. Hence N1 = NG(P ) = 〈v, s〉 is a dihedral group of order ℓ − ǫ = 2 · 3n · m. There are

2+(m−1)/2 isomorphism classes of simple k[N1]-modules. These are represented by 2 one-dimensional k[N1]-

modules S
(N1)
0 and S

(N1)
1 , which are the inflations of the two simple k[∆]-modules S

(∆)
0 and S

(∆)
1 , together

with (m − 1)/2 two-dimensional simple k[N1]-modules S̃
(N1)
1 , . . . , S̃

(N1)
(m−1)/2, where S̃

(N1)
t = IndN1

V S
(V )
t for

1 ≤ t ≤ (m− 1)/2. The indecomposable k[N1]-modules are uniserial, where the projective modules all have

length 3n. For {i, j} = {0, 1}, the projective cover of S
(N1)
i has descending composition factors

S
(N1)
i , S

(N1)
j , S

(N1)
i , . . . , S

(N1)
j , S

(N1)
i .

For t ∈ {1, . . . , (m − 1)/2}, the composition factors of the projective cover of S̃
(N1)
t are all isomorphic to

S̃
(N1)
t . For i ∈ {0, 1}, we write U

(N1)
i,b for an indecomposable k[N1]-module of k-dimension b whose socle is

isomorphic to S
(N1)
i . For t ∈ {1, . . . , (m − 1)/2}, we write Ũ

(N1)
t,b for an indecomposable k[N1]-module of

k-dimension 2b whose socle is isomorphic to S̃
(N1)
t . By (a) and (b) above, we obtain

ResGN1
H0(X,ΩX) ∼=

(
(ℓ + ǫ)(ℓ− 9) + 16

24

)
U

(N1)
0,3n ⊕

(
(ℓ+ ǫ)(ℓ− 3)− 32

24

)
U

(N1)
1,3n ⊕

(m−1)/2⊕

t=1

(
(ℓ+ ǫ)(ℓ− 6)− 8

12

)
Ũ

(N1)
t,3n ⊕(6.21)

U
(N1)
1,2·3n−1+1 ⊕

(m−1)/2⊕

t=1

Ũ
(N1)
t,2·3n−1 .

6.2.2. The k[N1]-module structure when ℓ ≡ ǫ mod 4. We use the notation from §6.1.2. In particular,

V = 〈v〉 is a cyclic group of order (ℓ− ǫ)/2 = 3n ·m, where m is even, and ∆1 = 〈v′, s〉 and ∆2 = 〈v′, vs〉 are
two non-conjugate dihedral groups of order 2 · 3n, where v′ = vm and s ∈ NG(V )− V is an element of order

2. Moreover, let I be the unique subgroup of V of order 3. Similarly to §6.2.1, we use the key steps in the

proof of Theorem 1.1, as summarized in Remark 4.4, to determine the k[H ]-module structure of H0(X,ΩX)

for H ∈ {V,∆1,∆2}.
In all cases, it follows from §6.1.2 that the subgroup of the Sylow 3-subgroup PH = 〈v′〉 of H generated by

the Sylow 3-subgroups of the inertia groups of all closed points in X is equal to I = 〈τ〉, where τ = (v′)3
n−1

.

Moreover, there are precisely 3n−1 ·m closed points x in X with Hx ≥ I. Let Y = X/I. For 1 ≤ t ≤ m, let

yt,1, . . . , yt,3n−1 ∈ Y be points that ramify in X . For 0 ≤ j ≤ 2, we obtain that Lj from Proposition 4.1 is
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given as Lj = ΩY (Dj), where Dj has the same form as in (6.17). Since 3n−1 ·m points in Y = X/I ramify

in X , the Riemann-Hurwitz theorem shows that g(Y ) satisfies the same equation as in (6.18).

The ramification data is slightly more difficult than in §6.2.1, but the arguments are very similar. We

therefore just list the final answers for each H ∈ {V,∆1,∆2}.
(a) We first consider the case H = V , so H ∼= (Z/3n) × (Z/m), where 3 does not divide m. Using the

notation of Remark 3.4, there are m isomorphism classes of simple k[V ]-modules, represented by

S
(V )
0 , S

(V )
1 , . . . , S

(V )
m−1, where we use the superscript (V ) to indicate these are simple k[V ]-modules.

Moreover, the projective indecomposable k[V ]-modules all have length 3n. Writing U
(V )
a,b for an

indecomposable k[V ]-module of k-dimension b with socle isomorphic to S
(V )
a , we have

ResGV H0(X,ΩX) ∼= n2(V ) k[V ]⊕
m/2⊕

t=1

U2t−1,3n ⊕ U
(V )
0,2·3n−1+1 ⊕

m−1⊕

t=1

U
(V )
t,2·3n−1

where

n2(V ) =
(ℓ+ ǫ)(ℓ− 6)− 14

12
.

(b) We next consider the case H = ∆1, so H ∼= (Z/3n) ⋊χ (Z/2). In particular, there are precisely

two isomorphism classes of simple k[∆1]-modules, represented by S
(∆1)
0 and S

(∆1)
1 , and Sχ ∼= S

(∆1)
1 .

Moreover, the projective indecomposable k[∆1]-modules all have length 3n. Writing U
(∆1)
a,b for an

indecomposable k[∆1]-module of k-dimension b with socle isomorphic to S
(∆1)
a , we have

ResG∆1
H0(X,ΩX) ∼= (n2(∆1) + 1)U

(∆1)
0,3n ⊕

(
n2(∆1) +

ℓ− ǫ

4
− 1

)
U

(∆1)
1,3n ⊕

U
(∆1)
1,2·3n−1+1 ⊕

(m
2

)
U

(∆1)
0,2·3n−1 ⊕

(m
2

− 1
)
U

(∆1)
1,2·3n−1

where

n2(∆1) =
m((ℓ+ ǫ)(ℓ − 6)− 8)

24
− ℓ− ǫ

8
.

(c) Finally, we consider the case H = ∆2, so H ∼= (Z/3n) ⋊χ (Z/2). Again, there are precisely two

isomorphism classes of simple k[∆2]-modules, represented by S
(∆2)
0 and S

(∆2)
1 , and Sχ ∼= S

(∆2)
1 .

Moreover, the projective indecomposable k[∆2]-modules all have length 3n. Writing U
(∆2)
a,b for an

indecomposable k[∆2]-module of k-dimension b with socle isomorphic to S
(∆2)
a , we have

ResG∆2
H0(X,ΩX) ∼= (n2(∆2) + 1)U

(∆2)
0,3n ⊕

(
n2(∆2) +

ℓ− ǫ

4
− 1

)
U

(∆2)
1,3n ⊕

U
(∆2)
1,2·3n−1+1 ⊕

(m
2

− 1
)
U

(∆2)
0,2·3n−1 ⊕

(m
2

)
U

(∆2)
1,2·3n−1

where

n2(∆2) =
m((ℓ+ ǫ)(ℓ − 6)− 8)

24
− ℓ− ǫ

8
.

We now want to use (a), (b) and (c) above to determine the k[N1]-module structure of H0(X,ΩX). Using

the notation introduced in §6.1.2, P = 〈v′〉 is a Sylow 3-subgroup of G and P1 = I is the unique subgroup

of P of order 3. Hence N1 = NG(P ) = 〈v, s〉 is a dihedral group of order ℓ − ǫ = 2 · 3n · m, where m is

even. There are 4 + (m/2 − 1) isomorphism classes of simple k[N1]-modules. These are represented by 4

one-dimensional k[N1]-modules S
(N1)
0,0 , S

(N1)
0,1 , S

(N1)
1,0 and S

(N1)
1,1 such that S

(N1)
i1,i2

restricts to S
(∆1)
i1

and to S
(∆2)
i2

for i1, i2 ∈ {0, 1}, together with (m/2− 1) two-dimensional simple k[N1]-modules S̃
(N1)
1 , . . . , S̃

(N1)
(m/2−1), where

S̃
(N1)
t = IndN1

V S
(V )
t for 1 ≤ t ≤ (m/2 − 1). The indecomposable k[N1]-modules are uniserial, where the
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projective modules all have length 3n. If {i, j} = {0, 1} then the projective cover of S
(N1)
i,i has descending

composition factors

S
(N1)
i,i , S

(N1)
j,j , S

(N1)
i,i , . . . , S

(N1)
j,j , S

(N1)
i,i

and the projective cover of S
(N1)
i,j has descending composition factors

S
(N1)
i,j , S

(N1)
j,i , S

(N1)
i,j , . . . , S

(N1)
j,i , S

(N1)
i,j .

For t ∈ {1, . . . , (m/2 − 1)}, the composition factors of the projective cover of S̃
(N1)
t are all isomorphic to

S̃
(N1)
t . For i1, i2 ∈ {0, 1}, we write U (N1)

i1,i2,b
for an indecomposable k[N1]-module of k-dimension b whose socle

is isomorphic to S
(N1)
i1,i2

. For t ∈ {1, . . . , (m/2 − 1)}, we write Ũ
(N1)
t,b for an indecomposable k[N1]-module of

k-dimension 2b whose socle is isomorphic to S̃
(N1)
t . By (a), (b) and (c) above, we obtain

ResGN1
H0(X,ΩX) ∼=

(
(ℓ+ ǫ)(ℓ− 6)− 14

24
− ℓ− ǫ

8
+ 1

)
U

(N1)
0,0,3n ⊕

⌊
(ℓ+ ǫ)(ℓ − 6)− 2

24

⌋
U

(N1)
0,1,3n ⊕

⌊
(ℓ+ ǫ)(ℓ − 6)− 2

24

⌋
U

(N1)
1,0,3n ⊕

(
(ℓ+ ǫ)(ℓ− 6)− 14

24
+
ℓ− ǫ

8
− 1

)
U

(N1)
1,1,3n ⊕(6.22)

⌊(m−2)/4⌋⊕

t=1

(
(ℓ + ǫ)(ℓ− 6)− 14

12

)
Ũ

(N1)
2t,3n ⊕

⌊m/4⌋⊕

t=1

(
(ℓ+ ǫ)(ℓ − 6)− 2

12

)
Ũ

(N1)
2t−1,3n ⊕

U
(N1)

1,1,2·3n−1+1 ⊕ U
(N1)

0,1,2·3n−1 ⊕
m/2−1⊕

t=1

Ũ
(N1)

t,2·3n−1

where, as before, ⌊r⌋ denotes the largest integer that is less than or equal to a given rational number r.

6.3. The Brauer character of H0(X,ΩX) as a k[G]-module. In this section, we compute the values of

the Brauer character of H0(X,ΩX) as a k[G]-module. We use the notation from the previous two sections,

§6.1 and §6.2. We determine the values of the Brauer character β(H0(X,ΩX)) for all elements g ∈ G that are

3-regular, i.e. whose order is not divisible by 3. By [21, §II.8], the elements of order ℓ fall into 2 conjugacy

classes. Let r1 and r2 be representatives of these conjugacy classes. Since all subgroups of G of order ℓ are

conjugate, we can assume, without loss of generality, that R = 〈r1〉 = 〈r2〉. In fact, if 1 ≤ µ ≤ ℓ − 1 is such

that F∗
ℓ = 〈µ〉 then we can choose r2 = rµ1 . Moreover, for i ∈ {1, 2} and 1 ≤ a ≤ (ℓ − 1)/2, we have that

(ri)
a2 is conjugate to ri. All elements g ∈ G of a given order 6= ℓ lie in a single conjugacy class. We first

determine the value of the Brauer character β(H0(X,ΩX)) at r1 and r2.

6.3.1. The Brauer character of H0(X,ΩX) at elements of order ℓ. By §6.1.1 and §6.1.2, we have either

Rx = R or Rx = {e} for all closed points x ∈ X , and there are precisely (ℓ− 1)/2 closed points x in X with

Rx = R. In particular, this means that X −→ X/R is tamely ramified. Letting Y = X and Z = X/R, we

have g(Y )− 1 = g(X)− 1 as in (5.3).

There are precisely (ℓ − 1)/2 points in Z that ramify in Y = X . Moreover, the inertia group of each of

the (ℓ − 1)/2 points in Y = X lying above these points in Z is equal to R. Let z1, . . . , z(ℓ−1)/2 ∈ Z be the

points in Z that ramify in Y = X with inertia group equal to R. Let y1, . . . , y(ℓ−1)/2 be points lying above

z1, . . . , z(ℓ−1)/2, respectively. Following Proposition 4.3, or step (2) of Remark 4.4, we obtain that the Brauer

character of the k-dual of ResGR H0(X,ΩX) is equal to

β0 +

(ℓ−1)/2∑

i=1

ℓ−1∑

t=0

t

ℓ
(θyi)

t + n0(R)β(k[R])

where

n0(R) =
1

#R
(g(X)− 1) +

ℓ− 1

2ℓ

(
− ℓ− 1

2

)
=

(ℓ− 1)(ℓ− 11)

24
.
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Suppose θy1(r1) = ξℓ is a primitive ℓth root of unity. Then it follows that

{θyi(r1) ; 1 ≤ i ≤ (ℓ − 1)/2} = {(ξℓ)a
2

; 1 ≤ a ≤ (ℓ − 1)/2}.

Hence

(6.23)

(ℓ−1)/2∑

i=1

ℓ−1∑

t=0

t

ℓ
(θyi)

t(r1) =

(ℓ−1)/2∑

a=1

1

ℓ

ℓ−1∑

t=0

t (ξℓ)
a2t =

(ℓ−1)/2∑

a=1

1

(ξℓ)a
2 − 1

.

(a) If ℓ ≡ 1 mod 4 then −1 is a square mod ℓ. Since

1

(ξℓ)a
2 − 1

+
1

(ξℓ)−a
2 − 1

=
(ξℓ)

−a2 − 1 + (ξℓ)
a2 − 1

((ξℓ)a
2 − 1)((ξℓ)−a

2 − 1)
= −1

(6.23) becomes
(ℓ−1)/2∑

i=1

ℓ−1∑

t=0

t

ℓ
(θyi)

t(r1) = − ℓ− 1

4
.

Therefore, since θyi(r2) = θyi(r
µ
1 ), we get

(6.24) β(H0(X,ΩX))(r1) = 1− ℓ− 1

4
= β(H0(X,ΩX))(r2).

(b) Next suppose ℓ ≡ −1 mod 4. Using Gauss sums, we see that there exists a choice of square root of

−ℓ, say
√
−ℓ, such that

(6.25)

(ℓ−1)/2∑

a=1

(ξℓ)
a2 =

−1 +
√
−ℓ

2
and

(ℓ−1)/2∑

a=1

(ξℓ)
µa2 =

−1−
√
−ℓ

2
.

Letting �ℓ ⊂ {1, . . . , ℓ − 1} be the set of squares in F∗
ℓ , it follows that {ℓ − t ; t ∈ �ℓ} is the set of

non-squares in F∗
ℓ , since −1 is not a square mod ℓ. Then (6.23) can be rewritten as

1

ℓ

ℓ−1∑

t=0

(ℓ−1)/2∑

a=1

t (ξℓ)
a2t =

1

ℓ

∑

t∈�ℓ

t

(−1 +
√
−ℓ

2

)
+

1

ℓ

∑

t∈�ℓ

(ℓ − t)

(−1−
√
−ℓ

2

)

=

√
−ℓ
ℓ

∑

t∈�ℓ

t − ℓ− 1

4

(
1 +

√
−ℓ
)
.

Let hℓ = hQ(
√
−ℓ) be the class number of Q(

√
−ℓ), and let χ be the quadratic character mod ℓ. By

[37, Ex. 4.5], we have

ℓ hℓ = −2

(ℓ−1)/2∑

a=1

χ(a) a+ ℓ

(ℓ−1)/2∑

a=1

χ(a) = −
ℓ−1∑

a=1

χ(a) a

which implies
1

ℓ

∑

t∈�ℓ

t =
ℓ− 1

4
− hℓ

2
.

Therefore, (6.23) becomes

1

ℓ

ℓ−1∑

t=0

(ℓ−1)/2∑

a=1

t (ξℓ)
a2t = − ℓ− 1

4
− hℓ

2

√
−ℓ.

Using θyi(r2) = θyi(r
µ
1 ) and (6.25), we get

β(H0(X,ΩX))(r1) = 1− ℓ− 1

4
− hℓ

2

√
−ℓ;(6.26)

β(H0(X,ΩX))(r2) = 1− ℓ− 1

4
+
hℓ
2

√
−ℓ.(6.27)
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6.3.2. The Brauer character of H0(X,ΩX) when ℓ ≡ −ǫ mod 4. We use the notation from §6.1.1. In

particular, v is an element of order (ℓ− ǫ)/2 = 3n ·m, where m is odd, s is an element of order 2, and w is an

element of order (ℓ+ ǫ)/2. Let v′′ = v3
n

be of order m. Then a full set of representatives for the conjugacy

classes of 3-regular elements of G is given by

{e, r1, r2, s, (v′′)i, wj}

where 1 ≤ i ≤ (m− 1)/2 and 1 ≤ j < (ℓ+ ǫ)/4.

From §6.3.1, we know the values of β(H0(X,ΩX)) at r1 and r2. The other values of β(H0(X,ΩX)) are as

follows:

β(H0(X,ΩX))(e) = 1 +
(ℓ2 − 1)(ℓ− 6)

24
,(6.28)

β(H0(X,ΩX))(s) = 1− ℓ+ ǫ

4
,(6.29)

β(H0(X,ΩX))((v′′)i) = 1,(6.30)

β(H0(X,ΩX))(wj) = 1.(6.31)

when (v′′)i 6= e and wj 6∈ {e, s}. Note that we obtain the values in (6.28) - (6.30) from §6.2.1.
We next consider the case W = 〈w〉. By §6.1.1, we have either Wx

∼= Z/2 or Wx = {e} for all closed

points x ∈ X , and there are precisely (ℓ + ǫ)/2 closed points x in X with Wx
∼= Z/2. In particular, this

means that X −→ X/W is tamely ramified. Letting Y = X and Z = X/W , we have g(Y ) − 1 = g(X) − 1

as in (5.3).

There are precisely 2 points in Z that ramify in Y = X . Moreover, the inertia group of each of the

(ℓ + ǫ)/2 points in Y = X lying above these points in Z is isomorphic to Z/2. Let z1, z2 ∈ Z be the points

in Z that ramify in Y = X with inertia group isomorphic to Z/2. Let y1, y2 be points lying above z1, z2,

respectively. Since W has a unique subgroup of order 2, it follows that Wy1 = Wy2 and the fundamental

character θy1 = θy2 is the unique non-trivial character of Wy1 =Wy2 . Following Proposition 4.3, or step (2)

of Remark 4.4, we obtain that the Brauer character of the k-dual of ResGW H0(X,ΩX) is equal to

β0 + IndWWy1
(θy1) + n0(W )β(k[W ])

where

n0(W ) =
1

#W
(g(Y )− 1)− 1

2
=

(ℓ− ǫ)(ℓ− 6)− 6

12
.

Note that β0, Ind
W
Wy1

(θy1) and β(k[W ]) are self-dual. Since (ℓ+ ǫ)/2 is not divisible by 3, k[W ] is semisimple.

There are (ℓ+ ǫ)/2 isomorphism classes of simple k[W ]-modules, represented by S
(W )
0 , S

(W )
1 , . . . , S

(W )
(ℓ+ǫ)/2−1,

where we use the superscript (W ) to indicate these are simple k[W ]-modules. We obtain

β(ResGW H0(X,ΩX)) = β(S
(W )
0 ) +

(ℓ+ǫ)/4∑

t=1

β(S
(W )
2t−1) + n0(W )β(k[W ]).

This gives the values of β(H0(X,ΩX)) in (6.31).

6.3.3. The Brauer character of H0(X,ΩX) when ℓ ≡ ǫ mod 4. We use the notation from §6.1.2. In particular,

v is an element of order (ℓ− ǫ)/2 = 3n ·m, where m is even, s is an element of order 2, and w is an element

of order (ℓ + ǫ)/2. Let v′′ = v3
n

be of order m. Then a full set of representatives for the conjugacy classes

of 3-regular elements of G is given by

{e, r1, r2, s, (v′′)i, wj}
where 1 ≤ i < m/2 and 1 ≤ j ≤ ⌊(ℓ + ǫ)/4⌋.
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From §6.3.1, we know the values of β(H0(X,ΩX)) at r1 and r2. The other values of β(H0(X,ΩX)) are as

follows:

β(H0(X,ΩX))(e) = 1 +
(ℓ2 − 1)(ℓ− 6)

24
,(6.32)

β(H0(X,ΩX))(s) = 1− ℓ− ǫ

4
,(6.33)

β(H0(X,ΩX))((v′′)i) = 1,(6.34)

β(H0(X,ΩX))(wj) = 1.(6.35)

when (v′′)i 6∈ {e, s} and wj 6= e. Note that we obtain the values in (6.32) - (6.34) from §6.2.2. Since the

order of W is not divisible by any divisor of 6ℓ, we also obtain the values of β(H0(X,ΩX)) in (6.35).

6.4. The k[G]-module structure of H0(X,ΩX). In this section, we determine the k[G]-module structure

of H0(X,ΩX), using §6.1 - §6.3 together with [7]. We have to consider 4 cases.

6.4.1. The k[G]-module structure of H0(X,ΩX) when ℓ ≡ 1 mod 4 and ℓ ≡ −1 mod 3. This is the case

when ǫ = −1 and ℓ ≡ −ǫ mod 4. By (6.21), the non-projective indecomposable direct summands of

ResGN1
H0(X,ΩX) are given by

(6.36) U
(N1)
1,2·3n−1+1 ⊕

(m−1)/2⊕

t=1

Ũ
(N1)
t,2·3n−1.

We first determine the Green correspondents of these summands, using the information in [7, §IV]. There
are 1+(m−1)/2 blocks of k[G] of maximal defect n, consisting of the principal block B0 and (m−1)/2 blocks

B1, . . . , B(m−1)/2, and there are 1+(ℓ− 1)/4 blocks of k[G] of defect 0. There are precisely two isomorphism

classes of simple k[G]-modules that belong to B0, represented by the trivial simple k[G]-module T0 and

a simple k[G]-module T̃0 of k-dimension ℓ − 1. For each t ∈ {1, . . . , (m − 1)/2}, there is precisely one

isomorphism class of simple k[G]-modules belonging to Bt, represented by a simple k[G]-module T̃t of k-

dimension ℓ− 1. Note that the Brauer character of T̃t, 0 ≤ t ≤ (m− 1)/2, is the restriction to the 3-regular

classes of the ordinary irreducible character δ̃∗t , 0 ≤ t ≤ (m− 1)/2, with the following values:

(6.37) δ̃∗t (e) = ℓ− 1; δ̃∗t (r1) = −1 = δ̃∗t (r2); δ̃∗t (s) = 0 = δ̃∗t (w
j); δ̃∗t ((v

′′)i) = −((ξm)ti + (ξm)−ti)

where ξm is a fixed primitive mth root of unity.

To determine the Green correspondents of the non-projective indecomposable direct summands of ResGN1
H0(X,ΩX),

we use that there is a stable equivalence between the module categories of k[G] and k[N1]. This allows us to

use the results from [2, §X.1] on almost split sequences to be able to detect the Green correspondents. If n = 1

then U
(N1)
1,2·3n−1+1 = U

(N1)
1,3n is a projective k[N1]-module. If n > 1 then the Green correspondent of U

(N1)
1,2·3n−1+1

belongs to B0. Since the Green correspondent of S
(N1)
0 is T0, it follows that the Green correspondent of

S
(N1)
1 is a uniserial k[G]-module of length (3n− 1)/2 whose composition factors are all isomorphic to T̃0. We

now follow the irreducible homomorphisms in the stable Auslander-Reiten quiver of B0 starting with the

Green correspondent of S
(N1)
1 to arrive, after 2 · 3n−1 such morphisms, at a uniserial k[G]-module of length

(3n−1 − 1)/2 whose composition factors are all isomorphic to T̃0. This must be the Green correspondent of

U
(N1)
1,2·3n−1+1. For n ≥ 1 and 1 ≤ t ≤ (m− 1)/2, the Green correspondent of Ũ

(N1)
t,2·3n−1 belongs to the block Bt.

Since ℓ− 1 ≡ −2 mod 3n, it follows that the Green correspondent of Ũ
(N1)
t,2·3n−1 is a uniserial k[G]-module of

length 3n−1 whose composition factors are all isomorphic to T̃t.

Next, we determine the Brauer character β̃ of the largest projective direct summand of H0(X,ΩX). Since

(3n−1 − 1)/2 = 0 when n = 1, we do not need to distinguish between the cases n = 1 and n > 1. Using
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(6.24), (6.28) - (6.31) and (6.37), we obtain

β̃(e) = 1 +
(ℓ− 1)(ℓ2 − 7ℓ+ 4)

24
;

β̃(ri) = 1− ℓ+ 1

6
(i = 1, 2);

β̃(s) = 1− ℓ− 1

4
;

β̃(wj) = 1 (wj 6∈ {e, s});
β̃((v′′)i) = 0 ((v′′)i 6= e).

Let Ψ0 be the Brauer character of the projective k[G]-module cover P (G, T0) of T0, and let Ψ̃t be the Brauer

character of the projective k[G]-module cover P (G, T̃t) of T̃t, 0 ≤ t ≤ (m − 1)/2. We have 1 + (ℓ − 1)/4

additional Brauer characters of projective indecomposable k[G]-modules that are also irreducible: γ1, γ2 and

(ℓ − 5)/4 characters ηG that are constructed from characters η of W with values

e r1 r2 s wj (v′′)i

(wj 6∈ {e, s}) ((v′′)i 6= e)

γ1
ℓ+1
2

1+
√
ℓ

2
1−

√
ℓ

2 (−1)(ℓ−1)/4 (−1)j 0

γ2
ℓ+1
2

1−
√
ℓ

2
1+

√
ℓ

2 (−1)(ℓ−1)/4 (−1)j 0

ηG ℓ+ 1 1 1 η(s) + η(s) η(wj) + η(wj) 0

where η ranges over the characters of W that are not equal to their conjugate η. Denote the corresponding

projective indecomposable k[G]-modules by P (G, γ1), P (G, γ2) and P (G, η
G), respectively.

If ΦE is the Brauer character of the projective k[G]-module cover of the simple k[G]-module E and φE′

is the Brauer character of the simple k[G]-module E′, then

〈ΦE , φE′〉 = 1

#G

∑

x∈G′

3

ΦE(x
−1)φE′(x)

is the Kronecker symbol δE,E′ , where G′
3 denotes the 3-regular elements of G. Since

ΦE =
∑

E′

CE′,E φE′

where CE′,E denotes the (E′, E)th entry of the Cartan matrix and E′ ranges over the simple k[G]-modules,

we can find the multiplicities of ΦE in β̃ by computing 〈ΦE , β̃〉 for all simple k[G]-modules E. For ΦE

belonging to blocks of maximal defect, we obtain:

〈Ψ0, β̃〉 =
ℓ− 5

12
;

〈Ψ̃0, β̃〉 =
(ℓ − 5)(3n + 1)

24
;

〈Ψ̃t, β̃〉 =
(ℓ − 5)3n

12
(1 ≤ t ≤ (m− 1)/2).

For ΦE belonging to blocks of defect 0, we get:

〈γi, β̃〉 =

{
ℓ−17
24 : ℓ ≡ 1 mod 8

ℓ−5
24 : ℓ ≡ 5 mod 8

(i = 1, 2);(6.38)

〈ηG, β̃〉 =

{
ℓ−5
12 : η(s) = −1

ℓ−17
12 : η(s) = 1.

(6.39)
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The Cartan matrix has the following form (see [7, §IV]):



2 1

1 3n+1
2

3n

. . .

3n

1
. . .

1




where the 2 × 2 block in the top left corner corresponds to the principal block B0, the diagonal entries 3n

correspond to the blocks B1, . . . , B(m−1)/2, and the remaining diagonal entries 1 correspond to the 1+(ℓ−1)/4

additional blocks of defect 0. This implies that

β̃ =

(m−1)/2∑

t=0

ℓ− 5

12
Ψ̃t + 〈γ1, β̃〉 γ1 + 〈γ2, β̃〉 γ2 +

∑

η

〈ηG, β̃〉 ηG.

Therefore, we have proved the following result:

Proposition 6.4.1. When ℓ ≡ 1 mod 4 and ℓ ≡ −1 mod 3, let U
(G)

T̃0,(3n−1−1)/2
(resp. U

(G)

T̃t,3n−1
) denote the

uniserial k[G]-module of length (3n−1−1)/2 (resp. 3n−1) with composition factors all isomorphic to T̃0 (resp.

T̃t). In particular, if n = 1 then U
(G)

T̃0,(3n−1−1)/2
= 0. As a k[G]-module,

H0(X,ΩX) ∼=
(m−1)/2⊕

t=0

ℓ− 5

12
P (G, T̃t)⊕ 〈γ1, β̃〉P (G, γ1)⊕ 〈γ2, β̃〉P (G, γ2)⊕

⊕

η

〈ηG, β̃〉P (G, ηG)⊕ U
(G)

T̃0,(3n−1−1)/2
⊕

(m−1)/2⊕

t=1

U
(G)

T̃t,3n−1

where 〈γi, β̃〉 and 〈ηG, β̃〉 are as in (6.38) and (6.39).

6.4.2. The k[G]-module structure of H0(X,ΩX) when ℓ ≡ −1 mod 4 and ℓ ≡ 1 mod 3. This is the case

when ǫ = 1 and ℓ ≡ −ǫ mod 4. By (6.21), the non-projective indecomposable direct summands of

ResGN1
H0(X,ΩX) are again given as in (6.36).

We first determine the Green correspondents of these summands, using the information in [7, §V]. There
are 1+(m−1)/2 blocks of k[G] of maximal defect n, consisting of the principal block B0 and (m−1)/2 blocks

B1, . . . , B(m−1)/2, and there are 1+(ℓ+1)/4 blocks of k[G] of defect 0. There are precisely two isomorphism

classes of simple k[G]-modules that belong to B0, represented by the trivial simple k[G]-module T0 and a

simple k[G]-module T1 of k-dimension ℓ. For each t ∈ {1, . . . , (m− 1)/2}, there is precisely one isomorphism

class of simple k[G]-modules belonging to Bt, represented by a simple k[G]-module T̃t of k-dimension ℓ+ 1.

Let T̃0 = T0⊕T1. Note that the Brauer character of T̃t, 0 ≤ t ≤ (m− 1)/2, is the restriction to the 3-regular

classes of the ordinary irreducible character δ̃∗t , 0 ≤ t ≤ (m− 1)/2, with the following values:

(6.40) δ̃∗t (e) = ℓ+ 1; δ̃∗t (r1) = 1 = δ̃∗t (r2); δ̃∗t (s) = 0 = δ̃∗t (w
j); δ̃∗t ((v

′′)i) = (ξm)ti + (ξm)−ti

where ξm is a fixed primitive mth root of unity.

As in §6.4.1, we determine the Green correspondents of the non-projective indecomposable direct sum-

mands of ResGN1
H0(X,ΩX), by using that there is a stable equivalence between the module categories of

k[G] and k[N1]. If n = 1 then U
(N1)
1,2·3n−1+1 = U

(N1)
1,3n is a projective k[N1]-module. If n > 1 then the Green
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correspondent of U
(N1)
1,2·3n−1+1 belongs to B0. Note that the Green correspondent of S

(N1)
0 (resp. S

(N1)
1 ) is T0

(resp T1). This means that the Green correspondent of U
(N1)
1,2·3n−1+1 is the uniserial k[G]-module of length

2 · 3n−1 + 1 whose socle is isomorphic to T1. For 1 ≤ t ≤ (m − 1)/2, the Green correspondent of Ũ
(N1)
t,2·3n−1

belongs to the block Bt. Since ℓ + 1 ≡ 2 mod 3n, it follows that the Green correspondent of Ũ
(N1)

t,2·3n−1 is a

uniserial k[G]-module of length 2 · 3n−1 whose composition factors are all isomorphic to T̃t.

Next, we determine the Brauer character β̃ of the largest projective direct summand of H0(X,ΩX). For

i = 0, 1, let Ψi be the Brauer character of the projective k[G]-module cover P (G, Ti) of Ti. Define β̃′ to be

the function on the 3-regular conjugacy classes of G such that

β̃ = δn,1 Ψ1 + β̃′.

Using (6.26) and (6.27), (6.28) - (6.31) and (6.40), we obtain

β̃′(e) = (ℓ− 1)

(
(ℓ+ 1)(ℓ − 10)

24
− 1

)
;

β̃′(r1) = 1− 5(ℓ− 1)

12
− hℓ

2

√
−ℓ;

β̃′(r2) = 1− 5(ℓ− 1)

12
+
hℓ
2

√
−ℓ;

β̃′(s) = 2− ℓ+ 1

4
;

β̃′(wj) = 2 (wj 6∈ {e, s});
β̃′((v′′)i) = 0 ((v′′)i 6= e).

Let Ψ̃t be the Brauer character of the projective k[G]-module cover P (G, T̃t) of T̃t, 1 ≤ t ≤ (m − 1)/2. We

have 1 + (ℓ + 1)/4 additional Brauer characters of projective indecomposable k[G]-modules that are also

irreducible: γ1, γ2 and (ℓ− 3)/4 characters ηG that are constructed from characters η of W with values

e r1 r2 s wj (v′′)i

(wj 6∈ {e, s}) ((v′′)i 6= e)

γ1
ℓ−1
2

−1+
√
−ℓ

2
−1−

√
−ℓ

2 −(−1)(ℓ+1)/4 −(−1)j 0

γ2
ℓ−1
2

−1−
√
−ℓ

2
−1+

√
−ℓ

2 −(−1)(ℓ+1)/4 −(−1)j 0

ηG ℓ− 1 −1 −1 −(η(s) + η(s)) −(η(wj) + η(wj)) 0

where η ranges over the characters of W that are not equal to their conjugate η. Denote the corresponding

projective indecomposable k[G]-modules by P (G, γ1), P (G, γ2) and P (G, η
G), respectively.

Similarly to §6.4.1, using the Cartan matrix given in [7, §V], we get

β̃′ =
ℓ− 19

12
Ψ1 +

(m−1)/2∑

t=1

ℓ− 19

12
Ψ̃t + 〈γ1, β̃′〉 γ1 + 〈γ2, β̃′〉 γ2 +

∑

η

〈ηG, β̃′〉 ηG

where

〈γ1, β̃′〉 =

{
ℓ−7
24 − hℓ

2 : ℓ ≡ 3 mod 8

ℓ+5
24 − hℓ

2 : ℓ ≡ 7 mod 8;
(6.41)

〈γ2, β̃′〉 =

{
ℓ−7
24 + hℓ

2 : ℓ ≡ 3 mod 8

ℓ+5
24 + hℓ

2 : ℓ ≡ 7 mod 8;
(6.42)

〈ηG, β̃′〉 =

{
ℓ−7
12 : η(s) = −1,

ℓ+5
12 : η(s) = 1.

(6.43)
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Therefore, we have proved the following result:

Proposition 6.4.2. When ℓ ≡ −1 mod 4 and ℓ ≡ 1 mod 3, let U
(G)
T1,2·3n−1+1 (resp. U

(G)

T̃t,2·3n−1
) denote the

uniserial k[G]-module of length 2 · 3n−1 + 1 (resp. 2 · 3n−1) whose socle is isomorphic to T1 (resp. whose

composition factors all isomorphic to T̃t). In particular, if n = 1 then U
(G)

T1,2·3n−1+1 = P (G, T1) is a projective

indecomposable k[G]-module. As a k[G]-module,

H0(X,ΩX) ∼=
(
ℓ− 19

12
+ δn,1

)
P (G, T1)⊕

(m−1)/2⊕

t=1

ℓ− 19

12
P (G, T̃t)⊕

〈γ1, β̃′〉P (G, γ1)⊕ 〈γ2, β̃′〉P (G, γ2)⊕
⊕

η

〈ηG, β̃′〉P (G, ηG)⊕

(1− δn,1) U
(G)
T1,2·3n−1+1 ⊕

(m−1)/2⊕

t=1

U
(G)

T̃t,2·3n−1

where 〈γ1, β̃′〉, 〈γ2, β̃′〉 and 〈ηG, β̃′〉 are as in (6.41), (6.42) and (6.43).

6.4.3. The k[G]-module structure of H0(X,ΩX) when ℓ ≡ 1 mod 4 and ℓ ≡ 1 mod 3. This is the case when

ǫ = 1 and ℓ ≡ ǫ mod 4. By (6.22), the non-projective indecomposable direct summands of ResGN1
H0(X,ΩX)

are given by

(6.44) U
(N1)
1,1,2·3n−1+1 ⊕ U

(N1)
0,1,2·3n−1 ⊕

m/2−1⊕

t=1

Ũ
(N1)
t,2·3n−1.

We first determine the Green correspondents of these summands of ResGN1
H0(X,ΩX), using the informa-

tion in [7, §III]. There are 1 + (m/2) blocks of k[G] of maximal defect n, consisting of the principal block

B00, another block B01 and (m/2− 1) blocks B1, . . . , B(m/2−1). Moreover, there are (ℓ− 1)/4 blocks of k[G]

of defect 0. There are precisely two isomorphism classes of simple k[G]-modules that belong to B00 (resp.

B01), represented by the trivial simple k[G]-module T0,0 and a simple k[G]-module T1,1 of k-dimension ℓ

(resp. by two simple k[G]-modules T0,1 and T1,0 of k-dimension (ℓ + 1)/2). For each t ∈ {1, . . . , (m/2− 1)},
there is precisely one isomorphism class of simple k[G]-modules belonging to Bt, represented by a simple

k[G]-module T̃t of k-dimension ℓ + 1. Note that the Brauer character of T̃t, 1 ≤ t ≤ (m/2 − 1), is the

restriction to the 3-regular classes of the ordinary irreducible character δ̃∗t , 1 ≤ t ≤ (m/2 − 1), with the

following values:

(6.45) δ̃∗t (e) = ℓ+ 1; δ̃∗t (r1) = 1 = δ̃∗t (r2); δ̃∗t ((v
′′)i) = (ξm)ti + (ξm)−ti; δ̃∗t (w

j) = 0

where ξm is a fixed primitive mth root of unity and we allow i = m/2, which gives us δ̃∗t (s) = 2 (−1)t.

As in the previous subsections, we determine the Green correspondents of the non-projective indecompos-

able direct summands of ResGN1
H0(X,ΩX), by using that there is a stable equivalence between the module

categories of k[G] and k[N1]. If n = 1 then U
(N1)
1,1,2·3n−1+1 = U

(N1)
1,1,3n is a projective k[N1]-module. If n > 1

then the Green correspondent of U
(N1)
1,1,2·3n−1+1 belongs to B00. Note that the Green correspondent of S

(N1)
0,0

(resp. S
(N1)
1,1 ) is T0,0 (resp T1,1). This means that the Green correspondent of U

(N1)
1,1,2·3n−1+1 is the uniserial

k[G]-module of length 2 · 3n−1 + 1 whose socle is isomorphic to T1,1. On the other hand, the Green cor-

respondent of S
(N1)
0,1 is one of T0,1 or T1,0. We relabel the simple k[G]-modules, if necessary, to be able to

assume that the Green correspondent of S
(N1)
0,1 (resp. S

(N1)
1,0 ) is T0,1 (resp T1,0). This means that the Green

correspondent of U
(N1)
0,1,2·3n−1 is the uniserial k[G]-module of length 2 · 3n−1 whose socle is isomorphic to T0,1.

For 1 ≤ t ≤ (m/2 − 1), the Green correspondent of Ũ
(N1)
t,2·3n−1 belongs to the block Bt. Since ℓ + 1 ≡ 2
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mod 3n, it follows that the Green correspondent of Ũ
(N1)
t,2·3n−1 is a uniserial k[G]-module of length 2 · 3n−1

whose composition factors are all isomorphic to T̃t.

Next, we determine the Brauer character β̃ of the largest projective direct summand of H0(X,ΩX). For

i, j ∈ {0, 1}, let Ψi,j be the Brauer character of the projective k[G]-module cover P (G, Ti,j) of Ti,j. Define

β̃′ to be the function on the 3-regular conjugacy classes of G such that

β̃ = δn,1Ψ1,1 + β̃′.

Using (6.24), (6.32) - (6.35) and (6.45), we obtain

β̃′(e) = (ℓ− 1)

(
(ℓ+ 1)(ℓ − 10)

24
− 1

)
;

β̃′(ri) = 1− 5(ℓ− 1)

12
(i = 1, 2);

β̃′(s) = − ℓ− 1

4
;

β̃′((v′′)i) = 0 ((v′′)i 6∈ {e, s});
β̃′(wj) = 2 (wj 6= e).

Let Ψ̃t be the Brauer character of the projective k[G]-module cover P (G, T̃t) of T̃t, 1 ≤ t ≤ (m/2 − 1).

We have (ℓ − 1)/4 additional Brauer characters ηG of projective indecomposable k[G]-modules that are

constructed from characters η of W with values

ηG(e) = ℓ− 1; ηG(r1) = −1 = ηG(r2); ηG(s) = 0 = ηG((v′′)i); ηG(wj) = −(η(wj) + η(wj))

where η ranges over the characters of W that are not equal to their conjugate η. Denote the corresponding

projective indecomposable k[G]-modules by P (G, ηG).

Similarly to the previous subsections, using the Cartan matrix given in [7, §III], we get

β̃′ =
ℓ− 25

12
Ψ1,1 +

ℓ− 19− 6(−1)m/2

24
(Ψ0,1 +Ψ1,0) +

m/2−1∑

t=1

ℓ− 19− 6(−1)t

12
Ψ̃t +

∑

η

ℓ− 1

12
ηG.

Therefore, we have proved the following result:

Proposition 6.4.3. When ℓ ≡ 1 mod 4 and ℓ ≡ 1 mod 3, let U
(G)
T1,1,2·3n−1+1 (resp. U

(G)
T0,1,2·3n−1) denote the

uniserial k[G]-module of length 2 · 3n−1 + 1 (resp. 2 · 3n−1) whose socle is isomorphic to T1,1 (resp. T0,1).

In particular, if n = 1 then U
(G)
T1,1,2·3n−1+1 = P (G, T1,1) is a projective indecomposable k[G]-module. Let

U
(G)

T̃t,2·3n−1
denote the uniserial k[G]-module of length 2 · 3n−1 whose composition factors all isomorphic to T̃t.

As a k[G]-module,

H0(X,ΩX) ∼=
(
ℓ− 25

12
+ δn,1

)
P (G, T1,1)⊕

ℓ− 19− 6(−1)m/2

24
(P (G, T0,1)⊕ P (G, T1,0))⊕

m/2−1⊕

t=1

ℓ− 19− 6(−1)t

12
P (G, T̃t)⊕

⊕

η

ℓ− 1

12
P (G, ηG)⊕

(1− δn,1) U
(G)
T1,1,2·3n−1+1 ⊕ U

(G)
T0,1,2·3n−1 ⊕

m/2−1⊕

t=1

U
(G)

T̃t,2·3n−1
.
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6.4.4. The k[G]-module structure of H0(X,ΩX) when ℓ ≡ −1 mod 4 and ℓ ≡ −1 mod 3. This is the

case when ǫ = −1 and ℓ ≡ ǫ mod 4. By (6.22), the non-projective indecomposable direct summands of

ResGN1
H0(X,ΩX) are again given as in (6.44).

We first determine the Green correspondents of the non-projective indecomposable direct summands

of ResGN1
H0(X,ΩX), using the information in [7, §VI]. There are 1 + (m/2) blocks of k[G] of maximal

defect n, consisting of the principal block B00, another block B01 and (m/2 − 1) blocks B1, . . . , B(m/2−1).

Moreover, there are (ℓ − 3)/4 blocks of k[G] of defect 0. There are precisely two isomorphism classes of

simple k[G]-modules that belong to B00 (resp. B01), represented by the trivial simple k[G]-module T0 and a

simple k[G]-module T̃0 of k-dimension ℓ− 1 (resp. by two simple k[G]-modules T0,1 and T1,0 of k-dimension

(ℓ− 1)/2). For each t ∈ {1, . . . , (m/2− 1)}, there is precisely one isomorphism class of simple k[G]-modules

belonging to Bt, represented by a simple k[G]-module T̃t of k-dimension ℓ−1. Note that the Brauer character

of T̃t, 0 ≤ t ≤ (m/2 − 1), is the restriction to the 3-regular classes of the ordinary irreducible character δ̃∗t ,

0 ≤ t ≤ (m/2− 1), with the following values:

(6.46) δ̃∗t (e) = ℓ− 1; δ̃∗t (r1) = −1 = δ̃∗t (r2); δ̃∗t ((v
′′)i) = −((ξm)ti + (ξm)−ti); δ̃∗t (w

j) = 0

where ξm is a fixed primitive mth root of unity and we allow i = m/2, which gives us δ̃∗t (s) = −2 (−1)t.

As in the previous subsections, we determine the Green correspondents of the non-projective indecompos-

able direct summands of ResGN1
H0(X,ΩX), by using that there is a stable equivalence between the module

categories of k[G] and k[N1]. If n = 1 then U
(N1)
1,1,2·3n−1+1 = U

(N1)
1,1,3n is a projective k[N1]-module. If n > 1

then the Green correspondent of U
(N1)

1,1,2·3n−1+1 belongs to B00. Since the Green correspondent of S
(N1)
0 is

T0, it follows that the Green correspondent of S
(N1)
1 is a uniserial k[G]-module of length (3n − 1)/2 whose

composition factors are all isomorphic to T̃0. We now follow the irreducible homomorphisms in the stable

Auslander-Reiten quiver of B00 starting with the Green correspondent of S
(N1)
1 to arrive, after 2 · 3n−1 such

morphisms, at a uniserial k[G]-module of length (3n−1−1)/2 whose composition factors are all isomorphic to

T̃0. This must be the Green correspondent of U
(N1)
1,1,2·3n−1+1. On the other hand, the Green correspondent of

U
(N1)
0,1,2·3n−1 belongs to the block B01. Since (ℓ− 1)/2 ≡ −1 mod 3n, it follows that the Green correspondent

of U
(N1)
0,1,2·3n−1 is a uniserial k[G]-module of length 3n−1 whose socle is isomorphic to either T0,1 or T1,0. By

relabeling the simple k[G]-modules, if necessary, we are able to assume that the socle of the Green correspon-

dent of U
(N1)
0,1,2·3n−1 is isomorphic to T0,1. Note that the Brauer characters of T0,1 and T1,0 only differ with

respect to their values at the elements of order ℓ in G. Since we have already chosen a square root of −ℓ to
obtain (6.26) and (6.27), we let s01 ∈ {±1} be such that the Brauer character β(T0,1) satsfies

(6.47) β(T0,1)(r1) =
−1 + s01

√
−ℓ

2
.

For 1 ≤ t ≤ (m/2 − 1), the Green correspondent of Ũ
(N1)
t,2·3n−1 belongs to the block Bt. Since ℓ − 1 ≡ −2

mod 3n, it follows that the Green correspondent of Ũ
(N1)
t,2·3n−1 is a uniserial k[G]-module of length 3n−1 whose

composition factors are all isomorphic to T̃t.

Next, we determine the Brauer character β̃ of the largest projective direct summand of H0(X,ΩX). Since

(3n−1− 1)/2 = 0 when n = 1, we do not need to distinguish between the cases n = 1 and n > 1. Using (6.26)
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and (6.27), (6.32) - (6.35), (6.46) and (6.47), we obtain

β̃(e) = 1 +
(ℓ− 1)(ℓ2 − 7ℓ+ 4)

24
;

β̃(r1) = − ℓ− 5

6
− hℓ + s01

2

√
−ℓ;

β̃(r2) = − ℓ− 5

6
+
hℓ + s01

2

√
−ℓ;

β̃(s) = − ℓ+ 1

4
;

β̃((v′′)i) = 0 ((v′′)i 6∈ {e, s});
β̃(wj) = 1 (wj 6= e).

Let Ψ0 be the Brauer character of the projective k[G]-module cover P (G, T0) of T0. For {i, j} = {0, 1}, let
Ψi,j be the Brauer character of the projective k[G]-module cover P (G, Ti,j) of Ti,j . Let Ψ̃t be the Brauer

character of the projective k[G]-module cover P (G, T̃t) of T̃t, 0 ≤ t ≤ (m/2 − 1). We have (ℓ − 3)/4

additional Brauer characters ηG of projective indecomposable k[G]-modules that are also irreducible and

that are constructed from characters η of W with values

ηG(e) = ℓ+ 1; ηG(r1) = 1 = ηG(r2); ηG(s) = 0 = ηG((v′′)i); ηG(wj) = η(wj) + η(wj)

where η ranges over the characters of W that are not equal to their conjugate η. Denote the corresponding

projective indecomposable k[G]-modules by P (G, ηG).

Similarly to the previous subsections, using the Cartan matrix given in [7, §VI], we get

β̃ =
ℓ+ 1

12
Ψ̃0 +

(
(ℓ− 5 + 6(−1)m/2)

24
− s01hℓ + 1

2

)
Ψ0,1 +

(
(ℓ − 5 + 6(−1)m/2)

24
+
s01hℓ + 1

2

)
Ψ1,0 +

m/2−1∑

t=1

(ℓ − 5 + 6(−1)t)

12
Ψ̃t +

∑

η

ℓ− 11

12
ηG.

Therefore, we have proved the following result:

Proposition 6.4.4. When ℓ ≡ −1 mod 4 and ℓ ≡ −1 mod 3, let U
(G)

T̃0,(3n−1−1)/2
(resp. U

(G)

T̃t,3n−1
) denote the

uniserial k[G]-module of length (3n−1−1)/2 (resp. 3n−1) whose composition factors are all isomorphic to T̃0

(resp. T̃t). In particular, if n = 1 then U
(G)

T̃0,(3n−1−1)/2
= 0. Let U

(G)
T0,1,3n−1 denote the uniserial k[G]-module

of length 3n−1 whose socle is isomorphic to T0,1. As a k[G]-module,

H0(X,ΩX) ∼= ℓ+ 1

12
P (G, T̃0)⊕

(
(ℓ − 5 + 6(−1)m/2)

24
− s01hℓ + 1

2

)
P (G, T0,1)⊕

(
(ℓ − 5 + 6(−1)m/2)

24
+
s01hℓ + 1

2

)
P (G, T1,0))⊕

m/2−1⊕

t=1

(ℓ− 5 + 6(−1)t)

12
P (G, T̃t)⊕

⊕

η

ℓ− 11

12
P (G, ηG)⊕

U
(G)

T̃0,(3n−1−1)/2
⊕ U

(G)
T0,1,3n−1 ⊕

m/2−1⊕

t=1

U
(G)

T̃t,3n−1
.

Remark 6.4.5. The sign s01 from (6.47) depends on the relationship between the socle of the Green cor-

respondent of T0,1 and the values of the Brauer character of T0,1 on elements of order ℓ. As in Theorem

1.4, let H1 and H2 be representatives of the two conjugacy classes of subgroups of G that are isomorphic

to Σ3. By our definition of ∆1 and ∆2 in §6.1.2, we can choose H1 ≤ ∆1 and H2 ≤ ∆2. Recalling our
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definition of S
(N1)
0,1 , we see that the restriction of T0,1 to H1 (resp. H2) is the direct sum of a 2-dimensional

uniserial module whose socle is the trivial simple module (resp. the simple module corresponding to the sign

character) and a projective module.

Since the Brauer character of a 2-dimensional uniserial module for Σ3 in characteristic 3 does not determine

its isomorphism class, it is not so easy to connect the two possibilities of square roots of −ℓ going into the

values of the Brauer characters of H0(X,ΩX) and of T0,1 at elements of order ℓ.

We do not have a formula in general for s01 when ℓ ≡ −1 mod 12. But, for example, if ℓ = 11 then

hℓ = 1 and m = 2, which means that the multiplicity of P (G, T0,1) in H0(X,ΩX) is equal to −(s01 + 1)/2.

Since this number must be non-negative, it follows that s01 = −1 when ℓ = 11.

6.5. Proof of Theorem 1.4. Part (i) of Theorem 1.4 follows directly from Propositions 6.4.1 - 6.4.4. For

part (ii), we notice that the maximal ideal P3 of A containing 3 corresponds uniquely to a place v of F over

3. In other words, k(P3) = k(v). Let k1 be a perfect field containing k(v) and let k be an algebraic closure

of k1. Define X1 = k1 ⊗k(v) Xv(ℓ) where Xv(ℓ) is as in (5.1). In particular, X = X3(ℓ) = k ⊗k1 X1.

Note that there exists a finite Galois extension k′1 of k1 such that k′1 ⊆ k and such that the primitive central

idempotents of k[G] lie in k′1[G]. This can be seen as follows. By the Theorem on Lifting Idempotents (see

[11, Thm. (6.7) and Prop. (56.7)]), each primitive central idempotent e of k[G] can be lifted to a primitive

central idempotent ê ofW (k)[G] whenW (k) is the ring of infinite Witt vectors over k. If F (k) is the fraction

field of W (k) and F (k) is an algebraic closure of F (k), then we can use the formula for the primitive central

idempotents of F (k)[G] (see [11, Prop. (9.21)]) to see that ê has coefficients in a cyclotomic extension of Q3.

This implies that ê has coefficients in the intersection of the maximal cyclotomic extension of Q3 and W (k).

Therefore, ê has coefficients in Z3[ξ̂] for some root of unity ξ̂ whose order is relatively prime to 3. But this

means that there exists a root ξ of unity in k whose order is relatively prime to 3 such that e lies in k1(ξ)[G].

Since k1(ξ) is finite Galois over k1, we can take k′1 = k1(ξ).

Let now k2 be a finite field extension of k′1 such that k2 ⊆ k and such that all the indecomposable k[G]-

modules occurring in the decomposition of H0(X,ΩX) are realizable over k2. Letting X2 = k2 ⊗k1 X1, we

obtain from Propositions 6.4.1 - 6.4.4 that the k2[G]-module H0(X2,ΩX2) is a direct sum over blocks B2 of

k2[G] of modules of the form PB2 ⊕ UB2 in which PB2 is a projective B2-module and UB2 is either the zero

module or a single indecomposable non-projective B2-module. Moreover, one can determine PB2 and UB2

from the ramification data associated to the cover X −→ X/G. We have

k2 ⊗k1 H0(X1,ΩX1)
∼= H0(X2,ΩX2)

as k2[G]-modules, and

H0(X2,ΩX2)
∼= H0(X1,ΩX1)

[k2:k1]

as k1[G]-modules. Therefore, it follows from the Krull-Schmidt-Azumaya theorem that the decomposition of

H0(X1,ΩX1) into indecomposable k1[G]-modules is uniquely determined by the decomposition of H0(X2,ΩX2)

into indecomposable k2[G]-modules.

Consider next a block B1 of k1[G] corresponding to a primitive central idempotent ǫ1. Then ǫ1 is a sum

of primitive central idempotents in k2[G]

ǫ1 = ǫ2,1 + · · ·+ ǫ2,l

corresponding to blocks B2,1, . . . , B2,l of k2[G]. Moreover, we have seen above that ǫ2,1, . . . , ǫ2,l lie in k′1[G]

where k′1 is a finite Galois extension of k1. In particular, this means that Gal(k′1/k1) acts transitively on

{ǫ2,1, . . . , ǫ2,l}. Since every element in Gal(k′1/k1) can be extended to an automorphism in Aut(k2/k1), this

means in particular that Aut(k2/k1) acts transitively on {ǫ2,1, . . . , ǫ2,l}.
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Suppose the B1-module ǫ1 H
0(X1,ΩX1) is a direct sum of a projective B1-module together with a direct

sum of non-zero indecomposable B1-modules UB1,1, . . . , UB1,t. We need to show that t ≤ 1. Suppose t > 1.

For all 1 ≤ j ≤ t, we have

k2 ⊗k1 UB1,j =

l⊕

i=1

ǫ2,i (k2 ⊗k1 UB1,j) .

Since this k2[G]-module is non-zero and since Aut(k2/k1) acts transitively on {ǫ2,1, . . . , ǫ2,l}, it follows that
the k2[G]-module ǫ2,i (k2 ⊗k1 UB1,j) is a non-zero B2,i-module for all 1 ≤ i ≤ l. Since we have already

seen above that ǫ2,iH
0(X2,ΩX2) is a direct sum of a projective B2,i-module with at most one other non-

projective indecomposable B2,i-module, it follows that t ≤ 1. Note moreover, that the restriction of each

projective indecomposable B2,i-module to a k1[G]-module is a projective B1-module. In other words, the

k1[G]-module H0(X1,ΩX1) is a direct sum over blocks B1 of k1[G] of modules of the form PB1 ⊕UB1 in which

PB1 is a projective B1-module and UB1 is either the zero module or a single indecomposable non-projective

B1-module. Moreover, PB1 and UB1 are determined by the decomposition of

k2 ⊗k1 ǫ1 H0(X1,ΩX1) =

l⊕

i=1

ǫ2,iH
0(X2,ΩX2)

and we know from our discussion above that for all 1 ≤ i ≤ l,

ǫ2,iH
0(X2,ΩX2) = PB2,i ⊕ UB2,i .

It follows that one can determine PB1 and UB1 from the modules PB2,i and UB2,i for 1 ≤ i ≤ l. Therefore, one

can determine PB1 and UB1 from the ramification data associated to the cover X −→ X/G. This completes

the proof of Theorem 1.4.

6.6. Proof of Theorems 1.2 and 1.3 when p = 3. Fix a place v of F over 3, and define MOF,v
to be the

OF,v[G]-module

MOF,v
= OF,v ⊗A H0(X (ℓ),ΩX (ℓ))

which is flat over OF,v. Note that the residue fields k(v) = A/Pv and OF,v/mF,v coincide. Define

Xv = Xv(ℓ) = k(v)⊗A X (ℓ).

ThenMOF,v
is a lift of the k(v)[G]-module H0(Xv,ΩXv

) overOF,v. As in (5.2), letX = X3(ℓ) be the reduction

of X (ℓ) modulo 3 over k = k(v) = Fp. In other words, X = k⊗k(v)Xv and H0(X,ΩX) = k⊗kv H0(Xv,ΩXv
)

as k[G]-modules. Since H0(X,ΩX) = {0} for ℓ < 7, we can assume that ℓ ≥ 7.

The proof of Theorem 1.2 when p = 3 follows now the same argumentation as in the case when p > 3,

where we use Propositions 6.4.1 - 6.4.4 and part (ii) of Theorem 1.4 instead of Lemma 5.2. In particular, we

obtain that MOF,v
is a direct sum over blocks B of OF,v[G] of modules of the form PB ⊕ UB in which PB

is projective and UB is either the zero module or a single indecomposable non-projective B-module. Define

MB = PB ⊕ UB.

To prove Theorem 1.3 when p = 3, we assume now that F contains a root of unity of order equal to

the prime to 3 part of the order of G. Let a be the maximal ideal over 3 in A associated to v, so that a

corresponds to the maximal ideal mF,v of OF,v. Since for different blocks B and B′ of OF,v[G], there are no

non-trivial congruences modulo mF,v between MB and MB′ and since for a fixed block B of OF,v[G], there

are no non-trivial congruences modulo mF,v between PB and UB, the proof of Theorem 1.3 when p = 3

follows now the same argumentation as in the case when p > 3. �
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7. Appendix: Isotypic Hecke stable decompositions of the space of weight two cusp forms.

In this appendix we assume only that N ≥ 3 is an integer and that F is a number field. Following the

notation in [34, Chap. 3], we let Γ = SL(2,Z), and we denote the principal congruence subgroup of Γ by ΓN

(rather than Γ(N)). We let S(F ) be the space of all weight two cusp forms for ΓN that have q-expansion

coefficients in F at all cusps, in the sense of [26, §1.6]. By [34, §6.1-6.2], together with flat base change, it

follows that S(F ) coincides with the space of all weight two cusp forms for ΓN whose Fourier expansions

with respect to e2πiz/N have coefficients in F .

The group Γ = SL(2,Z/N) = Γ/ΓN then acts F -linearly on S(F ). This action factors through an F -linear

action by G = PSL(2,Z/N) = Γ/〈ΓN ,± I 〉, where I denotes the 2× 2 identity matrix. In this appendix, we

let T denote the ring of Hecke operators of index prime to N (see (7.4) below for the precise definition). As

in (1.2) and (1.3), we call a T-stable decomposition into F -subspaces

S(F ) = E1 ⊕ E2

G-isotypic if there are two orthogonal central idempotents e1, e2 of F [G] such that 1 = e1 + e2 in F [G] and

Ei = eiS(F ) for i = 1, 2. The goal of this section is to prove the following result.

Proposition 7.1. Suppose e1, e2 are orthogonal central idempotents of F [G] such that 1 = e1 + e2 and each

ei is stable under the conjugation action of PGL(2,Z/N) on G. Then setting Ei = eiS(F ) for i = 1, 2 gives

a G-isotypic T-stable decomposition of S(F ).

We discuss in Remark 7.3 the problem of constructing such decompositions for larger rings of Hecke

operators.

To define T, we follow Shimura [34, §3.3] and first define

∆N = {α ∈ Mat(2,Z) ; det(α) > 0 and gcd(det(α), N) = 1} ,(7.1)

∆′
N =

{
α ∈ ∆N ; α ≡

(
1 0

0 x

)
mod N for some x ∈ (Z/N)∗

}
.(7.2)

In Shimura’s notation, we let R(Γ,∆N ) (resp. R(ΓN ,∆
′
N )) be the ring that is generated as a free Z-module

by the double cosets

ΓαΓ for α ∈ ∆N (resp. ΓN αΓN for α ∈ ∆′
N ).

We refer the reader to [34, §3.1] for the definition of the (commutative) ring multiplication in R(Γ,∆N ) (resp.

R(ΓN ,∆
′
N )); we will not need this in what follows. By [34, Prop. 3.31], the correspondence

ΓN αΓN 7→ ΓαΓ

for α ∈ ∆′
N , defines an isomorphism between R(ΓN ,∆

′
N ) and R(Γ,∆N ).

For each positive integer n with gcd(n,N) = 1, we define ρ′N (n) to be a set of representatives α ∈ ∆′
N of

all distinct double cosets in ΓN\∆′
N/ΓN such that det(α) = n. We define

(7.3) T ′(n) =
∑

α∈ρ′
N
(n)

ΓN αΓN .

By [34, Thm. 3.34],

(7.4) T = R(ΓN ,∆
′
N )⊗Z Q

is the Q-algebra generated by all T ′(n) when n ranges over all positive integers with gcd(n,N) = 1. A right

action of R(ΓN ,∆
′
N ), and hence of T, on f ∈ S(F ) is defined in the following way. For α ∈ ∆′

N , we write

ΓNαΓN =
⋃

i

ΓNαi
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as a finite disjoint union of right cosets. Define

f
∣∣ΓNαΓN =

∑

i

f |αi

where for a matrix γ =

(
a b

c d

)
∈ GL(2,Q) and z in the complex upper half plane H we let

(7.5) (f |γ)(z) = det(γ) (cz + d)−2 f

(
az + b

cz + d

)
.

In particular, for all r ∈ Q, we have

(7.6) (f | r I )(z) = r2 (r−2) f(z) = f(z).

Note that, for α ∈ ∆′
N , the right action on S(F ) by the double coset ΓNαΓN defines an F -linear transfor-

mation on S(F ), which we denote by [ΓNαΓN ]. By [34, Thm. 3.41], the F -linear transformations [ΓNαΓN ]

on S(F ), with α ∈ ∆′
N , are mutually commutative, and normal with respect to the Petersson inner product

on S(F ). In particular, there exists an F -basis of S(F ) consisting of common eigenfunctions of the linear

transformations [ΓNαΓN ] for all α ∈ ∆′
N .

A well-defined right action of Γ = SL(2,Z/N) = Γ/ΓN on S(F ) is defined by

(7.7) f ⋆ γ = f |γ

if γ ∈ Γ has image γ ∈ Γ. Since G = PSL(2,Z/N) = Γ/〈ΓN ,± I 〉, it follows by (7.6) that this right action

factors through a well-defined right action by G = PSL(2,Z/N) on S(F ), which is defined by

(7.8) f ⋆ γ = f |γ

if γ ∈ Γ has image γ ∈ PSL(2,Z/N). These right actions can be made into left actions in the usual way via

γ ⋆ f = f ⋆ (γ)−1 (resp. γ ⋆ f = f ⋆ (γ)−1).

We can combine the actions by R(ΓN ,∆
′
N ), T and Γ using the larger Hecke ring R = R(ΓN ,∆), where

∆ = {α ∈ Mat(2,Z) ; det(α) > 0}.

In other words, R is the ring that is generated as a free Z-module by the double cosets

ΓNαΓN for α ∈ ∆.

As before, we refer the reader to [34, §3.1] for the definition of the (commutative) ring multiplication in

R = R(ΓN ,∆). We have a natural injection of Q-algebras

(7.9) T = R(ΓN ,∆
′
N )⊗Z Q →֒ R⊗Z Q.

Define left and right actions of Γ = SL(2,Z/N) on R as follows. If γ is the image of γ ∈ Γ and α ∈ ∆, then

(7.10) ΓNαΓN · γ = ΓN (αγ)ΓN and γ · ΓNαΓN = ΓN (γα)ΓN .

We extend these actions by linearity to define left and right actions of Z[Γ] on R and of Q[Γ] on R ⊗Z Q.

We now have natural right actions of R ⊗Z Q and of Q[Γ] on S(F ) via (7.5) and (7.7). Moreover, the right

action of Q[Γ] factors through a well-defined right action of Q[G] on S(F ) via (7.8).

Since for any element γ ∈ Γ, the PGL(2,Z/N) conjugates of the image γ in G are the images of the

GL(2,Z/N) conjugates of the image γ in Γ and because of (7.9), Proposition 7.1 now follows from the

following result.
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Lemma 7.2. For each double coset ΓNαΓN with α ∈ ∆′
N and each γ ∈ Γ with image γ ∈ Γ the following

is true. Let s be the element of Z[Γ] ⊂ Q[Γ] that is the sum of the GL(2,Z/N) conjugates of γ. Then in

R⊗Z Q one has

(7.11) (ΓNαΓN ) · s = s · (ΓNαΓN )

where the product on the left and right sides of (7.11) denote the right and left actions of Q[Γ] on R ⊗Z Q,

respectively.

Proof. Let C be the conjugacy class of γ in GL(2,Z/N), say

(7.12) C = {βi γ β
−1

i }nγ

i=1

for appropriate βi ∈ GL(2,Z/N). For 1 ≤ i ≤ nγ , let βi ∈ ∆N be a preimage of βi. Since each α ∈ ∆′
N lies

in ∆N , it defines an element α of GL(2,Z/N). Thus we obtain

(7.13) C = {(αβi) γ (αβi)−1}nγ

i=1

for all α ∈ ∆′
N . This implies that for all α ∈ ∆′

N and for s =
∑
c∈C c we have

(ΓN αΓN) · s =

nγ∑

i=1

ΓN (αβiγβ
−1
i ) ΓN

=

nγ∑

i=1

ΓN
(
(αβi)γ(αβi)

−1
)
αΓN

= s · (ΓN αΓN ).

�

Remark 7.3. We now discuss an issue that arises if we replace R(ΓN ,∆
′
N ) by the bigger Hecke algebra

R(ΓN ,∆
′) when

∆′ =

{
α ∈ ∆ ; α ≡

(
1 0

0 x

)
mod N for some x ∈ (Z/N)

}
.

For each integer n ≥ 1, we define ρ′(n) to be a set of representatives α ∈ ∆′ of all distinct double cosets in

ΓN\∆′/ΓN such that det(α) = n. We define

(7.14) T ′(n) =
∑

α∈ρ′(n)
ΓN αΓN .

Note that for integers n ≥ 1 with gcd(n,N) = 1, the definition of T ′(n) in (7.14) coincides with the definition

of T ′(n) in (7.3). By [34, Thm. 3.34], R(ΓN ,∆
′)⊗Z Q is generated by T ′(n) when n ranges over all positive

integers. We can then define the bigger Hecke algebra T′ to be the Q-algebra generated by all T ′(n) when

n ranges over all positive integers. We again obtain an injection of Q-algebras

T′ = R(ΓN ,∆
′)⊗Z Q →֒ R⊗Z Q.

However, for α ∈ ∆′ for which det(α) is not relatively prime to N , we do not obtain the identity (7.11) in

general. To be concrete, let αN =

(
1 0

0 N

)
and let γ =

(
1 0

1 1

)
∈ Γ. Then all elements in ΓN (γαN )ΓN

are congruent to

(
1 0

1 0

)
mod N . On the other hand, for any element β ∈ GL(2,Z/N) with preimage

β ∈ ∆N , we have that all elements in ΓN(αN (βγβ−1))ΓN are congruent modulo N to a matrix of the form(
a1 a2

0 0

)
for certain elements a1, a2 ∈ Z/N . In other words, there are elements γ ∈ Γ for which the
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identity (7.11) is not valid when α = αN . Since we have T ′(N) = ΓNαNΓN by [34, Prop. 3.33], it follows

that the right and left actions of s on T ′(N) do also not coincide for the above γ, when s is as in Lemma

7.2.
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[15] L. V. Dieulefait, J. Jiménez Urroz, and K. A. Ribet. Modular forms with large coefficient fields via congruences. Res.

Number Theory, 1:Art. 2, 14, 2015.
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