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DEFORMATION OF CURVES WITH AUTOMORPHISMS AND

REPRESENTATIONS ON RIEMANN-ROCH SPACES.

A. KONTOGEORGIS

Abstract. We study the deformation theory of nonsigular projective curves
defined over algebraic closed fields of positive characteristic. We show that
under some assumptions the local deformation problem for automorphisms of
powerseries can be reduced to a deformation problem for matrix representa-
tions. We study both equicharacteristic and mixed deformations in the case
of two dimensional representations.

1. Introduction

Let X be a nonsingular projective curve of genus g ≥ 2 defined over an alge-
braically closed field of characteristic p > 0. The automorphism groupG := Aut(X)
is known to be a finite group. The appearance of wild ramification in the cover
X → X/Aut(X) makes the theory of such covers more difficult than the corre-
sponding theory in characteristic zero. For a point P ∈ X the decomposition group
G(P ) = {σ ∈ G : σ(P ) = P} is known to be cyclic in characteristic zero and a non-
abelian solvable group admitting a ramification filtration [35]. In [23] the author
defined a faithful representation of the p-part of the decomposition group at a wild
ramified point P :

(1) ρ : G1(P ) → GL(L(mP )),

where L(mP ) = {f ∈ k(X) : div(f) + mP ≥ 0} ∪ {0}. In this paper we would
like to study the relation of two deformation theories, namely the deformation
theory of representations of finite groups and the deformation theory of curves
with automorphisms.

We will treat both mixed characteristic and equicharacteristic deformations. For
the mixed characteristic case we consider Λ to be a complete Noetherian local ring
with residue field k. Usually Λ is an algebraic extension of the ring of Witt vector
W (k). For the equicharacteristic case we take Λ = k.

Let C denote the category of local Artin Λ-algebras, which residue field k. Con-
sider a subgroup G of the group Aut(X). A deformation of the couple (X,G) over
the local Artin ring A is a proper, smooth family of curves

X → Spec(A)

parametrized by the base scheme Spec(A), together with a group homomorphism
G → AutA(X ), such that there is a G-equivariant isomorphism φ from the fibre
over the closed point of A to the original curve X :

φ : X ⊗Spec(A) Spec(k) → X.
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Two deformations X1,X2 are considered to be equivalent if there is a G-equivariant
isomorphism ψ that reduces to the identity in the special fibre and making the
following diagram commutative:

X1
ψ

//

##FFFFFFFF
X2

{{xxxxxxxx

SpecA

The global deformation functor is defined:

Dgl : C → Sets,A 7→







Equivalence classes
of deformations of
couples (X,G) over A







By the local-global theorems of J.Bertin and A. Mézard [2] and the formal patching
theorems of D. Harbater, K. Stevenson [15], [16], the study of the functor Dgl can
be reduced to the study of the following deformation functors attached to each wild
ramification point P of the cover X → X/G:

(2) DP : C → Sets, A 7→







lifts G(P ) → Aut(A[[t]]) of ρ mod-
ulo conjugation with an element
of ker(AutA[[t]] → k[[t]])







The theory of automorphisms of formal powerseries rings is not as well understood
as is the theory of automorphisms of finite dimensional vector spaces, i.e the theory
of general linear groups.

For a k-algebra A with maximal ideal mA, consider the multiplicative group
Ln(A) < GLn(A), of invertible lower triangular matrices with entries in A, and
invertible elements λ in the diagonal, such that λ − 1 ∈ mA. We consider the
following functor from the category C of local Artin k-algebras to the category of
sets

(3) F : A ∈ Ob(C) 7→















liftings of ρ : G(P ) → Ln(k)
to ρA : G(P ) → Ln(A) modulo
conjugation by an element
of ker(Ln(A) → Ln(k))















It is known that among the curves X with automorphism group G = Aut(X)
divisible by the characteristic, the curves so thatG2(P ) = {1} for all ramified points
are the most simple. We will call these curves weakly ramified. Many intractable
problems for the theory of curves with general automorphism group are solved for
weakly ramified curves. For example the computation of the G-module structure
of spaces of holomorphic differentials [22] or the computation of the deformation
rings of curves with automorphisms [4]. In our representation perspective it seems
that the simplest curves are those with two dimensional representations at all wild
ramified points. Notice that if a two dimensional representation is attached at the
wild point P , then the group G1(P ) is elementary abelian and has conductor m > 1
[23, example 3.].

In section 2 we show how to attach a deformation of a matrix representation
to every deformation of the couple (X,G) over a complete local domain. Section
3 is devoted to the deformations of matrix representations. We focus on the two
dimensional case and we construct a hull for these deformations. The deformation
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theory of such representations is closely related to deformations of products of Ga

group schemes in the equal characteristic case or to G(λ) group schemes in mixed
characteristic. In section 4 we try to analyze further the relation between the
functors F (·) and D(·). A matrix representation allows us to express a deformation
ρ̃σ given as a formal series ρ̃σ(t) ∈ A[[t]] in the form of a root od rational function
of t. For the case of two dimensional representations, where V = G1(P ) is an
elementary abelian group, we are able to compute the image of elements in F (·)
in the tangent space D(k[ǫ]/ǫ2) = H1(V, TO), see proposition 4.2. By combining
these results to the computation of H1(V, TO) given by the author in [24, prop. 2.8]
we are able to compute the Krull dimension of the hull’s attached to every wild
ramified point.

Finally, in section 5 we restrict ourselves to to the equicharacteristic case and we
relate two dimensional matrix deformations to the deformation functor of R. Pries.

Acknowledgments The author would like to thank the participants of the con-
ference in Leiden on Automorphisms of Curves for enlightening conversations and
especially R. Pries and M. Matignon for their corrections and remarks. This paper
was completed during the author’s visit at Max-Planck Institut für Mathematik in
Bonn. The author would like to thank this insitution for its support and hospitality.

2. Branch locus and liftings of matrix representations.

In this section we will show how the problem of deforming the representations at-
tached at the wild ramified points give information on the problem of deformations
of curves with automorphisms.

Select a wild ramified point Pi on every orbit of wild ramified points under the
action of the group G. Define the functor Dloc =

∏

DPi . J. Bertin and A. Mézard
proved that there is a smooth morphism φ : Dgl → Dloc, and this morphism induces
the following relation on the global deformation ring Rgl and of the deformation
rings Ri of the deformation functors DPi .

Rgl = (R1⊗̂R2⊗̂ · · · ⊗̂Rr)[[U1, . . . , UN ]],

where N = dimkH
1(X/G, πG∗ (TX)), and Ri is the deformation ring of DPi . For

more information concerning this construction we refer to [2]. For an exact formula
for N we refer to [24, sec. 3].

In the approach of Schlessinger [31] one wants to build deformations of (X,G)
over Artin algebras, especially over the algebras k[ǫ]/ǫn, and study whether a de-
formation over Speck[ǫ]/ǫn can be lifted to deformation over Speck[ǫ]/ǫn+1. More
generaly a small extension A′ of A is given by the the short exact sequence of local
Artin algebras

0 → kerπ → A′ → A→ 0

such that kerπ · mA′ = 0, where mA is the maximal ideal of A′ respectively. We
would like to know if a deformation in D(A) can be lifted to a deformation in
D(A′). The obstructions of such liftings are elements in H2(G, TO). If there are no
obstructions then we can construct a family over the formal scheme X → SpfR for
some complete domain R. The scheme SpfR is a formal scheme and does not posses
a generic fibre. J. Bertin and A. Mézard in [2] observed that an algebraization
theorem of Grothendieck [12] gives that the formal scheme representing Dgl is
algebraizable, and it corresponds to the formal completion of a proper smooth
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curve over SpecR. This means that every unobstructed deformation over a formal
affine scheme can be extended to the generic fibre.

Assume that X → SpecR is a relative curve that is a solution to our deformation
problem, where R is a complete local domain. Let σ ∈ G1(P ), σ 6= 1, and let σ̃
be a lift of σ in X . The scheme X is regular at P , and the completion of OX ,P

is isomorphic to the ring R[[T ]]. Weierstrass preparation theorem [3, prop. VII.6]
implies that:

σ̃(T ) − T = gσ̃(T )uσ̃(T ),

where gσ̃(T ) is a distinguished Weierstrass polynomial of degree m+ 1 and uσ̃(T )
is a unit in R[[T ]].

The polynomial gσ̃(T ) gives rise to a horizontal divisor that corresponds to the
fixed points of σ̃. This horizontal divisor might not be reducible. The branch
divisor corresponds to the union of the fixed points of any σ ∈ G1(P ). Next lemma
shows how to define a horizontal branch divisor for the relative curves X → XG

when G is not a cyclic group.

Lemma 2.1. Let X → SpecA be an A-curve, admitting a fibrewise action of the
finite group G, where A is a Noetherian local ring. Let S = SpecA, and ΩX/S,
ΩY/S be the sheaves of relative differentials of X over S and Y over S, respectively.
Let π : X → Y be the quotient map. The sheaf

L(−DX/Y) = Ω−1
X/S ⊗S π

∗ΩY/S .

is the ideal sheaf the horizontal Cartier divisor DX/Y . The intersection of DX/Y

with the special and generic fibre of X gives the ordinary branch divisors for curves.

Proof. We will first prove that the above defined divisor DX/Y is indeed an effective
Cartier divisor. According to [21, Cor. 1.1.5.2] it is enough to prove that

• DX/Y is a closed subscheme which is flat over S.
• for all geometric points Speck → S of S, the closed subscheme DX/Y ⊗S k

of X ⊗S k is a Cartier divisor in X ⊗S k/k.

We are interested in deformations of nonsingular curves. Since the base is a local
ring and the special fibre is nonsingular, the deformation X → SpecA is smooth.
(See the remark after the definition 3.35 p.142 in [25]). The smoothness of the
curves X → S, and Y → S, implies that the sheaves ΩX/S and ΩX/S are S-flat,
[25, cor. 2.6 p.222].

On the other hand the sheaf ΩY,SpecA is by [21, Prop. 1.1.5.1] ØY -flat. Thus,
π∗(ΩY,SpecA) is ØX -flat and therefore SpecA-flat [17, Prop. 9.2]. Finally, observe
that the intersection with the special and generic fibre is the ordinary branch divisor
for curves according to [17, IV p.301]. �

Remark: Two horizontal branch divisors can collapse to the same point in
the special fibre. For instance, this always happens if a deformation of curves
from positive characteristic to characteristic zero with a wild ramification point is
possible.

For a curve X and a branch point P of X we will denote by iG,P the order
function of the filtration of G at P . The Artin representation of the group G is
defined by arP (σ) = −fP iG,P (σ) for σ 6= 1 and arP (1) = fP

∑

σ 6=1 iG,P (σ) [35,

VI.2]. We are going to use the Artin representation at both the special and generic
fibre. In the special fibre we always have fP = 1 since the field k is algebraically
closed. The field of quotients of A should not be algebraically closed therefore a
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fixed point there might have fP ≥ 1. The integer iG,P (σ) is equal to the multiplicity
of P × P in the intersection of ∆.Γσ in the relative A-surface X ×SpecA X , where
∆ is the diagonal and Γσ is the graph of σ [35, p. 105].

Since the diagonals ∆0,∆η and the graphs of σ in the special and generic fibres
respectively of X ×SpecA X are algebraically equivalent divisors we have:

Proposition 2.2. Assume that A is an integral domain, and let X → SpecA be
a deformation of X. Let P̄i, i = 1, · · · , s be the horizontal branch divisors that
intersect at the special fibre, at point P , and let Pi be the corresponding points on
the generic fibre. For the Artin representations attached to the points P, Pi we have:

arP (σ) =

s
∑

i=1

arPi(σ).

This generalizes a result of J. Bertin [1]. Moreover if we set σ = 1 to the above
formula we obtain a relation for the valuations of the differents in the special and
the generic fibre, since the value of the Artin’s representation at 1 is the valuation of
the different [35, prop. 4.IV,prop. 4.VI]. This observetion is equivalent to claim 3.2
in [10] and is one direction of a local criterion for good reduction theorem proved
in [10, 3.4], [20, sec. 5].

Corollary 2.3. Assume that V = G1(P ) is an elementary abelian group with more

than one Z/pZ components. If V can be lifted to characteristic zero, then |V |
p | m+1.

Proof. The group V acts on the generic fibre, where the possible stabilizers of points
are cyclic groups. Since V is not cyclic it can not fix any point Pi in the intersection
of the branch locus with the generic fibre. Only a cyclic component of V can fix a
point Pi. Since V act on the set of points Pi, each orbit has |V |/p elements. For
any element σ ∈ V the Artin representation arPi(σ) = 1 (no wild ramification at
the generic fibre). Therefore proposition 2.2 gives us that the number of {Pi} is
m+ 1 and the desired result follows. �

Remark: Consider the case of equicharacteristic deformations of ordinary curves,
together with a p-subgroup of the group of automorphisms. Then |arP (σ)| = 2 for
all σ ∈ G(P ) = G1(P ), σ 6= 1 [28]. On the other hand the ramification at the points
of the generic fibre is also wild and 2.2 implies that there is only one horizontal
branch divisor extending every wild ramification point P .

Remark: The author finds amusing the following similarity to the theory of
dynamical systems: It is known that autonomous (ordinary) differential equations
on a manifold M induce an action of R on M . The fixed locus of this action, called
equilibrium locus in the realm of differential equations, can split as the integrated
vector fields depend on parameters. The study of this splitting is the object of
bifurcation theory [13]. Notice also that R is not compact and the representation
theory of R shares many difficulties with the corresponding representation theory
of groups of order divided by the characteristic, because of the absence of a Haar
measure on them.

Proposition 2.4. Let R be a complete local regular integer domain. Let X →
SpecR be a deformation of the couple (X,G), and let P be a wild ramified point
of the special fibre X. Assume that there is a a 2-dimensional representation ρ :
G1(P ) → GLk(H

0(X,L(mP ))) attached to P . Assume also that there is a G-
invariant horizontal divisor that intersects the special fibre with multiplicity m.
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Then, there is a free R-module M of rank 2 generated by 1, f̃ so that M := 〈1, f̃〉R ⊂
H0((X ,L(αD))), where 1 ≤ α ∈ N and M ⊗R k = H0(X,L(mP )). Moreover, the
representation ρ can be lifted to a representation

ρ̃ : G1(P ) → GLR(〈1, f̃〉R).

The elements ρ̃σ are lower triangular matrices.
Moreover the basis element f̃ is of the form

(4) f̃ =
1

(Tm + am−1Tm−1 + · · · + a1T1 + a0)
u(T ),

where a0, . . . , am−1 ∈ mR and u(T ) is a unit in R[[T ]] reducing to 1 modmR.

Proof. Let us consider the sheaf L(D). The space of global sections H0(X ,L(D))
has the structure of an R-module. For an arbitrary Cartier divisor D on X and for
all i ≥ 0 there is a natural map [17, prop. III 12.5]

φi : Hi(X ,L(D)) ⊗R k → Hi(Xs,L(D ⊗ k)).

We are interested in global sections i.e., for the zero cohomology groups, but in
general φ0 can fail to be an isomorphism.

Instead of looking at D we will consider a′D, where a′ is a sufficiently large
natural number. We will employ the Riemann-Roch theorem in both the special
and the generic fibre and we can choose a sufficiently big so that the index of
speciality at both the generic and the special fibre is zero. P. Deligne - D. Mumford
observed [6, 4. 78], [11, chap.3 sec.7] that since

H1(Xs,L(a′D ⊗ k)) = H1(Xη,L(a′D ⊗K)) = 0

theR-moduleH0(X ,L(a′D)) is free. We can then select an element f̃ ∈ H0(X ,L(a′D))

so that f̃ ≡ f modmR. Consider the least a such that 〈1, f̃〉R ⊆ H0(X ,L(aD))
for some 1 ≤ a ≤ a′. Since D is G1(P )-invariant the R-module H0(X ,L(aD)) is
equipped with aG1(P )-action. The moduleM might not be the wholeH0(X ,L(aD))
but it is the R-free part of it. Therefore G1(P ) acts on M as well and the repre-
sentation can be lifted:

ρ̃ : G1(P ) → GLR(M),

as required. Since σ |R= IdA this representation is given by lower triangular ma-
trices.

The element 1/f̃ is a holomorphic element inR[[T ]] reducing to 1/f = tm modulo

mR. Thus, the reduced order of 1/f̃ is m and eq. (4) follows by Weierstrass
preparation theorem [3, prop. VII.6]. �

We will now try to give conditions for the existence of a G1(P )-invariant divisor
intersecting the special fibre at P with degree m+1. Let T = {P̄i}i=1,...,s be the set
of horizontal branch divisors that restricts to P in the special fibre of X . This space
is acted on by G1(P ), since P̄i are all components of the branch divisor. Each of
the P̄i is fixed by some element of G but not necessarily by the whole group G1(P ),
unless of course G1(P ) is isomorphic to Z/pZ.

Let O(T ) be the set of orbits of T under the action of the group G1(P ), on T .
A horizontal divisor D supported on T , is invariant under the action of G1(P ) if
and only if, the divisor D is of the form:

(5) D =
∑

C∈O(T )

nC
∑

P∈C

P,
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i.e., horizontal Cartier divisors that are in the same orbit of the action of G1(P )
must appear with the same weight in D. If the semigroup

∑

C∈O(T ) nC#C, nC ∈ N,

contains the Weierstrass semigroup of the branch point P of the special fibre, then
we can select the desired G1(P )-invariant divisor D supported on T .

If one orbit of G1(P ) acting on T is a singleton, i.e., there is a P̄i fixed by the
whole group G1(P ), then the semigroup

∑

C∈O(T )

nC#C, nC ∈ N,

is the semigroup of natural numbers, and we are done. This is the case when the
group G1(P ) is cyclic.

If #T 6≡ 0modp then there is at least one orbit that is a singleton. Indeed, if all
orbits have more than one element then all orbits must have cardinality divisible
by p, and since the set T is the disjoint union of orbits it must also have cardinality
divisible by p.

Lemma 2.5. If m is the first pole number that is not divisible by the characteristic,
and p ∤ m+ 1 then there is an orbit that consists of only one element.

Proof. By proposition 2.2 the Artin representation at the special fibre equals the
sum of the Artin representations at the generic fibre. Let σ ∈ G1(P ). The Artin
representation of σ at the special fibre equals m+ 1. All P̄i that are not fixed by
σ do not contribute in the sum of the Artin representations at the generic fibre.

An element τ sends P̄i which is fixed by H ⊂ G1(P ) to τP̄i which is fixed by
τHτ−1. Since the representation attached to P is two dimensional the group G1(P )
is abelian, and τP̄i is fixed by H = τHτ−1.

If we now consider Pi that is fixed by 〈σ〉 then the above argument shows that
the orbit of Pi under the action of the group G1(P ) has pa elements 0 ≤ a. If
a = 0 then Pi is fixed by the whole group G1(P ). If on the other hand for all Pi
fixed by σ the coresponding orbit orders have more than one element then the set
of P̄i fixed by σ has order divisible by p. This implies that the sum of the Artin
representations at the generic fibre is divisible by p, a contradiction. �

We have thus obtained the following easy to apply

Corollary 2.6. If G1(P ) is cyclic or p ∤ m + 1, then there is a horizontal branch
divisor D, fixed under the action of G1(P ), that intersects the special fibre at mP .
In particular, the assumption of proposition 2.4 is satisfied and the two dimensional
representation can be lifted.

Lemma 2.7. In the mixed characteristic case, if the elementary abelian group
G1(P ) has more than two cyclic components, then there is no horizontal G1(P )-
invariant divisor D contained in the branch locus and intersecting the special fibre
at P with multiplicity m.

Proof. Since the stabilizers of elements in the generic fibre are cyclic groups of order
p, all orbits of elements are divisible by p. Therefore, a G1(P )-invariant divisor
should have degree divisible by p. This, can not happen since (m, p) = 1. �

Remark 2.8. Lemma 2.7 shows that our method can not be used for lifting
curves with elementary abelian action to characteristic zero. However, M. Matignon
proved that such liftings exist [26].
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We have seen how to relate a deformation of the couple (X,G) to a deformation
of a matrix representation. Now we will see the effect of considering equivalent
deformations of couples.

Lemma 2.9. Let φ be a map OX ,P → OX ,P making the extensions ρ̃σ, ρ̃
′
σ equiva-

lent. The corresponding matrix representations are conjugate by a 2 × 2 matrix of

the form

(

1 0
µ λ

)

where λ ≡ 1 modmA and µ ≡ 0 modmA.

Conversely, every such matrix gives rise to a map φ : OX ,P → OX ,P that reduces
to the identity modulo mA.

Proof. Assume that there is a map φ : OX ,P → OX ,P making the extensions
ρ̃σ, ρ̃

′
σ equivalent. The local-global principle of J.Bertin-A.Mézard implies that this

map can be extended to a map φ′ : X → X that makes the corresponding global
deformations equivalent. Let f̃ be the generator given in proposition 2.4. Then
φ′(f̃) ∈ H0(X ,L(aD)), therefore φ′(f̃) = λf̃ +µ. This means that φ gives rise to a
base change in H0(X ,L(a′D)), and two elements in F (·) are equivalent if they are
conjugate by a 2 × 2 matrix of the desired form.

Conversely, assume that we have two equivalent matrix representations that are

conjugate by a matrix Q of the form

(

1 0
µ λ

)

where λ ≡ 1 modmA and µ ≡

0 modmA. Then Q sends f̃ 7→ λf̃ + µ, i.e.

1

φ(T )m +
∑m−1
ν=0 aνφ(T )nu

= λf̃(T ) + µ.

A solution φ(T ) of this polynomial equation exists by using Hensel’s lemma. This
solution gives rise to the desired map φ. �

3. Deformations of Linear groups

We would like to represent the functor F defined in Eq. (3). We will employ the
construction for universal deformation rings for matrix representations, explained
by B. de Smit and H. W. Lenstra in [5]. Let H be a p-group with identity e and let
ρ : H → Ln(k) be a faithful representation of H . Let Λ[H,n] be the commutative
Λ-algebra generated by Xg

ij for g ∈ H, 1 ≤ j ≤ i ≤ n, such that

Xe
ij =

{

1 if i = j

0 if i 6= j

(6) Xgh
ij =

n
∑

l=1

Xg
ilX

h
lj for g, h ∈ H and 1 ≤ i, j ≤ n.

and

Xg
ij = 0 for i < j and for all g ∈ H.

We will focus on representations on Ln(A). For every Λ-algebra A we have a
canonical bijection

HomΛ−Alg(Λ[H,n], A) ∼= Hom(H,Ln(A)),

where a Λ-algebra homomorphism f : Λ[H,n] → A corresponds to the group ho-
momorphism ρf that sends g ∈ H to the matrix (f(Xg

ij)). The representation
8



ρ : H → Ln(k) corresponds to a homomorphism Λ[H,n] → k. Its kernel is a maxi-
mal ideal, which we denote by mρ. We take the completion R(H) of Λ[H,n] at mρ.
The canonical map Λ[H,n] → R(H), gives rise to a map ρR(H) : H → Ln(R(H)),
such that the diagram:

H
ρR(H)

//

=

��

Ln(R(H))

��

H
ρ

// Ln(k)

is commutative.
We have to distinguish two cases:
• The case of equicharacteristic deformations, i.e., R is a complete local domain

so that Quot(R) is of characteristic p. Recall that in this case Λ = k. Since the
generic fibre is of characteristic p we have Xg

22 = 1 for all 1 ≤ i ≤ n. Moreover,
if we fix elements gi generating H as an Z/pZ-vector space and monomials xi =
Xgi

21 − c(gi) for each gi we easily see that R(H) = k[[x1, . . . , xn]].
• The case of liftings to characteristic zero, i.e. R is a complete local domain so

that Quot(R) of characteristic 0. Let us again fix elements xi, yi for each generator
gi of H , so that xi = Xgi

21 − c(gi), and yi = Xgi

22 − 1.
In this case we have the conditions:

(7) (Xg
22)

p
= 1,

(8) Xg
21

p−1
∑

ν=0

(Xg
22)

ν
= 0,

and the commuting relation: (Xg
21 −Xh

21 +Xg
22X

h
21 −Xh

22X
g
21) = 0. Observe that

Xg
22 6= 1. Indeed, if Xg

22 = 1 then eq. (8) will give us that Xg
21 = 0 and then the

matrix is just the identity. Therefore, equations (7) and (8) reduce to the single

equation
∑p−1
ν=0 (Xg

22)
ν

= 0.
These conditions imply that:

R(H) = Λ[[x1, . . . , xn, y1, . . . , yn]]/I,

where I is the ideal

I :=

〈

p
∑

ν=0

(1 + yi)
ν−1, yj(c(gi) + xi) − yi(c(gj) + xj)

〉

.

The ring R(H) defined above does not represent the deformation functor F , since
A-equivalent deformations may correspond to different maps in Hom(R(H), A). If
n = 2, i.e., in the case of a two dimensional representation, the conjugation action
given by lemma 2.9 is easy to handle.

Considering the quotient of R(H) in positive characteristic, for representations
of dimension ≥ 3 is a difficult problem since the ”trace“ argument of characteristic
zero does not work. (Characters do not distinguish equivalent representations in
modular representation theory).

We focus now on the theory of two dimensional representations. This forces the
group H to be elementary abelian. We compute that

(9)

(

1 0
µ λ

)(

1 0
x y

)(

1 0
µ λ

)−1

=

(

1 0
µ+ λx− yµ y

)

.
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We will consider the effect of the conjugation action given in eq. (9). The elements
yi remain invariant while the elements xi 7→ xi + λac(gi) + λaxi − µyi, where
λ = 1+λa, λa, µ ∈ mA. If A = k[ǫ]/ǫ2, then xi = xi+c(gi)λa since λaxi ∈ m2

A = 0.
Let A be an object in C. An element in the set F (A) is determined by the

conjugation equivalence class of a function f : R(H) → A. Such a function should
be defined on the generators xi, yj of the ring R(H). Since f(xi) is equivalent to
f(xi)+ f(λa)c(gi) modm2

A, if there is a ring representing the functor F (·) then this
should be a subring of R(H) and f(xi) = 0 for all generators xi, as one sees by
considering λa = −xi/c(gi). Therefore the ring representing F (·) is the subring of
R(H) generated by y1, . . . , yn in the mixed characteristic case and is the zero ring
in the equicharacteristic case. This is in accordance to remark 4.7.

According to remark 2.8 the case n = 1 is the only case we can handle using our
approach in the mixed characteristic situation.

Remark 3.1. We consider the subring R of R(H) = R(Z/pZ) generated by y. The
ring R is singular. Indeed, by the infinitesimal lifting property [17, II. exer. 8.6], [18,
sec. 1.4] it is enough to provide a small extension A′ → A→ 0 and a homomorphism
h ∈ Hom(R,A) that does not lift to a homomorphism to Hom(R,A′). LetmΛ be the
maximal ideal of Λ. Consider the natural map π : R → R/mΛR = k[[y]]/〈yp−1〉 =:
A. Consider also the ring A′ given by k[[y]]/〈yp〉. Then A′ → A is a small extension
and there is no map R → A′ lifting π. Indeed, every such homomorphism R → A′

should factor through modmΛ. Therefore we obtain a nontrivial homomorphism
A→ A′, a contradiction.

Remark: In [32] T. Sekiguchi, F. Oort, N. Suwa introduced the group schemes
G(λ) in order to deform the additive group schemes Ga to the multiplicative group
schemes Gm and they were able to give a unified Artin-Schreier-Kummer theory
[33],[34]. Many articles devoted to the deformations of automorphism groups from
positive to zero characteristic are based on this theory, see for example [10].

Observe that if H = Z/pZ, i.e. we have an elementary abelian group with just
one component, then the ring homomorphism

R(Z/pZ) → A[[u, 1/(ǫu+ 1)]]

sending y/ǫ to u gives rise to an injection of Ĝ(λ) → SpecR(Z/pZ), where λ = ǫ.
Indeed, the diagonal elements Xg

22 = 1 + ǫy/ǫ = 1 + ǫu are multiplied as elements

in G(ǫ).

4. Relation to first order infinitesimal deformations

In this section we will relate the deformation functor of the two dimensional rep-
resentations given in (3) to the deformation functor of actions in formal powerseries
rings in (2). The advantage of this approach is that using the two dimensional
representation we can contract the infinite powerseries representing the extended
automorphism to a root of a rational function. Denote by V the elementary abelian
group G1(P ).

Assume that a two dimensional representation is attached on the wild ramifica-
tion point P . By using the equation

σ

(

1

tm

)

=
1

tm
+ c(σ),
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we can define the following representation of V to automorphisms of formal pow-
erseries rings:

ρ : V → Aut(k[[t]]),

σ 7→ ρσ,

where

ρσ(t) =
t

(1 + c(σ)tm)1/m
= t

(

1 +
∞
∑

ν=1

(

−1/m

ν

)

c(σ)νtνm

)

.

Let

0 → kerπ → A′ → A→ 0

be a small extension, i.e. kerπ ·mA′ = 0, where mA′ ,mA are the maximal ideals
of A,A′ respectively. Assume that we have the following data: A deformation of
the two dimensional representation given by C(σ) = c(σ) + δ(σ), λ(σ) = 1+λ1(σ),

where δ(σ), λ1(σ) ∈ mA′ and the element f̃ given in proposition 2.4 extending f .

Write f̃ = f + ∆, for some element ∆ ∈ mA′((t)). Then we have:

ρ̃σ (f + ∆)) = λ(σ)(f + ∆) + c(σ) + δ(σ).

This implies that (f = 1/tm):

ρ̃σ

(

1

tm

)

=
λ(σ)

tm
+ c(σ) +

(

δ(σ) + λ(σ)∆ − ρ̃σ∆
)

,

or equivalently:

(10) ρ̃σ(t) = ρσ(t) + t

(

∞
∑

ν=0

(

−1/m

ν

) ν
∑

k=1

(

ν

k

)

Ekc(σ)ν−ktmν

)

,

where

E = δ(σ) + λ(σ)∆ − ρ̃σ∆ +
λ1(σ)

tm
∈ mA′((t)).

Suppose that we can extend ρσ(t) to a homomorphism ρ̃σ,A ∈ AutA[[t]]. A further
extension of ρσ over A′ is then given by

ρ̃σ,A′(t) = ρ̃σ,A(t) + ρ′σ(t),

where ρ′σ(t) ∈ kerπ[[t]]. Since ∆ ∈ mA′((t)) and since kerπ ·mA′ = 0

ρ̃σ,A′(∆) = ρ̃σ,A(∆).

Thus, equation (10) allows us to compute the value of ρ̃σ,A′(t) from the value of
ρ̃σ,A(t).

Lemma 4.1. Let ρ̃σ,A = {ρ̃σ,A(t)}σ∈V be a representation of V → AutA[[t]], and
consider the corresponding element in F (A). If this element in F (A) can be lifted
to an element in F (A′) then ρ̃σ,A can be lifted to a representation V → AutA′[[t]].

Proof. According to [2, 3.2] every obstruction in lifting a representation in D(A)
to D(A′) is group theoretic. Consider extensions of the homomorphisms ρ̃σ,A′ ∈

AutA′[[t]] for every σ ∈ V . The element ρ̃σ,A′ ρ̃τ,A′ ρ̃−1
στ,A′ is a 2-cocycle and gives

rise to a cohomology class in H2(V, TO).
In our case observe that if λ1(σ), δ(σ) are functions R(V ) → A′ and therefore

satisfy the 2×2 multiplication relations, then there is no group theoretic obstruction
11



in lifting ρ̃σ,A to ρ̃σ,A′ since a simple computation shows that the lifts defined by
eq. (10) satisfy the relations

ρ̃σ,A′ ◦ ρ̃τ,A′ = ρ̃στ,A′ .

Therefore any obstruction to lifting {ρ̃σ} reduces to the corresponding obstruction
of lifting the matrix representation in F (A) to F (A′). �

Now we will focus on the small extension k[ǫ]/ǫ2 → k, and we will compute the
image of matrix deformations in H1(V, TO). The general cocycle in H1(V, TO) is
given by d1(t)

d
dt . In [24] the author proved that the map

(11) TO → k[[t]]/tm+1

f(t)
d

dt
→ f(t)/tm+1

is a V -equivariant isomorphism.

Proposition 4.2. Assume that P is a wild ramified point of X with a two dimen-
sional representation attached to it. An extension ρ̃σ gives rise to the following
cocyle in H1(V, 1

tm+1 k[[t]]):

α(σ) =
1

m

(

λ1(σ)

tm
+ λ1(σ)c(σ) − δ(σ) +

m−1
∑

µ=0

2m− µ

m

aµ,1c(σ)

tm−µ

)

,

modulo elements in A[[t]].

Proof. We will compute the first order infinitesimal deformations of ρσ. We begin
from

ρ̃σ(f) = λ(σ)f + c(σ) + δ(σ) + λ(σ)∆ − ρ̃σ∆.

Set E1 = δ(σ)
λ(σ) + ∆ − ρ̃σ∆

1
λ(σ) − c(σ)λ1(σ). Then

ρ̃σ

(

1

tm

)

= λ(σ)
1 + tm c(σ)

λ(σ) + tmE′

tm
.

We compute

ρ̃σ(t) =
λ(σ)−

1
m t

(

1 + tmc(σ)
)1/m(

1 + E1tm

1+c(σ)tm

)1/m

=
λ(σ)−

1
m ρσ(t)

(

1 + E1tm

1+c(σ)tm

)1/m

= λ(σ)−
1
m (ρσ(t) −

1

m
E1ρ

m+1
σ (t)) modǫ2

= ρσ(t) −
1

m
E1ρ

m+1
σ (t) −

1

m
λ1(σ)ρσ(t) modǫ2.(12)

We compute that

ρ̃σ ◦ ρ−1
σ (t) =

ρ̃σ(t)

(1 − c(σ)ρ̃σ(t)m)
1
m

.
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Since the derivative of the function x 7→ x

(1+Axm)
1
m

is the function x 7→ (1 +

Axm)−
m+1

m we compute:

d

dǫ
ρ̃σ ◦ ρ−1

σ

∣

∣

∣

∣

ǫ=0

=
tm+1

ρσ(t)m+1

d

dǫ
ρ̃σ

∣

∣

∣

∣

ǫ=0

(13)

= −
1

m
tm+1 E1|ǫ=0 −

1

m
λ1(σ)

tm+1

ρσ(t)m

= −
1

m
tm+1 E1|ǫ=0 −

λ1(σ)

m

(

t+ tm+1c(σ)
)

.(14)

We will now compute (1 − λ(σ)−1ρ̃σ)∆. Write T = t + ǫg1(t) modǫ2A[[t]]. Write

f̃ = (Tm +
∑m−1
µ=0 aµT

µ)−1u, where aµ =
∑

ν≥1 aµ,νǫ
ν .

We compute:

∆ = f̃ −
1

tm
=

1

Tm(1 +
∑m−1

µ=0 aµT
µ−m)

−
1

tm

=
1

Tm

(

1 − ǫ

m−1
∑

µ=0

aµ,1T
µ−m

)

−
1

tm
modǫ2A[[T ]]

=
1 −mǫg1(t)

m−1

tm

(

1 − ǫ

m−1
∑

µ=0

aµ,1T
µ−m

)

−
1

tm
modǫ2A[[T ]]

= ǫmg1(t)
m−1/tm − ǫ

m−1
∑

µ=0

aµ,1t
µ−2m modǫ2A[[T ]].

Consider the automorphism σ given by σ(t) = t(1 + c(σ)tm)−1/m. Observe that

σ

(

1

tk

)

=
(1 + c(σ)tm)

k
m

tk
=

1

tk
+
∑

ν≥1

( k
m

ν

)

c(σ)νtmν−k,

therefore

(1 − λ1(σ)ǫ)σ

(

1

tk

)

−
1

tk
=

k

m
c(σ)tm−k +

∑

ν≥2

( k
m

ν

)

c(σ)νtmν−k −
ǫλ1(σ)

tk
.

This means that for k ≤ m the quantity (1 − λ(σ)−1ρ̃σ)(ǫt
−k) is holomorphic in t

modulo ǫ2. Thus (1 − λ(σ)−1ρ̃σ)
g1(t)m−1

tm ∈ modA[[t]] and we arrive at:

(λ(σ)−1σ − 1)ǫ∆ =

m−1
∑

µ=0

2m− µ

m

aµ,1c(σ)

tm−µ
modǫ2 +A[[t]].

This result combined with eq. (14) gives us
(15)

d

dǫ
ρ̃σ ◦ ρ−1

σ

∣

∣

∣

∣

ǫ=0

=
tm+1

m

(

λ1(σ)

tm
+ λ1(σ)c(σ) − δ(σ) +

m−1
∑

µ=0

2m− µ

m

aµ,1c(σ)

tm−µ

)

modulo elements in A[[t]]. The desired result follows by applying the map given in
eq.(11). �
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Lemma 4.3. Assume that G1(P ) = Z/pZ. The k-vector space H1(Z/pZ, k[[t]]/tm+1)

is generated by the elements {bi/t
i : b ≤ i ≤ m+ 1} so that

(

i/m
p−1

)

= 0 and b = 1 if

p | m+ 1 and b = 2 if p ∤ m+ 1, and bi ∈ Hom(Z/pZ, k).

Proof. This is proposition 2.7 in [24] for a = −m− 1. �

Consider the elementary abelian group V = ⊕si=1Vi where Vi ∼= Z/pZ. The
computation of the cohomology group H1(V, TO) seems complicated in the general
case. However, under some mild assumptions we can prove the following:

Proposition 4.4. Let m+1 =
∑

i≥0 bip
i be the p-adic expansion of m. If

⌊

2b0
p

⌋

=
⌊

b0+bν−1

p

⌋

for all 2 ≤ ν ≤ s, then the map

(16) Ψ : H1(V, TO) →

s
⊕

ν=1

H1(Vν , TO),

sending v 7→
∑s

ν=1 resV→Viv is an isomorphism. Moreover

(17) H1(V, TO) ∼=

m+1
⊕

i=2,(i/m
p−1)=0

bi
1

ti
,

where bi ∈ Hom(V, k).

Proof. Consider the maps ci ∈ Hom(Vi, k) and extend them to maps c̄i ∈ Hom(V, k),
by setting c̄i(σ) = 0 if σ 6∈ Vi. The image of

∑s
ν=1 c̄i under the map Ψ given in

(16) is (c1, . . . , cs), therefore the map Ψ is onto and it is sufficient to prove that
both spaces have the same dimension.

For the dimension h1(V, TO) = dimkH
1(V, TO) the author has proved the fol-

lowing formula:

(18) h1(V, TO) =

s
∑

i=1

(⌊

(m+ 1)(p− 1) + ai
p

⌋

−

⌈

ai
p

⌉)

,

where a1 = −(m + 1), ai =
⌈

ai−1

p

⌉

[24, prop. 2.9]. Observe that ai = −
⌊

m+1
pi−1

⌋

.

We compute that

(19)
m+ 1

pk
=
k−1
∑

ν=0

bi
pk−ν

+
∑

ν≥k

bνp
ν−k,

therefore

(20)

⌊

m+ 1

pk

⌋

=
∑

ν≥k

bνp
ν−k.

Now we compute that

(21)

⌊

m+ 1

p
+

1

p

⌊

m+ 1

pi−1

⌋⌋

=

⌊

b0 + bi−1

p

⌋

+
∑

ν≥1

bνp
ν−1 +

∑

ν≥i

bνp
ν−i.

The desired result follows by plugging eq. (20),(21) into eq. (18).
Equation (17) folows by lemma 4.3. �
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Remark: Consider the curves defined by

s
∑

ν=0

any
pn

=

m
∑

µ=0

bµx
µ,

so that m 6≡ 0 modp, as, a0, b0 6= 0, s ≥ 1, mu ≥ 2 studied by H. Stichtenoth in
[36]. The representation attached to the unique place P∞ above the place p∞ of
the function field k(x) is two dimensional if and only if m < ps [23]. In this case
the assumptions of proposition 4.4 hold.

Corollary 4.5. If G1(P ) = Z/pZ or if the assumptions of proposition 4.4 hold
then the tangent vector corresponding to 0 6= d

dt ∈ H1(V, TO) is an obstructed
deformation.

Proof. The element d
dt corresponds to 1

tm+1 ∈ H1(V, 1
tm+1 k[[t]]). Using proposition

4.4 we see that it is impossible to obtain a vector in the direction of 1
tm+1 using a

matrix representation, i.e. an element in F (·).
Notice that since we have assumed that the representation attached to P is two

dimensional we have that m > 1. �

Corollary 4.6. Assume that p ∤ m + 1 and the assumptions of proposition 4.4
hold. Assume also that V is an elementary abelian group with more than one
component. Using the notation of eq. (17) unubstructed deformations should satisfy
bi(σ) = λic(σ) for some element λi ∈ k.

Proof. Condition p ∤ m+1 implies that every deformation is coming from a matrix
representation 2.6 and condition follows by using proposition 4.2. �

Remark 4.7. We see that the data δ(σ) of the matrix representation deforma-
tion do not affect the corresponding element in H1(V, TO) since they appear as
coefficients of t0 in the cocylce expression of proposition 4.2 and are cohomolo-
gous to zero. What seems to affect the tangent elements is the coefficients of the
distinguished Weierstrass polynomial of the function f̃ defined in eq. (4).

On the other hand in the case of liftings from characteristic p to characteris-
tic zero the diagonal element λ1 appears as coefficient of the element t ddt . This
construction is similar to the one of J.Bertin and A. Mézard [2, lemme 4.2.2].

Following [2, th. 4.2.8] we can prove:

Proposition 4.8. If RP denotes the versal deformation ring at P , then there is a
surjection

(22) RP →W (k)[[y]]

/〈

p
∑

ν=1

(

p

ν

)

yν−1

〉

:= R′

The ring RP is not smooth.

Proof. We are in the mixed characteristic case so V = 〈σ〉. According to section 3,
the ring R′ gives rise to deformation of the two dimensional representation given
by

ρ̃σ =

(

1 0
0 1 + y

)
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which in turn gives rise to the deformation

ρ̃σ(t) =
(1 + y)−

1
m

(

1 + Etm

1+c(σ)tm

)1/m
ρσ(t),

for a suitable element E. The map Hom(RP , ·) → D(·) is smooth (in the sence of
Schlessinger [31, def. 2.2], [27, p. 278]), therefore there is a map φ : RP → R′. In
order to prove that RP is not a smooth ring we proceed as follows: Consider the
natural map π : W (k) →W (k)/p = k. We obtain the following map

φ ◦ π : RP → k[[y]]/〈yp−1〉 := A.

Consider the ring A′ = k[[y]]/〈yp〉. Then A′ → A is a small extension, and there

is no map RP → A′ extending RP → R′ modp
−→ A by remark 3.1. In this way we

obtain an obstruction to the infinitesimal affine lifting for the affine scheme SpecRP
therefore RP is not smooth.

Alternatively one can compute the obstruction as an element in H2(V, TO) fol-
lowing [2, lemme 4.2.3]. �

Proposition 4.9. Assume that the hypotheses of proposition 4.4 hold. Consider
the ring R1 defined by

R1 =

{

k in the equicharacteristic case
R′ in the mixed characteristic case (see eq. (22))

Let b = 1 if p | m + 1 and b = 2 if p ∤ m + 1. Let Σ be the subset of numbers

b ≤ i ≤ m so that
( i

m
p−1

)

= 0. Consider the ring R̄ := R1[[Xi : i ∈ Σ]] and the

k-vector space W ⊂ H1(V, TO)/〈d/dt〉 generated by elements λic(σ)tm+1−i d
dt .

There is a surjection RP → R̄ that induces an isomorphism W ∼= Hom(R̄, k[ǫ]/ǫ2).
The Krull dimension of RP is equal to #Σ.

Proof. We have observed in corollary 4.5 that deformations in the direction of
d/dt are not coming from matrix representations. The elements 1

ti for i ∈ Σ are

elements in H1
(

V, 1
tm+1 k[[t]]

)

that give rise to elements tm+1−i d
dt ∈ H1(V, TO).

Every deformation on these directions is unobstructed by lemma 4.1. �

5. Relation to Deformations of Artin-Schreier curves

Let P be a wild ramified point of the cover π : X → Y = X/G so that the
corresponding representation is two dimensional. In this section we will examine the
dependence of the Artin-Schreier extension X → X/G1(P ) on the form of matrix
representation ρ : G1(P ) → GL2(k). Then we will restrict to the germs OX,P →
OY,π(P ), and we will study the relation to the deformation functor introduced in
[29] by R. Pries. The approach of R. Pries is to work with germs of curves and
to deform the defining Artin-Schreier equation. Since the germs are living in local
rings, that have only one maximal ideal, the effect of splitting the branch locus
can not be studied. Therefore R. Pries considers only deformations that do not
split the branch locus. According to proposition 2.2 it is impossible to lift a wild
ramified action to characteristic zero, without splitting the branch locus. We will
now restrict ourselves to the equicharacteristic deformation case.
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Let X be a curve that has a 2-dimensional representation attached at a wild
ramified point P . Denote by {1, f} a basis of the 2-dimensional vector space L(mP )
where m := vP (f) is the highest jump in the upper ramification filtration.

We would like to write down an algebraic equation for the cover X → X/G1(P ).
The representation c = c1 : G1(P ) → k is a faithful homomorphism of additive
groups. We consider the action of G1(P ) on f : Let Φ(Y ) be the additive polynomial
with set of roots {c1(σ) : σ ∈ G1(P )}. The polynomial Φ(Y ) can be computed as
follows: The group G1(P ) is by [23, sec. 3] elementary abelian so we express G1(P )
as an Fp vector space with basis {σi} such that G1(P ) =

⊕s
i=1 σiFp.

Let ∆(x1, . . . , xn) denote the Moore determinant:

∆(x1, . . . , xn) = det











x1 x2 · · · xn
xp1 xp2 · · · xpn
...

...

xp
n−1

1 xp
n−1

2 · · · xp
n−1

n











.

The additive polynomial Φ can be expressed in terms of the Moore determinant:

Φ(Y ) =
∆(c(σ1), . . . , c(σs), Y )

∆(c(σ1), . . . , c(σs))
,

see [9, lemma 1.3.6],[7, eq. 3.6]. Thus, the cover X → X/G1(P ) is given in terms
of the generalized Artin-Schreier equation

Φ(Y ) =
∏

σ∈G1(P )

σf = NG1(P )(f).

We would like to represent the curve as a fibre product of Artin-Schreier curves and
then using Garcia’s-Stichtenoth’s normalization [8] to write the curve in the form
yp

s

− y = u, where u is an element in the function field of the curve X/G1(P ).
There are elements yj ∈ k(X) so that σi(yj) = yj + δij . Using this notation we

can see that the function field k(X) can be recovered as the function field of the
fibre product of the curves ypi −yi = ui. The constant elements ui can be computed
from the map c : G1(P ) → k as follows: Let Vi =

⊕s
ν=1,ν 6=i σνFp. We compute

an additive polynomial adi(Y ) with roots the Fp-vector space Vi using the Moore
determinant:

adi(Y ) :=
∆(c(σ1), . . . , ĉ(σi), . . . , c(σs), Y )

∆(c(σ1), . . . , ĉ(σi), . . . , c(σs))
.

These polynomials are invariants of the curve and the map c. Moreover we compute
that y′i :=

∏

σ∈Vi
σf =

∏

v∈Vi
(f − v) = adi(f). The element y′i is invariant under

the action of Vi and σi(y
′
i) = y′i + ad(c(σi)). We can normalize by setting yi =

y′i/ad(c(σi)). Then,

σj(yi) = yi + δij .

Following [8] we choose an Fp basis µ1, . . . , µs of Fps and we set y =
∑s

i=1 µiyi. We
observe that the function field can be recovered as the following extension of the
field k(X)G1(P ):

yp
s

− y = NG1(P )

(

s
∑

i=1

µiadi(f)

adi(c(σi))

)

=: u.
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The element u ∈ k(X)G1(P ) is an invariant of the action of G1(P ) on k(X). Observe
that

(23) ∆
(

c(σ1), . . . , ĉ(σi), c(σs), c(σi)
)

= (−1)s−i∆(c(σ1), . . . , c(σs)).

Let D be the operator sending x 7→ xp
s

− x. Since µi ∈ Fps we have D(µix) =
µiD(x). The element u can thus also be expressed by
(24)

u =

s
∑

i=1

µiD

(

adi(f)

adi(c(σi))

)

=

s
∑

i=1

µi(−1)s−iD

(

∆
(

c(σ1), . . . , ĉ(σi), . . . , c(σs), f
)

∆
(

c(σ1), . . . , c(σs)
)

)

Equation (24) allows us to express u in terms of the following determinant:
(25)

u1 =
1

∆
(

c(σ1), . . . , c(σs)
) det















µ1 µ2 · · · µs 0
c(σ1) c(σ2) · · · c(σs) f
c(σ1)

p c(σ2)
p · · · c(σs)

p fp

...
...

...

c(σ1)
ps−1

c(σ2)
ps−1

· · · c(σs)
ps−1

fp
s−1















,

u = D(u1).

Notice that u1 is a polynomial of f of the form

u1(f) =

s
∑

ν=1

oνf
pν−1

,

where oν can be computed, in terms of the function c, as minor determinants of
the above matrix. Then u(f) is a polynomial of f of the form

u(f) =
2s
∑

ν=1

aif
pν−1

,

where for 1 ≤ ν, aν+s = −ap
s

ν .

Now consider the relative situation: Consider the element f̃ ∈ A[[t]][t−1] defined

in proposition 2.4. Given such an element f̃ and a deformation of the representation
ρ : G1(P ) → GL2(L(mP )) we will construct a deformation OX,P of the germ OX,P

with Galois group G1(P ).
We form again the additive polynomials:

Adi(Y ) =:
∆(C(σ1), . . . , Ĉ(σi), . . . , C(σs), Y )

∆(C(σ1), . . . , Ĉ(σi), . . . , C(σs))
.

Using the previous normalization procedure we arrive at the following deformed
Artin-Schreier curve:

yp
s

− y =
s
∑

i=1

µiD

(

Adi(f̃)

Adi(C(σi))

)

=

=

s
∑

i=1

µi(−1)s−iD

(

∆
(

C(σ1), . . . , Ĉ(σi), . . . , C(σs), f̃
)

∆
(

C(σ1), . . . , C(σs)
)

)

:= U.
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Notice that similar to equation (25) we have:

U1 =
1

∆
(

C(σ1), . . . , C(σs)
) det















µ1 µ2 · · · µs 0

C(σ1) C(σ2) · · · C(σs) f̃

C(σ1)
p C(σ2)

p · · · C(σs)
p f̃p

...
...

...

C(σ1)
ps−1

C(σ2)
ps−1

· · · C(σs)
ps−1

f̃p
s−1















,

U = D(U1).

The element U ∈ A[[t]][t−1] so that U ≡ u modmA.

5.1. Relation with equivalence class of Artin-Schreier extensions. In what
follows we would like to consider isomorphism classes of Artin-Schreier curves. The
following lemma identifies two Artin-Schreier extensions of the ring A[[x]][x−1],
where A is a k-algebra that gives rise to an irreducible affine scheme, i.e. A/rad(A)
is an integral domain.

Lemma 5.1. Consider the extensions yp
s

1 −y1 = g1 and yp
s

2 −y2 = g2, where g1, g2 ∈
A[[x]][x−1]. These extensions are isomorphic if and only if g1(x) = ζg2(x)+d

ps

−d,
for some d ∈ A[[x]][x−1], and ζ ∈ F∗

ps .

Proof. If A is a field k then this is classical result due to Hasse [19]. For the general
case we refer to [30, lemma 2.4]. �

Lemma 5.2. The Artin-Schreier curve yp
s

− y = f(x) where f(x) ∈ A[[x]][x−1] is
isomorphic to yp

s

− y = f(x) + g(x), where g(x) ∈ A[[x]].

Proof. Following [30, sec. 3] we observe that g(x) = dp
s

−d, where d =
∑∞

ν=0 g(x)
psν

.
The desired result follows by using lemma 5.1. �

Letm be the conductor, i.e. the highest jump in the upper ramification filtration.
Since the group H is elementary abelian this is equal to the highest jump in the
lower ramification filtration [24, lemma 1.8].

Lemma 5.3. Consider an Artin-Schreier cover of A[[x]][x−1] given by:

yp
s

− y =
λ
∑

ν=0

rν(1/x)
pν

,

where rν(T ) ∈ A[T ] are polynomials of degree dν , so that gcd(dν , p) = 1 . The
conductor of the cover equals to maxν dν .

Proof. R. Pries [30]. �

D. Harbater in [14] (see also [2, sec. 5.1]) gave a parametrization of the classes
of cyclic Zp-covers of a local fields branched above the maximal ideal. For the more
general case of Fps-covers the space of classes of covers of k((t′)) is parametrized
by the quotient:

(26) C =
k((t′))

k[[t]] +D(k((t′)))
,

where D denotes the map x 7→ xp
s

− x. Indeed, by lemma 5.1 adding D(a) does
not alter the equivalence class of the Artin-Schreier curve and by lemma 5.3 the
same holds for adding a holomorphic element.
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R. Pries gave a moduli interpretation of p-group covers of the projective line and
she proposed two approaches: either transform (by extending the base ring A) an
arbitrary Artin-Schreier extension of A[[x]][x−1] to a class in (26) or define a fine
moduli space by considering a category where all powers of the q-Frobenious maps
are invertible elements. She introduced the following:

Definition 5.4. Let A1, A2 be two k-algebras that give rise to irreducible affine
schemes, i.e. Ai/rad(Ai), i = 1, 2 are integral domains. Consider the Artin-

Schreier relative A-curves Ci : yp
s

i − yi = fi(x), where fi(x) ∈ Ai. The two
curves are considered to be equivalent if and only if there is an algebra extension
A of both Ai, i.e. there are ring monomorphisms Ai →֒ A, so that the curves
Ci ×SpecAi SpecA are isomorphic covers of A[[x]][x−1].

In general U − u ∈ mA[[t]][t−1] and it is not an element in mA[[x]][x−1]. If the
deformation ρ̃σ does not split the branch locus, then U − u ∈ mA[[x]][x−1]. After
cutting the holomorphic part of U − u and applying the transformation of lemma
5.1 we get an equivalence class of germs of Artin-Schreier curves given in eq. (26)
to an element in the deformation functor of Pries.

Conversely for every Laurent polynomial ∆ ∈ mA((x)) so that n0 = vx(∆),
satisfies (n0, p) < m we can consider the extension of A((x)) defined as

A((x))[y]/(yp
s

− y = f + ∆).

This gives rise to an infinitesimal extension of the germ of X at P in the sense of
Pries and according to the local-global theory developed by Harbater all this local
deformations can be patched together to give a global deformation of the couple
(X,G).
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