Mineral Deposits: Processes to Processing

Edited by
C.J. Stanley et al.
Department of Mineralogy, Natural History Museum, London, UK

OFFPRINT
The Profitis Ilias deposit, Milos island, Greece: A case study of boiling in an epithermal system recorded by stable isotope and fluid inclusion data

J. Naden & T.J. Shepherd – British Geological Survey, Keyworth, UK
S. Kilias – Department of Geology, National University of Athens, Greece
M.J. Leng & B. Spiro – British Geological Survey (NERC Isotope Geosciences Laboratory), Keyworth, UK
I. Cheliotis – Institute of Geology and Mineral Exploration, Athens, Greece

ABSTRACT: Stable isotope (δD and δ18O) and microthermometric data are presented for the Profitis Ilias adularia-sericite-type epithermal gold deposit on Milos Island, Greece. The deposit was discovered by Midas Enterprise S.A., and estimated reserves are 5 million tonnes grading at 4.4 g/t Au and 43 ppm Ag. Microthermometric data show that the system boiled. Stable isotope ratios were determined on inclusion-fluids (δD and δ18O) and vein quartz (δ18O). The inclusion-fluid data show fractionation trends consistent with single-stage steam separation and are broadly comparable to the currently active Milos geothermal system. The trends and comparisons in the fluid-mineral data are more difficult to interpret. This suggests that data derived by analysing both δD and δ18O on inclusion-fluids can provide a better framework for interpreting fluid processes in epithermal systems than current methodologies based on calculating δ18O from fluid-quartz equilibria.

1 INTRODUCTION

Stable isotope analyses (δD and δ18O) of inclusion fluids in quartz provide valuable insights into fluid sources, hydrothermal processes and fluid-rock interaction in a wide range of geological environments. Current methodologies for determining D/H and 18O/16O, focus on measuring δD on extracted inclusion fluids and calculating δ18O of the fluid by analysing the host quartz. Recently, procedures that analyse both δD and δ18O on inclusion fluids have been developed for quartz and carbonates (e.g. Ohba & Matsuo, 1988, Lécuyer & O’Neil, 1994). However, scientific opinions as to which approach is the most appropriate are divided (Vityk et al. 1993, Ohba et al. 1995). The indirect approach is not ideal, it relies on accurate determination of quartz precipitation temperatures, usually ascertained through fluid inclusion microthermometry. There is also the factor that there is evidence for isotopic disequilibrium between quartz and the fluid phase at low temperatures (<250 °C) (e.g. Ligang et al. 1989). On the other hand, direct measurements also have problems in data interpretation. These centre on the fact that isotopic re-equilibration can occur after trapping and during cooling of the fluid inclusions (Ohba et al. 1995).

In this study, we present directly and indirectly measured δD and δ18O data for adularia–sericite epithermal–Au mineralisation at Profitis Ilias on Milos Island (Aegean sea). A deposit closely linked to a modern geothermal reservoir, and whose geology, mineralogy and fluids inclusions are well characterised (Kilias et al. in press). In addition, the modern system is well documented mineralogically, geochemically and isotopically (e.g. Liakopoulos et al. 1991, Pflumio et al. 1991, Christianis & St. Seymour, 1995) and provides an excellent analogue for the epithermal-Au mineralisation.

2 GENERAL GEOLOGY

Milos Island is located at the western end of the Pleistocene-Pliocene Aegean Volcanic Arc. The island is still geothermally active and a high-enthalpy geothermal resource is located towards its centre. Geologically, the island comprises mainly calc–alkaline volcanic rocks (tufts, pumice flows, ignimbrites, pyroclastic flows, domes and lava flows of andesitic-dacitic, and rhyolitic composition). The volcanic sequence is built on Miocene–Pliocene clastic and carbonate platform sediments, which unconformably overly Mesozoic(?) metamorphic basement rocks. Metalliferous mineralisation is predominantly located on the western end of the island in the oldest volcanic rocks. Two main styles are evident: stratiform Mn–Ba, and epithermal Ag–Au–Pb–Zn–Cu mineralisation.

The Profitis Ilias gold deposit is located in this zone, and is approximately 20km west of the active geothermal system. It was discovered by Midas Enterprise S.A., and is classified as an adularia–sericite type epithermal deposit. Estimated re-
serves are 5 million tonnes grading at 4.4 g/t Au and 43 ppm Ag and recently bonanza grades have been discovered in the vicinity. The deposit is closely associated with a horst and graben structure and is characterised by a series of interconnected veins that are commonly composite and crustiform-banded. Vein widths are up to 3 m and extend to depths of at least 300 m (relative to the present day surface).

3 MINERALISATION

Mineralisation is hosted in sericitised and argillised rhyolitic lapilli-tuffs and ignimbrites, and consists of pyrite, galena, chalcopyrite, native gold, and electrum. On the microscopic scale, minor adularia veinlets were also observed in the host rocks adjacent to the mineralisation. Three broad paragenetic stages of the mineralisation are recognised: 1. early, pre-ore mineralisation consists of barren microcrystalline quartz and pyrite; 2. main ore-stage mineralisation is characterised by deposition of coarse- and fine-grained sphalerite, galena, chalcopyrite, pyrite, and quartz. Free gold, in this association (1–50 μm in size; typically 1–10μm), usually occupies interstices between, or is intergrown with, fine-grained quartz crystals, or coexists with oxidised sulphides; 3. post-ore mineralisation comprises barite intergrown with fine-grained quartz, and minor sulphides.

4 FLUID INCLUSIONS

Fluid inclusion data were obtained on drill–core samples and surface exposures of the veins. Two main inclusion types were identified: aqueous liquid– and vapour–rich. They occur in ore and post-ore quartz, sphalerite, and barite. Quartz and sphalerite contain predominantly liquid–rich primary inclusions, whereas barite contains relatively more (20% by number) vapour–rich inclusions in comparison.

Primary liquid–rich inclusions homogenise at temperatures between 112 and 399 °C. The homogenisation temperature range for each stage is as follows: ore-stage: 145 to 399 °C (median 230 °C); post-ore stage: 112 to 263 °C (median 175 °C). Estimates of eutectic melting (-25 to -38°C) indicate the presence of divalent cations in the ore fluids, probably magnesium or calcium. Salinities of liquid–rich inclusions, based on microthermometric data, range between 0.1 and 11.4 wt% NaCl equiv. in ore-stage quartz and sphalerite, and between 0.93 and 8.5 wt% NaCl equiv. in post-ore barite. Vapour–rich inclusions in ore-stage quartz homogenise between 368 and 399 °C, whilst vapour–rich inclusions in barite generally decrepitated before anticipated homogenisation.

Evidence for boiling, in the fluid inclusion data, is shown by examining the relationship between sample elevation and homogenisation temperature (Fig. 1). Two distinct distributions are evident. Below 450m fluid inclusion homogenisation temperatures are tightly clustered, whilst above this level they exhibit a high degree of scatter. This is interpreted to represent heterogeneous trapping of fluid inclusions in a boiling epithermal system, with the base of boiling located at the 450m level (after Killas et al. in press).

5 STABLE ISOTOPE ANALYSES

To constrain further the role of boiling, quartz samples were selected for stable isotope analysis on the inclusion fluids. Combined δD and δ18O were analysed on extracted fluid inclusion waters by CO2 mi-
cro-equilibration methods to obtain both δD and δ18O on the inclusion fluids. In addition, δ18O was measured, utilising the same samples, on the host quartz using standard fluorination techniques.

5.1 Oxygen isotopes

Oxygen isotope data for extracted inclusion fluids and quartz along with summary fluid inclusion and assay-elevation data are presented in Table 1. The data show a correlation between sample-elevation and δ18O in both inclusion waters and quartz (Tab. 1). With the exception of the sample from the highest elevation (657 m, sample G2185), which has a δ18Owater of -4.5‰, δ18O of inclusion waters steadily decreases from -3.7 ‰ at 210 maOD to -7.3 ‰ at 613 maOD. Uncorrected δ18O in quartz shows an opposite trend, with δ18O increasing from +13.9 to +15.1 ‰ over the same elevation interval.

5.2 Hydrogen isotopes

Hydrogen isotope data for extracted inclusion fluids along with summary fluid inclusion and assay-elevation data are also presented in Table 1. δD varies between -68.0 and -19.0 ‰. As with the oxygen data, with the exception of three samples, δD shows a strong correlation with sample-elevation varying from the lightest values (-47.8 ‰) at highest elevations (613 maOD) to the heaviest (-19 ‰) at the lowest (210 maOD).

Combined δD and δ18O data are presented in Figure 2, and where both δD and δ18O were measured on the inclusion fluids, they show a clear trend that is sub-linear and parallels the Mediterranean Meteoric Water Line (MMWL). No fractionation correction has been applied to the δ18O fluid inclusion water data. Moreover, the data bear a striking similarity to those for the modern geothermal system.

Two liquid-vapour (boiling) fractionation trends are also shown with a corresponding reservoir composition. The fractionation trends are calculated for single-stage steam-separation, with the points showing end-member equilibrium compositions of liquid and vapour. Fluid inclusions trapping mixtures of these two end members (heterogeneous trapping) will have isotopic compositions that fall along the tie-lines, though the position of fractionation lines in δD-δ18O space is dependent on the initial choice of reservoir composition. It is clear that where both isotope ratios were determined on the inclusion fluids the data are well explained by boiling and heterogeneous trapping, which agrees with the fluid inclusion microthermometry (see Fig. 1).

In addition to the uncorrected fluid inclusion and geothermal water data, estimated hydrothermal fluid compositions are also illustrated in Figure 2. These were calculated using quartz-water fractionation factors and mean fluid inclusion temperatures. Here the data show considerable scatter and are difficult to relate to steam fractionation and the modern geothermal system.

6 CONCLUSIONS

Boiling appears to exert a major control on the location of ore. This is seen in both the microthermometric and the "fluid" stable isotope data.

The inclusion-fluid stable isotope data can be readily compared to the modern geothermal system, whereas the relationship between the fluid-mineral data and those of the modern system is more ambiguous.

We suggest that data derived by analysing both δD and δ18O on inclusion fluids can provide a better framework for interpreting fluid processes in epithermal systems than current methodologies based
on calculating δ¹⁸O from fluid-quartz equilibria.

ACKNOWLEDGEMENTS

Midas SA is thanked for allowing access to proprietary geological information, drill-core and assay records. The research was supported by the Joint Research Programme for Economic Geology between the Greek Secretariat General for Research and the British Council. Permission to publish for JN, MJL, TJS and BS is by the Director, British Geological Survey, NERC.

REFERENCES

FROM THE SAME PUBLISHER:

Papanen, Heikki (ed.) 90 5410 889 4
Mineral deposits: Research and exploration - where do they meet? - Proceedings of the fourth biennial SGA Meeting, Turku, Finland, 11-13 August 1997 1997, 25 cm, 1008 pp., EUR 137.50 / $162.00 / £97
This volume contains 246 extended abstracts of the Meeting and they offer an interesting state-of-the-art review of on-going research in the many aspects of economic geology related to exploration. Topics including organic and mineral deposits, gold and precious metal deposits, submarine hydrothermal processes and mineralizations, mineral deposits in magmatic and ultramafic rocks, mineral deposits in sedimentary environments, granites and ore formation, industrial mineral deposits, diamond deposits and exploration, metamorphism and ore deposits, mineral deposit modelling in exploration, environmental aspects of mineral deposits.

Bobrowsky, P.T. 90 5410 675 1
Aggregate resources - A global perspective 1998, 25 cm, 480 pp., EUR 86.00 / $99.00 / £60
Provides a comprehensive collection of 27 diverse scientific papers on aggregate topics such as geology of deposits, geo-physical exploration techniques, deposit prediction and modeling, land-use case studies, production values and trends, geotechnical properties, legislation politics and others. This diversity in subject matter is further enhanced by relying on contributions from a number of countries including Australia, Belgium, Canada, Lebanon, Netherlands, Norway, South Africa, United Kingdom and the United States. The book will appeal to all those involved with aggregate resources: Geologists, producers, technicians, construction engineers, developers, land-use planners, legislators, academics & the public consumer, especially since all of us are in some manner, directly dependent or indirectly affected by this resource.
*Each chapter is a study on a particular area of importance for aggregate producers. Pit & Quarry, April 1998.
*Strongly recommended to engineers in the disciplines of mechanical, aerospace & electrical engineering. Structural Engineer, 1999.

Pasava, J., B.Krikor & K.Zak (eds.) 90 5410 550 X
Mineral deposits: From their origin to their environmental impacts - Proceedings of the third biennial SGA Meeting, Prague, Czech Republic, 28-31 August 1995 1995, 25 cm, 1038 pp.,
EUR 165.00 / $194.00 / £116
(The extended abstracts are grouped into 12 topics including metallogeny in the evolution of orogenic belts, gold and precious metal deposits, submarine hydrothermal processes and volcanic-hosted deposits, sediment-hosted mineral deposits, vein and shear zone deposits, granitoid related deposits, deposits of industrial minerals, environmental aspects of mineral deposits, organics and mineral deposits, metamorphism and mineralizations in black shales.

Madhukar, B.B.L. & S.N.P. Srivastava 90 5410 209 8
Mica and mica industry 1995, 24 cm, 212 pp., EUR 88.00 / $104.00 / £62
(No rights India)
Mica is one of the strategic minerals. On account of its unique and excellent insulating properties and its high heat-resistance capacity, it is indispensable in the electrical & electronics industries. The book brings together all possible information on the subject of 'mica' in a comprehensive & scientific manner so that present day as well as future manufacturers and users should benefit from this treatise. Aspects treated are world trade, production, geology, prospecting, mining, as well as other scientific technological advancements relating to the commodity.

Nekrasov, I.Ya. 90 5410 723 5
Geochemistry, mineralogy and genesis of gold deposits 1996, 24 cm, 344 pp., EUR 93.50 / $110.00 / £66
(No rights India)
A translation of 'Geokhimiya mineralogii i geizis zoloto-rudnykh mestorozhdenii', Moscow. The behavior of gold in sedimentary, magmatic and postmagmatic processes are studied and 40 gold-bearing minerals including ten which were recently discovered are described. The results are presented of new experimental studies on phase relations in gold-sulfide systems. The solubility & form of gold migration in high-temperature chloride, sulfide and arsenic solutions are determined. Based on the new data, the genesis of gold deposits is studied and a geochemical classification is proposed. This book is designed for specialists in the field of gold chemistry, geochemistry and mineralogy and for field geologists surveying and prospecting for gold.

Aswathanarayana, U. 90 5410 608 5
Geoenvironment: An introduction 1995, 25 cm, 292 pp., EUR 85.00 / $99.00 / £60
(No rights India)
The focus of the book is on the management of the geoenvironment. It seeks to explain how through an understanding of the environmental processes that take place in rocks, soils, waters, sediments, air, etc. the resources contained in them could be managed sustainably. It provides a balanced coverage of the environmental problems of both the North (e.g. chemical pollution and waste management) and the South (e.g. land degradation and water scarcity).
*The text is clear and lucid, and is copiously illustrated...
Author: Former Professor University Eduardo Mondlane, Maputo, Mozambique.

All books available from your bookseller or directly from the publisher:
A.A. Balkema Publishers, P.O. Box 1675, NL-3000 BR Rotterdam, Netherlands (Fax: +31-10-413-5947)
For USA & Canada:
A.A. Balkema Publishers, Old Post Rd, Brookfield, VT 05036-9704 (Fax: 802-276-3837)