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• A systematic geochemical survey of Athens soil is presented for the first time.
• Sources and spatial distribution of chemical elements in soil were examined.
• Geology defined the spatial signature of major elements, and Ni, Cr, Co, As.
• Urbanization controlled the geochemical pattern of Pb, Zn, Cu, Cd, Sb, and Sn.
• Urban topsoil exhibited significant loadings of geogenic PHEs.
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Understanding urban soil geochemistry is a challenging task because of the complicated layering of the
urban landscape and the profound impact of large cities on the chemical dispersion of harmful trace elements.
A systematic geochemical soil survey was performed across Greater Athens and Piraeus, Greece. Surface soil
samples (0–10 cm) were collected from 238 sampling sites on a regular 1 × 1 km grid and were digested by a
HNO3–HCl–HClO4–HF mixture. A combination of multivariate statistics and Geographical Information System
approaches was applied for discriminating natural from anthropogenic sources using 4 major elements, 9 trace
metals, and 2 metalloids. Based on these analyses the lack of heavy industry in Athens was demonstrated by
the influence of geology on the local soil chemistry with this accounting for 49% of the variability in the major
elements, as well as Cr, Ni, Co, and possibly As (median values of 102, 141, 16 and 24 mg kg−1 respectively).
The contribution to soil chemistry of classical urban contaminants including Pb, Cu, Zn, Sn, Sb, and Cd (medians
of 45, 39, 98, 3.6, 1.7 and 0.3 mg kg−1 respectively) was also observed; significant correlations were identified
between concentrations and urbanization indicators, including vehicular traffic, urban land use, population
density, and timing of urbanization. Analysis of soil heterogeneity and spatial variability of soil composition in
the Greater Athens and Piraeus area provided a representation of the extent of anthropogenic modifications on
natural element loadings. The concentrations of Ni, Cr, and As were relatively high compared to those in other
cities around the world, and further investigation should characterize and evaluate their geochemical reactivity.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The rapid urbanization and industrial growth that has occurred in
many places around the world during the last decades has resulted in
modification of the urban chemical environment (cf. Johnson and
Demetriades, 2011). Urban soil constitutes an integral part of the city
landscape, presenting unique characteristics that differentiate it from
naturally developed soil. For instance, urban soil, frequently, does not
present the classical vertical stratification, classified as horizons A, B
and C, andmay not even reflect themineralogical and chemical compo-
sition of the parent material (Wong et al., 2006); however, several
studies highlighted the influence of natural geochemical factors on the
soil chemistry even in strongly urbanized areas (e.g. Manta et al., 2002;
Rodrigues et al., 2009).

Most published urban soil investigations involve the characteriza-
tion of potentially harmful elements (PHEs), e.g. heavy metals and
metalloids, because of their non-biodegradable nature and their
tendency to accumulate in the human body (Ajmone-Marsan and
Biasioli, 2010). The sources of PHEs in the urban environment can be
either natural, i.e. inherited materials from the underlying parent
materials (e.g., rocks, alluvium, etc.), or anthropogenic (Wong et al.,
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2006; Wei and Yang, 2010; Luo et al., 2012). Anthropogenic metal sig-
natures in soil can persist for many decades after termination of point
and nonpoint source emissions due to the long residence times of
metals in soil (Yesilonis et al., 2008). Both multivariate statistics and
geostatistics are invaluable tools for identifying sources of PHEs on the
urban scale and evaluating the significance of geochemical anomalies
in relation to lithological characteristics and human activities (Zhang,
2006; Cicchella et al., 2008; Davis et al., 2009).

A few publications exist on the soil geochemistry of urban areas in
Attica, the wider area around Athens (Fig. 1) (Demetriades, 2010,
2011, Demetriades et al., 2010; Massas et al., 2010, 2013; Kaitantzian
et al., 2013); however, there are no published systematic geochemical
maps of urban soil for any of themajor Greek cities. Furthermore, earlier
studies with reference to heavy metal concentrations in urban soil of
Athens were focused on specific land uses, i.e. playgrounds and roads
(Yassoglou et al., 1987; Chronopoulos et al., 1997; Riga-Karandinos
et al., 2006; Massas et al., 2010). These studies have adopted various
methodologies depending on their primary objectives. Assessment of
previous research highlights the necessity for an extensive, systematic
urban soil geochemical survey aiming to determine spatial distribution
patterns of both major and trace elements.

Greek soil is naturally enriched in Cr, Ni, Co andMn as a result of the
widespread occurrence of basic and ultrabasic rocks (Vardaki and
Kelepertsis, 1999; Kelepertzis et al., 2013; Kanellopoulos and Argyraki,
2013). Furthermore, elevated As concentrations in soil and natural
waters have been linked to metamorphic rocks in Greece (Gamaletsos
et al., 2013). Bearing in mind the historical absence of heavy industry
within the Greater Athens and Piraeus area, it is hypothesized that
local geology is important in controlling the distribution of potentially
harmful trace elements in urban soil.

In this paper we investigate the concentrations of major and trace
elements in urban soil from Athens, using a systematic sampling strate-
gy with the primary objectives being: (a) to produce geochemical maps
of the investigated elements within the Greater Athens and Piraeus
area; (b) to define the natural or anthropogenic origin of the chemical
elements by combining multivariate statistics and GIS approaches;
and (c) to evaluate the influence of specific urbanization indicators,
i.e. urban land use, population density, timing of urbanization and
vehicular traffic, on soil chemistry, and over time. Thus, a systematic
geochemical baseline data set for the soil chemical environment of
Greater Athens and Piraeus is presented, and this contributes to the
international database of surveys on the distribution and sources of
chemical elements and compounds in urban soil.Whereasmany studies
have addressed the problem of distinguishing the sources of PHEs, only
a few have examined the influence of urbanization indicators on soil
chemistry (Yesilonis et al., 2008; Chen et al., 2010; Peng et al., 2013).
Furthermore, an estimation method and quantitative data on the influ-
ence of short scale soil heterogeneity on urban geochemical mapping
are presented.

2. Materials and methods

2.1. Description of the study area

The city of Athens lies within the Athens Basin, which is located in
Attica on the south-east tip of mainland Greece (Fig. 1). The Athens
Basin is highly urbanized with elevated vehicular traffic loads in the
city core and the wider area of Piraeus port, located south-west of
Athens Centre. Although Piraeus and Athens are joined nowadays,
they are actually two different cities historically and administratively.
The Greater Athens comprises four regional units while the regional
unit of Piraeus formsGreater Piraeus. Together theymake up the contig-
uous built up urban area of the Greek capital. Most surfaces are asphalt,
residential and commercial buildings, while park areas are limited.
Unlike most European capitals, the urbanization of modern Athens
was not related to the Industrial Revolution. The city experienced
rapid population growth from ~400,000 people in 1925 to N1,000,000
by 1950. The population increase of modern Athens is marked by the
return of Greek refugees from Asia Minor in the 1920s after World
War I and extensive internal migration after World War II. Today,
the urban areas of Greater Athens and Piraeus have a population of
~3.2 million over an area of 412 km2. This constitutes ~1/3rd of
the Greek population. In addition, this area is the center of economic
and commercial activities for the country. The population density
(people per km2) is approximately 7,500, and over 20,000 in a few
municipalities with a high incidence of residential, commercial,
and business activities (Fig. S1, Supplementary material). There is
no large scale industry in Athens. Some industrial support services
including depots, trade transport companies and building material
stocking yards are located between the Athens Centre and Piraeus. Previ-
ous industries during the past decades included pottery making, textile
production, shoe making, tanneries, and metal plating.

The bedrock geology of Athens is comprised of 4 different geotecton-
ic units that form and outcrop in themountains surrounding the city, as
well as in hills within the Athens Basin (Papanikolaou et al., 2004a)
(Fig. 2): (a) the lowest basement unit is composed of metamorphic
rocks, including marble, dolomite, and mica-schist; (b) this is tectoni-
cally overlain by theAlepovouni unit that is also comprised ofmetamor-
phic rocks, including crystalline limestone, schist and greenstone;
(c) the Athens Unit, which outcrops in the hills of western and central
Athens Basin, is an Upper Cretaceous mélange that includes pelagic
sediments consisting of marly limestone, shale, sandstone, tuff and
ophiolithic blocks and neritic limestone (Papanikolaou et al. 2004b);
and (d) the Sub-Pelagonian unit, which mainly consists of limestone
and dolomitic limestone. Serpentinized blocks of varying dimensions
are embedded within the lithology of all alpine units occurring in
Athens (Basement unit, Athens unit, Alepovouni unit), not all of them
are shown on the geological map.

Post-orogenic Neogene to Quaternary deposits cover the alpine
bedrock. Lithologically, these includeNeogene coastalmarine, continental
and lacustrine carbonate and clastic sediments, and thickQuaternary allu-
vial fans at the foothills of the surrounding mountains. Alluvial soils, de-
rived from the surrounding mountains are enriched in Cr, Ni, and Co via
mechanical and chemical weathering processes (Kelepertzis et al.
2013). Natural soil within the city is generally thin. Soil types range
from Calcaric–Lithic–Leptosols (renzinas) on the mountainous margins
of the basin to Calcaric Fluvisols and Regosols in the western part of the
study area and Rhodic Luvisols over the eastern part of the basin (ESDB,
2013; Soil Atlas of Europe).

2.2. Sampling methodology

The area where soil sampling was performed occupies more than
220 km2 (Fig. 1) and was divided into 218 cells of 1 × 1 km in size. A
sampling density of 1 sample per km2 was adopted and the center of
the cell was preferably determined as the sampling location. If no
open soil was present, the sampling location was moved to the nearest
available space of soil material. We targeted areaswith land use catego-
ries such as parks, recreational areas, playgrounds, and school yards.
Whenever sampling in these categories was not feasible, soil from
road verges was collected. Sampling was carried out where plants
with superficial roots were not present. A total of 238 composite topsoil
(0–10 cm) samples were collected in the spring and summer of 2012.
Using a plastic spatula, five subsamples were collected from the center
and corners of a 10 m square site to obtain a representative sample
from each sampling location. If this was not possible, the composite
sample was obtained by collecting material from 5 points with at least
5 m distance from each other. At 20 randomly selected sampling sites
a second sample was recovered at approximately 200 m distance from
the original sampling location, but within the same 1 × 1 km sampling
cell. The data from these sampleswere utilized for estimating thewithin
sampling-cell variability of elemental concentrations in soil. The exact



Fig. 1. Topographical map showing the sampling site locations within the urban area of Greater Athens and Piraeus.
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Fig. 2. Simplified geological map of the study area modified after Papanikolaou et al. (2004a).
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geographical coordinates for each soil sample were recorded by
Geographic Positioning System (GPS: Garmin e-Trex Vista HCx) and
field observations were archived. Sampling sites were also photographed
for reference.

The soil samples were stored in plastic bags for transportation and
storage, and were air dried at a constant temperature of 50 °C for 3 days
in a thermostatically controlled oven. They were subsequently gently
disaggregated in a porcelain mortar and sieved to b2 mm fraction, using
a nylon screen to remove coarse material. Each soil sample was further
sieved through a nylon 100-μm sieve in order to focus on geochemically
reactive particles and stored at room temperature in a dark storeroom.
The b100 μm fraction was used for chemical analyses. All utensils were
thoroughly cleaned between the samples to avoid cross contamination.
2.3. Analytical procedure

The total pool of Cu, Zn, Pb, Sn, Sb, Cd, Ni, Cr, Co, As andMn in soilwas
determined by a 4-acid (HNO3, HClO4, HF, HCl) digestion followed by
inductively coupled plasma mass spectrometry (ICP-MS) at the
accredited ACME analytical laboratories in Vancouver, Canada. Geochem-
ical results for themajor elements Fe, Al, K, and Cawere alsomeasured by
ICP-MS and included to assist in the source apportionment ofmetals. This
strong acid attack is often used in survey-type geochemical programs
(Allen et al., 2011). In the present study it was selected on the basis of
local geology, comprising silicate rocks that aremore effectively dissolved
by this method. Thus, it was anticipated that the near total dissolution
wouldprovide amore realistic representation of the geochemical baseline
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of both geogenic and anthropogenic elements. It is noted that the 4-acid
attack is regarded near total for some elements like Cr, because it cannot
completely dissolve certain refractory minerals like chromite (Goldhaber
et al., 2009). The pH of each soil sample was measured in a soil to
deionized water suspension of 1:2.5 (w/v) (ISO, 1994).

The accuracy of chemical analyses was evaluated using two certified
reference materials (United States National Institute of Standards
NIST 2709 and 2711) and some in-house reference materials (STD
OREAS24P, STD OREAS45E) developed by the ACME laboratories for
its own internal use. Recovery rates ranged from 80% to 120% for most
elements. Seven analytical duplicates were randomly included and
yielded relative per cent differences of less than 10%. Reagent blanks
were also included throughout the batches as part of the quality control
procedure. Details on the quality control results including measured
and certified concentrations of the reference materials, analytical
precision and detection limits for the 15 studied elements are presented
in Table S1 of the Supplementary material.

2.4. Geochemical mapping and statistical treatment of the data

The first step in spatial analysis was the integration of all the avail-
able and generated information in a geographical information system
(GIS) using ArcMap v.10.0 (ArcGIS). TheGIS-based platform incorporat-
ed the geo-referenced sampling points, simplified geology of the area,
elevation contour lines, municipality borders, and city extent borders
for different historical periods. Road network data, corresponding to
vehicular traffic restrictions area boundaries were also added. Traffic
restrictions have been enforced since 1982 in the city center, the ‘Athens
Ring’, by allowing alternatively odd/even plate number vehicles to enter
on subsequent days. During intense air pollution events, traffic restric-
tions are extended to a wider area of Athens, the ‘Outer Ring’ (Fig. 1).
Enrichment factors of Pb, Zn and Cu were calculated as ratios of average
concentrations in sampleswithin the inner and outer rings (n=138) to
average concentrations in the rest of the sampled area.

Data of several urbanization indicators, including urban land use,
population density (ELSTAT, 2013), timing of urbanization (Diakakis
et al., in press), and vehicular traffic, were linked to the spatial data.
These specific indicators have been shown to govern metal distribution
patterns in the urban environment (Wang et al., 2012; Peng et al.,
2013). Soil samples were grouped based on their respective spatial
index with respect to selected urbanization indicators in the GIS. One-
way ANOVA followed by post hoc analysis (LSD test) was subsequently
applied on the normal score transformed concentration data in order to
identify statistically significant differences between the groups.

The geochemical maps showing the overall spatial distribution pat-
terns of elemental concentrationswereplotted byusing theGeostatistical
Analyst tool for ArcMap (ArcGIS) and the Inverse Distance Weighted
(IDW) interpolationmethodwith a power of 2. GeographicallyWeighted
Regression (GWR) was used to evaluate the spatial correlations between
the studied elements. GWR is a local form of linear regression used to
model spatially varying relationships by fitting a regression equation to
every feature in the dataset. The method was implemented by using
the Spatial Statistics tool for ArcMap (ArcGIS).

Multivariate statistical analysis was carried out using Minitab v.15.0
and SPSS for Windows v.20. Principal component analysis (PCA) and
cluster analysis (CA) using the average neighbor linkage were applied
to the elemental data after normal score transformation of the raw
values. This ensured the normal distribution for all the elements and
reduced the influence of high values on the output results. The varimax
rotation method was used in PCA in order to extract key components
responsible for variation in elemental concentrations. The obtained
component factors were interpreted in terms of the assumed origin
(geogenic or anthropogenic) or geochemical behavior of the relevant
elements.

One-way robust analysis of variance (RANOVA) was applied on the
results from the 20 cells containing a second sample in order to estimate
thewithin sampling cell data variability. The techniquewas implement-
ed using the computer program ROBAN. EXE, adapted from a published
program (Analytical Methods Committee (AMC), 2001) and available
from the (UK) Royal Society of Chemistry web site.

3. Results and discussion

3.1. Elemental concentrations in urban soil from Athens

The descriptive statistics of the raw data are shown in Table 1.
Although the mean value should not be used for compositional data
(Reimann et al., 2008, 2012), it is given to facilitate comparison with
older urban geochemical studies. All elements display wide variability
in their concentrations, reflecting the variety in lithological types as
well as anthropogenic impacts like vehicular traffic emissions, soil
excavation, transport and redistribution.

Concentrations of the major elements reflect the contribution of
underlying geology on soil chemistry. Athens soil is rich in Ca (median
13%, max 38%) due to the high CaCO3 content of both the alpine and
post-alpine lithologies. This is also verified by the alkaline soil pH, rang-
ing from 7.1 to 9.2, as well as the abundant presence of calcite in all the
samples that were analyzed by X-ray diffraction (data not included
here). Aluminum, K, and Fe concentrations reflect the high aluminosili-
cate mineral content of underlying rocks, especially those of the Athens
Unit and the metamorphic rocks outcropping mainly in the central and
western part of the basin.

Of the PHEs chromium and Ni displayed the highest medians of
141 mg kg−1 and 102 mg kg−1 respectively, as well as a wide spread
range in their concentrations (Fig. 3). High concentrations of these
elements in soil are associated with serpentinized ophiolithic rock
(Oze et al., 2004 and references therein). However, the highest variation
in concentration was displayed by Pb with a range of 2761 mg kg−1,
indicating that in addition to diffused contamination of this element
within the urban environment, distinct point sources such as building
demolition material and transported contaminated soil give rise to
high concentrations.

In comparison with other cities around the world (Table 2), surface
soil from Athens showed comparable and somewhat lower concentra-
tions of Cu, Pb, Cd and Zn than most cities (medians of 39, 45, 0.3 and
98 mg kg−1, respectively), but is enriched in Ni, Cr, Co and As with
medians of 102, 141, 16 and 24 mg kg−1, respectively. Despite the var-
ious analytical methods used to determine the PHEs, the total concen-
tration values of Cu, Pb, Cd, and Zn reported in this research are still
low compared to results frommany other studies that used aweaker ex-
traction (see Table 2). The relatively low concentration of these typical
anthropogenic elements reflects the lack of historical industrial legacy
in Athens. The elevated concentrations of Ni, Cr, and Co are attributed
to the natural enrichment of soil derived from serpentinized ophiolites,
a typical geochemical feature in areas of ophiolite occurrences in
Greece (Vardaki and Kelepertsis, 1999; Kelepertzis et al., 2013). This is
in agreement with the elevated geochemical background of these ele-
ments observed over thewhole country in the FOREGS andGEMAS Geo-
chemical Atlases of Europe (Salminen et al., 2005; Reimann et al., 2014).

3.2. Elemental spatial distribution patterns

Geochemical maps were plotted in order to depict the spatial distri-
bution of the studied elements in soil (Fig. 4). Class intervals were
defined by natural breaks in the histograms of the original data, and
elemental concentrations were plotted as circles with size increasing
as a function of concentration. The interpolated surfaces were added
in the background for better visual inspection of the spatial trends
(brown being higher and yellow being lower). However, it must be
noted that interpolated maps must be used with caution due to the
variability between the sampling locations.



Table 1
Statistical summary of elemental concentrations (n = 238) and pH of urban soils in Athens (in mg kg−1 except for Ca, K, Al, Fe in %). RSDsamp (%) denotes the robust relative standard
deviation of 20 samples collected 200 m away from the original sampling location and expresses soil heterogeneity within the 1 km sampling cells.

Parameter Mean SD Q1 Median Q3 Minimum Maximum RSDsamp (%)

Ca 13.5 5.1 11.4 13.0 15.8 1.2 38.0 39.1
K 1.1 0.3 0.9 1.1 1.3 0.3 1.9 20.5
Al 4.5 1.2 3.9 4.5 5.1 1.0 8.2 16.6
Fe 2.4 0.7 2.0 2.4 2.7 0.6 4.8 16.1
Mn 587 237 484 554 662 168 2731 16.9
Cu 48 41 30 39 50 11 410 44.7
Pb 77 194 29 45 70 3 2764 50.0
Zn 122 101 73 98 135 18 1089 43.9
Ni 111 70 83 102 121 27 727 25.9
Cr 163 151 114 141 167 43 1586 24.2
Co 16 5 14 16 18 4 54 19.9
As 29 21 19 24 31 6 204 27.4
Sb 2.4 3.9 1.3 1.7 2.4 0.1 41.7 42.2
Sn 5.5 10.9 2.7 3.6 5.1 0.6 156 39.7
Cd 0.4 0.3 0.2 0.3 0.4 0.1 3.5 35.9
pH 8.3 0.3 8.1 8.3 8.5 7.1 9.2

Notation: SD standard deviation, Q1 first quartile, Q3 third quartile.
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Urban soil is subject to hundreds of human-driven pressures,
resulting in wide differences in elemental concentrations inside the
urban net even at short distances (Hursthouse et al., 2004; Albanese
et al., 2008; Bain et al., 2012). This impacts continuity between the
classes of the parametersmapped and introduces a degree of uncertain-
ty in concentrations between the known sample points. One-way to
overcome this issue is to reduce the distance between sampling
locations, but this would increase both sampling and analytical research
costs. Furthermore, predetermined sampling locations are often moved
in order to find soil not covered by buildings and infrastructures. All of
the above call for the need of finding other means of quantifying the
inherited uncertainty, mainly caused by small-scale soil heterogeneity
within the urban environment.

In this study, soil heterogeneity at distances shorter than 1 km was
estimated by calculating the robust relative standard deviation (RSDsamp)
of 20 samples collected 200 m away from the original sampling location
(Table 1). Prior to this, the analytical repeatability precision was
subtracted from the measurement variance. Calculated percentages
are exceeding 10% for all studied elements. Furthermore, the calculated
RSDsamp of the lithogenic group of elements (Ca, K, Al, Fe, Mn, Ni, Cr, Co
and As) varying from 16.1% for Fe to 39.1% for Ca is systematically lower
than that of typical anthropogenic elements (Cu, Pb, Zn, Sb, Sn, Cd)
varying from 35.9% for Cd to 50% for Pb. This provides an additional
indication of the origin and mode of deposition of PHEs.
Fig. 3. Boxplot comparison of PHEs concentration and variation in Athens topsoil samples
for log-transformeddata. Elements are ordered according to decreasingmedian value. The
scale is back-transformed to show concentrations in mg kg−1.
The finding is in agreement with unpublished data from a previous
study in an Athens park area. That study employed the collection of
topsoil samples at separation distances of 2 m, 25 m, 50 m and 400 m
from 8 locations for each distance within the total sampled area of
12,000 m2 in the park. The sampling precision was subsequently
estimated for each distance. Heterogeneity factors were calculated
as % RSDsamp at the 68% confidence level for Pb and Cr by adopting the
method of Ramsey et al. (2013). Results indicate that the heterogeneity
of both elements varied systematically with scale. Heterogeneity of Pb,
ranging from 10% to 46% over the studied distances, was systematically
higher by 10% compared to Cr (heterogeneity factors from 4% to 36%)
over the same spatial scales. Although this finding cannot be general-
ized for the total sampled area across the city of Athens, it indicates a
high magnitude of soil heterogeneity even at small sample separation
distances, especially for the anthropogenic elements like Pb.

The influence of geology is apparent with respect to the spatial dis-
tribution of the major elements Ca, Al and Fe as well as Mn. The highest
concentrations of Ca occur mainly in the northern and western parts of
the study area (Fig. 4a), which are influenced by non-metamorphic car-
bonate rocks. The highest values of Al, Fe and Mn appear in the central
and eastern parts of the basin that are influenced by the weathering of
aluminosilicate rich mélange of the Athens Unit, and the metamorphic
rocks of Penteli and Hymettus mountains. Chromium and Ni are
enriched mainly in samples located at the periphery of the Athens
Basin, along two axes running parallel to the foot hills of Aegaleo and
Hymettus Mountains. These areas are characterized not only by out-
crops of Alpine rocks, but also by the presence of serpentinized mem-
bers of ophiolithic sequences. However, a few isolated samples with
elevated concentrations of the 2 elements possibly indicate anthropo-
genic origin of high concentrations. These samples are located in the
area of Elaeonas, between the Athens Centre and Piraeus (Fig. 1),
where small scale industrial activities take place.

The spatial distribution of As also displays a distinct spatial pattern
extending along a NE–SW axis. Arsenic concentrations exceed
100 mg kg−1 in several samples along this axis that coincides with the
hilly areas built by alpine rocks of the Athens Unit in the center of the
basin. Despite the known geochemical affinity between As and Sb,
results of GWR indicated that the twometalloids are not spatially corre-
lated in Athens soil. Antimony explained only a small percentage of As
spatial variability (R2adjusted = 24%).

Maximumconcentrations of Cu, Zn, Pb, Sn, and Sbweremeasured in
the core area of the city of Athens, within the ‘Athens Ring’ as well as
around Piraeus Port. Relatively high concentrations also extend towards
the western part of the city in the area of Elaeonas, while some isolated
high values were observed in the periphery of the study area. The
lowest concentrations occurred in the north and north-eastern suburbs
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Table 2
Literature data on published PHE median concentrations (mg kg−1) in urban soil from various cities around the world.

City Pb Zn Cu Ni Cr Cd Co As Sb Mn Analytical method Reference

Sicily (Italy) 202 138 63 17.8 34 0.68 5.2 3 519 HNO3 + HCl Manta et al. (2002)
Mexico City 82 219 54 39 116 XRF, HClO4 + HF Morton-Bermea et al. (2009)
Hong Kong (China) 77.2 92.1 16 11.2 21.6 0.52 3.02 HNO3 + HClO4 Li et al. (2004)
Galway (Ireland) 58 85 27 22 35 6 8 539 HNO3 + HCl + HClO4 + HF Zhang 2006
Napoli (Italy) 141 158 74 8.9 11.2 0.37 6.3 11.9 2 635 HNO3 + HCl Cicchella et al. (2008)
Damascus (Syria) 10 84 30 35 51 10 HNO3 + HCl Möller et al. (2005)
Berlin (Germany) 76.6 129 31.2 7.7 25.1 0.35 3.9 XRF, HNO3 + HCl Birke and Rauch (2000)
Oslo (Norway) 33.9 130 23.5 24.1 28.5 0.34 9.74 4.5 438 HNO3 Tijhuis et al. (2002)
Bristol (UK) 210.1 272.6 60.1 21 23.1 1.1 21.7 HNO3 + HCl Giusti (2011)
Zagreb (Croatia) 23 69.7 17.8 48.7 0.5 605 HNO3 + HCl Romic and Romic (2003)
Lisbon (Portugal) 62 88 29 20 16 6.8 4.4 0.7 218 HNO3 + HCl Cachada et al. (2013)
Trondheim (Norway) 32 80 32 43 58 0.12 3.3 HNO3 Andersson et al. (2010)
Annaba (Algeria) 42.3 64.7 23.8 28.3 0.3 405.9 HNO3 Maas et al. (2010)
Ibadan (Nigeria) 47 93.5 32 16.5 55.5 0.15 3 993 HNO3 + HCl Odewande and Abimbola (2008)
Sevilla (Spain) 103 86 41.7 23.1 42 468 HNO3 + HCl Madrid et al. (2004)
Beijing (Cjina) 19.3 84.5 26.1 23.8 60 0.11 HNO3 + HCl + HClO4 + HF Wang et al. (2012)
Baltimore (USA) 89.3 80.7 35.2 18.4 38.3 0.89 12.1 422 HNO3 + H2O2 + HCl Yesilonis et al. (2008)
Chicago (USA) 198 235 59 31 65 11 13.2 495 HClO4 + H2SO4 + HF + HCl Cannon and Horton (2009)
Greater Athens and Piraeus (Greece) 45 98 39 102 141 0.3 16 24 1.7 554 HNO3 + HCl + HClO4 + HF This study
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of the city where urbanization has an almost exclusively residential
character.

3.3. Multivariate analysis results

The PCA results are presented in Table 3 and in Fig. S2 (Supplemen-
tary material) as a biplot. Three principal components were identified
accounting for 78% of the total variance. This percentage is not very
high because other parameters, such as soil pH and texture, organic
content and cation exchange capacity, probably contribute to the total
elemental variability. The first component (PC1) includes Al, K, Fe and
Mn with high positive values and is interpreted as a geogenic source
associated with the major rock-forming elements in soil. The typical
contamination indicators Pb, Zn, Cu, Sn, Cd, and Sb are strongly associat-
ed in the second component (PC2), while the third component (PC3)
includes Ni, Cr and Co, indicating the ophiolithic parent rocks as their
common, geogenic source. Arsenic is not included in any of the principal
components; however, it presents its highest loadings in PC1.

Based on their concentrations, the studied elements were hierarchi-
cally grouped by using cluster analysis. The distance measure was the
Pearson correlation coefficient at the 95% confidence level. The results
are presented in the dendrogram of Fig. 5. The similarity axis represents
the degree of association between the elements, the greater the value
the more significant the association. Three distinct clusters are identi-
fied, based on a criterion for similarity of N60%. The results of CA
complement those of PCA and thus, verify interpretation of the data.
Specifically, Ca is themain cluster that reflects the dominance of carbon-
ate containing rocks in the area. This is then divided into two clusters,
one containing Cu, Zn, Pb, Sn, Sb, and Cd that reflects local anthropogen-
ic pollution, and another that reflects local geology and includes Ni, Cr,
and Co, Mn, Fe, Al, and K, and As as three groupings. These three
groupings likely represent enrichment of these elements in specific
rock types. The Ni, Cr, Co group is controlled by the contribution of
ophiolithic rocks to soil chemistry. The Mn, Fe, Al, K group contains
elements associated with the weathering processes of aluminosilicate
minerals and pedogenesis, and finally As, displays high similarity with
the lithogenic elements within the Athens Unit. Overall, the results of
multivariate analysis are in good agreement with the elemental spatial
distribution patterns.

3.4. Influence of urbanization indicators on soil chemistry and sources
of PHEs

Data for the evaluation of PHE geochemistry with respect to urban-
ization indicators, including urban land uses, population density and
timing of urbanization are presented in Table 4. Statistically significant
(p b 0.05) higher concentrations of Cu, Pb, and Zn are detected in road
verge soil compared to other land use categories. This is in agreement
with many previous studies (e.g., Li et al., 2001, 2004; Möller et al.,
2005; Morton-Bermea et al., 2009; Andersson et al., 2010), indicating
vehicular traffic as the major contributory factor in urban soil contami-
nation by the typical anthropogenic elements. Leaded fuel for Pb, tire
wear for Zn and Cd, and brake pads for Sb have been recognized as
specific vehicular traffic-related sources (Albanese and Breward,
2011). The significant contribution of vehicular traffic on the distribu-
tion of these elements in soil is also reflected in the enrichment factors
of 1.90, 1.27 and 1.40 for Pb, Cu, and Zn respectively in the city core area.
It is noted that the city center is characterized by low average vehicular
speeds andmore vehicles (Region of Attica, Athens TrafficManagement
Centre, 2013).

Distinct point sources also contribute to hot-spots of these elements
in soil. In the city of Athens, such hot-spots were identified at the west
end of the center and were attributed to the small scale industrial
activity in this area. For example an indicator of urban contamination
is Sn, because of its very low (b5mg kg−1) natural concentration levels
and limited mobility. Old paint, glazed pottery, electrical solder, and tin
plate (food cans) are sources of Sn in the urban environment (Albanese
andBreward, 2011). In the present study a high proportion of the spatial
variability of Sn was predicted by Pb as estimated by the GWR analysis
(R2adjusted = 87%), providing further evidence on common sources of
these 2 elements. Interestingly, Pb concentrations in park andwoodland
areas are also significantly higher than other land use categories. This
indicates either greater deposition of airborne Pb in soil of vegetated
areas (Ukonmaanaho et al., 2001;Michopoulos et al., 2005), or the effect
of distinct point sources within park and woodland areas. The same
pattern is observed for As, while no significant differences are detected
for Cr, Ni and Co among different land use categories (ANOVA, p N 0.05
in all cases).

Population density data, disaggregated to municipality level, also
displayed significant differences between the densely populated areas of
central Athens and Piraeus, and the less populated north and north-
eastern suburbs with respect to Pb, Cu, and Zn concentrations. The data
were classified into four categories of (i) low (967–7584 people/km2),
(ii) medium (7585–10,924 people/km2), (iii) high (10,925–16,830 peo-
ple/km2) and (iv) very high (16,831–21,068 people/km2) population
density (see Fig. S1 in Supplementary material). These classes were
based on area coverage estimated by the GIS software and correspond
to population densities within approximately equal areas. Statistically
significant differences (p b 0.003)were identified between the categories
low and high–very high for the elements Pb, Cu, and Zn.



Fig. 4. a. Geochemical maps showing the spatial distribution patterns of mainly geogenic chemical elements (Al, Ca, Fe, Mn, Co, Cr) in urban soil in the city of Athens (AR= ‘Athens Ring’). b.
Geochemical maps showing the spatial distribution patterns of mainly anthropogenic chemical elements (Pb, Zn, Cd, Cu, Sb) and As in urban soil in the city of Athens (AR= ‘Athens Ring’).
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Fig. 4 (continued).
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Table 3
Total variance explained and matrix of principal component analysis for normalized
elemental concentrations of urban soil in Athens. Significant principal component
loadings are indicated in italics.

Element Rotated component matrix

PC1 PC2 PC3

Cu 0.215 0.842 0.178
Pb 0.130 0.898 0.049
Zn 0.125 0.894 0.056
Ni 0.143 0.019 0.961
Co 0.593 0.071 0.745
Mn 0.789 0.182 0.333
Fe 0.874 0.111 0.348
As 0.421 0.272 0.192
Sb 0.202 0.835 0.046
Ca −0.840 −0.058 −0.242
Cr 0.162 0.131 0.933
Al 0.971 0.057 0.017
K 0.934 0.141 −0.091
Sn 0.129 0.854 −0.037
Cd −0.076 0.633 0.046
Eigenvalue 4.62 4.31 2.73
% variance explained 30.8 28.7 18.2
Cumulative % variance 30.8 59.5 77.7
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A similar analysis of geochemical data concerning the age of parts of
the city was based on the spatial extent of the urban net during three
time periods: 1834–1920, 1920–1945 and 1945–1980 (Diakakis et al., in
press) (see Fig. S3 in Supplementary material). Concentrations of Pb, Cu,
Zn, as well as Sb and Sn, are systematically higher in the older parts of
the city. Statistically significantly lower concentrations (p b 0.05) were
observed in areas where the latest expansion spread, i.e., after World
War II. No systematically significant differences between areas developed
in different time periods were observed for Ni, Cr, Co, and As, providing
further evidence that the spatial distribution of these elements is more
strongly influenced by their geogenic signature.

Arsenic and Cd are often associated with coal combustion and point-
sourced industrial discharges respectively (Shi et al., 2008; Yang et al.,
2011). In Athens surface soil Cd concentrations are rather low, close to
detection limit. However, As was found to be enriched in a number of
samples reaching a maximum of 204 mg kg−1 and displays a distinct
spatial pattern (Fig. 4b). Multivariate cluster analysis of the Athens
geochemical data implied a geogenic source for As, showing higher sim-
ilarity with major elements related to pedogenesis. It is well established
that As adsorbs very easily, either as As (III) or As (V), on different soil
components such as Fe and Al oxides, and clay minerals (Smedley and
Kinniburgh, 2002). Existing data on the geological sources of As in
Greece have been reviewed by Gamaletsos et al. (2013). In their review,
As-bearingMn-silicates are reported as possible hosts of As inmetamor-
phic rocks found in NE Attica. Moreover, concentration of As ranges from
Fig. 5. Cluster analysis dendrogram based on the linear correlation coefficients using the
average neighbor linkage method and correlation coefficient distance.
61 to 210 mg kg−1 and 33 to 430 mg kg−1 in limestone and related soil
from NE Attica respectively (Kampouloglou and Economou-Eliopoulos,
2013). However, we must reserve judgment on the natural origin of
this element in Athens soil, as the statistically significantly higher
concentrations that were detected in parks and woodland areas might
be indicative of anthropogenic airborne sources of As. The use of As-
based pesticides in the past cannot be excluded. Further research,
focused on comparisons of chemistry of the underlying rocks, as well
as As speciation in soil, is needed in order to clarify the origin of this
element.

Nickel concentrations in urban soil may be controlled either by
parent rock materials (Chen et al., 2005), or by atmospheric deposition
of vehicle emissions (Cannon and Horton, 2009). Chromium and Co are
routinely attributed to weathering processes and their amounts in
urban soil are usually too low to reach contamination levels (Manta
et al., 2002; Lee et al., 2006). In Athens, all 3 elements were enriched
in soil, exceeding reported concentrations in other cities worldwide
(Table 2). Although the anthropogenic influence cannot be totally
excluded, the presence of serpentinized ophiolithic rocks in local geolo-
gy, coupled with their strong statistical similarity (Fig. 5 and Table 3),
points to their common, natural source.

Elevated concentrations of Cr and Ni, with median values of
141mg kg−1 and 102mg kg−1 respectively,might indicate a potential
environmental hazard, although their speciation and bioaccessibility,
rather than simply their total concentrations, have to be addressed
first (Gupta et al., 1996). A recent study on urban soil from Thiva, a
Greek town 90 kmnorth of Athenswith geochemical influence by ultra-
mafic rocks, demonstrated that pseudototal concentrations of Cr andNi,
derived with aqua regia, were not indicative of metal bioaccessibility
(Kelepertzis and Stathopoulou, 2013).

4. Conclusions

A geochemical baseline study of surface soil in Athens, based on a
systematic sampling survey covering the Greater Athens and Piraeus
area, was done. The contents of the major elements Fe, Al, K, and Ca,
and potentially harmful elements (PHEs) Ni, Cr, Co, Mn, As, Pb, Zn, Cu,
Cd, Sb, and Sn were determined. Principal component analysis and
cluster analysis, combined with analysis of soil heterogeneity and
spatial variability, were implemented in order to distinguish the sources
of elements and their classification as geogenic or anthropogenic. It was
found that the major factor controlling variability of the chemical
composition of surface soil was the bedrock chemistry, resulting in a
significant enrichment in concentrations of Ni, Cr, Co and possibly As.

Anthropogenic influences were also significant, controlling a spec-
trum of elements that are typical of human activities, i.e. Pb, Zn, Cu,
Cd, Sb, and Sn. The highest concentrations of the classical urban contam-
inants were observed in the surface soil from roadside verges and in the
older parts of the city, as well as the densely populated areas. A promi-
nent feature of soil chemistry throughout the city is the enrichment of
Pb and As in parks and woodland areas. Spatial distribution patterns
of PHEs demonstrated an increase in concentrations of the anthropo-
genically induced metals towards the city core and the port of Piraeus.
On the contrary, the naturally derived Ni, Cr and Co aremainly enriched
in the periphery of Athens Basin.

Taking into account the salient enrichment of geogenic metals in
Athens soil, comparing with concentrations measured in other cities
around the world, this study provides a baseline for understanding
PHE mobility and bioaccessibility. This work is important, for under
the current economic conditions, the development of urban agriculture
is an emerging initiative of several municipalities.
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Table 4
Median concentrations and range of values (mg kg−1) for selected PHEs in urban soil from Athens according to land use, population density and age of urban area.

Cu Pb Zn Ni Cr As

Land use
RV (n = 65) 49 (16–188) 56 (17–621) 126 (53–327) 105 (28–224) 148 (48–884) 24 (10–65)
PS/P/S (n = 88) 38 (15–410) 44 (9.3–252) 91 (48–290) 102 (30–291) 139 (50–1586) 23 (6–81)
US (n = 43) 30 (11–336) 28 (3.1–455) 80 (18–792) 92 (27–727) 122 (43–1328) 24 (6–189)
P/W (n = 41) 40 (18–90) 60 (11–823) 104 (48–692) 95 (28–622) 129 (50–1586) 29 (12–204)

Population density
Low (n = 68) 32 (11–93) 36 (3.1–233) 80 (18–692) 90 (27–727) 119 (43–1328) 23 (6–109)
Medium (n = 61) 40 (15–128) 42 (9.3–261) 95 (48–327) 108 (30–291) 154 (50–1586) 23 (6–65)
High (n = 98) 42 (17–410) 51 (11–823) 108 (46–792) 102 (28–186) 139 (45–763) 26 (12–204)
Very high (n = 10) 49 (32–115) 66 (35–312) 120 (98–238) 103 (84–224) 152 (127–884) 27 (13–33)

Age of urban area
1834–1920 (n = 34) 46 (28–147) 56 (22–252) 115 (61–279) 103 (65–159) 144 (84–262) 27 (15–204)
1920–1945 (n = 83) 41 (15–336) 51 (9.3–823) 106 (48–792) 103 (28–727) 144 (45–1586) 23 (6–189)
1945–1980 (n = 99) 34 (11–410) 36 (3.1–189) 87 (18–290) 100 (27–460) 134 (53–481) 23 (6–109)

Notation: RV = road verge; PS/P/S = public squares, playgrounds and school yards; US = unbuilt spaces; P/W = parks and woodland.
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