
Research Article Vol. 13, No. 4 / April 2021 / Journal of Optical Communications and Networking B45

Quality of transmission estimator retraining for
dynamic optimization in optical networks
Ankush Mahajan,1,* Konstantinos (Kostas) Christodoulopoulos,2

Ricardo Martínez,1 Raul Muñoz,1 AND Salvatore Spadaro3

1Centre Tecnològic de Telecomunicacions de Catalunya, CTTC/CERCA, Castelldefels, 08860, Spain
2Nokia Bell Labs, Stuttgart, Germany
3Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
*Corresponding author: ankush.mahajan@cttc.cat

Received 30 September 2020; revised 27 December 2020; accepted 28 December 2020; published 9 February 2021 (Doc. ID 411524)

Optical network optimization involves an algorithm and a physical layer model (PLM) to estimate the quality
of transmission of connections while examining candidate optimization operations. In particular, the algorithm
typically calculates intermediate solutions until it reaches the optimum, which is then configured to the network.
If it uses a PLM that was aligned once to reflect the starting network configuration, then the algorithm within its
intermediate calculations can project the network into states where the PLM suffers from low accuracy, resulting
in a suboptimal optimization. In this paper, we propose to solve dynamic multivariable optimization problems
with an iterative closed control loop process, where after certain algorithm steps we configure the intermediate
solution so that we monitor and realign/retrain the PLM to follow the projected network states. The PLM is used
as a digital twin, a digital representation of the real system, which is realigned during the dynamic optimization
process. Specifically, we study the dynamic launch power optimization problem, where we have a set of estab-
lished connections, and we optimize their launch powers while the network operates. We observed substantial
improvements in the sum and the lowest margin when optimizing the launch powers with the proposed approach
over optimization using a one-time trained PLM. The proposed approach achieved near-to-optimum solutions
as found by optimizing and continuously probing and monitoring the network, but with a substantial lower
optimization time. © 2021 Optical Society of America

https://doi.org/10.1364/JOCN.411524

1. INTRODUCTION

An accurate and fast physical layer model (PLM) is required
for almost every optimization task of an optical network [1,2].
Today, most optimization tasks are static, such as network
setup and upgrading, where calculations are performed in
advance. The PLM used includes margins that cover its mod-
eling uncertainties and the evolution of the physical layer
conditions over the targeted lifespan [3,4]. Moreover, as soon
as the connection is provisioned/established, the vendor can
measure its quality of transmission (QoT), e.g., the signal-
to-noise ratio (SNR), and correct/improve the configuration.
Note that upgrades that involve dynamic operations, such as
the establishment of new or reconfiguration of established
connections were classified as static above, since typically they
are carried out in maintenance windows and not on the operat-
ing network. Dynamic reconfigurations for resiliency involve
protected/restored connections that were probed beforehand.

In any of these optimization tasks, the PLM needs to be
accurate; however, the dynamic operations are not directly
applied on the network, an indication of the lack of certainty

for such operations. Recently monitoring and machine-
learning (ML) techniques have been proposed to account for
the actual network conditions and improving the accuracy of
the PLM [5–8]. This in turn improves the efficiency of static
optimization and paves the way to reduce overprovisioning and
realize some dynamic optimization use cases [9–13].

Let us consider a network upgrade/incremental planning
task that involves calculations for new establishments and
possible reconfigurations of established connections [8,12].
Traditionally a PLM with high margins is used, e.g., considers
pessimistic fiber coefficient parameters, full spectral load, or
high modeling inaccuracy. The optimization will be quite
inefficient and result in considerable overprovisioning. Using
monitoring feedback and, e.g., ML [5–8], the parameters of
the PLM can be fitted so that its estimated SNR values are close
to those monitored in the network. Essentially, feedback and
ML are used to understand the current state of the network
and increase the PLM estimation accuracy. We will refer to this
process as the alignment of the PLM to the physical layer of
the network. The PLM accuracy is even more critical when it

1943-0620/21/040B45-15 Journal © 2021 Optical Society of America

https://orcid.org/0000-0001-9687-130X
https://orcid.org/0000-0003-3097-5485
https://orcid.org/0000-0003-4651-4499
mailto:ankush.mahajan@cttc.cat
https://doi.org/10.1364/JOCN.411524

B46 Vol. 13, No. 4 / April 2021 / Journal of Optical Communications and Networking Research Article

is used for dynamic optimization tasks, where the target is to
achieve high efficiency in an operating network.

Today, optical networks are moving towards the software-
defined networking (SDN) concept, where a centralized
controller handles the programmability of all network ele-
ments. One of the main advantages of SDN is its intrinsic
capability of enabling dynamic optimization operations
[14,15]. In this context, the SDN controller implements
the optimization logic, interfaces with a PLM, and can be
extended to handle closed control loops, which entail the use of
monitoring data as input or feedback to conduct the targeted
optimization task [7,9,16].

Similar problems arise in almost every industry. To keep up
with the rapid advancements of the systems and harvest their
improvements in terms of productivity, the digital twin (DT)
concept is gaining a great deal of attention. The DT is a digital
representation of the real/physical system, used to understand
and optimize the targeted system [17]. According to the defi-
nition of [18], the DT is more than a model of the system; it
includes an evolving set of data, and a means of dynamically
adjusting the model. The DT concept was originally intro-
duced in 2003 [19] and first put to public use by NASA [20].
Different industry sectors are taking advantage of DT’s ability
to simulate real-time working conditions and perform autono-
mous and intelligent decision-making operations. DT provides
an alternative way in today’s manual interaction-based design,
operation, and service paradigms to solve the related challenges
autonomously and in real time [17,19]. Depending on the
dynamics of both the system and the optimization process, the
DT needs to represent the real system with certain accuracy. To
do this, the DT is integrated and realigned with the physical
system. Such a realignment mechanism typically involves
monitoring and ML schemes.

Turning our attention back to the optical network, the target
is to use the PLM as a DT, a model with an appropriate set
of parameters and a mechanism to adjust them to support
the optimization of the task at hand. For static optimization
tasks, such as the incremental planning discussed above, the
only option is to train the PLM once, just before making the
decisions for the entire optimization task. This results in lower
margins and increased network efficiency. But the main target
and benefits of DT come in dynamic optimization. In dynamic
optimization, we would like to squeeze the margins and achieve
higher efficiency, making the accuracy of the PLM a critical
factor. For example, the accuracy of the PLM deteriorates as
connections are established/released/rerouted/change their
power. For dynamic optimization tasks that involve few such
calculations and actions, e.g., the establishment or recon-
figuration of a single connection, the accuracy of the PLM
would be acceptable if it were realigned before the calculation.
However, realignment of the PLM is expensive; it requires one
or more control loops, including monitoring that can be time-
consuming, and thus, it might not be feasible. Moreover, for
more complex/multivariable dynamic optimization tasks that
require multiple reconfigurations, the accuracy of the PLM can
become critical. Algorithms used in such cases are typically iter-
ative; they calculate several intermediate solutions and improve
them to find the optimum, which is then configured in the
network [11]. However, the accuracy of the PLM deteriorates

after several intermediate calculations, and after a point, it can
fail to support the optimization calculations. The key advan-
tage is that the network operates, and thus we can realign the
PLM/retrain its parameters so that it follows the projections to
states intermediately calculated by the algorithm.

In particular, we study the dynamic launch power optimiza-
tion problem, where we assume that we have a set of established
connections and we want to optimize their powers while the
network operates. The optimum launch powers can be found
with a convex optimization algorithm that performs several
intermediate calculations. To solve the problem, three methods
are explored: i) having the optimization algorithm probe and
monitor the network at each intermediate iteration, ii) using
a one-time trained PLM for all optimization iterations, and
iii) implementing an iterative closed control loop process
that after a number of intermediate iterations configures the
network and monitors and retrains the PLM. We will refer to
the last option, the proposed solution, as optimization with a
DT, since it includes, apart from the PLM, evolving network
conditions, appropriate choice of parameters for the PLM, and
the process to align it to support the dynamic optimization
at hand [18]. Although we applied our proposed solution to
the dynamic launch power optimizing problem, the proposed
iterative closed control loop that includes the realignment of
the PLM is generic. It can be applied to other dynamic mul-
tivariable optimization problems, such as dynamic resource
allocation, automatic network reconfiguration, defragmenta-
tion, and virtual network reconfiguration [9,16,21–25]. It also
provides ideas of how to realign the PLM in simpler dynamic
and even static optimization tasks.

The remainder of this paper is organized as follows.
Section 2 presents an overview of the related work of exist-
ing power optimizations schemes, dynamic optimization, and
closed control loops. Section 3 presents simulations that expose
the optimization mismatch when using a one-time trained
PLM with respect to the real world/optical network. Then,
in Section 4, we describe the proposed (DT) optimization
concept. In Section 5, we evaluate the performance of the
proposed scheme. Finally, Section 6 concludes the paper.

2. RELATED WORK

Optimization in optical networks is typically classified as plan-
ning/static or online/dynamic. Dynamic optimization refers
to making changes while the network operates. Both static
and dynamic optimization involve algorithms that range from
optimal to heuristics that are typically iterative. They perform
intermediate calculations until they find the final solution. At
these intermediate calculations, they generally rely on PLMs to
take into account the physical layer. The PLMs serve as estima-
tors; they estimate the QoT of unestablished or reconfigured
connections [7,8]. The PLM is a model that has several input
parameters, which are known with certain accuracy, and thus
needs to use appropriate margins for the optimization task at
hand [3]. For example, for establishing connections, margins
are generally used to model the inaccuracy of the PLM and
also to account for the evolution of the physical layer over the
lifetime of the connections, increased inference of upcoming
connections, equipment aging, etc. Recently ML has been used

Research Article Vol. 13, No. 4 / April 2021 / Journal of Optical Communications and Networking B47

to improve the accuracy of the PLM by implementing it with
ML models [5] or fitting the parameters of the existing PLM
so that its estimations match those monitored in the network
[6,8].

The optimization problems in optical networks are multi-
dimensional and combinatorial; a change in one variable
affects several others. For example, an establishment of a new
connection or a change in a single transponder launch power
results in variations in the QoT of all interfered connections.
The effect of a few reconfigurations is relatively easy to predict.
However, in complex/multivariable optimization problems,
if the algorithm at intermediate steps has assumed several
reconfigurations, it can project the network into states where
the PLM suffers from low accuracy. This would mislead the
subsequent calculations and result in poor optimization.

Regarding launch power optimization, several works have
appeared aiming at the minimization of nonlinear self- (or
intrachannel) and more importantly the cross- (or inter-
channel) interference effects [2,26–30]. These cross-channel
nonlinearities (XCIs) create interdependencies among the
launch powers of the connections that share a link, making
the problem more complex, as mentioned in the previous
paragraph. The authors of [2,26] presented several approaches
targeting the optimization of the launch powers of all the chan-
nels before establishment (static problem), with the objective
of maximizing the network spectral efficiency. Specifically,
[26] discussed the potential network level gains achieved by
optimizing the power, constellation, and route and wavelength
allocations, considering the Gaussian noise (GN) model [27]
as the PLM. The parameters of the PLM, such as fiber non-
linearity, attenuation, dispersion coefficients, transponder
mismatch loss, and amplifier (flat) gain, were assumed to be
fixed during the optimization task. Also, other previous works
were based on a fixed parameter PLM and proposed heuristics
to optimize all channels’ launch powers [1,28]. Note that a
fixed parameters PLM works fine for a few reconfigurations,
but when the algorithm decides on extensive reconfigura-
tions, and in particular, the adjustment of the launch powers
of several connections, the accuracy of the PLM can become
critical. The above works select a different launch power for
each connection, assumed to be set at each span that the con-
nection crosses. The local optimization leads to the global
optimization (LOGO) method [27] and maximizes each span’s
SNR, assuming the same power for all connections crossing it.
Drawbacks are that LOGO assumed spans with a full load and
cannot transfer margins among the connections.

The authors of [29] formulated the problem of optimizing
the launch powers of all connections to maximize the sum
or the minimum channel margin using a PLM based on the
GN model (with fixed parameters) as a convex optimiza-
tion problem. An extension of [29] that improves the SNR
estimation accuracy from measurements (thus assuming an
operating network/dynamic optimization) was presented
in [30]. The authors proposed to probe (change the launch
power) and monitor the network, and use that to calculate the
partial derivatives needed by the convex optimization algo-
rithm’s intermediate calculations. The limiting factors of that
work were the assumption of perfect nonlinear impairment
monitoring, which is generally considered very hard, along

with the extensive interactions with the network for probing.
Additionally, the analysis was focused on a single link.

Similar PLM accuracy issues arise in other multivariable
dynamic optimization problems, such as dynamic resource
allocation, automatic network reconfiguration, defragmenta-
tion, and virtual network reconfiguration [9,16,21–25], where
the optimization algorithm relies on the PLM to perform
calculations for candidate reconfigurations. The PLM in those
related works was assumed to have fixed parameters or was
aligned before the optimization task and was used to make
decisions that were afterward configured to the network. For
the extensive reconfigurations targeted in the above works, the
PLM can fail because its accuracy drops as the algorithm in its
intermediate calculations projects the network into new states.

We here propose to use an iterative closed control loop to
solve dynamic multivariable optimization problems. A key
part of the proposed iterative closed control loop is that after a
number of optimization algorithm intermediate calculations,
we close the loop, configure the network, and realign the PLM
with the real world via monitoring and ML. By introducing
these retraining cycles, the PLM represents the real physical
system with enough accuracy to perform the optimization task
at hand. The PLM becomes a DT, a model of the system with
parameters that evolve/adjust, and a means of dynamically
adjusting it.

Closed control loops have been extensively studied in con-
trol theory as discussed in [11,31]. However, control theory
typically targets infinite time horizon problems, and considers
fast loops with real-time feedback. Also, reinforcement learning
has received attention on similar topics [32]. Reinforcement
learning also targets infinite time horizon problems and a sys-
tem described by a Markov decision process, which is different
from the convex optimization problem that we have at hand.

To the best of our knowledge, the identified issue of the lack
of accuracy of the PLM in dynamic optimization problems has
not been studied in the past. Note that convex optimization
algorithms and their interaction with a tool that represents
reality (in optimization terms this is referred to as an “oracle”)
have been studied [33], including exact and inexact oracles
with varying inaccuracy models. Our proposed solution shares
certain ideas from this optimization field. We use convex
algorithms to solve the launch power optimization problem,
following [29,30], but we avoid heavy monitoring and apply
the optimization to the network level. We also share ideas with
[7,8,12] on the use of monitoring and ML to train/align the
PLM with the physical layer conditions. However, we extend
those and retrain/realign the PLM in a closed control loop,
targeting dynamic optimization problems.

Finally, we would also like to note that our study is quite a
bit more realistic than most previous works that use the same
PLM as both the estimator and the ground truth to generate
the information to train the estimator. In particular, in our
simulations, we used VPI as the ground truth and the GN
model as the estimator. VPI is more detailed and complex and
closer to a real system than the GN model. This choice was
made to capture the mismatch between the real network and
the PLM that would be used in the optimization process, an
additional difficulty that has been neglected in most previous
works.

B48 Vol. 13, No. 4 / April 2021 / Journal of Optical Communications and Networking Research Article

3. USE CASE AND MOTIVATION

In this paper, we investigate how PLM accuracy affects opti-
mization calculations. To do this, we focus on a dynamic
version of the launch power optimization problem. We assume
that a set of connections are established, and our goal is to
optimize their launch power. Thus, no connections are estab-
lished or released, but the existing connections are reconfigured
(their launch powers are adjusted) as the network operates. To
motivate and better understand the problem in this section, we
discuss the optimization of the launch powers of 25 channels
transmitted over a single link.

A. PLM Training

We created a single link with six identical spans set up in
VPItransmissionMaker [34] as shown in Fig. 1. On this link
we simulated the transmission of 25 channels at 32 Gbaud
with polarization multiplexed 16-ary quadrature amplitude
modulation (PM-16QAM) and an assumed SNR threshold of
SNRth = 13.9 dB for each [1,6]. Note that these simulations
were time-consuming due to the high computational complex-
ity, as VPI uses split-step Fourier propagation simulations to
model the nonlinear signal propagation of the channels. We
considered the VPI setup as the “real world,” the actual optical
network.

We also implemented a PLM, and in particular the GN
model [27], with a similar setup of six identical spans and 25
channels. We found approximately 1 dB of maximum SNR
difference between the PLM and VPI, when all parameters of
the PLM and VPI (dispersion coefficient, slope, attenuation
coefficient of fiber, nonlinearity coefficient, etc.) were set to be
equal. Then we aligned the PLM with the real world (VPI).
This alignment can be done with various methods. In our case,
we monitored the channels’ SNR values (in VPI) and adjusted
the PLM parameters so that its SNR estimations match with
the real world (VPI), using ML.

To be more specific, we implemented the following align-
ment process for the GN model [5,6]. We assume a network
with N connections. The GN PLM is a model that takes as
input several parameters and calculates the SNR values of
the connections. Let r denote the set of GN model fitted
parameters: i) fiber attenuation coefficients; ii) fiber nonlinear
coefficients; iii) fiber dispersion coefficients; iv) a wavelength-
dependent penalty term, implemented as a fourth-order
polynomial to cover transponder loss mismatches, amplifier
ripple, etc.; and v) a bias. Also let p= [p1, p2, . . . , pN] be

Fig. 1. Simulated single-link setup in VPI with 25× 32 Gbaud,
PM-16QAM, 50 GHz spaced transmitters, and six identical spans.

the launch power vector of the N connections, which are the
variables that will be optimized later, and let z represent the
unchanged input parameters for our optimization, such as
routes, used wavelengths, and span lengths. We denote by
Qn(p, r, z) the GN model SNR estimation for connection n,
and with QN(p, r, z), the SNR vector for all connections N.
The SNR calculation function is nonlinear in its parameters
r (and also p). Finally, let Yn(p) denote the monitored SNR
value of connection n and Y N(p) denote the vector for all the
connections N. In this work, such monitoring is assumed to
be done at the coherent receivers. The training error vector
is given by QN(p, r, z)− Y N(p), and the objective of the
fitting is to identify the parameters r that minimize the squared
error. To fit this, we relied on the Levenberg–Marquardt (LM)
algorithm, which is suitable for solving nonlinear least squares
fitting problems [35]. The LM algorithm finds

r0 = argminr

(
QN(p, r, z)− Y N(p)

)2
. (1)

When we perform this PLM alignment once, before the
optimization task, the PLM reflects with good accuracy the
starting state of the network prior to optimization. We refer to
this as one-time trained PLM and denote it by QN(p, r0, z).

We studied two types of erbium-doped fiber amplifiers
(EDFAs): one whose gain is perfectly flat/ideal and another
with a gain ripple profile of a peak-to-peak (p2p) value of
±0.2 dB [6]. Note that the EDFAs were assumed to be oper-
ated in automatic gain control (AGC) mode, with average gain
equal to the previous span loss. We call the setup with the flat
span EDFAs as Case 1, and the setup with EDFAs having gain
ripple as Case 2. Case 1 represents an ideal network with rela-
tively stable physical layer conditions. On the other hand, Case
2, with rippled EDFAs, represents a more realistic scenario
with more volatile/dynamic physical layer conditions. The
physical layer dynnamics comes from the fact that an EDFA
with a gain ripple introduces SNR variations when changing
the connection powers. These variations are hard to estimate
unless we exactly know the gain profile of the EDFA. This pro-
file is hard to be found in an operating network, and it might
change over a long time.

Figures 2(a) and 2(b) show the estimated SNR values of the
connections from the one-time trained PLM QN(p, r0, z)
and the real network (VPI) YN(p) at uniform launch power
of p= 0 dBm, for flat and rippled EDFAs, respectively. The
corresponding training errors are also displayed in the same
figures. With one-time training, the PLM parameters were
adjusted quite well, and its estimated SNR values matched
those of the actual optical network/real world at the initial
state. This is deduced by the very low errors, less than 0.1 dB
for both Case 1 and Case 2.

B. Dynamic Launch Power Optimization

We now turn our attention to the dynamic launch power
optimization problem. For a generic topology, we assume that
we have a set of N established connections. The objective is to
optimize the launch powers of the N transponders to maximize

(i) objective 1: sum of connections margins,

Research Article Vol. 13, No. 4 / April 2021 / Journal of Optical Communications and Networking B49

Fig. 2. Estimated SNR values from the one-time trained PLM and
VPI at uniform 0 dBm launch power and the related training error for
(a) a flat EDFA and (b) an EDFA with gain ripple.

max f (p)=

N∑
n=1

(
log SNRn (p)− log SNRth,n

)
;

(ii) objective 2: minimum margin,

max f (p)= min
n∈[1,N]

(
log SNRn (p)− log SNRth,n

)
subject to

log SNRn (p)− log SNRth,n ≥ 0, ∀n ∈ [1, N] ,

pmin ≤ p≤ pmax,

where p= [p1, p2, . . . , pN] is the launch power vector of
the N connections, pmin and pmax are the lower and upper
power limits of the transponders’ launch power, SNRn(p)

is the SNR of connection n for the corresponding power
vector p, and SNRth,n is the SNR threshold required for
the modulation format of n.

The optimization of the channels’ launch powers with one
of the above objectives is known to be convex and of polyno-
mial complexity [29,30]. Hence, we used the interior-point
algorithm to solve it. In general, a convex optimization algo-
rithm performs intermediate calculations/iterations. At each
intermediate iteration, the algorithm decides on new transpon-
der launch powers to move towards the optimum. However,
these intermediate steps are internal; only the final (optimal)
will be configured in the network. The algorithm decides these
steps by using the knowledge of the partial derivatives (first and
sometimes second order, depending on the algorithm) of the
objective and constraints with respect to the variables (launch
powers p).

The first option to calculate such derivatives is to inter-
face the optimization algorithm with a PLM. In this case,
the SNRn(p) values in the algorithm come from the PLM
calculations Qn(p, r, z). If the PLM has closed-form partial
derivatives, then the optimization process is straightforward.
However, typically the PLMs (e.g., the GN model) do not
have closed-form derivatives. Then we can use a derivative
identification subroutine based on finite differences. This
subroutine makes changes in the launch powers and uses the
PLM to calculate the outcomes (connections’ new SNR val-
ues). In this section, we will assume that we use a PLM that
was aligned/trained once before the optimization, as discussed
above, so we use the fitted parameters r = r0. We will refer to
this as optimization with a one-time trained PLM.

An alternative option is to probe the real network, that is, to
interface the algorithm and, in particular, the derivative identi-
fication subroutine, with the network, bypassing the PLM. In
this case the SNRn(p) values in the algorithm come from the
monitors of the network Yn(p). The derivative identification
process would configure through the control plane the launch
powers of the transponders and would monitor the outcomes
(connections’ SNRs) to calculate the derivatives. This would
be repeated at each algorithm’s iteration. We will refer to this
option as optimization with monitoring probes.

Note that the former option is fast. The PLM is trained once
and used thereafter to compute the derivatives. Although the
PLM is called several times, it has low computation complexity
(at least the GN model), resulting in low overall optimiza-
tion time. However, this option suffers from accuracy issues.
Specifically, several parameters such as the amplifier gain
ripple, nonlinear interference (NLI), cross talk at switches,
etc., change for different network configurations/states. So,
the one-time trained PLM, which is quite accurate at the
beginning/initial state [Figs. 2(a) and 2(b)] behaves rather
inaccurately as the iterative optimization algorithm projects
the network into states that are away from the initial. The
inaccuracy of the PLM results in inaccurate estimation of the
derivatives, which in turn results in suboptimal optimization
of the launch powers. This accuracy problem is expected to
be more profound when the network physical layer is more
dynamic, as in Case 2, where EDFA gain ripples result in SNR
variations as the launch powers change.

On the other hand, the latter option, optimization with
monitoring probes, involves several interactions with the actual
network at each intermediate step, which typically take a long
time and are also susceptible to monitoring errors. Note that
the term monitoring probes refers to the capability of the net-
work to change the launch powers and monitor the outcomes.
In other optimization problems, e.g., involving establish-
ment/release of connections, such capability will probably not
be present. Finally, note that in the results presented here and
in Section 5 up to Fig. 12, the monitoring error was assumed to
be zero. Thus, the results obtained with monitoring probes and
zero monitoring error are optimal and set as the reference for all
other cases.

C. Deviation of Optimizing with the One-Time
Trained PLM

Figures 3(a) and 3(b) show the optimized launch powers for
obj#1 with the one-time trained PLM and the monitoring
probes approaches for flat EDFAs (Case 1). We see that the
one-time trained PLM did not support the optimization well,
since the algorithm using it identified quite different power lev-
els. That is, although the algorithm using the one-time trained
PLM identified the optimum, this was optimum for the PLM
and not close to the optimum in the real network (VPI). The
reason for this is that the PLM could not follow/predict with
good accuracy the real SNR values at the power levels calcu-
lated by the algorithm, although the accuracy was very good
for the initial state of the network, right after the (one-time)
training. A margin on the PLM could cover this, but again
would result in suboptimal calculations. The maximized sum

B50 Vol. 13, No. 4 / April 2021 / Journal of Optical Communications and Networking Research Article

Fig. 3. (a) Optimized launch powers and (b) corresponding SNR
and obj#1 value, evaluated in the real network (VPI), for Case 1 (flat
EDFAs).

of SNR margins (obj#1) was optimized to 204.96 dB when
the algorithm used monitoring probes and interacted with the
real network, and to 199.31 dB when it interacted with the
one-time trained PLM. There exists a mismatch of ∼5.6 dB in
the obj#1 value between these two optimization approaches.
Note that the SNR values and the objective [Fig. 3(b)] were
and should be evaluated in the real world (VPI), so that we can
see the deviation. This also explains the ripples in SNR seen in
Fig. 3(b), since in VPI models some wavelength-dependent fac-
tors are not covered by GN. Similar behavior was observed for
obj#2, not shown here for conciseness. Note that optimization
with obj#2 results in choosing the launch powers that result
in almost flat SNR values, since maximizing the minimum
margin iteratively pushes the lowest SNR value and reduces
the higher. The maximized minimum margin was optimized
to 7.64 dB with monitoring probes, and to 7.36 dB with the
one-time trained PLM.

To emulate a more realistic scenario, we assigned a gain
ripple profile to all EDFAs having a p2p ripple value of
∼±0.2 dB (Case 2). In such a scenario, when the algorithm
used the one-time trained PLM, it reached an optimization
objective (evaluated in the real network—VPI) quite worse
than when it used monitoring probes and interacted with
the actual network at intermediate optimization iterations.
Figures 4(a) and 4(b) show the optimized launch powers and
their corresponding SNR values, respectively, for obj#1. A
maximum input power difference of ∼1.5 dBm was observed,
resulting in ∼8.4 dB of SNR difference for obj#1. Similarly,
for obj#2, we observed a maximum input power difference of
∼1.2 dBm, resulting in∼0.62 dB of SNR difference for obj#2.
Note that the mismatch is higher than previously (Case 1/flat
EDFAs). This is because we now have a more volatile physical
layer (EDFA gain ripples affect the SNRs), and the PLM we
use does not cover this additional volatility.

Concluding, for any optimization problem, the PLM accu-
racy is important. For planning/static problems, we cover
the inaccuracy issue with margins, while several papers have
targeted the reductions of margins by aligning the PLM to
the physical layer conditions, e.g., through monitoring and
ML. However, there have been limited discussions on dynamic
optimization problems; the disadvantage is that to justify
dynamic optimization, we should target to achieve high effi-
ciency, making the accuracy of the PLM more critical. For
complex/multivariable dynamic optimization tasks, such as
the dynamic launch power optimization problem discussed

Fig. 4. (a) Optimized launch power and (b) corresponding SNR
and obj#1 value, evaluated in the real network (VPI), for Case 2
(EDFA with gain ripple of±0.2 dB).

above, an iterative algorithm is typically used that calculates
several intermediate solutions. One option is to interface the
algorithm with the network to probe and monitor it in order to
carry out the intermediate steps until it achieves the optimum.
This, however, is cumbersome and very slow. On the other
hand, we can train the PLM before the optimization and use
it in all intermediate calculations. Since PLM calculations are
fast, the optimization will finish quickly. However, the accuracy
of the PLM can deteriorate and result in suboptimal optimiza-
tion, as seen in the preliminary results discussed above. This
motivated us to address the limitations of the optimization
with a one-time trained PLM by exploring the operating net-
work and its feedback. Our goal is to appropriately realign
the PLM at intermediate optimization calculations so that the
difference between the optimization objective achieved with
monitoring probes (interacting with the real world) and with
the retrained PLM is negligible, while the whole optimization
is much faster.

4. NETWORK DYNAMIC OPTIMIZATION AND
PLM RETRAINING

PLMs, which can be analytical, semianalytical, ML models,
etc., have certain accuracy. The modeling assumptions impact
the estimation accuracy. For example, many PLMs neglect
EDFA gain ripples, partially model NLIs (e.g., consider full
load), filters’ [inside reconfigurable optical add-drop multi-
plexers (ROADMs)] cross talk, residual dispersion, and specific
parameters of transponders. Note that a detailed PLM is slower
in the calculations and requires more input parameters. Then,
a second factor comes into play: the input parameters might
not be known with good accuracy, which eventually reduces
the accuracy of a detailed PLM.

Optimization tasks result in network changes and typically
use a PLM to estimate the effect of such changes. However,
these changes also modify the physical layer itself; they move
the network to a new state. Depending on the PLM, such
changes are covered to a certain degree. For example, when
changing the power of a connection, NLIs and cross talk, but
also the penalties due to EDFAs’ gain ripple profiles, change.
The PLM model could, for example, cover the effect of NLIs
and cross talk, but not the evolution of gain ripples. For these
reasons, margins are used. However, in dynamic use cases, the
aim is to be more efficient, and thus the accuracy of the PLM is

Research Article Vol. 13, No. 4 / April 2021 / Journal of Optical Communications and Networking B51

a crucial factor. To improve that, we can take advantage of the
operating network.

Hence, a basic need for dynamic optimization is to have a
PLM that follows the network changes. In the AI/ML era, a
way to do this is to choose an appropriate set of parameters
and retrain the PLM at certain points. However, retraining
is cumbersome, and thus we cannot retrain it before every
dynamic task. On the other hand, training the PLM once
before a multivariable optimization task can result in subopti-
mal optimization, since the accuracy of the PLM deteriorates
after several intermediate calculations.

In this paper, we focus on dynamic multivariable optimiza-
tion problems, and, in particular, we study the launch power
optimization problem of established connections as introduced
in the previous section. Note, however, that the proposed
solution is generic and applicable to other dynamic simple or
multivariable optimization problems as well. We propose to use
an iterative closed control loop process to solve such dynamic
multivariable optimization problems. At certain intermediate
iterations of the algorithm, we close the loop, configure the
network, and monitor to retrain the PLM (with ML) to follow
the projected network conditions. The target is to make the
PLM a digital replica, that is, a DT, of the optical physical layer
for the dynamic optimization task at hand. The frequency
of the PLM retraining depends on the PLM model and on
the optimization task. As discussed in the previous section,
alternative options for the algorithm are to avoid using a PLM
and have the algorithm interact with (probe and monitor) the
network or use a one-time trained PLM. All three options are
formally described in the following subsections.

A. Optimization with Monitoring Probes

The scheme that is considered in this subsection assumes
that the optimization algorithm interacts directly with the
actual network and follows a closed control loop process. The
algorithm employs a subroutine to specify the probes, the
configurations that are applied to the network. Then it mon-
itors the outcomes to identify the information that it needs

for an intermediate optimization step. A representation of this
scheme is shown in Fig. 5(a).

To be more specific, we focus on the dynamic launch power
optimization problem with a typical objective, such as maxi-
mizing the sum of SNR margins, or the minimum margin,
as discussed in Section 3. This problem is known to be con-
vex and of polynomial complexity. The convex optimization
algorithms, such as (sub)gradient methods, interior point,
trust-region-reflective, etc., are iterative; at each iteration, they
need to calculate Jacobians and/or Hessians for the objective
and constraint functions [36,37]. Actually, the related algo-
rithms are classified into first or second order depending on
the order of the partial derivatives they use. For optimization
problems that involve PLMs without closed-form partial
derivatives, a way to calculate them is to use a subroutine that
implements finite differences [37].

For example, for the power optimization problem at hand,
to calculate the gradient for an objective function f we need
to find/monitor the changes in the SNR values of all connec-
tions, assumed to be done through the coherent receivers,
with respect to changes in the powers of the transponders. To
give an example, assume a network with a set of N established
connections with a launch power vector p. We denote by δpn
the vector with all zeros apart from element n whose value
we set to pstep, what we refer to as the power probe step. As a
matter of fact, the change in launch power of the single con-
nection n results in changes in the SNR values of all interfered
connections (those that share a common link). So, we denote
by SN R N(p) and SN R N(p+ δ pn) the SNR vector of all
N connections for the respective power vectors. If f is the
objective function, then the first-order partial derivative for n is
given by

g n = f (p)− f (p+ δ pn)/pstep. (2)

Depending upon the function f , this involves certain oper-
ations with the vectors SN R N(p) and SN R N(p+ δ pn).
The gradient g is the vector of all partial derivatives, that
is, g n for all n. To calculate the gradient with the finite-
difference method, we need to probe with p+ δ pn and

Fig. 5. Optimization with (a) actual deployed monitors, (b) a one-time trained PLM, and (c) the proposed PLM retraining DT approach.

B52 Vol. 13, No. 4 / April 2021 / Journal of Optical Communications and Networking Research Article

Fig. 6. Pseudo-code for optimization with monitoring probes.

monitor SN R N(p+ δ pn), and repeat this probe/monitoring
process for all connections n = 1, . . . , N.

Generalizing this, the optimization algorithm calculates
(first- or second-order) partial derivatives through a finite-
differences subroutine at each intermediate iteration. Let us
assume that the algorithm calls the finite-differences method di

times at iteration i . For the above example with the gradient,
we have di = N. This is the simplest case; we typically have
di ≥ N, depending on the algorithm. Note also that we might
have different numbers of probes per iteration, that is, different
di per i . However, to simplify our analysis, we assume that this
is constant, di = D, for each iteration i .

The convex optimization algorithm with monitoring probes
performs Lmon_prob iterations to find the optimum. We also
denote by tmon the monitoring time, assumed here to monitor
simultaneously all N-established connections. The monitoring
time can range from minutes to hours, depending upon the
network size, the monitoring plane, the targeted monitoring
error, etc. [38]. However, once the monitoring information
is forwarded to the algorithm, the time tcalc to calculate the
gradients/Hessian and also the next launch powers is quite
lower (millisecond range) compared to the monitoring time
(tmon� tcalc). So, with the monitoring probes-based approach,
under the assumption that N connections are monitored in
parallel, the total optimization time Tmon_prob is given by

Tmon_prob = Lmon_prob · (D · tmon + tcalc)≈ Lmon_prob · D · tmon.
(3)

Optimizing with monitoring probes is described with pseudo-
code 1 in Fig. 6.

In general, the optical monitors have certain measuring
accuracy. In our proposal, we assume that we monitor the
SNR from the coherent receivers, which are quite accurate.
Note that higher accuracy can be achieved through time aver-
aging; to reduce the effect of short-term time impairments,
e.g., polarization, the monitoring measurements could be
averaged over time, resulting in higher accuracy but also higher
monitoring time. Depending on the monitoring error, we
might end up with a different and worse objective value instead
of the optimum. Another factor to be accounted for in a real
network is that the power probe steps (pstep) cannot be very
small because fine-tuning of the equipment is not feasible.
Thus, in a real network, there are two factors that hinder the
monitoring probe optimization process:

(i) the monitoring errors,
(ii) the minimum power probe step pstep that can be con-

figured.

We call the SNR vector obtained from monitors with errors
as the noisy monitored vector, and denote it by

Ỹ N(p)= Y N(p)+ v, (4)

where v is a vector that represents the monitoring error (or
noise).

Stochastic subgradient methods [39] for zero mean errors
provably find the optimum solution with specific step sizes but
might require a very large number of iterations. However, in a
real network where the use of small steps is not supported by
the transponders and iterations are expensive since they involve
several monitoring phases, such methods are hardly applicable.

In this monitoring probes optimization approach, the
algorithm optimizes the launch powers and checks the actual
conditions of the network at each step. For zero error, this
approach identifies the optimum objmon_prob but requires a
high optimization time Tmon_prob. So, we will use this as the
reference for all other approaches.

Also note that the use of monitoring probes, which are
used in this method to identify the partial derivatives, is not
a universal solution. A monitoring probe in the studied use
case refers to the configuration of new launch power(s) to one
(or more) transponders of the established connections and
monitoring of all connections’ SNRs at their receivers. So, the
definition is specific to the problem; different optimization
problems require different monitoring probe definitions.
For some tasks, monitoring probes might not be available,
e.g., tasks involving the establishment/release of connections.
For such tasks, we might need spare transponders to extract the
information required for the optimization [12], which implies
higher cost and complexity.

B. Optimization with One-Time Trained PLM

In this subsection, we consider the method where the PLM
is aligned only once, at the beginning of optimization. We
perform the alignment of the PLM using monitoring infor-
mation Y N(p0) from the actual network, assumed to take
time tmon, as above. We then use ML to fit the parameters r
of the PLM QN(p0, r, z) to the physical layer conditions, so
as to identify r0. This is assumed to take time ttrain. Then the
optimization algorithm interacts with this one-time trained
PLM, QN(p0, r0, z), at each intermediate step, to estimate
the QoT (SNR) of the connections as shown in Fig. 5(b). In
particular, since there are no closed-form derivative equations
for the GN model, we use a similar derivative identification
subroutine (finite differences), as in the previous method, but
this time we interface that with the PLM instead of the actual
network. We denote by tPLM the time that the PLM takes to
calculate the SNR values of all connections. As before, this
subroutine is assumed to be called D times at each algorithm
intermediate iteration. We assume that the time tcalc that the
algorithm needs to calculate the gradients/Hessian and also
the next launch powers is the same as the previous method.

Research Article Vol. 13, No. 4 / April 2021 / Journal of Optical Communications and Networking B53

Fig. 7. Pseudo-code for optimization with a one-time trained
PLM.

We also denote by LPLM the number of iterations that the
algorithm performs. With the one-time trained PLM, the total
optimization time TPLM is given by

TPLM = tmon + ttrain + LPLM · (D · tPLM + tcalc) . (5)

It stands to reason that the PLM training and estimation cal-
culations and the algorithm calculations are substantially faster
than monitoring (tmon� ttrain, tPLM, tcalc). We also expect a
similar number of iterations (LPLM ≈ Lmon_prob), because the
PLM/GN model satisfies the convexity properties [29]. So,
we have TPLM ≈ tmon. By comparing this to Eq. (3), we can see
that the one-time trained PLM-based optimization approach
requires substantially less optimization time than the previous
approach, TPLM ≈ tmon� Tmon_prob ≈ Lmon_prob · D · tmon.
In particular, the speedup we obtain is of the order of
Lmon_prob · D. This happens because the one-time trained
PLM quickly provides all the necessary information for the
optimization algorithm at each intermediate step, avoiding
monitoring. Optimizing with a one-time trained PLM is
described with pseudo-code 2 in Fig. 7.

The optimization algorithm using the one-time trained
PLM identifies the launch powers that yield the optimum
˜objPLM, but this is viewed through the PLM. However, the

PLM has certain accuracy and was trained at initial conditions.
So the identified launch powers yield the objective objPLM
in the real network, which is worse than the objective of the
monitoring probe method, which is always evaluated in the real
network, objPLM ≤ objmon_prob. This problem was identified in
Section 3 and shown in Figs. 3 and 4.

C. Optimization with a DT

Following the discussions of the two above approaches, and
the results presented in Section 3, we observe a clear trade-off
between optimization time and performance. The monitoring
probes-based approach [in Fig. 5(a)] implements closed control
loops that are not fast, due to the complex probing and slow
monitoring subroutine. However, it achieves real optimization
as it tracks the network evolving conditions/states by configur-
ing and monitoring. On the other hand, the one-time trained

PLM approach [in Fig. 5(b)] is substantially faster because it
uses the PLM to quickly find the derivatives at intermediate
states. However, the PLM is trained only once, at the beginning
of the optimization. So, if the algorithm projects the network
to substantially different physical conditions, then the opti-
mization is suboptimal, since the PLM differs from reality, as
seen in Figs. 3 and 4. The following proposed scheme keeps the
benefits of both approaches: it finds a near-to-optimal solution,
but with an overall low optimization time.

We propose to use an iterative closed control loop process to
solve the dynamic optimization problem. At certain intermedi-
ate iterations of the algorithm, we configure the intermediate
solution to the network and monitor to realign the PLM (with
ML) to follow the projected network conditions, as shown in
Fig. 5(c). The idea is to make the PLM a DT, to have a PLM
model that is parametric, and to define the method to read-
just/realign it to represent the physical system with enough
accuracy to perform the dynamic optimization calculations
at hand. For realigning the PLM, many techniques can be
used. We here use ML training. In this study, we used as the
PLM the GN model [27], which considers the launch powers
and wavelength occupancy. Thus, it models quite accurately
linear and NLI transmission impairments. We also extended it
and added a wavelength-dependent penalty on top of the GN
SNR calculation to cover, e.g., the EDFA ripple penalties [6].
The GN alignment process was described in Section 3, and
extended here to be performed iteratively.

As above, we denote by QN(p, r, z) the calculation of
the SNR values vector of all N connections by the GN PLM,
where p is the launch power vector (optimization variables),
r represents the PLM fitted parameters, the fiber coefficients,
and the wavelength-dependent ripple penalty, and z represents
the unchanged input parameters for our optimization such as
routes and wavelengths used. The dynamic optimization proc-
ess starts with the configured launch power vector po of the
established connections (e.g., all 0 dBm). For this initial power
vector po, the PLM is trained with the monitored SNR vector
Y N(po). To be more specific, we use ML and in particular the
LM algorithm to find r0 = argminr (QN(p, r, z)− Y N(p))2.
Now, let us assume that at the end of the kth PLM training
cycle, the optimization algorithm has performed Lk interme-
diate iterations and identified the launch powers pLk

k . We then
start the next cycle k + 1 by configuring the network with the
outcome so pk+1 = pLk

k . To retrain the PLM for the k + 1
cycle, we configure the network with pk+1 and monitor to
obtain Y N(pk+1). Then ML is used to fit the parameters rk+1,
that is, rk+1 = argminr (QN(pk+1, r, z)− Y N(pk+1))

2. This
PLM is then used in the optimization algorithm iterations of
cycle k + 1. Note that, at each retraining cycle of the PLM, we
can make use of the previously monitored SNRs, including
thus the history and the network evolution conditions. This
tends to improve the PLM accuracy as the algorithm iterates,
where the accuracy is more critical.

We assume that in total we retrain the PLM K retrain times.
Although we can have different numbers of algorithm iter-
ations per cycle, to simplify our analysis in the following,
we assume that the algorithm runs L iter iterations after
each PLM retraining. So, Lk = L iter for all retraining cycles
k = 1, . . . , K retrain. It is easy to visualize the overall concept as

B54 Vol. 13, No. 4 / April 2021 / Journal of Optical Communications and Networking Research Article

Fig. 8. Schematic showing the two nested “for” loops, the
outer for retraining PLM cycles and the inner for the optimization
algorithm iterations.

Fig. 9. Pseudo-code for optimization with the proposed PLM
retraining/DT.

two nested “for” loops, as shown in Fig. 8. The outer one per-
tains to the PLM retraining, and the inner to the optimization
algorithm intermediate iterations with the retrained PLM/DT.
The time for each retraining cycle is equal to TPLM for L iter

iterations, that is, tmon + ttrain + L iter · (D · tPLM + tcalc). We
denote the overall optimization time with this DT-based
approach as TDT, which is given by

TDT = K retrain · (tmon + ttrain + L iter · (D · tPLM + tcalc)) . (6)

The proposed method of optimizing with a DT is described
with pseudo-code 3 in Fig. 9.

Note that, in total, the optimization algorithm performs
K retrain · L iter iterations and retrains the PLM K retrain times.
Our target is to choose the retraining period L iter appropriately
so that the PLM would follow with good accuracy the physical
layer in the algorithm’s intermediate calculations. If this is
achieved, the PLM estimated objective that is calculated at
each iteration and the final one ˜objDT would be very close to
the real value in the real network objDT. Also, the achieved
objective would be very close to the optimum, as calculated
by the monitoring probes method objmon_prob. So, we would

have ˜objDT ≈ objDT ≈ objmon_prob. Moreover, for an appro-
priate retraining period, the iterations of the optimization
algorithm would be close to those of the monitoring probes,
that is, K retrain · L iter ≈ Lmon_prob. Looking at the total opti-
mization times, and assuming that tmon is the dominant factor,
we have TDT ≈ K retrain · tmon. Thus we obtain a speedup of
Lmon_prob · D/retrain = L iter · D with respect to the monitoring
probes optimization approach.

5. RESULTS AND DISCUSSION

To quantify the benefits of the devised DT-based power opti-
mization approach, we carried out simulations using both
VPItransmissionMaker and MATLAB. The actual network
was implemented in VPI, and the PLM (relying on the GN
model) and the convex optimization algorithm were developed
in MATLAB. Note that VPI is more detailed and complex and
closer to a real system than the GN model. This choice was
made to capture the mismatch between the real network and
the PLM used in the optimization process. This is a consider-
able improvement in terms of realism compared to many prior
studies (listed in Section 2), where authors used the same PLM
for both the real network/ground truth and their proposed
solution.

To be more specific, we implemented in MATLAB the
GN model and the launch power optimization algorithm to
maximize: (obj#1), the sum of SNR margins, or (obj#2), the
lowest margin, as discussed in Section 3. This optimization
problem is known to be convex and of polynomial complexity.
Hence, we implemented an interior-point algorithm to solve it.
The algorithm was run until it found the optimum (optimality
tolerance 10−6). The GN model was interfaced with the opti-
mization algorithm, and both were integrated in an automated
system in VPI. For each simulation, VPI implements the outer
loop (PLM retraining cycle). It takes as input the launch pow-
ers coming from the algorithm of the integrated MATLAB
module, performs the detailed transmission simulations, and
calculates the SNRs of the channels. These are passed as input
to the integrated MATLAB module. With that input, the inte-
grated PLM gets trained, and this trained PLM is then used by
the convex algorithm for L iter intermediate iterations. In those
iterations, the algorithm uses the PLM to identify the partial
derivatives, using the finite-differences subroutine, and then
the new launch powers. After the L iter iterations (inner cycle),
a new set of launch powers are automatically fed to VPI tran-
sponders as a closed control loop for the next retraining cycle.
Note that, at each retraining cycle of the PLM, we retrained
with the current and previously monitored SNRs, including
thus the history and the network evolution conditions.

The monitoring probes approach [Fig. 5(a)] was used as a
reference in this work. To implement this, we implemented
another (more frequent) closed control loop without using
a PLM: the monitoring probes from the finite-differences
subroutine (in MATLAB) were carried directly to VPI, and
the SNR values were then passed back to that subroutine.
The one-time trained PLM approach [Fig. 5(b)] represents
the traditional optimization scheme via a PLM. For that, we
train the PLM only once with the SNR data from VPI at the
beginning of the simulation and used that PLM for the power

Research Article Vol. 13, No. 4 / April 2021 / Journal of Optical Communications and Networking B55

Fig. 10. VPI setup with (a) a single link of six identical spans
and (b) three nodes, 15 connections with different paths/routes, and
added/dropped points to emulate a small network.

optimization (involving intermediate iterations not configured
in the network). Note that in all cases, we start by assigning
0 dBm uniform power to all transponders in VPI.

For all the optimization schemes, the objective value was
calculated in VPI, as in the real network. As discussed, there
exists a difference between the view of the PLM/optimization
process that uses it and the real objective. Finally, note that we
evaluated the benefits of our proposed scheme for relatively
small channel count (=25) and up to two links, due to the
slow execution time of VPI (split-step Fourier simulations).
Actually, this can be considered as an indication of the long
time of interacting with/monitoring the real network.

To be specific, we made two fully automated setups in VPI:

(i) a single link of six identical spans with 25 channels
[Fig. 10(a)],

(ii) two links with 15 channels that were added/dropped at the
intermediate node [Fig. 10(b)].

For the first setup, 25 WDM channels with the pol-mux
16QAM format at 32 Gbaud, leading to a 200 Gbps data rate
per channel were launched. We assumed a SNR threshold of
13.9 dB [1,6]. The wavelength spacing between the channels
was assumed to be 50 GHz. We started with uniform 0 dBm
of launch powers for all channels whose SNR values for each
channel were measured/monitored by VPI. As stated above,
VPI acted as the real-world/ground truth. Approximately 1 dB
of maximum SNR difference between the untrained PLM
and VPI was found, after setting equal the fiber parameters
(dispersion coefficient, slope, attenuation coefficient of the
fiber, nonlinearity coefficient, etc.). Then, with ML training
(using the LM algorithm), the SNR mismatch was reduced to
less than 0.1 dB (Fig. 2 of Section 3). This one-time trained
PLM was then used with the power optimization algorithm.
The algorithm converged to 199.31 dB and 7.34 dB for obj#1
and obj#2, depicted with the orange circles and dotted lines in
Figs. 11(a) and 11(b), respectively.

We then optimized with the monitoring probes where
the optimization algorithm was interfaced with the actual
network (VPI). Again, the algorithm was run until it found
the optimum for the objective function at hand. The algo-
rithm converged to 204.96 dB and 7.64 dB for obj#1 and
obj#2, depicted with the blue circles and dotted lines in
Figs. 11(a) and 11(b), respectively. A relative mismatch of

Fig. 11. (a) obj#1 and (b) obj#2 values as a function of the pro-
posed DT approach retraining cycles (k), for flat EDFAs.

∼5.6 dB for obj#1 and ∼0.3 dB for obj#2 between the mon-
itoring probes (optimum) and the one-time trained PLM was
observed. With monitoring probes, the algorithm took around
Lmon_prob ≈ 120 iterations to optimize the launch powers
in both objectives. In case of the one-time trained PLM, the
algorithm converged a bit faster, after LPLM ≈ 90 iterations.

We then optimized with our proposed PLM retraining/DT
approach. We examined different PLM retraining periods of
L iter = 5, 10, and 50. Figure 11 shows the optimization objec-
tive values (evaluated in VPI) as a function of the retraining
cycles (index k) of our proposed scheme. We see that with
each training cycle, the objective value moves towards the
optimum/reference obtained with the monitoring probes
approach. For L iter = 5, after approximately k = 11 iterations
for obj#1 and k = 8 iterations for obj#2, the objective becomes
nearly constant, indicating convergence. For small retraining
periods, such as L iter = 5, 10, the objective (both for obj#1
and obj#2) reached exactly that achieved with the monitoring
probe-based approach, that is, objDT = objmon_prob. However,
for longer retraining periods, such as L iter = 50, the algorithm
converged near to the one-time trained PLM scheme. This
happened because we allowed the optimization algorithm to
perform long intermediate iterations without retraining the
PLM. Within these iterations, the algorithm converged to an
optimum; it could not improve its objective function (˜objDT)
with the PLM used. However, after these long intermediate
iterations, the PLM was not representing reality with good
accuracy, and thus the corresponding real network objective
(objDT) was rather suboptimal.

In reality, EDFA gains are not flat and come with ripples
[6]. We assigned a gain ripple profile of p2p gain of 0.4 dB
(±0.2 dB) to span the EDFAs. The PLM was then trained at
0 dBm of flat launch power and a maximum SNR difference
of less than ±0.05dB was observed, as shown in Fig. 2(b),
Section 3. This led to a mismatch of ∼8.5 dB [Fig. 4(b)] and
∼0.64 dB in the SNR margin between monitoring probes
and one-time trained PLM optimization for obj#1 and obj#2,
respectively. The mismatch is higher than previously, due to the
EDFA gain ripples that make the physical layer more dynamic.

Figure 12(a) shows the power per channel (in dBm) at differ-
ent retraining cycles k for a retraining period L iter = 5 and for
obj#1. Figure 12(b) shows the corresponding SNR (dB) values.
For obj#1, with around k = 20 PLM retraining cycles, the
transponders’ launch power and SNR values converged near
the optimal values obtained with the monitoring probe-based
approach (Fig. 4). The algorithm reached obj#1= 202.96 dB

B56 Vol. 13, No. 4 / April 2021 / Journal of Optical Communications and Networking Research Article

Fig. 12. (a) Launch power (dBm) and (b) SNR (dB) per channel
as the number k of retraining cycles increases, for the proposed DT
approach, L iter = 5, obj#1, and EDFAs having p2p gain ripple of
0.4 dB.

Fig. 13. (a) obj#1 and (b) obj#2 values as a function of the pro-
posed DT approach retraining cycles (k), for EDFAs with p2p gain
ripple of 0.4 dB.

Fig. 14. (a) Launch power (dBm) and (b) SNR (dB) per channel
as the number k of retraining cycles increases, for the proposed DT
approach, L iter = 5, obj#2, and EDFAs having p2p gain ripple of
0.4 dB.

[black curve in Fig. 13(a)], very close to the monitoring probe-
based approach. Compared to the one-time trained PLM, it
achieved an improvement of ∼8.4 dB, which is ∼0.34 dB of
SNR improvement per channel.

Similar behavior was also observed for obj#2. Figures 14(a)
and 14(b) show the input power (dBm) and the corresponding
SNR (dB) for k retraining cycles with L iter = 5 and for obj#2.
From Fig. 13(b), it can be observed that after K retrain = 12
retraining cycles, the algorithm reaches obj#2= 7.8 dB,
which is very close to that found with the monitoring
probes approach. Compared to the one-time trained PLM,
we achieved an improvement of∼0.64 dB.

Figures 13(a) and 13(b) show the evolution of obj#1 and
obj#2 with the proposed approach for different retraining
periods of L iter = 5, 10, 50. Note that we have compara-
tively higher savings (∼2.8 dB) with respect to the one-time

Fig. 15. Objective function variation as a function of the monitor-
ing error std for (a) flat EDFA gain and (b) EDFA with gain ripple.

trained PLM compared to flat EDFAs (Fig. 11) because the
physical layer is more dynamic with the rippled EDFAs. The
small drop in the second retraining cycle of Fig. 13(a) can
be explained by the PLM training process; in that cycle, the
PLM did not match the real network very well and misled the
optimization algorithm. This was then improved at the next
retraining, which involved more monitoring information from
the new/projected network state.

Monitors are not perfect and yield measurements that
include errors, as discussed in Section 4. In our optimization,
we assumed the use of SNR values measured from the coherent
receivers, which are typically assumed to have good accuracy.
However, there are some fast-varying impairments that result
in SNR fluctuations and contribute to monitoring errors. A
typical method to suppress those is to average the SNR mea-
surements over a period longer enough than the frequency of
such effects. Hence, we modeled these monitoring errors by
adding a random GN v with mean= 0 and standard deviation
(std)= 0.1, 0.2 and 0.4 dB, to the SNR values (provided by
VPI). These noisy monitored SNR values were then fed to the
interior point optimization algorithm and were reflected in the
algorithm’s derivative calculations.

The monitoring error results in a degraded optimization
operation. In theory, the stochastic subgradient method [39]
(which is a first-order method) with specific small steps can
find the optimum for the assumed zero mean errors after a high
number of iterations. However, such a method might not be
applicable in real networks, where finite small steps are not
feasible, and iterations must be constrained (to avoid effects of
medium-term varying impairments). Also monitoring small
SNR differences (due to the small steps) is rather hard (low
slope of derivatives). So instead of seeking an ideal optimum,
we focused on a more realistic case, and in the following results,
we used the interior-point algorithm and a minimum power
probe step pstep = 0.1 dBm.

Figure 15(a) shows the achieved objectives using the pro-
posed DT approach with L iter = 5 for varying monitoring
error std (the mean was always equal to 0) for the flat EDFA
case. Similar results were obtained for the monitoring probe
optimization. A deterioration of the optimum with respect
to ideal monitors (no noise, std= 0) was observed. For a
std= 0.4 dB with flat EDFAs, the objective decreased by 3.6%
and 4.5% for obj#1 and obj#2, respectively. For EDFAs with
gain ripples, the related decrease was even higher, ∼5% and
∼6% for obj#1 and obj#2, respectively, as shown in Fig. 15(b).

We now turn our attention to the optimization time. As dis-
cussed, the PLM and the convex (interior-point) optimization

Research Article Vol. 13, No. 4 / April 2021 / Journal of Optical Communications and Networking B57

Fig. 16. (a) Computational time (s) and (b) number of monitor-
ing calls required for EDFAs with flat and rippled gain cases, respec-
tively.

algorithm were implemented in MATLAB. So, in MATLAB,
we measured the overall computation time, which included the
time tcalc that the algorithm calculated the gradients/Hessian
and also the next launch powers, the time ttrain to train with
ML the PLM, and the time tPLM for the SNR calculations by
the PLM. Note that the PLM-related times appear only in the
schemes that use it (one-time trained PLM and DT). Also,
note that the computation time was measured until the algo-
rithm obtained the optimum, so it included all retaining cycles,
algorithm iterations, and finite-difference subroutine calls.
Following the notation of Section 4, for the monitoring probes
scheme we measured Lmon_prob · tcalc, for the one-time trained
PLM we measured ttrain + LPLM · (D · tPLM + tcalc), and for the
DT we measured K retrain · (ttrain + L iter · (D · tPLM + tcalc)). To
obtain the DT results, we used a retraining period L iter = 5.

Figure 16(a) shows the overall computational time for obj#1
for an EDFA with flat and rippled gain (std= 0). The com-
putational time for the monitoring probe-based approach was
the smallest, around 2 s for a flat gain EDFA and∼2.5 s for an
EDFA with gain ripples, since it only includes tcalc. The one-
time trained PLM was slightly faster than the DT approach
(∼4 s compared to ∼4.5 for the flat EDFA gain case and ∼7 s
compared to ∼7.5 for the case of an EDFA with gain ripple),
since the PLM retraining time, which is their key difference,
was quite fast. The computation time for the case of EDFAs
with gain ripples [shown in Fig. 16(a)], was higher for all opti-
mization schemes, since the algorithm took more iterations to
reach the optimum.

From the above measurements, we excluded the monitoring
time tmon. It was excluded because we did not want to use some
reference monitoring time. However, we expect it to be some
orders of magnitude higher than the time scales reported in
Fig. 16(a). Today, transponders report the SNR/BER every
15 min [38]. The reporting time can be substantially reduced
down to seconds with NETCONF/YANG monitoring [12] or
telemetry-based protocols [40,41]. However, such reporting
periods target failure recovery use cases, which are substantially
different from the power optimization use case studied in this
paper. Moreover, we need to consider that in the monitoring
probes scheme, the monitoring happens after the probing, that
is, after changing the launch power of one or more connec-
tions. In such a case, we would have to wait for EDFA transient
effects to settle [42]. Also, for optimization, we need to have
a low monitoring error. So, we would need to time average
to suppress the fast-varying impairment effects. Moreover,

Fig. 17. (a) obj#1 and (b) obj#2 values as a function of the pro-
posed DT approach retraining cycles (k), for flat EDFAs in the two-
link setup.

depending on the optimization method, it is required to mon-
itor different times. In the one-time trained PLM approach,
we monitor only once, at the beginning of the optimization. In
the DT approach we monitor K retrain times, once every PLM
retraining cycle. In the monitoring probes approach, we train
Lmon_prob · D. However, note that D depends on the optimiza-
tion algorithm and the type of partial derivatives it calculates
(first- or second-order). So we might have a different number
of probes/monitoring per algorithm iteration.

To avoid any confusion with time scales, we show in
Fig. 16(b) the number of monitoring calls, which in our
simulations were measured as the number of times that we
set new launch powers in VPI, executed the VPI transmission
simulation, obtained the SNR values, and forwarded them in
MATLAB. We can clearly see the substantially higher num-
ber of monitoring calls performed by the monitoring probes
approach, which would result in substantially higher overall
optimization time (the addition of computation [Fig. 16(a)]
and monitoring [Fig. 16(b)] times).

Finally, to study a more network-like scenario, we extend
the single-link setup to a two-link setup [Fig. 10(b)]. We
established 15 connections with different add/drop locations
and reused wavelengths at the intermediate node. We first
focus on Case 1, the flat EDFA gain profiles. Figures 17(a) and
17(b) show the evolution of obj#1 and obj#2, respectively, as
a function of the retraining cycles k for the DT scheme with
L iter = 5. The proposed DT approach improved by ∼1.3 dB
obj#1 and by ∼0.15 dB obj#2, with respect to the one-time
trained PLM scheme.

For Case 2, we assigned a gain ripple profile of±0.2 dB and
±0.1 dB to link 1-2 and link 2-3, respectively. Figures 18(a)
and 18(b) show the evolution of obj#1 and obj#2, respectively,
as a function of the retraining cycles k for the DT with L iter = 5
scheme. We obtained ∼1.7 dB and ∼0.6 dB of improvement
for obj#1 and obj#2, respectively, with respect to training with
a one-time trained PLM-based approach.

Compared to the single-link setup, the improvements
obtained for the two-link setup were lower. The low chan-
nel load and the relatively wider channel separation due to
ADD/DROP is one of the main reasons for the low value of
improvements. Although we did not test bigger setups in VPI,
since it is quite complicated, we believe that the benefits of our
proposed solution are higher for a full network with higher
load.

B58 Vol. 13, No. 4 / April 2021 / Journal of Optical Communications and Networking Research Article

Fig. 18. (a) obj#1 and (b) obj#2 values as a function of the DT
approach retraining cycles (k), for EDFAs with ripples in the two-link
setup.

6. CONCLUSION

Despite the extensive literature on ML-based and ML-
improved PLMs, there has been limited discussion on
the use of PLMs in dynamic optimization. We proposed
using an iterative closed control loop process to solve a
complex/multivariable dynamic optimization problem. In
particular, we proposed closing the control loop after several
algorithm intermediate calculations, applying the intermediate
calculated changes, and monitoring the outcome so that we
realign (retrain) the PLM with the real-world/optical network.
The PLM is used as a DT; it is applied to a network with evolv-
ing conditions, it is parametric and is dynamically adjusted so
that it replicates the real world for the optimization at hand
with enough accuracy. We applied our proposed method to
solve the dynamic version of the launch power optimization
problem. With the proposed PLM retraining/DT scheme, we
showed an improvement of∼8.5 dB and∼0.64 dB in the sum
of margins and the lowest margin, respectively, over optimiza-
tion with a one-time trained PLM. Moreover, the proposed
approach achieved near-to-optimum solutions, as found by
optimizing and continuously probing and monitoring the
network, but lowered the overall optimization time up to 85%
by reducing the number of monitoring probes. We limited
our study to 25 channels on a single link and 15 channels on
a two-link network topology. However, we believe that our
proposed solution is more beneficial once longer paths with
heavy loads are considered.

Funding. Horizon 2020 Framework Programme (765275).

Acknowledgment. The authors would like to thank
VPItransmissionMaker’s support team for guidance in the receiver unit
and end-to-end automation. This work is a part of the Future Optical
Networks for Innovation, Research and Experimentation (ONFIRE)
project (https://h2020-onfire.eu/), supported by the European Union’s
Horizon 2020 Research and Innovation Programme under the Marie
Skłodowska-Curie Actions.

REFERENCES
1. P. Soumplis, K. Christodoulopoulos, M. Quagliotti, A. Pagano, and

E. Varvarigos, “Network planning with actual margins,” J. Lightwave
Technol. 35, 5105–5120 (2017).

2. D. J. Ives, P. Bayvel, and S. J. Savory, “Adapting transmitter power
and modulation format to improve optical network performance
utilizing the Gaussian noise model of nonlinear impairments,” J.
Lightwave Technol. 32, 4087–4096 (2014).

3. Y. Pointurier, “Design of low-margin optical networks,” J. Opt.
Commun. Netw. 9, A9–A17 (2017).

4. J. L. Auge, “Can we use flexible transponders to reduce margins?”
in Optical Fiber Communication Conference (OFC) (2013).

5. I. Sartzetakis, K. Christodoulopoulos, and E. Varvarigos, “Accurate
quality of transmission estimation with machine learning,” J. Opt.
Commun. Netw. 11, 140–150 (2019).

6. A. Mahajan, K. Christodoulopoulos, R. Martínez, S. Spadaro, and
R. Muñoz, “Modeling EDFA gain ripple and filter penalties with
machine learning for accurate QoT estimation,” J. Lightwave
Technol. 38, 2616–2629 (2020).

7. I. Sartzetakis, K. Christodoulopoulos, and E. Varvarigos, “Cross-
layer adaptive elastic optical networks,” J. Opt. Commun. Netw. 10,
A154–A164 (2018).

8. E. Seve, J. Pesic, C. Delezoide, S. Bigo, and Y. Pointurier, “Learning
process for reducing uncertainties on network parameters and
design margins,” J. Opt. Commun. Netw. 10, A298–A306 (2018).

9. D. Rafique and L. Velasco, “Machine learning for network automa-
tion: overview, architecture, and applications [Invited Tutorial],”
J. Opt. Commun. Netw. 10, D126–D143 (2018).

10. S. Shahkarami, F. Musumeci, F. Cugini, and M. Tornatore, “Machine-
learning-based soft-failure detection and identification in optical
networks,” in Optical Fiber Communications Conference and
Exposition (OFC) (2018).

11. M. Hadi and E. Agrell, “Iterative configuration in elastic optical
networks: (invited paper),” in International Conference on Optical
Network Design and Modeling (ONDM) (2020).

12. K. Christodoulopoulos, C. Delezoide, N. Sambo, A. Kretsis, I.
Sartzetakis, A. Sgambelluri, N. Argyris, G. Kanakis, P. Giardina,
G. Bernini, D. Roccato, A. Percelsi, R. Morro, H. Avramopoulos,
P. Castoldi, P. Layec, and S. Bigo, “Toward efficient, reliable, and
autonomous optical networks: the ORCHESTRA solution [Invited],”
J. Opt. Commun. Netw. 11, C10–C24 (2019).

13. M. J. Neely, “Stochastic network optimization with application to
communication and queueing systems,” Synth. Lect. Commun.
Netw. 3, 1–211 (2010).

14. M. Channegowda, R. Nejabati, and D. Simeonidou, “Software-
defined optical networks technology and infrastructure: enabling
software-defined optical network operations [Invited],” J. Opt.
Commun. Netw. 5, A274–A282 (2013).

15. S. Yan, F. N. Khan, A. Mavromatis, D. Gkounis, Q. Fan, F. Ntavou,
K. Nikolovgenis, F. Meng, E. H. Salas, C. Guo, C. Lu, A. P. T.
Lau, R. Nejabati, and D. Simeonidou, “Field trial of machine-
learning-assisted and SDN-based optical network planning with
network-scale monitoring database,” in European Conference on
Optical Communication (ECOC) (2017).

16. L. Velasco, A. C. Piat, O. Gonzlez, A. Lord, A. Napoli, P. Layec, D.
Rafique, A. D’Errico, D. King, M. Ruiz, F. Cugini, and R. Casellas,
“Monitoring and data analytics for optical networking: benefits,
architectures, and use cases,” IEEE Netw. 33, 100–108 (2019).

17. N. Stojanovic and D. Milenovic, “Data-driven digital twin approach
for process optimization: an industry use case,” in IEEE International
Conference on Big Data (Big Data) (2018).

18. L. Wright and S. Davidson, “How to tell the difference between a
model and a digital twin,” Adv. Model. Simul. Eng. Sci. 7, 13 (2020).

19. M. Grieves, “Digital twin: manufacturing excellence through
virtual factory replication,” White paper, 2014, https://www.3ds.
com/fileadmin/PRODUCTS-SERVICES/DELMIA/PDF/Whitepaper/
DELMIA-APRISO-Digital-Twin-Whitepaper.pdf.

20. E. Glaessgen and D. Stargel, “The digital twin paradigm
for future NASA and US Air Force vehicles,” in 53rd
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and
Materials Conference, 20th AIAA/ASME/AHS Adaptive Structures
Conference 14th AIAA (2012).

21. K. D. R. Assis, S. Peng, R. C. Almeida, H. Waldman, A. Hammad,
A. F. Santos, and D. Simeonidou, “Network virtualization over elas-
tic optical networks with different protection schemes,” J. Opt.
Commun. Netw. 8, 272–281 (2016).

22. J. Cho, S. Chandrasekhar, E. Sula, S. Olsson, E. Burrows, G.
Raybon, R. Ryf, N. Fontaine, J. Antona, S. Grubb, P. Winzer, and
A. Chraplyvy, “Maximizing fiber cable capacity under a supply
power constraint using deep neural networks,” in Optical Fiber
Communications Conference and Exhibition (OFC) (2020).

https://h2020-onfire.eu/
https://doi.org/10.1109/JLT.2017.2743461
https://doi.org/10.1109/JLT.2017.2743461
https://doi.org/10.1109/JLT.2014.2346582
https://doi.org/10.1109/JLT.2014.2346582
https://doi.org/10.1364/JOCN.9.0000A9
https://doi.org/10.1364/JOCN.9.0000A9
https://doi.org/10.1364/JOCN.11.000140
https://doi.org/10.1364/JOCN.11.000140
https://doi.org/10.1109/JLT.2020.2975081
https://doi.org/10.1109/JLT.2020.2975081
https://doi.org/10.1364/JOCN.10.00A154
https://doi.org/10.1364/JOCN.10.00A298
https://doi.org/10.1364/JOCN.10.00D126
https://doi.org/10.1364/JOCN.11.000C10
https://doi.org/10.2200/S00271ED1V01Y201006CNT007
https://doi.org/10.2200/S00271ED1V01Y201006CNT007
https://doi.org/10.1364/JOCN.5.00A274
https://doi.org/10.1364/JOCN.5.00A274
https://doi.org/10.1109/MNET.2019.1800341
https://doi.org/10.1186/s40323-020-00147-4
https://www.3ds.com/fileadmin/PRODUCTS-SERVICES/DELMIA/PDF/Whitepaper/DELMIA-APRISO-Digital-Twin-Whitepaper.pdf
https://www.3ds.com/fileadmin/PRODUCTS-SERVICES/DELMIA/PDF/Whitepaper/DELMIA-APRISO-Digital-Twin-Whitepaper.pdf
https://www.3ds.com/fileadmin/PRODUCTS-SERVICES/DELMIA/PDF/Whitepaper/DELMIA-APRISO-Digital-Twin-Whitepaper.pdf
https://doi.org/10.1364/JOCN.8.000272
https://doi.org/10.1364/JOCN.8.000272

Research Article Vol. 13, No. 4 / April 2021 / Journal of Optical Communications and Networking B59

23. P. Soumplis, K. Christodoulopoulos, and E. Varvarigos, “Dynamic
connection establishment and network re-optimization in flexible
optical networks,” Photon. Netw. Commun. 29, 307–321 (2015).

24. A. Castro, L. Velasco, M. Ruiz, M. Klinkowski, J. P. Fernández-
Palacios, and D. Careglio, “Dynamic routing and spectrum
(re)allocation in future flexgrid optical networks,” Comput. Netw.
56, 2869–2883 (2012).

25. P. Papanikolaou, K. Christodoulopoulos, and E. Varvarigos,
“Incremental planning of multi-layer elastic optical networks,” in
International Conference on Optical Network Design and Modeling
(ONDM) (2017).

26. D. J. Ives and S. J. Savory, “Transmitter optimized optical net-
works,” in Optical Fiber Communication Conference (OFC)
(2013).

27. P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, and F.
Forghieri, “The GN-model of fiber non-linear propagation and its
applications,” J. Lightwave Technol. 32, 694–721 (2014).

28. H. Rabbani, L. Beygi, S. Ghoshooni, H. Rabbani, and E. Agrell,
“Quality of transmission aware optical networking using enhanced
Gaussian noise model,” J. Lightwave Technol. 37, 831–838 (2019).

29. I. Roberts, J. M. Kahn, and D. Boertjes, “Convex channel power
optimization in nonlinear WDM systems using Gaussian noise
model,” J. Lightwave Technol. 34, 3212–3222 (2016).

30. I. Roberts and J. M. Kahn, “Measurement-based optimization of
channel powers with non-Gaussian nonlinear interference noise,” J.
Lightwave Technol. 36, 2746–2756 (2018).

31. D. Bertsekas, Dynamic Programming and Stochastic Control, 1st
ed. (Elsevier/Academic, 1976).

32. R. S. Sutton and A. G. Barto, Introduction to Reinforcement
Learning, 1st ed. (MIT Press, 1998).

33. O. Devolder, F. Glineur, and Y. Nesterov, “First-order methods of
smooth convex optimization with inexact oracle,” Math. Program.
146, 37–75 (2014).

34. https://www.vpiphotonics.com/index.php.
35. H. P. Gavin, “The Levenberg-Marquardt algorithm for nonlinear least

squares curve-fitting problems,” Notes for CE281 (Duke University,
2020), http://people.duke.edu/∼hpgavin/ce281/lm.pdf.

36. S. Boyd and J. Park, “Subgradient methods,” Notes for EE364b
(Stanford University, 2014), https://stanford.edu/class/ee364b/
lectures/subgrad_method_notes.pdf.

37. M. S. Gockenbach, “Computing derivatives by finite differences,”
Notes for MA5630 (Michigan Technological University, 2013),
https://pages.mtu.edu/∼msgocken/ma5630spring2003/lectures/
diff/diff/diff.html.

38. https://metro-haul.eu/deliverables/.
39. S. Boyd, A. Mutapcic, and J. Duchi, “Stochastic subgradient meth-

ods,” Notes for EE364b (Stanford University, 2014), https://web.
stanford.edu/class/ee364b/lectures/stoch_subgrad_notes.pdf.

40. R. Vilalta, N. Yoshikane, R. Casellas, R. Martínez, S. Beppu, D.
Soma, S. Sumita, T. Tsuritani, I. Morita, and R. Muñoz, “GRPC-
based SDN control and telemetry for soft-failure detection of
spectral/spacial superchannels,” in European Conference on
Optical Communication (ECOC) (2019).

41. F. Paolucci, A. Sgambelluri, F. Cugini, and P. Castoldi, “Network
telemetry streaming services in SDN-based disaggregated optical
networks,” J. Lightwave Technol. 36, 3142–3149 (2018).

42. C. Tian and S. Kinoshita, “Analysis and control of transient dynam-
ics of EDFA pumped by 1480- and 980-nm lasers,” J. Lightwave
Technol. 21, 1728–1734 (2003).

https://doi.org/10.1007/s11107-015-0500-8
https://doi.org/10.1016/j.comnet.2012.05.001
https://doi.org/10.1109/JLT.2013.2295208
https://doi.org/10.1109/JLT.2018.2881607
https://doi.org/10.1109/JLT.2016.2569073
https://doi.org/10.1109/JLT.2018.2822719
https://doi.org/10.1109/JLT.2018.2822719
https://doi.org/10.1007/s10107-013-0677-5
https://www.vpiphotonics.com/index.php
http://people.duke.edu/~hpgavin/ce281/lm.pdf
https://stanford.edu/class/ee364b/lectures/subgrad_method_notes.pdf
https://stanford.edu/class/ee364b/lectures/subgrad_method_notes.pdf
https://pages.mtu.edu/~msgocken/ma5630spring2003/lectures/diff/diff/diff.html
https://pages.mtu.edu/~msgocken/ma5630spring2003/lectures/diff/diff/diff.html
https://metro-haul.eu/deliverables/
https://web.stanford.edu/class/ee364b/lectures/stoch_subgrad_notes.pdf
https://web.stanford.edu/class/ee364b/lectures/stoch_subgrad_notes.pdf
https://doi.org/10.1109/JLT.2018.2795345
https://doi.org/10.1109/JLT.2003.815649
https://doi.org/10.1109/JLT.2003.815649

