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Having	ubiquitous	optical	monitors	in	dense	wavelength‐division	multiplexing	(DWDM)	or	flex‐grid	networks	allows	
the	estimation	in	real	time	of	crucial	parameters.	Such	monitoring	would	be	even	more	important	in	disaggregated	
optical	 networks,	 to	 inspect	 performance	 issues	 related	 to	 inter‐vendor	 interoperability.	 Several	 important	
parameters	can	be	retrieved	using	optical	spectrum	analyzers	(OSAs).	However,	omnipresent	OSAs	represents	an	
infeasible	 solution.	 Nevertheless,	 the	 advent	 of	 new,	 relatively	 cheap,	 compact	 and	medium‐resolution	 optical	
channel	monitors	(OCMs)	enable	a	more	intensive	deployment	of	these	devices.	In	this	paper,	we	identify	two	main	
scenarios	for	the	placement	of	such	monitors:	at	the	ingress	and	at	the	egress	of	the	optical	nodes.	In	the	ingress	
scenario,	we	can	directly	estimate	the	parameters	related	to	the	signals,	but	not	those	related	to	the	filters.	On	the	
contrary,	in	the	egress	scenario,	the	filter	related	parameters	can	be	easily	detected,	but	not	those	related	to	ASE.	
Therefore,	 we	 present	 two	methods	 that,	 leveraging	 a	 curve	 fitting	 and	 a	machine	 learning	 (ML)	 regression	
algorithm,	allow	to	detect	the	missing	parameters.	We	verify	the	proposed	solutions	with	spectral	data	acquired	in	
simulation	and	experimental	setups.	We	obtained	good	estimation	accuracy	for	both	setups	and	for	both	studied	
placement	scenarios.	Noteworthy,	in	the	experimental	assessment	of	the	ingress	scenario,	we	achieved	a	maximum	
absolute	 error	 (MAE)	 lower	 than	1	GHz	 in	 filter	bandwidth	 estimation	 and	 a	MAE	 lower	 than	0.5	GHz	 in	 filter	
frequency	shift	estimation.	In	addition,	by	comparing	the	relative	errors	of	the	considered	parameters,	we	identified	
the	ingress	scenario	as	the	more	beneficial.	In	particular,	we	estimated	the	filter	central	frequency	shift	with	84%	
and	the	filter	6‐dB	bandwidth	with	75%	higher	accuracy,	with	respect	to	datasheet/reference	values.	This	translates	
into	a	total	reduction	of	the	estimated	signal‐to‐noise	ratio	(SNR)	penalty,	introduced	by	a	single	optical	filter,	of	0.24	
dB.	© 2020 Optical Society of America 
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1. INTRODUCTION
Nowadays, disaggregation is an important trend within optical 

networks. According to this paradigm, several elements of the network 
may be provided by different vendors [1]. Therefore, in such situation, 
advanced vendor-independent monitoring capabilities would be 
required in order to cope with specification mismatches and 
performance variations of the disaggregated network elements [2]. 
More in general, in an optical network, an ideal scenario envisions 
omnipresent and powerful optical performance monitoring (OPMs), 
placed before and after every network node. OPMs enable to monitor 
different parameters across the network [3]. Among them, the most 
important are the amplified spontaneous emission (ASE) noise, directly 
related to the optical signal-to-noise ratio (OSNR) and the filter related 
parameters, such as the filter 3-dB or 6-dB bandwidth and the filters 
shifts. The OSNR is considered as one of the most important parameters 

to be monitored, because it is directly correlated to the bit error rate 
(BER) and it is transparent to the modulation format. Within the 
different types of OPMs, spectral monitoring is the most interesting 
option, since it can identify all signal parameters, except for the 
nonlinear interference related impairments, which are in general 
extremely hard to monitor [3,4]. Nowadays, cost-effective versions of 
the classic optical spectrum analyzers (OSAs), also known as optical 
channel monitors (OCMs), are available on the market [5]. These 
devices can be considered a cheap solution (often in the order of few 
hundreds of euros), when compared with the cost of the rest of the 
network elements in dense wavelength-division multiplexing (DWDM) 
or flex-grid networks. Despite their low-cost, and except for the 
frequency drift limitation which affects them in the long term, OCMs 
show good performance and resolutions (up to sub-GHz order). 
Therefore, we envision the employment of such monitoring devices, 
considering their eventual replacement once the frequency drift effects 
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make them impractical. All these features could enable a wide use of 
such monitors throughout the optical network. The most appropriate 
position to place them is close to the reconfigurable optical add/drop 
multiplexers (ROADMs), which are key enablers for optical core/metro 
networks [6].  

In deployed wavelength switched optical networks employing 
DWDM or flexgrid channels, a ROADM allows individual channels (i.e. 
individual wavelengths) to pass-through the node, or to be added or 
dropped. So, it allows for the termination and entry of services but also 
the transparent bypass of the node, avoiding costly optical-electrical-
optical conversions [7,8]. In current generation ROADMs, these 
functions are implemented by means of wavelength selective switches 
(WSSs). A WSS is an 1xN optical device, which allows any entering 
wavelength on the common input port to be switched to any of the N 
available output ports. The WSS also works in the opposite direction, 
selecting out of the N input ports the channels to be forwarded on the 
common output port. To do so, the WSSs include optical filters that 
introduce different filtering penalties on the optical signals [9]. 
Furthermore, the filters introduce a sharp power drop at the signal 
sides, which makes the measurement of the ASE noise challenging. In 
fact, one of the classical ways to measure it are defined as out-of-band 
methods, since they rely on noise measurements taken outside the 
signal bandwidth. One example is the interpolation method [10], where 
the noise levels at the sides of the considered channel spectrum are 

interpolated to give an estimation of the ASE noise value inside the 
channel. These kinds of approaches are even more complex to be 
applied in modern DWDM and flex-grid networks, where the spacing 
between channels is reduced to the minimum. Indeed, the challenges to 
face are not only the already mentioned strong filtering, but also the fact 
that in such networks, each channel exhibits a different noise level, 
according to the route it has taken. Therefore, new OSNR monitoring 
techniques which operate in-band, are needed. 

In the past few years, ROADM architecture evolved from a 
“Broadcast and Select” (B&S) approach to a more flexible and better 
performing paradigm, called “Route and Select” (R&S) [11]. The former 
employs a broadcasting power splitter and only a single WSS per degree 
(i.e. per direction) at the egress fiber, yielding reduced filtering penalties 
at low cost [12]. Contrarily, the R&S approach uses two independent 
WSSs per degree, both at the ingress and egress fibers and yields better 
isolation of connections and lower insertion losses. Of course, since R&S 
has twice the number of WSSs of B&S, it introduces a larger passband 
narrowing effect and it is a more expensive solution [13]. 

Several monitoring strategies that use various amount of monitors 
can be implemented in the network. Of course, the higher the number 
and the more advanced specifications the deployed monitors have, the 
more expensive the solution is. In the ideal case, depicted in Fig. 1, 
powerful spectral monitors are available before, after and inside every 
node of the network (note that, Fig. 1 does not display the internal 
monitors). This solution in reality is not feasible because of its cost. Thus, 
we identified 2 alternative scenarios for the placement of the monitors, 
limiting/selecting their positioning, in order to reduce the overall cost. 
The first scenario requires the monitors to be placed before the ingress 
ports of each ROADM, i.e. before their ingress WSSs, as shown in Fig. 2. 
In the second scenario the optical monitors are placed after the egress 
ports of the ROADMs nodes, i.e. after their egress WSSs, as depicted in 
Fig. 3.  

As we previously mentioned, parameters such as the out-of-band 
OSNR, the total optical power or the wavelength drift can be easily 
estimated through optical spectrum-based techniques [3]. For example, 
the already mentioned interpolation method, in which the in-band noise 
level is estimated interpolating the noise at the two sides of the signal 

 

Fig. 1.  Ideal scenario where powerful monitors are available at the ingress and egress ports of every node of the network. 

 

Fig. 2.  Ingress scenario. WSS: wavelength selective switch; OCM: 
optical channel monitor. 



 

 

[10]. Moreover, nowadays, a large amount of advanced 
analytics/machine learning (ML) methods have emerged, enabling the 
enhancement of the available spectral data. Thus, from the optical 
spectrum one can retrieve information not only about the signal itself, 
but also related to the condition of the network or the elements that 
compose it, like the optical amplifiers and filters. In [14], for example, the 
authors proposed three ML-based methods to detect and identify the 
filter related soft failures, such as filter shift/laser drift and filter 
tightening. These proposed approaches, rely on a series of frequency-
power pairs, retrieved directly from the optical spectra captured with 
OSAs placed at the egress port of every node of the network. On the 
other hand, in [15], an alternative solution to OSAs for filter impairments 
monitoring was presented. There, the authors proposed a center of 
mass-based approach employed inside the coherent receiver, which 
essentially operated as an OSA monitor at the end of the connection. 
Another solution based on monitoring information of existing 
connections, to estimate filtering uncertainties and therefore improve 
the quality of transmission (QoT) estimation of future connections, was 
proposed in [16]. In that paper, the authors, leveraging a ML regression 
model and processing spectral data acquired with monitors such as 
OCMs, were able to show, in simulations, an 80% reduction of the 
margin for a new connection. In [17], optical spectral data analysis was 
applied to filterless optical networks. The authors, proposed a method 
to monitor the power fluctuations and laser drifts of the transponders, 
exploiting optical spectra collected by a single OCM per filterless 
segment. In [18], the authors compared the performance of 4 different 
ML algorithms, in particular, support vector machine (SVM), artificial 
neural network (ANN), k-nearest neighbors (KNN) and decision tree, 
for estimating parameters, such as central wavelength, OSNR and signal 
bandwidth, by processing the spectral data. However, in [18], wide 
optical spectra were considered, which are not available in deployed 
filtered networks, where only in-band optical spectra can be retrieved 
from the monitors (i.e. inside the channel created by the filters). Finally, 
optical spectra processing has also been employed for network security 
purposes, as in [19], where the authors implemented a ML-based 
approach able to detect unauthorized signals in the network. 

Selecting one of the placement strategies outlined above results in 
different monitored parameters and in the lack of some others. In the 
ingress scenario, we can directly estimate the parameters related to the 
signal such as the ASE noise, but not those related to the filter. On the 
contrary, in the egress scenario, the filter related parameters can be 
easily detected, but those related to the ASE noise cannot. To cope with 
the missing information, we propose to enhance the collected spectra 
with adequate data analytics and ML methods. Throughout this paper, 
when we mention the spectral monitored data, we refer to the 
monitored power spectral density (PSD); we will use these two terms 
interchangeably.  

In our previous works, we proposed a ML-based solution for in-
band OSNR monitoring [20,21] in the egress scenario, therefore 
exploiting optical spectra captured at the node’s output. We verified the 
validity of the proposed solution through simulated and experimental 

setups. In particular, in [20], we compared the performance of two ML 
algorithms, SVM and Gaussian process regression (GPR) using optical 
spectra collected at two different resolutions: at very-high resolution, 
namely 12.5 MHz, and at a medium resolution, namely 1.25 GHz. We 
observed good estimation accuracy, while no substantial improvements 
emerged using the very-high resolution spectra. In addition, in [21], we 
further verified the approach presented in [20], implementing a new 
experimental setup, which considered strong filtering conditions and 
achieved good estimation accuracy. In [22], we focused on the ingress 
scenario. There, we proposed a method to retrieve the transfer function 
(TF) of a bandpass optical filter, e.g. of a WSS, exploiting the optical 
spectra captured at the node’s input port. Obtaining the filter TF, 
allowed us to understand the quality of the filter itself. As for the 
previous works, we verified the proposed solution with spectral data 
sets collected through both simulation and experimental setups.  

In this paper, we compare the two identified placement scenarios 
and the related parameters estimation methods. To do so, we provide a 
thorough overview of the proposed monitoring scenarios. We present 
in detail the identified data analytics and ML approaches for processing 
the available spectra and we improve them with respect to our previous 
works. We also assess them in unified simulation and experimental 
setups. Finally, after comparing them, we provide guidelines for the 
preferred one in terms of estimation accuracy improvements and 
signal-to-noise (SNR) penalty reduction.  

The rest of this paper is structured as follows. In Section 2, we 
present a detailed overview of the two main identified placement 
scenarios and the developed corresponding processing methods. We 
then present in Section 3 the implemented simulation setup along with 
the results. In Section 4, we describe the experimental setup and the 
related results. In Section 5, we compare the results obtained within the 
different placement scenarios and we provide some guidelines on their 
employment. Finally, in Section 6, we summarize the achieved results 
and conclude the paper. 

2.  OPTICAL  SPECTRAL  MONITORS  PLACEMENT 
SCENARIOS AND SPECTRAL PROCESSING METHODS 

We focus our attention on the two most important categories of 
parameters that can be monitored through OPMs, especially in 
disaggregated optical network scenarios: signal-related and filter-
related parameters. The first group includes the signal central 
frequency, the signal 3/6-dB bandwidth and the ASE noise added to the 
signal (therefore, its OSNR). The second group is composed of the filter 
central frequency and the filter 3/6-dB bandwidth. We propose to 
retrieve such information through spectral monitoring, employing 
medium-accuracy OCMs. In both the scenarios identified in Fig. 2 and 
Fig. 3, we were able to neglect the effects of the portion of the network 
preceding the considered OCM. To do this, after identifying the channel 
which we are interested in, we would collect the related spectra from 
the OCM placed at the WSS traversed by that channel. In particular, if we 
define with OCMn+1 the monitor located at the point n+1 of the network, 
we divided, in the linear domain, the OCMn+1 captured PSDs by those 
captured with OCMn. This operation allows us to focus only on what 
happens between the monitor located in position n and the monitor 
located in the considered position n+1, without any knowledge and any 
effect of what comes before position n. Performing such divisions along 
the path of an optical connection (lightpath), enables us to see the effect 
of each link/node on that path, nullifying those of the previous network 
elements along that same lightpath. Assuming that no frequency drift 
affects the employed OCMs, the only requirement for such operation is 
the collection of both spectra (from OCMn+1 and OCMn) at a single point, 
which would typically be the central controller. In addition, again 
assuming no frequency error on the OCM, variations of the spectra 
resolutions can be easily accounted with some simple processing, e.g. 

 

Fig. 3.  Egress scenario. WSS: wavelength selective switch; OCM: optical 
channel monitor. 



 

 

upsampling the lowest resolution. Moreover, we are constraining the 
frequency range related to the channel of interest, relying on the 
spectral grid defined by the ITU-T standards [23]. It is worth noting that 
in this paper we focus on the extraction of the per link/node parameters 
of a single connection. Correlating information among connections that 
cross the same link/node, can improve further the understanding of the 
link/node features. This would require a further processing/analysis of 
the outputs of our proposed solution at some centralized point (e.g. the 
software-defined networking (SDN) controller). Such processing 
methods are outside the scope of this paper, therefore the reader is 
referred to [24,25], for various solutions at that processing level. In 
addition, in this paper we focused our investigation on different 
transmission aspects, without considering the consequences of the 
nonlinear interference (NLI) caused by the Kerr effect. In fact, all the 
spectra we collected and processed for this work referred to a single 
channel configuration. However, for almost all the investigated cases we 
will present in the next sections, we considered strong filtering 
scenarios, thus neglecting the effects of the linear crosstalk coming from 
any eventual adjacent channels, on the optical spectra. Moreover, since 
self and cross-channel NLIs only have a minor impact on the spectra, we 
claim our solutions to be unaffected by such effects. 

The two main OCM monitors placement scenarios that we 
identified, along with the two solutions we propose for retrieving the 
related missing parameters, are discussed in details in the next 
subsections. 

A. Ingress Monitoring Scenario 

In the ingress monitoring scenario, depicted in Fig. 2, the OCMs are 
placed before the ingress WSS of each ROADM nodes of the network. 
This translates into a relative ease in retrieving information about the 
signals entering the node, since they are monitored before they are 
filtered by the WSSs of the node itself. Therefore, parameters such as the 
signal central frequency, the signal 3/6-dB bandwidth and the OSNR, 
can be measured directly or through (mild) processing of the optical 
spectra collected by the OCMs. On the contrary, the optical spectra 
collected through such configuration will not give any direct 
information about the filters, thus some advanced processing is 
required. In the ideal scenario of Fig. 1 (OCMs everywhere), we would 

simply divide in the linear domain the PSD captured at the egress port 
of the node to the one captured at its ingress. As discussed in Section I, 
depending on the considered ROADM architecture, the number of WSSs 
contained in a ROADM node, can vary between one (B&S) and two 
(R&S) per degree. We treat both ROADM architecture the same: if the 
node contains two filters, we model an equivalent filter for the specific 
ingress-egress direction. So, by doing the above division, we would 
obtain the TF of the single filter (B&S) or the equivalent of both filters 
(R&S) involved in the specific ingress-egress direction. However, since 
the monitoring placement scenario we are now considering does not 
have optical monitors at the egress ports, we have to find another way 
to obtain the egress related PSD. To cope with this lack, we replace the 
PSD monitored at the egress port, with the one monitored at the ingress 
of the following node. Referring to Fig. 2, and following the approach 
proposed in [22], we divide, in the linear domain, the optical spectra 
captured with OCMn+1,i by the one captured with OCMn,i, where n 
represents a generic node of the optical network, n+1 the node	following 
n in the direction of our interest, and OCMn,i and OCMn+1,i, represent the 
OCMs at the ingress port of node n	and node n+1, respectively. Of course, 
the result of this division represents not only the filter TF of node n, but 
also the noise accumulated over the link connecting the two nodes, 
referred to as link (n,n+1) in Fig. 2. As discussed above, this operation 
removes the effects accumulated by the connection over its path before 
reaching the monitor of node n. So we can only focus on the last part, the 
filter of node n and the link (n,n+1). It is worth noting that when two or 
more frequency adjacent channels come from the same link and 
continue at the same link, they can also share the same filter and thus 
the internal filter edge(s) would not show up in the TF. For such 
channels our method will not work. On the contrary, when two adjacent 
channels come from different input ports, or go towards different 
output ports (including drop ports), the filter edges are visible, and the 
solution we proposed can be employed.   

To identify the noiseless TF of the filter, we can estimate the ASE 
noise through the OCMn+1,i captured spectrum and remove it, in the 
linear domain, from the PSD obtained with the aforementioned division. 
Due to filtering and/or the response of the OCM, measuring the noise at 
the sides of the spectra might not be very easy. Thus, enhancing what 
we proposed in [22], we implemented a process that works on the 
monitored spectra and identifies the noise contribution. The function 
searches over a set of noise values. They can come from the monitored 
spectra or from the basic link/span knowledge with the addition of an 
accuracy correction factor. Then, the function selects the noise amount 
that resulted in the best (lowest) fitting error. In a sense, it relies on how 
good the shape of the reference filter matches the shape of the real one. 
In fact, removing a lower or higher amount of noise would return a 
wrong filter shape, yielding to a worse match with respect to the case 
where a correct noise amount is subtracted. The assumption behind the 
ASE estimation is that the filter at node n suppresses the noise 
introduced by the amplifiers/links cascade up to that point and 
therefore, the noise at the sides of the OCMn+1,i collected spectra is mainly 
due to the link (n,n+1) contribution. This noise identification process 
allowed us to better estimate the ASE noise, with respect to what we 
reported in [22]. An example of a TF obtained through the noise 
removal, starting from experimentally collected spectra, is shown in Fig. 
4. Observing the filter TF obtained through the above steps, we see that 
we are still not able to measure its 6-dB bandwidth, due to the fact that 
its two sides do not reach deep values. This happens in most cases that 
we observed with simulation and experimental spectral data and occurs 
because at the spectra edges we are processing the noise instead of the 
signal contained in the channel.  

To overcome this obstacle, we propose to reconstruct the full TF, by 
fitting the obtained portion of spectrum with a function that 
corresponds to the ‘ideal’ shape of the filter. Typically, optical filters are 

 

Fig. 4.  Example of an experimentally obtained filter TF spectrum 
before (blue) and after (orange) the noise removal process. The solid 
yellow plot is the fitted curve, while the dotted yellow line represents 
the identified central frequency of the fitted curve, which is shifted with 
respect to the original center (dotted black line).  



 

 

considered to have a high-order Gaussian shape. In [26], the authors, 
leveraging the error function erf ሺ𝑥ሻ, proposed a model for the 
characterization of the optical field spectrum 𝑆ሺ𝑓ሻ of a bandpass filter 
created by a WSS. The function modeling an ideal filter, which is 
symmetric and centered at 0 frequency, is the following: 

𝑆ሺ𝑓ሻ ൌ
ଵ

ଶ
𝛼√2𝜋 ቂ𝑒𝑟𝑓 ቀ

ఉ ଶ⁄ ି௙

√ଶఈ
ቁ െ 𝑒𝑟𝑓 ቀ

ିఉ ଶ⁄ ି௙

√ଶఈ
ቁቃ        ሺ1ሻ 

where 𝛼 is the parameter related to steepness of the filter edges (i.e. the 
filter order), 𝛽 is the 6-dB bandwidth of the filter and 𝑓 represents the 
frequency.  

Due to misalignment of filter to the signal (transmitter laser and/or 
filter shifts) and to power leveling issues, the portions of filter TFs that 
we want to fit are often not centered. Therefore, to consider the two 
eventual shifts in the directions of x and y-axis, we extended the Eq. 1 
based model with two new parameters: 𝛿 and 𝛾, respectively. The 
equation representing the new model is the following: 

𝑆ሺ𝑓ሻ ൌ
ଵ

ଶ
𝛼√2𝜋 ቂ𝑒𝑟𝑓 ቀ

ఉ ଶ⁄ ି௙ିఋ

√ଶఈ
ቁ െ 𝑒𝑟𝑓 ቀ

ିఉ ଶ⁄ ି௙ିఋ

√ଶఈ
ቁቃ ൅ 𝛾  ሺ2ሻ 

where 𝛿 represents the shift of the filter central frequency and 𝛾 is a 
normalization factor for the y-axis shifts. By tuning the parameters 𝛼,	𝛽, 
𝛾 and 𝛿, we can now fit the obtained portions of filters TFs spectra with 
the logarithmic squared version of Eq. 2. The range in which the 
parameters are tuned, can be narrowed down based on the filter 
specifications. This allows a better fitting and therefore a better 
estimation of the filter related features. In fact, once the fitting process is 
over, the values assumed by the parameters 𝛽 and 𝛿 represent the  
estimated filter 6-dB bandwidth and the estimated filter central 
frequency shift, respectively. We focused our analysis on the two filter 
parameters that we considered as the most representative, but 
essentially we estimate the full shape of the filter TF, thus making any 
other parameter of interest retrievable. Note that the above model can 
be also extended to capture filter shape asymmetries, which were not 
heavily present in our simulated and experimental data. So, we do not 
report the evaluation of such effects here. 

B. Egress Monitoring Scenario 

In the egress monitoring scenario, the monitors are placed 
exclusively after the egress WSS of each optical node of the network, as 
shown in Fig. 3. From the optical spectra collected with such 
configuration, we can easily retrieve information regarding the optical 
filters of the node, but not about the signals entering the node. Filter 
related parameters can be retrieved because the filter directly affects 
the signal traversing the node. In fact, by dividing (in the linear domain) 
the PSD captured with OCMn+1,e by the one captured with OCMn,e, we 
obtain the contributions of link (n,n+1) and of the filters of node n+1. 

This operation removes the effects of the cascade up to the location of 
OCMn,e, leaving the filter TF clearly visible, while hiding the signal related 
parameters, such as the ASE noise. Once the TF is identified, the filter 
related parameters can be retrieved applying a fitting approach similar 
to the one proposed for the ingress scenario, with the main difference 
that in this case the fitting error would be negligible. In addition, an 
eventual filter central frequency shift can be detected from the TF, for 
example employing the centre of mass approach, presented in [15], at 
every node. 

On the other hand, as we mentioned in Section 1, signal related 
parameters are not directly monitorable, since the filters tend to hide 
several of the signals original characteristics, making traditional 
monitoring techniques ineffective. Thus, parameters such as the signal 
3/6-dB bandwidth and the associated ASE noise (correlated with the 
signal in OSNR metric) are not directly measurable from the optical 
spectra. 

We propose a supervised ML-based method to estimate in-band the 
ASE noise from optical spectra collected in the egress monitoring 
scenarios [20,21]. With respect to our previous works [20,21], we 
enhanced the proposed method dividing the OCMn+1,e captured PSD by 
the one captured with OCMn,e (i.e. neglecting the effects of the cascade up 
to node n) and improving/tuning the employed ML model coefficients. 
The proposed solution, as a first step, requires the collection of different 
sets of optical spectra which are then classified according to some 
particular signal parameters and labeled with their corresponding ASE 
noise/OSNR values. Leveraging the labeled spectral data, we then train 
separate ML regression models for the different classes, to predict the 
OSNR. Our previous results indicated very good prediction 
performance, for new optical spectra that were not part of the training. 
Indeed, in [20,21] we already provided a solid performance evaluation 
of the proposed ML-based solution, using extensive simulation and 
experimental datasets. Thus, the main goal of this current work is the 
comparison of the two placement scenarios and their assessment under 
common simulation and experimental datasets. 

To formally present the method, we represent an acquired optical 
spectrum instance with a vector 𝒔 of length 𝑙, and we name its 
corresponding OSNR value as 𝑦. The goal is to find the mapping 𝑓, 
between the spectrum 𝒔 and its OSNR value 𝑦, that is 𝑦 ൌ 𝑓ሺ𝒔ሻ. To do 
so, we implement a ML model 𝑄௖ , where 𝑐 represents the group of 
parameters for which the model is valid (e.g. the roll-off factor, the baud 
rate of the connection and the nominal filter bandwidth). We then train 
the ML model with a set of monitored and labeled spectra ሺ𝑺௖ ,𝒚௖ሻ. 𝑺௖ 
is a matrix of dimension 𝑙 ൈ 𝑚, which represents the set of optical 
spectra with the same parameters 𝑐, while 𝒚௖ is the vector of length 𝑚, 
of their corresponding OSNR values. Note that, the aforementioned 
parameters 𝑐 corresponds to nominal transponders and filter values, so 
we could create the training set in a calibration phase in the lab or in the 
field, before commissioning a connection. We also denote by 𝒚ෝ௖ ൌ
𝑄௖ሺ𝑺௖ሻ the vector representing the estimated OSNR values and by 𝜺௖ ൌ
𝒚ෝ௖ െ 𝒚௖ the estimation errors. The goal of the training process is to 
identify the model 𝑄௖ , which minimizes some function related to the 
estimation errors 𝜺௖ , such as the mean squared error (MSE) function. 
Once the ML algorithm is trained with the spectra 𝑺௖ and their reference 
OSNR values 𝒚௖ , it will be able to return the estimated OSNR value 𝑦ො௖௛  
of an operating channel ℎ with the same parameters 𝑐, from its optical 
spectrum 𝒔. 

3. SIMULATIONS AND RESULTS 

A. Simulation setup 

To simulate both the ingress and the egress monitoring placement 
scenarios and to also evaluate the effect of monitors resolution, we 
implemented the VPIphotonics [27] setup depicted in Fig. 5. We 

 

Fig. 5.  Scheme of the implemented VPIphotonics simulation setup. TX: 
transmitter; OCM: optical channel monitor. 



 

 

generated a 32 GBd polarization multiplexed-quadrature phase shift 
keying (PM-QPSK) modulated signal, with 0.1 roll-off factor, centered at 
193.4 THz (1550.116 nm). In order to simulate the optical links, after the 
transmitter (TX) we cascaded a number of spans which included 80 km 
length standard single mode fibers (SSMFs) and erbium-doped fiber 
amplifiers (EDFAs) with 5 dB noise figure (NF). We set the output power 
of the TX to 0 dBm as well as the output power of all the EDFAs. Taking 
into account that the optimum launch power varies depending on 
several factors (i.e. the amount of ASE noise, the attenuation of the fiber, 
the amplifier’s NF and the NLIs), we chose 0 dBm bearing in mind the 
specific single channel configuration we considered. Varying the 
number of fiber spans and EDFAs, we were able to simulate different 
ASE noise levels and therefore different OSNR values. Each link was 
followed by an optical node, which we implemented as a cascade of 2 
optical filters, with 2nd order Gaussian TFs. We assumed that the 2 
optical filters of every node had the same characteristics, in fact our 
method considers the two filters as an equivalent one, as discussed in 
Section 2.A. For each equivalent filter, we considered different 6-dB 
bandwidth values. In addition, in order to emulate the impairment due 
to the laser drift or filter shift, we also shifted the central frequency of 
each filter with respect to the TX laser’s frequency. Finally, with the aim 
of covering both the ingress and the egress scenarios, we placed an OCM 

at the input and at the output of every node of the setup. The spectral 
resolution of all the employed OCMs was 1 GHz, while the spectral 
sampling resolution of the collected spectra was 15.625 MHz. This value 
represented the reciprocal of the time window set in VPI, which was 
directly correlated to the bitrate value (i.e. 128 Gb/s). 

In total, our simulation setup included 3 nodes, 4 links and 7 OCMs: 
4 OCMs were used to collect the optical spectra for the ingress scenario 
model (the blue blocks in Fig. 5), while the remaining 3 for the egress 
model (the red blocks in Fig. 5). Table 1 summarizes the 16 cases 
considered: we list there the number of fiber spans and EDFA per link, 
and the 6-dB bandwidth and central frequency shift of each filter. The 
number of fiber spans and EDFAs for each link varied and were chosen 
with the following values: 2, 3 and 5. Varying this value, allowed us to 
have different ASE noise levels at the input ports of the filters. 
Additionally, to replicate the narrowing of the filter bandwidth 
introduced by the filter cascading effect (FCE) and also to take into 
account imperfections in the production and variation in the ageing 
conditions, we assigned the following values to the filters 6-dB 
bandwidths: 36.5 GHz, 37.5 GHz and 38.5 GHz. Finally, to replicate the 
misalignment between the laser and the filter central frequencies, due 
to imperfections and ageing, we assumed for each filter a shift which 
ranged between -2 GHz and +2 GHz.  

B. Ingress scenario results 

We considered the setup depicted in Fig. 5 for the ingress scenario. 
There, the only available monitors were the blue ones, i.e. OCMn,i, where 
n ∈ [1,4] represents the node before which the monitor was placed. 
Following the method presented in Section 2.A for the filter parameters 
detection in the ingress scenario, we first retrieved the noisy TFs of the 
filters corresponding to each node of the setup, which are Node 1, Node 
2 and Node 3 for the 16 cases listed in Table 1. Then, after the noise 
identification and removal process, we fit the resulting portions of 
spectra with the logarithmic squared version of Eq. 2. Observing the 
values assumed by the parameters of Eq. 2, in particular the parameters 
𝛽 and 𝛿, we were able to estimate the filter 6-dB bandwidth and the 
filter central frequency shift, respectively. Finally, we compared the 
values returned by the algorithm with those reported in Table 1 and 
calculated the estimation errors. In Table 2 we list the standard 
deviation (σ), the MSE, the minimum (MIN) and the maximum (MAX) 
errors for the estimation of the 6-dB filter bandwidth and the filter 
central frequency shift for the three nodes. Dividing (in the linear 
domain) the PSD acquired at OCM3,i by the one acquired at OCM2,i, 
should nullify the effect of the path up to OCM2,i location. Nevertheless, 
the estimation errors reported in Table 2 indicate a small effect of the 
cascade. In fact, the estimation error for Node 3 was slightly higher than 
those corresponding to the other two nodes. In general, at Node 1 and 
Node 2, the spectra are almost not affected by the cascade effect and the 
estimation errors are also very low. Therefore, keeping the same 
accuracy of the first two nodes, as the cascade of links increases, is very 
hard.	

C. Egress scenario results 

To study the egress scenario, we considered a particular case of the 
simulation setup shown in Fig. 5. The monitors available are only the red 
ones, i.e. OCMn,e, where n ∈ [1,4] represents the node whose egress port 
is monitored by the OCM. On the spectra captured with these monitors, 
we applied the ML-based method described in Section 2.B for the in-
band ASE noise estimation in the egress scenario. To do so, we leveraged 
the SVM regression algorithm, a kernel-based nonparametric ML 
technique. In this study, we formulated the estimation as a regression 
problem. Training the SVM model using a linear kernel function 
returned better performance than training it with a Gaussian one, 
therefore for the training process, we considered the former one. In 

Table	1.	The	spans	number	and	the	filter	parameters	for	the	
16	considered	cases	

Links (# of spans) 
Filters (6-dB bandwidth [GHz] 

+ central freq. shift [GHz])  

0-1 1-2 2-3 3-4 1 2 3 

5 2 2 3 

37.5+0 37.5+2 37.5+1 
37.5+1 37.5+2 37.5+2 
37.5+2 37.5+1 37.5+0 
37.5+2 37.5-1 37.5+2 

2 5 2 3 

37.5+0 37.5+2 37.5+1 
37.5+1 37.5+2 37.5+2 
37.5+2 37.5+1 37.5+0 
37.5+2 37.5-1 37.5+2 

2 5 2 3 

36.5+0 36.5+2 36.5+1 
36.5+1 36.5+2 36.5+2 
36.5+2 36.5+1 36.5+0 
36.5+2 36.5-1 36.5+2 

2 5 2 3 

38.5+0 38.5+2 38.5+1 
38.5+1 38.5+2 38.5+2 
38.5+2 38.5+1 38.5+0 
38.5+2 38.5-1 38.5+2 

 

Table	2.	Estimation	accuracy	of	the	filter	related	features	in	
the	simulation	case	for	the	ingress	placement	scenario	

Node Estimated 
Feature 

MSE σ 
[GHz] 

MIN 
[GHz] 

MAX 
[GHZ]  

1 
Centr. freq. shift  0.0019 0.0334 -0.0391 0.0655 

6-dB BW 0.0183 0.0807 -0.0249 0.1937 

2 
Centr. freq. shift 0.0008 0.0178 -0.0147 0.0454 

6-dB BW 0.0024 0.0479 -0.1057 0.0672 

3 
Centr. freq. shift 0.0026 0.0482 -0.0702 0.0997 

6-dB BW 0.0163 0.1247 -0.1470 0.2962 
 



 

 

order to label the training spectra and to evaluate the accuracy of the 
estimation, we measured the ASE noise values that were used as 
reference, directly on the spectra collected through the OCMn,i, at the 
ingress port of every node. For the calculation of the noise spectral 
density integral, we considered a reference noise bandwidth equal to 
12.5 GHz (0.1 nm). The total number of spectra that we used was 48 (16 
for each one of the nodes): we used the 80% of these spectral data to 
train the model, the 10% to cross-validate it and the remaining 10% to 
test it. The cross-validation was used to tune the parameter ε of the SVM 
regression model. ε represents half the width of the insensitive band, i.e. 
that tolerance area where no-penalty is assigned to the errors. In 
addition, to precisely assess the estimation accuracy of the model, we 
also randomly shuffled the training and the testing data sets 4000 times, 
trained a different model each time and tested it with its corresponding 
testing set. The MSE, the MIN and the MAX estimation errors are 
summarized in Table 3. We achieved a maximum absolute error (MAE) 
lower than 0.61 dB and a MSE of 0.0018 for the estimation of the ASE 
noise in the egress scenario. These results reflect the goodness of our 
approach, also considering that the spectral set we used referred to a 
setup where we tuned the filter 6-dB bandwidth, while in the past we 
always considered the 3-dB bandwidth of the filters.  

4. EXPERIMENTAL SETUP AND RESULTS 

A. Experimental setup 

For a further validation of the proposed approaches, we also 
implemented the experimental setup shown in Fig. 6. By means of a 
tunable laser working at 193.4 THz (1550.116 nm), we generated a 64 
GBd PM-QPSK modulated signal with two different roll-off factors: 0.1 
and 0.2. We set the TX output power to -11 dBm. With the aim of 

emulating the FCE that can occur in a network, right after the TX we 
placed a first optical filter, namely Filter 1, through which we simulated 
this kind of behavior narrowing its 6-dB bandwidth. After this first filter, 
in order to emulate optical links of different lengths and therefore 
different ASE noise contributions, we cascaded a variable optical 
attenuator (VOA) and an EDFA operating in power control mode with 
output power set to 0 dBm and NF of 5 dB. These 2 blocks together 
represented link (1,2) in Fig. 6. As per the simulation setup, we chose 
such output power considering the single channel configuration we 
planned. Following the first link, we placed a second optical filter, 
namely Filter 2, the filter on which we tested the proposed models. Thus, 
we varied its 6-dB bandwidth and its central frequency to generate a 
number of different possible impairment cases. After Filter 2, we 
cascaded a second link, composed by a VOA and an EDFA, to simulate 
the link after which we place the OCM in the ingress scenario. Finally, 
three OCMs were placed in the setup: the two related with the ingress 
scenario (namely OCM2,i and OCM3,i), at the end of the two links, and the 
one for the egress scenario, at Filter 2 output, namely OCM2,e. The 
monitor we used, was the Finisar WaveAnalyzer 1500S, a high-
resolution coherent OSA able to reach resolution up to 150 MHz [28]. In 
order to simulate the performance of an OCM, we collected all the optical 
spectra at 2 different resolutions: 600 MHz and 1 GHz. The spectral 
sampling resolution of the collected spectra was equal to the intrinsic 
value of the employed Finisar OSA, i.e. 20 MHz [28]. Table 4 shows how 
we clustered the collected spectra into 7 different cases. Each case 
consists of 9 sub-cases with different 6-dB filters bandwidths and 
different link attenuation values. While Filter 1 bandwidth and the 
attenuations of the two links vary for each case, Filter 2 bandwidth 
assumes the same values in every cluster. Case 1 represents the 
“default” situation, with Filter 1 6-dB bandwidth set at 74 GHz, no 
(additional) attenuation set in link (1,2) and 10 dB attenuation set in link 
(2,3). All the other cases constitute a worsening of case 1: at least one of 
the 3 varying parameters (Filter 1 bandwidth, VOA1 and VOA2) assumes 
a value worse than in the default case. In total, for each of the two roll-off 
values and resolutions, we collected 189 optical spectra, 63 for each 
OCM in the setup. 

B. Ingress scenario results 

As per the simulation scenario, also for the experimental ingress 
scenario, we retrieved the filter TF following the steps described in 
Section 2.A. We considered the setup depicted in Fig. 6 with the 
monitors associated to the ingress scenario, that are OCM2,i and OCM3,i. 
We also used OCM2,e  to retrieve the TF to be used as reference for the 
evaluation of the estimation accuracy. The estimation errors for the 6-
dB filter bandwidth and the filter central frequency shift are shown in 
Fig. 7 and Fig. 8 for roll-off factor of 0.1 and in Fig. 9 and Fig. 10 for roll-
off factor of 0.2. The box and whiskers plots graphically represent the 
mean errors, the standard deviations and the MIN and MAX estimation 
errors, for each one of the 7 considered cases. From the presented 
results, it is clear how the default case (i.e. case 1), showed the best 
performance, especially for the filter bandwidth estimation. On the 
other hand, when considering the cases with narrower Filter 1 

Table	3.	Estimation	accuracy	of	the	ASE	noise	in	the	egress	
placement	scenario		

 MSE MIN [dB] MAX [dB] 

Simulation 0.0018 -0.3134 0.6013 

Experiment 0.0136 -0.3911 0.3866 
 

 

Fig. 6.  Scheme of the experimental setup. TX: transmitter; VOA: 
variable optical attenuator; OCM: optical channel monitor. 

Table	4.	The	7	considered	experimental	cases	

 
Filter 1 6-dB 
BW (shift) 

[GHz] 

Link(1,2) 
VOA1 [dB] 

Filter 2 6-dB 
BW (shift) 

[GHz] 

Link(2,3) 
VOA2 [dB] 

1 74 (-2) 0 73, 75, 77 
(-1, 0, +1) 

10 

2 74 (-2) 0 
73, 75, 77 
(-1, 0, +1) 

20 

3 74 (-2) 10 
73, 75, 77 
(-1, 0, +1) 

10 

4 69 (-2) 10 
73, 75, 77 
(-1, 0, +1) 

10 

5 74 (-2) 5 73, 75, 77 
(-1, 0, +1) 

10 

6 74 (-2) 2.5 73, 75, 77 
(-1, 0, +1) 

15 

7 69 (-2) 7.5 
73, 75, 77 
(-1, 0, +1) 20 



 

 

bandwidth (i.e. cases 4 and 7) or higher links attenuation values (i.e. 
cases 2 and 7), the estimation accuracy tends to degrade. In general, the 
accuracy of the 6-dB filter bandwidth estimation was lower compared 
to the accuracy of the filter central frequency shift, for both the roll-off 
values. All the results we presented here were obtained with spectra 
collected at 600 MHz resolution. We did not observe any substantial 
difference in the estimation accuracy using spectra at 1 GHz resolution. 

C. Egress scenario results 

As we did for the simulation case, we exploit the optical spectra 
collected through the experimental setup shown in Fig. 6, to test the 
egress scenario method for the ASE noise estimation presented in 
Section 2.B. The optical spectra we considered for the tests were those 
related to 0.1 roll-off factor, 74 GHz Filter 1 6-dB bandwidth and OCM 
spectral resolution of 600 MHz, resulting in a total of 45 optical spectra. 
As per the simulation case, we retrieved the noise values to be used as 
reference, calculating the noise spectral density integrals on the optical 
spectra collected through the ingress placed monitors. In particular, we 
considered a reference noise bandwidth equal to 12.5 GHz (0.1 nm). 
Again, we employed SVM regression algorithm, using the 80% of the 
total spectral data for training the model, the 10% to cross-validate it 
and the remaining 10% for testing it, randomly shuffling the spectra 
4000 times. Also for the experimental case, we used the cross-validation 
to tune ε, the parameter representing half the width of the insensitive 
band. The results of the estimation are reported in Table 3. We achieved 

a MAE lower than 0.4 dB and a MSE of 0.0136. Again, as per the 
simulated case, it is important to stress that the filter bandwidth we 
considered in the experimental setup were referring to the 6-dB 
measured values. Therefore, with respect to the works we carried out in 
the past [20,21], the effects of the filters on the noise were way more 
visible this time, since their 3-dB bandwidths were narrower. 
Nevertheless, comparing our current results with a similar case we had 
in [21] (i.e. PM-QPSK signal with 0.1 roll-off, 64 GBd baud rate and 72 
GHz 3-dB bandwidth), we improved the accuracy of the ASE noise 
estimation. In fact, in the considered case of [21], the ASE noise 
estimation MAE was almost 1 dB. In addition, since in [21] we used 
optical spectra collected with a spectral resolution of 150 MHz, we again 
did not observe any dependency of the proposed method on the OSA 
spectral resolution.  

5. OCM PLACEMENT SCENARIOS COMPARISON 
In the two studied monitor placement scenarios, the estimated 

parameters have different units of measurement. Therefore, in order to 
compare them, we converted each estimation error into a percentage 
with respect to its nominal value, translating the MAEs into relative 
errors. To do so, the first step is to identify the values to be used as 
references. For the ingress scenario, the datasheet of the Finisar filter we 
used in the lab reported a central frequency setting accuracy of ±2.5 GHz 
and a bandwidth setting accuracy of ±5 GHz [29]. WSSs deployed in real 

 

Fig. 7.  6-dB filter bandwidth estimation errors for the 7 experimental 
cases, with rolloff factor = 0.1. 

 

Fig. 8.  Filter central frequency shift estimation errors for the 7 
experimental cases, with rolloff factor = 0.1. 

 

Fig. 10.  Filter central frequency shift estimation errors for the 7 
experimental cases, with rolloff factor = 0.2. 

 

Fig. 9.  6-dB filter bandwidth estimation errors for the 7 experimental 
cases, with rolloff factor = 0.2. 



 

 

networks could have better characteristics, therefore we decided to 
adopt for both the filter-related parameters a reference accuracy equal 
to ±2 GHz [7,15]. For the egress scenario, we obtained a reference for 
the OSNR/ASE noise estimation, evaluating the amplifier NF, as follows. 
We considered the cascade of a number of fiber spans with EDFAs at the 
end of each one of them. We assumed the EDFAs to have a NF equal to 5 
dB, with fluctuations of ±0.5 dB [30,31]. This assumption yielded a noise 
reference error with a 1 dB range. 

Then, relying on the filter and signal-related parameters estimation 
errors reported in Section 3 and in Section 4, we calculated the worst 
case error ranges and the relative errors with respect to the above 
references. The results of these calculations are reported in Table 5. 
Concerning the experimental results, we found that the ingress 
monitoring strategy improved the filter central frequency estimation by 
a factor greater than the 84% for roll-off value of 0.1 and by a factor 
greater than the 87% for 0.2 roll-off. These improvements are with 
respect to the scenario where no monitoring strategy is implemented 
and the nominal parameters provided by vendors/datasheets are used. 
Likewise, the filter 6-dB bandwidth estimation was improved by the 
75% for 0.1 roll-off and by a factor greater than the 76% for 0.2 roll-off. 
On the other hand, the egress monitoring strategy improved the ASE 
noise estimation accuracy of the 22%, with respect to the case where no 
optical monitors are employed. Based on the above, we clearly see that 
the ingress scenario returns higher benefits in terms of reduced 
uncertainties, with respect to the egress one.  

It is worth noting that the relative error is a valuable metric, but not 
perfectly suitable for eventually evaluating the impact of the network 
elements on the QoT (e.g. the OSNR/SNR) of the connections. Therefore, 
to evaluate the QoT estimation related benefits, we translated the 
parameters estimation errors into SNR estimation errors. In the egress 
scenario, since we evaluated the improvements in OSNR/noise 
estimation, there was no need for such a translation. Our proposed 
egress monitoring and processing method resulted in 0.22 dB 
improvement in OSNR estimation per link. To obtain a similar metric for 
the ingress scenario, we simulated in VPIphotonics [27] the 
transmission of a 64 GBd QPSK modulated signal, with roll-off factor 
equal to 0.1 and 0.2, crossing a single filter. We measured the SNR 
penalty introduced by the filter, which we implemented as a 3.5th order 
Gaussian TF with 75 GHz bandwidth, as function of its central frequency 
shift and of its bandwidth variation. The results of these simulations are 
plotted in Fig. 11. Then, using the obtained curves, we calculated the 
improvement on the SNR penalty estimation. The reference filter-
related parameters error ranges (±2 GHz) translated into SNR penalty 
estimation equal to 0.12 dB for the filter central frequency shift and to 
0.16 dB for the filter 6-dB bandwidth. Since the penalty variations for the 
two different roll-off factors were negligible, we considered them as a 
unique case. Applying the ingress monitoring strategy and our 
proposed processing method, we were able to reduce the estimated 
filter-introduced SNR penalties down to 0.01 dB and 0.03 dB, for the 
central frequency shift and for the 6-dB bandwidth parameters, 
respectively. Therefore, our solution yielded a total reduction of the 
estimated SNR penalty equal to 0.24 dB, for the two considered 
parameters.  

6. CONCLUSION 
We studied different scenarios for monitors placement within 

DWDM and flex-grid optical networks. In particular, we defined an 
ingress and an egress scenario, in which the monitors are placed before 
and after the nodes of the network, respectively. In fact, our goal is to 
minimize the number of employed OCMs optimizing their placement 
and to enhance the monitoring features with appropriate spectral 
processing techniques. To this end, we presented two spectral 
processing techniques which leveraged a curve fitting principle and a 
ML regression algorithm to retrieve the missing parameters for each 
scenario: the filter bandwidth and the filter central frequency shift in the 
ingress, and the ASE noise of the signal in the egress scenario.  

We validated the proposed solutions on spectral data generated 
through simulations and experiments. The obtained results confirmed 
the validity of the proposed techniques. In particular, in the ingress 
scenario we observed a MAE lower than 0.98 GHz for the 6-dB 
bandwidth estimation, and lower than 0.5 GHz for the filter central 

Table	5.	Error	ranges	and	relative	errors	comparison	of	the	different	scenarios		

Setup Scenario Parameter 
Roll-off 
factor 

Parameter error 
range  

Reference error 
range 

Relative 
error 

Simulation 
Ingress 

Filter central freq. shift 0.1 0.17 GHz 4 GHz 4.3 % 

Filter 6-dB bandwidth 0.1 0.44 GHz 4 GHz 11 % 

Egress ASE noise 0.1 0.91 dB 1 dB 91 % 

Experimental 
Ingress  

Filter central freq. shift 
0.1 0.63 GHz 4 GHz 15.8 % 

0.2 0.5 GHz 4 GHz 12.5 % 

Filter 6-dB bandwidth 
0.1 1 GHz 4 GHz 25 % 

0.2 0.93 GHz 4 GHz 23.3 % 

Egress ASE noise 0.1 0.78 dB 1 dB 78 % 

 

Fig. 11.  SNR penalty introduced by a 3.5th order Gaussian filter, as 
function of its central frequency shift and its bandwidth variation, for 
an input 64 GBd QPSK signal, with roll-off factor equal to 0.1 and 0.2. 

-4 -3 -2 -1 0 1 2 3 4

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

71 73 75 77 79

Filter central frequency shift [GHz]

S
N

R
 p

en
al

ty
 [d

B
]

Filter bandwidth [GHz]

Filter BW, ro=0.1
Filter BW, ro=0.2
Fc shift,    ro=0.1
Fc shift,    ro=0.2



 

 

frequency shift, with the experimentally generated spectra. Moreover, 
in the egress scenario, the MAE for the ASE noise estimation was lower 
than 0.4 dB with the experimental generated spectra. 

Comparing the two monitoring scenarios, we identified the ingress 
one as the most promising solution. In particular, comparing against 
scenarios where no monitoring strategies are implemented, ingress 
monitoring improved the filter central frequency and the filter 6-dB 
bandwidth estimations by 84% and 75% respectively, for a roll-off 
factor of 0.1. Slightly lower relative estimation errors were observed for 
a 0.2 roll-off factor. Moreover, translating these estimation 
improvements into SNR penalties, we obtained a SNR penalty 
estimation reduction of 92% and 81%, for the filter central frequency 
shift and for the filter bandwidth, respectively.  

In the future, we plan to further evaluate the effects of our proposed 
monitoring and processing methods in QoT estimation, leveraging also 
network-wide parameter correlation. 
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