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Abstract—In optical transport networks the quality of
transmission (QoT) is estimated before provisioning new
connections or upgrading existing ones. Traditionally, a
physical layer model (PLM) is used for QoT estimation
coupled with high margins to account for the model inac-
curacy and the uncertainty in the evolving physical layer
conditions. Reducing the margins increases network effi-
ciency but requires accurate QoT estimation. We present
two machine learning (ML) approaches to formulate such
an accurate QoT estimator. We gather physical layer feed-
back, by monitoring the QoT of existing connections, to
understand the actual physical conditions of the network.
These data are used to train either the input parameters of
a PLM or a machine learning model (ML-M). The proposed
ML methods account for variations and uncertainties
in equipment parameters, such as fiber attenuation,
dispersion, and nonlinear coefficients, or amplifier noise
figure per span, which are typical in deployed networks.
We evaluated the accuracy of the proposed methods under
various uncertainty scenarios and compared them to QoT
estimators proposed in the literature. The results indicate
that our estimators yield excellent accuracy with a rela-
tively small amount of data, outperforming other prior
estimators.

Index Terms—Machine learning; Quality of transmission
(QoT) estimation.

I. INTRODUCTION

T o accommodate continuous traffic growth and dynam-
icity, coherent transmission and elastic optical net-
works (EONs) are the main solutions currently being
deployed. EONs promise significant benefits, such as
higher spectral efficiency, increased capacity, and reduced
network costs [1,2]. EONs provide vast optimization
dimensions that enable the network to reach higher
efficiency levels.

Traditional network planning relies on abundant mar-
gins [3,4] to ensure all lightpaths have acceptable quality
of transmission (QoT) until the end of life (EoL). Previous
studies worked toward -classifying the margins and
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quantifying their impact on network operation [3,4].
Lowering the margins and increasing the efficiency
reduces the network costs, motivating various research
studies. The authors of [5,6] studied the planning of an
EON over multiple periods to take advantage of the evolu-
tion of margins over time. Certain connection parameters
(e.g., rate) are adjusted at a given time granularity
(e.g., 1-2 years) and new equipment is added, when ac-
tually needed, according to traffic and physical layer
conditions. Therefore, instead of overprovisioning the light-
paths to ensure acceptable QoT until the EoL, the network
is operated with just-in-time provisioning. As a result effi-
ciency is increased, equipment purchase is postponed or
avoided, and network costs are reduced.

An EON can be operated even more dynamically, as it is
possible to adapt the transmission parameters on a shorter
timeframe. More specifically, [7] considers dynamic spec-
trum allocation in order to adapt the network to periodic
(e.g., daily) fluctuations of traffic demands. Also, based
on future predicted short-term traffic, it is possible to
reconfigure the lightpaths to match the expected traffic
[8]. Dynamic network operation can also help in efficiently
managing failures or QoT degradations. Reference [9] stud-
ies the dynamic adaptation of the connections’ parameters
according to physical layer conditions (e.g., in the case of
QoT degradation). Furthermore, [10] investigates a dy-
namic restoration scheme to minimize recovery time in
the case of a failure.

In light of the above, an accurate QoT estimator is
the key component for (i) reducing the margins during
planning/upgrades [3] and (ii) realizing a more dynamic
operation of the network. In the first case, accurate QoT
estimation helps reduce the design margin [4] that ac-
counts for inaccuracies of the QoT model and the system
margins that account for expected degradation of perfor-
mance (aging, increased interference, failure reparations)
until the EoL. Consequently, the network can be operated
closer to the actual conditions, significantly reducing net-
work costs [5]. In the second case, the QoT estimation of a
candidate lightpath is useful in order to adapt the network
to current traffic conditions or failures. For example, we
envision a network that automatically adapts to traffic
changes through reconfiguration; in order to dynamically
adjust the spectrum, forward error correction (FEC),
and/or the modulation format used by existing lightpath(s),
the QoT of the resulting lightpath(s) has to be estimated
before these changes are committed.
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A great deal of recent research effort has been directed
toward QoT estimation with machine learning (ML). ML
has been applied in various areas of optical networks both
at the physical and the network layers [11]. In this paper
we focus on ML regression, aiming to estimate a specific
value for the QoT metric. In doing so, we investigate two
possible solutions based on ML techniques. The first ap-
proach is to use a machine learning physical layer model
(ML-PLM) with specific input parameters (e.g., fiber at-
tenuation, dispersion, nonlinear coefficients) to estimate
the QoT. ML is used to learn the input parameters of
the PLM and thus improve its accuracy. The second ap-
proach is to use a supervised machine learning model
(ML-M) as the QoT estimator. In this case, the choice of
the features determines to a great extent the accuracy of
the estimator. We select the features of the estimators to
be appropriate for a heterogeneous network. We evaluate
the accuracy of the estimators under various parameter
uncertainty scenarios. We demonstrate excellent estima-
tion accuracy with data monitored from a relatively low
number of established lightpaths. In a brownfield scenario
(where large amounts of monitoring data are available),
the estimators can be used in a straightforward way to pro-
vision new lightpaths with reduced margins and decrease
network costs. In a greenfield scenario, the operator could
initially use some probe lightpaths to train the estimator
[12] and provision the lightpaths with reduced margins.
Another option could be to initially overprovision the light-
paths and at a later stage (next upgrade) train and use the
estimators to adjust the transmission parameters accord-
ingly. Studies such as [6] consider this option by assuming
a design margin that is reduced over the network lifetime,
as traffic increases and more lightpaths are established in
the network.

We note here that this paper is an extension of [13]. We
substantially extended our previous work: we generalize
and also provide more details about the ML methods
and the features used. We also introduce new optimization
methods that further improve the estimation accuracy, and
we present results for an additional network. Finally, we
directly compare our results with other previous work.

The rest of the paper is organized as follows. In Section II
we present the previous works on the subject. In Section I11
we introduce the network scenario and the estimation
problem addressed. In Section IV we elaborate on the pro-
posed ML techniques. In Section V we present the simula-
tion results, and in Section VI we conclude the paper.

II. Previous WORK

ML techniques have been applied at both the physical
and network layers of optical networks. At the physical
layer, ML is useful due to the complicated modeling of
the transmission. Various physical layer models (PLMs) ex-
ist that can trade-off complexity for accuracy. The main
problem in using PLMs during the planning and operation
of the network (e.g., for estimating the QoT) is that they
need as input certain physical layer parameters of the net-
work, which are difficult to measure every time that they
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are needed and so may not be accurately known. Also, the
model itself can be inaccurate. Current approaches for net-
work planning assume an ageing network with evolving
physical layer conditions and static operation: lightpaths
are provisioned to have acceptable QoT until their EoL
without having to be reconfigured. Under these assump-
tions, high (design and system) margins are used to cover
physical layer inaccuracies and also to plan for future
deterioration. Thus, ML can be used to improve the
accuracy of the PLM, understand the actual conditions,
and reduce the margins.

At the networking layer, ML can be used to leverage the
vast and evolving amount of information in order to make
complicated network optimization decisions [11]. For ex-
ample, ML can be used to (i) anticipate (and predict) de-
mand and traffic changes and (ii) perform proactive
virtual network reconfiguration [8] according to those pre-
dictions. ML can also be applied to failure identification,
localization, and subsequent reconfiguration for recovery
purposes [11].

A major advantage of ML in both the physical and net-
work layers is that it can continuously learn and adapt its
parameters over time. This is particularly important in an
evolving network where equipment ages, (old) equipment
is replaced or repaired, and traffic volume and patterns
change. Therefore, ML is key for enabling dynamic network
operation.

A great deal of effort has recently been directed toward
estimating the QoT of lightpaths with ML. Estimating
the QoT is a key functionality in an optical network.
Estimation methods include solving Schriédinger equa-
tions, simulation software (such as VPItransmissionMaker
Optical Systems), analytical models of lower complexity,
and feedback-based methods in which measurements and
monitoring information are correlated to estimate the QoT
of new lightpaths. Methods of the last case can be charac-
terized as ML even though they were not reported as such.
Most prior works use end-to-end lightpath parameters,
e.g., monitoring information from coherent receivers [14],
but there are some cases where link or node monitors
are used [15]. Moreover, the focus of most prior works
(and of this paper) is on the estimation of an end-to-end
QoT metric, i.e., the signal-to-noise ratio (SNR) or bit error
ratio (BER), of a new or about-to-be-reconfigured lightpath
[16-18]. In [17], a neural network is trained to predict the
optical SNR of each wavelength division multiplexing
(WDM) channel at every node of the network with signifi-
cant accuracy. However, the heterogeneity of the network is
not addressed.

Considering the method used, some papers use ML clas-
sification [18,19] to estimate whether a new lightpath is
acceptable or not. However, this poses several disadvan-
tages since in real networks there are no failed lightpaths
to train the classifier. Also, the classifier may have to be
separately trained for different QoT acceptability thresh-
olds (for different modulation formats, FECs, etc.). These
disadvantages do not hold for a regressive QoT estimator.
The training is performed using a large range of raw QoT
values, and the output of the estimator is the QoT metric.
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This metric is then compared to the QoT threshold.
Moreover, the classification does not provide information
about the margin, i.e., the distance from the acceptable
QoT threshold. This is a very useful metric for vendors
and operators given an evolving network with depleting
margins. The respective information can be used to effi-
ciently provision new lightpaths and plan for the network
upgrades.

Another important issue is the features used in the ML
model to estimate the QoT. One modeling approach is to
use a set of end-to-end features, such as the total length
of the lightpath, the number of crossed erbium-doped fiber
amplifiers (EDFAs), the baud rate, etc. [18]. However, end-
to-end features are prone to misrepresenting reality,
mainly due to the heterogeneous nature of deployed net-
works. More specifically, certain parameters, such as span
length, EDFA noise figure, and fiber coefficients, vary from
span to span. All networks are to a certain degree hetero-
geneous, even in a greenfield deployment, as there are
parameters and performance variations even for the same
equipment type due to the manufacturing process.
Moreover, different equipment can be deployed in different
areas of the network. As the network ages and evolves,
heterogeneity typically increases. The reason could be un-
even aging due to, e.g., different environmental conditions,
equipment replacement/servicing, and fixing fiber cuts.
Thus, certain end-to-end features, such as the total light-
path length, provide a limited amount of information
toward achieving accurate QoT estimation. For example,
two lightpaths of similar lengths may cross spans with dif-
ferent equipment and exhibit significant variation in their
QoT. This variation can be explained only in part by some
combination of end-to-end features (such as number of
crossed EDFAs). However, since there is not any specific
information available for the utilized links of the light-
paths, the estimation accuracy will still suffer and be
inferior to that of a link-based estimator. The estimation
inaccuracy will typically increase as the network ages
and equipment variations accumulate. Proper feature
definition can avoid such problems, as we will see in the
following. Research in [20] demonstrates that the hetero-
geneity of a network can have an impact on the accuracy
of the estimator. The same paper documents previous work
focusing on comparison of different ML methods, such as
random forest and neural networks.

Another approach to estimate the QoT is to assume a
PLM and use real monitoring data to train its parameters
and improve its estimation accuracy. This approach was
demonstrated in previous works [21,22] to achieve good ac-
curacy. The advantage of this approach is that even with
limited or no amount of training, the model is able to pro-
vide estimation. A possible general disadvantage of this ap-
proach is that the model itself may not represent precisely
the behavior of the physical layer. For example, filtering
effects may not be taken into account in the model. Such
modeling inaccuracies affect the accuracy of the estima-
tion. In any case, the training of the parameters can to
some degree absorb certain inaccuracies. More specifically,
the training algorithm can tune the parameter values so
that the QoT estimation of the (inaccurate) PLM moves
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toward the real QoT values reported by the optical perfor-
mance monitors (OPMs). This approach can yield better ac-
curacy than an (inaccurate) PLM using the real parameter
values.

A recent survey [11] includes several recent publications
on ML in optical networks and on QoT estimation. In this
work we build upon previous research, and we investigate
various ML formulations in order to implement two accu-
rate QoT estimators designed to account for network
heterogeneity. One of them leverages a novel link-based
ML formulation. We also quantify the improved accuracy
of the proposed QoT estimators over previous work.

III. QoT EsTIMATION PROBLEM

We assume an EON [1] with elastic transceivers that can
adapt a number of parameters (modulation format, and/or
baud rate, and/or FEC, and/or transmission power). The
nodes consist of reconfigurable optical add/drop multi-
plexers (ROADMs) with flex-grid capabilities connected
through uncompensated fiber links. Each fiber link consists
of a number of fiber spans that terminate at an EDFA that
compensates for the span loss. We assume that there are no
spectrum converters and thus a lightpath is allocated the
same spectrum throughout its path. For long connections,
regenerators are placed. We represent the network by
the graph G = (N, L), where N is the set of nodes and L
is the set of links. The set of established lightpaths and their
attributes (e.g., modulation format) is denoted by P which
will also be referred to as the state of the network at a given
time. Lightpath p € P crosses a set of links /, C L.

We also assume that we can obtain monitoring informa-
tion from the coherent receivers deployed in the network.
Coherent receivers deployed today are packed with DSP
capabilities, so they can be easily extended to function
as OPMs [14]. An OPM (receiver) can provide information
about the SNR with a certain error. The SNR takes into
account all impairments, amplified spontaneous emission
(ASE) and nonlinear interference (NLI), and residual
dispersion. We use this information to improve the QoT es-
timation accuracy, which in turn can lead to provisioning
new lightpaths with reduced margins or dynamically opti-
mize the network. Moreover, assuming an OPM that can
report both the ASE noise and the SNR, we can further
improve the estimation accuracy, as we will see in the
following.

In particular, we denote by @*(p|P) the actual value of
the SNR for path p when the network is in state P and
by @*(P) the QoT vector that contains the SNR values of
all paths p € P. The mapping @*(P) is nonlinear and un-
known to us. The set of possible states P is huge for any
network of a decent size and thus impossible to measure
and record (e.g., in a table) for all possible states. For
any set of established lightpaths P we denote by Y (P)
the vector of their monitored SNR values, which we assume
are available. Note that in the absence of monitoring error,
Y (P) = Q*(P). The monitoring error consists of a system-
atic error and a random error. The systematic error can
be significantly reduced through proper calibration of
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the monitoring equipment. The random error can be re-
duced by averaging several measurements over a certain
time (on a much shorter timescale than a natural change
of the monitored value would occur). As monitoring errors
are small and can be reduced through a number of tradi-
tional techniques, we ignore them from our presentation
here for simplicity of exposition. Thus, we will assume
we monitor the true QoT for the paths (Y(P) = @*(P)
for p € P).

We consider the case where a new lightpath w & P is
about to be established in the network, and we want to es-
timate (i) what will the QoT of that new lightpath w be and
(ii) how are the QoT metrics of the existing lightpaths p € P
going to be affected by the establishment of w. Put more
formally, the problem at hand is the following:

New lightpath QoT estimation problem. We are
given the measurements Y (P) = @*(P) of the vector of
QoT metrics at the current network state P. Our objective
is to estimate the new QoT vector @*(P U {w}) that will be
valid after the new lightpath w ¢ P is established.

Note that the above problem definition can be extended
in a straightforward way to include a candidate reconfig-
uration of an existing lightpath or the establishment or
reconfiguration of several lightpaths.

Clearly, the new vector @*(P U {w}) contains both the
(new) QoT metrics @* (p|P U {w}) of the existing lightpaths
p € P, which will generally be affected by the establish-
ment of w and the (future) QoT metric @*(w|P U {w}) of
the about to be established lightpath w. We want to obtain
these estimates before lightpath w is established because
the new connection might render infeasible (in terms of
QoT) some of the existing lightpaths. So we want to be able
to get such estimates without having to go through the
hassle of establishing the new lightpath.

IV. APPROXIMATING ARCHITECTURES

An important issue in ML is the selection of the approxi-
mation architecture, that is, the choice of a parametric func-
tion that suits the problem at hand. In particular, we are
interested in choosing a parametric function Q(r, P) that ap-
proximates @*(P). Here r is a set (or vector) of parameters of
the model (physical layer parameters, like span lengths, at-
tenuation coefficients, etc.). The parametric function Q(r, P)
does not have to be a closed form expression; it can also be
the output of a computation program or a simulation. What
is important is that (i) @(r, P) approximates @* (P) relatively
well and that (ii) given the vector r, it is relatively easy com-
putationally to obtain @(r, P) for the given state P. The fol-
lowing two subsections describe two different approximating
architectures for @* (P), corresponding to different choices for
the family of the parametric function used, one based on a
PLM and the second based on feature extraction.

A. Machine Learning Physical Layer Model

The first approach considers a PLM (such as the ones
investigated in [21] or the GN model [23]) with some
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default initial physical layer parameter values for each
span (fiber attenuation coefficient, EDFA noise, etc.). In
this paper we will use the GN model as the PLM, but
our analysis is generic and applicable to other PLMs.
Note that we do not take into account filtering effects.
The initial parameter values are close to the actual ones
but not close enough to provide accurate QoT estimation.
They could be based on equipment datasheet values or
even field measurements that, however, cannot be carried
out continuously, so they would be partially outdated/
inaccurate. The objective of ML-PLM is to use monitoring
information from the established lightpaths to train and
learn the physical layer parameters and therefore improve
the accuracy of future lightpath QoT estimations.

When we use the PLM model as an approximating archi-
tecture, Q(r,P) is a computation program whose set of
parameters r consists of the physical layer parameters, de-
noted by b, which can include the length, fiber attenuation,
dispersion, and nonlinear coefficients per span, the noise
figure of each EDFA, its gain, etc. We denote by b; the
Jjth parameter in . The model also uses the set of lightpath
parameters that are included in the network state P, which
can be the route, central frequency, baud rate, modulation
format, launch power, etc. of each lightpath. It is important
to note that the parameters in P are assumed to be known
perfectly, while the parameters in b are not accurately
known and have to be estimated. Thus, taking the above
into account, we will denote the PLM model as Q(b, P).

Using the monitored Y (P) values, and depending on the
PLM, we can use appropriate ML techniques to improve
the accuracy of the input physical layer parameters b.
Thus, ML-PLM refers to a PLM whose parameters are
learned through this process. Regarding the learning algo-
rithm, if we have closed forms for the partial derivatives
6Q/6bj with respect to all the physical layer parameters
b; of b, we could use the gradient descent method to obtain
better estimates of b, as is done in [21]. In our case, where
we assume a generic case where the function @ (b, P) is un-
known, we can use a nonlinear fitting method. Nonlinear
regression is appropriate when the observational data are
modeled by a nonlinear function of the model parameters.
The data are fitted by successive approximations. Note
that an advantage of our proposal when compared to
[21,22] is that in our approach we assume that the PLM
is a black box. Therefore, our proposal is more generic
and flexible and can be used with different PLMs. To esti-
mate b, ML-PLM is given some training data as input in
the form of a sequence of measurement pairs (P,Y (P)),
which are considered representative of the true QoT map-
ping (P, @*(P)) that is approximated/estimated by the mon-
itors. In the absence of any measuring noise (discussed
previously), we should have (P,Y(P)) = (P,Q*(P)). ML-
PLM estimates b so that the distance between the
measurements Y (P) in the training sequence and the ap-
proximating architecture/function output of the ML-PLM
Y (b|P) = Q(b,P) is minimized. The iterative approxima-
tions start with some default initial physical layer param-
eter vector b° for each span (fiber attenuation coefficient,
EDFA noise, etc.). In each iteration i we obtain the updated
parameters b*1 that minimize the distance, defined as
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Fig. 1. Block diagram of the ML-PLM.

some function of the error Y (P) — Y (bi*1|P) (e.g., the mean
squared error). The iterations stop and we obtain the final
b* values when certain criteria are met; for example, the
error function reaches a predefined threshold or the maxi-
mum number of iterations are executed. The process is
depicted in Fig. 1.

When we want to establish new lightpaths (and/or recon-
figure existing ones), we want to estimate their QoT. Thus,
we have a new set P, and we estimate Y (b*|P') = Qb+, P)
using the obtained physical layer parameters b*. (In the
usual case where only one new lightpath w has to be estab-
lished, P = P U {w}). We establish the new lightpath(s),
monitor them to get the actual SNR Y (P') = @*(P'), and
obtain the (test) error Y(P') - Y(b*|P'). We then repeat
the training with the new network state to further improve
the accuracy of b and of the ML-PLM.

B. Machine Learning Model

The second investigated approach tries to obtain an
approximation of the actual QoT vector @*(r, P) by using
feature extraction. This process maps the state P into a ma-
trix X = f(P), called the features matrix of P, that is the
collection of the feature vectors of all the lightpaths. In this
case, and with respect to the generic definition of the esti-
mation function Q(r, P), r is a set of the ML-M parameters
(coefficients) denoted by ®, whose size depends on the par-
ticular model [linear regression, neural network, support
vector machine (SVM), etc.].

The features matrix X is computed for the established
lightpaths in P and is chosen to summarize in a heuristic
way the important characteristics of P with respect to the
QoT estimation problem. A sample set of features could be
end-to-end features, such as the lightpath length, the link
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load, and the number of crossed EDFAs, which indirectly or
directly capture the physical layer parameters. The main
idea is that through the change of variables from P to
X = f(P), the unknown mapping Q*(P) of the true QoT
metrics can be approximated well by a “relatively smooth”
function Q(©,X) = Q(O®,f(P)). Then a ML-M Q(©,X) is
trained with an appropriate regression technique, such
as linear regression, neural networks, or SVM. To perform
training, we must be given as in the previous section some
training data, in the form of a set of pairs (P, @*(P)).

After implementing and testing several of such methods
and several feature extraction functions f(P), we observed
that the choice of features is of utmost importance for the
estimation accuracy, at least considering medium size op-
tical networks (10-20 nodes) and various traffic loads.
Thus, in the following we present a formulation that
achieved the best performance.

We organize the feature matrix X so that each row
corresponds to one lightpath p € P, while the columns re-
present (link, feature) pairs, for the links on the lightpath
and the values of the chosen features. In particular, we
choose a set of three sets of link-level features. We also con-
sider an additional feature to represent the bias term
(denoted by BT) [24]. The bias term can account for the
remaining monitoring errors that cannot be reduced by
any other means. We follow a link-level feature formulation
to take into account the heterogeneity of the network. More
specifically, the ML estimation algorithm considers each
lightpath’s link attributes separately during the training
process. This results in the algorithm being able to distin-
guish between two lightpaths that have, for example, the
same or similar length but contain different links and
therefore possibly exhibit different QoT due to span/link
parameter variations. We do not consider span level fea-
tures, since a lightpath will always cross all the spans of
a link.

To be more specific, we defined three sets of link-based
features that correspond to the major classes of impair-
ments affecting the QoT. More specifically, we define A
as a |P| x |L| link-level feature matrix designed to account
for the ASE noise. Element A,;, corresponding to lightpath
p and link /, is set equal to 1 if it contains link /, and is set to
zero otherwise. We also define the link-level feature matrix
S to account for the self-channel interference (SCI) noise.
Element S, is set equal to the lightpath’s baud rate raised
to the power of -2 if lightpath p contains link /, and is set
to zero otherwise. Finally, we define a link-level feature
matrix W to account for the interference of neighboring
lightpaths [cross channel interference (XCI)]. The elements
of this matrix are derived from an equation that involves
the baud rate of the respective lightpath, and for each of its
neighboring lightpaths, the distance of the neighboring
lightpath and its baud rate, following Eq. (40) of [23].

We concatenate all the link-level feature matrices into
one feature matrix X = f(P), defined as

Xz[BT A S W] .
[Plx(3|L|+1)
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Focusing on a lightpath p, the above described features are
designed to represent the lightpath’s parameters that
affect the noise contributors (considering the major types
of impairments, both linear and nonlinear) per link.
Assume x,,; is the jth feature of lightpath p and that the
related noise contribution is denoted by n;(x, ;, ©). Each fea-
ture x,, ;, was designed so that the noise contribution of the
related impairment/link depends (close to) linearly on it,
ie., nj(x;;,0) = x; J-HJ-, where 6; is the related impairment/
link coefficient.

We assume that the noise of the different types of impair-
ments is additive on a link level and is also additive per
impairment (as is the inverse of the SNR). This is an
assumption that is made by the GN model, which was dem-
onstrated to achieve good accuracy [23]. This assumption
makes possible the correlation of the noise contributions
at impairment and link levels. In other words, the
total noise accumulated over lightpath p is given by
> 1 (xp,,®). Given linear features-noise functions n;, we
can estimate the total noise of all the lightpaths by

Y©,X)=X-0.

Considering that we monitor the SNR for the lightpaths
and there is no monitoring error, we set, for lightpath p,

By e
Br(p) : Q*(P) ’

where By (p) is the noise bandwidth, ,(p) is the launch
power, B,.(p) is the baud rate, and @* (p) is the SNR of light-
path p. Z is the sum of all the noise of all impairments of all
the links that the lightpath p crosses, following the
assumption of additive noise of the GN model. Given
Y(P) (monitoring information) and setting Y (P) = Z(P),
we train our model Y(®,X) and obtain the coefficients
(thetas) ® using an appropriate ML training algorithm.
Under the assumption of linear features-noise functions
nj(Y(Q,X) =X -0), a linear regression/gradient descent
algorithm is suitable for learning ©. So we can iteratively
obtain @ until the training error becomes low where we
obtain the final ®*. The block diagram of ML-M is depicted
in Fig. 2.

Z(p)

Note that the ML-M concept is quite generic. We can as-
sume more complicated features—noise functions n; and
more complex and non-additive noise attributes. This
would require other ML models, such as neural networks
or SVM, and appropriate learning techniques to train our

estimator Y(G),X).

Another possibility, under the linear features-noise
functions assumption, is to use a constrained least squares
solver. The advantage of this method is that we can define
additional constraints that the solution must satisfy. For
example, we can define constraints that exploit the ex-
pected QoT relationship of certain links. For example, a
link that is more than 200 km longer than another is highly
unlikely to contribute lower noise. The additional con-
straints help the algorithm to provide better estimations
for the thetas, particularly in cases with a small amount of
information (lightpaths).
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Fig. 2. Block diagram of the ML-M.
The least square solver solves the fitting problem in the
form of

ming | X - © - Y(P)|3

such thatE -0 <0, 0<0,

where E is the (linear) inequality vector defined as follows:

For all links /; in L, for all links /, in L, such that
length(l,) < length(ly) + h, for all sets of features i in
{A, S, W},

©;;, —0;, <0,

where £ is the reference distance (e.g., 200 km), and ©;;
corresponds to the parameter of link / in the set of features
i. Note also that we constrain © to be positive, since these
parameters correspond to positive noise values.

If more detailed monitored parameters are available, we
can appropriately extend our model to include those. For
example, assuming OPMs that can report the ASE in ad-
dition to the SNR, we can individually map to the ASE met-
rics the feature matrix that corresponds to the ASE noise
and also jointly exploit the SNR measurements, yielding
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Thus, in that case, the algorithm will have more informa-
tion to calculate the respective thetas. The above formula-
tions rely on monitoring and ML to approximate the
behavior of the physical layer without complicated analyti-
cal functions.

V. PERFORMANCE RESULTS

We evaluated the proposed QoT estimation architectures
through simulation experiments. We assumed the DT top-
ology with 12 nodes and 40 bidirectional links (Fig. 3) and
the NSFNET topology with 14 nodes and 22 bidirectional
links (Fig. 4). We assumed four traffic loads of 100, 200,
300, and 400 total connections with uniformly chosen
sources—destinations and random baud rates from the
set {32, 43, 56}.

Regarding the physical layer, we assumed SSMF fiber
with mean attenuation coefficient 0.22 dB/km, mean
dispersion coefficient 16.7 ps/nm/km, and mean nonlinear
coefficient 1.3 1/W/km. We also assumed a span length of
80 km and an EDFA noise figure of 5 dB. We set the launch
power at 0 dBm, and we operate in the linear regime. For
the ML-PLM case, the b vector consisted of the attenuation
coefficient, the dispersion coefficient, and the nonlinear co-
efficient. For the ML-M case, we used the features de-
scribed in Section IV.B. The aforementioned mean values
also serve as the initial conditions 5° in the ML-PLM es-
timation algorithm. The actual (unknown) values of these

Fig. 3. DT topology with the link lengths in kilometers.
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Fig. 4. NSFNET topology with the link lengths in kilometers.

coefficients are in fact drawn in the simulations according
to a uniform random uniform distribution with these
means. In particular, we examined the following uncer-
tainty scenarios: (a) the attenuation coefficient of all spans
is constant (z, = 0) and so are the nonlinear and dispersion
coefficients (u,gs = 0); (b) the attenuation coefficient is
constant (z, = 0), while the dispersion and nonlinear coef-
ficient vary uniformly by 20% u, s = 0.2; and (c) all three
fiber parameters vary (u, = u,gq = 0.2). In the case of the
ML-PLM, we initialized the parameters in b to the mean
coefficient values, and we used the GN model with the var-
ied (random and thus unknown) values as the ground truth
producing the training sequence. The estimation objective
we considered was the SNR.

For each traffic load and physical layer parameter uncer-
tainty setting, we executed 300 iterations. We used the fol-
lowing three metrics to evaluate estimation accuracy: the
mean squared error (MSE) and the maximum overestima-
tion and minimum underestimation over the performed
iterations. The maximum overestimation is a useful metric
because it gives us the QoT margin that has to be used to
always be on the safe side in provisioning the network
(never overestimate the QoT so that we will not establish
an inappropriate lightpath).

Training of ML-PLM was done with nonlinear regres-
sion and, more specifically, we used the function Isqcurvefit
of MATLAB. For the ML-M we evaluated neural networks,
linear regression, and a constrained least square solver. We
used 80% of the lightpaths for training, 10% for validation,
and 10% for testing. In all the traffic loads, we exclude from
the testing set any lightpaths that include links for which
we have no QoT information at all. Regarding the different
algorithms that we evaluated for the ML-M, we noticed
that all of them provided similar accuracy. The constrained
least squares solver provided slightly better results since it
had the advantage of the additional constraints. The
specific constraints that we used were length similarity
constraints for all the links (set at 200 km). The disadvant-
age of the neural network algorithm is that it is prone to
overfitting, so its parameters (number of neurons, dropout
rate, etc.) should be carefully chosen, and their values may
differ depending on the specific traffic and network. Also,
the neural network algorithm typically requires more time
for the training phase than the other algorithms. In all the
results described in the following, we use a constrained
least squares solver for the ML-M.
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We also obtained results for other types of features that
use only end-to-end parameters of the lightpaths as op-
posed to the link-level that our model uses. Our objective
was to develop the best possible end-to-end estimator and
compare it with the link-level estimators. The set of fea-
tures we considered is similar to the one used in [18].
More specifically, we assumed an end-to-end machine
learning model (E-ML-M) with the following features X
for each lightpath: number of EDFAs, number of hops, total
path length, baud rate used, and a load metric. The load
metric is similar to that of ML-M but aggregates the link
metrics into one metric since E-ML-M considers only
end-to-end features.

In Figs. 5 and 6 we present the results for the DT net-
work. In Fig. 5 we can see that both ML-PLM and ML-M
achieve very good mean squared error. The ML-M has con-
sistent performance for all the aforementioned coefficient
uncertainty scenarios (a), (b), and (c) simulated, since it
does not assume any previous knowledge of the physical
layer parameters. Also, the selected features X ensure that
the performance will remain consistent regardless of the
variations of the parameters in each span. We note that
as the sources of uncertainty increase, the ML-PLM needs
more lightpaths (which serve as training data) to achieve
the same accuracy. This is expected since, when there are
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no variations, the ML-PLM has previous knowledge of the
input/physical layer parameters that is very close to the
real values and the fitting algorithm can more easily find
the suitable solution. Note that the reported accuracy of
ML-PLM in [13] is worse than the one reported here, be-
cause in [13] we did not consider independent fitting of
all the coefficients and also we used different stopping
criteria for the algorithm (e.g., optimality tolerance). ML-
PLM is more accurate than ML-M. One reason for this
is that ML-PLM has perfect knowledge of the PLM, in
the sense that the ground truth function @*(P) has been
taken to be similar to the GN model function Q(b,P)
and needs to fit only the parameters b that are unknown.
ML-M, on the other hand, has no such a priori advantage
and relies only on the monitoring metrics and the features
in order to learn to estimate the QoT.

In Fig. 6 we can see the maximum deviations of the two
algorithms. We report two metrics: maximum overestima-
tion and minimum underestimation of the SNR. ML-PLM’s
deviations are of the order of 102 dB. As in the case of the
MSE, the ML-PLM needs more lightpaths to achieve the
same accuracy when the uncertainties of the parameters
increase. The ML-M performs relatively well with a small
amount of training lightpaths, and it is able to significantly
reduce the error for a high number of lightpaths (>300).
The ML-M’s maximum overestimation is of the order of
0.2 dB, while the minimum underestimation is 0.7 dB. If

8E-3 « ==+ ML-PLM u,=0, unga =0 we consider lightpaths that cross more than one link, then

7E-3 \ == ML-M u,=0, unga =0 the maximum deviation is 0.3 dB when 400 lightpaths are

\ = =ML-PLM u3=0, ugq =0.2 used for training. Note that the maximum overestimation

% 6B \ ——ML-M u,=0, ungq =0.2 (0.2 dB) corresponds to the design margin that an operator

£ 5E-3 \\ ML-PLM u,=0.2, upgq =0.2 should employ to never provision a lightpath with unac-

& \ ML-M u,=0.2, unga =0.2 ceptable QoT. It is worth noting that there is an asymmetry
»n 4E-3 . - . . )

S . \\ with respect to the underestimation and overestimation

g2 3E-3 L values of ML-M. This could be explained by the constraints

(% 9E-3 i k (0 < @) that tend to estimate lower SNR values, leading to

\\\ ‘ relatively lower maximum overestimation than underesti-

1E-3 —— mation. Note that this asymmetry is to our favor, since we

OE+0 bl TES-W A need to avoid the overestimation error.
190 200 <00 400 If we take into account that a reference value for the de-
Number of lightpaths sign margin is approximately 2 dB [3], then the benefit in

Fig. 5. MSE in dB for the ML-M and ML-PLM (DT network).

margin reduction that ML-M can provide is 1.8 dB, while
for ML-PLM it is approximately 1.95 dB. The improved

Number of lightpaths

Fig. 6. Maximum deviations for ML-M and ML-PLM for (a) u, =0, u,&q = 0; (b) u, =0, u,eq = 0.2; and (¢) u, = 0.2, u,gq = 0.2

(DT network).
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estimation accuracy has been shown to translate to
significant equipment savings [6,16].

In Fig. 7 we present the accuracy of the E-ML-M estima-
tor that used end-to-end features. The results are similar to
those reported in [20]. We notice that even in the case
where there are no parameter uncertainties, the accuracy
is worse than that of our proposal. One reason is that in
E-ML-M the SNR is estimated indirectly using relatively
high level end-to-end networking features (e.g., based on
number of hops, total length). Our formulation breaks
down the SNR to its three components, ASE noise, SCI,
and XCI, and provides relevant features for each one of
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(a) MSE and (b) maximum deviations of the SNR for E-ML-M with end-to-end features (DT network).

them. Another reason is that the end-to-end features can-
not capture subtle differences between the links of a light-
path. For example, E-ML-M cannot capture the exact load
of each link of a lightpath (which seems from the results
to play an important role), but calculates the mean load
of all the links the lightpath contains. As the parameter
variations increase, we notice considerably worse accuracy.
As we have mentioned previously, this is due to the use of
end-to-end features that provide a limited amount of in-
formation in a heterogeneous network. This validates
the importance of using features that capture the main
dependencies and nonlinearities, by incorporating our
prior knowledge or intuition on the QoT estimation
problem.

In Figs. 8 and 9 we present the ML-PLM and ML-M per-
formance for the NSFNET network. The results and the
conclusions that can be derived are similar to those ob-
tained for the DT network. In all cases the accuracy of
the estimators is a bit better than in DT. One reason is that
the NSFNET has longer links. Therefore, the SNR of the
lightpaths is typically lower and less prone to estimation
errors. Also, NSFNET has almost half the number of links
of the DT network, implying that the estimation algorithm
requires a smaller number of lightpaths to obtain good es-
timation accuracy. It is also important to note that the ML-
PLM’s running time can be significantly higher for the
NSFNET than for the DT topology (tens of minutes for
NSFNET as opposed to a couple of minutes for DT using
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Fig. 9. SNR maximum deviations for ML-M and ML-PLM for (a) v, = 0, u,gq = 0; (b) v, =0, u,eq = 0.2; and (¢) u, = 0.2, u,gq = 0.2

(NSFNET network).
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MATLAB and a quad core CPU at 4 GHz). The reason is
that the longer links of the NSFNET (which correspond
to more spans) are more difficult to learn through training.
To reduce the complexity, we assumed a simplified topology
of the NSFNET, where each link consisted of spans of iden-
tical parameters. In that case, the number of parameters
requiring estimation was significantly reduced, and the
running time was thereby reduced to a couple of minutes
for the NSNET (and about 30 s for the DT). The running
time of the ML-M is not affected by the length of the links
since it considers only the end-to-end metrics and the per-
link features. It requires approximately 0.2 s up to a couple
of seconds. Note that these running times refer to the train-
ing phase only. The subsequent estimations require much
less time to obtain (<0.1 s) and are suitable for dynamic
(re)configuration scenarios.

VI. CoNCLUSION

We studied two machine learning (ML) approaches for
QoT estimation: the analytical physical layer model (ML-
PLM) and the machine learning model (ML-M). We pre-
sented a novel ML-M formulation that accounts for the
heterogeneous nature of a network. Both models achieve
high accuracy using monitoring information from few es-
tablished lightpaths. ML-PLM is more accurate than
ML-M but requires a larger running time for training pur-
poses. ML-M is more flexible in that it does not require any
previous physical layer knowledge and is applicable to a
large variety of networks (core, metro, dispersion compen-
sated, etc.) with small or no modifications. Both approaches
performed much better than ML algorithms that use end-
to-end features. The high accuracy of the proposed models
makes them suitable for a dynamic network that continu-
ously evolves. Also, network costs can be significantly re-
duced, since the operating margins can be reduced
through more accurate QoT estimation. Future work in-
cludes the application of similar ML techniques in other
use cases and the extension of the algorithms to take into
account filtering effects.
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