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Optical networks have historically been designed to be operated statically. Connections are overprovisioned
so that they remain uninterrupted over several (e.g., 10) years, using high physical-layer margins to cover the
evolution of the physical conditions and modeling uncertainties. As a first step, we can increase the efficiency
without sacrificing network reliability by removing uncertainties and reducing long-term margins, observing and
adjusting them at intermediate periods. This requires certain automation steps in monitoring and data process-
ing. Increasing the efficiency further, and thus further reducing the margins, comes at a trade-off in reliability,
and should be done according to service classes and the level of network automation. The ORCHESTRA network
makes use of coherent optical transponders as software-defined optical performance monitors (soft-OPMs) to
improve the optical network observability. ORCHESTRA developed digital signal processing (DSP) OPM algo-
rithms and a hierarchical monitoring plane to carry and process physical-layer monitoring data. ORCHESTRA
uses data analytics methods to understand the physical-layer conditions and feed cross-layer optimization algo-
rithms. ORCHESTRA closes the observe–decide–act control loop, automating the mechanisms required to trade
efficiency for reliability. © 2019 Optical Society of America

https://doi.org/10.1364/JOCN.11.000C10

1. INTRODUCTION

To accommodate continuous traffic growth and dynam-
icity, coherent transmission and elastic optical networks
(EONs) are the main solutions currently being deployed
[1]. New-generation commercial transponders use coherent
receivers (Rxs) and digital signal processing (DSP) for modu-
lation/demodulation and for mitigating several physical-layer
impairments. Such transponders provide programmable mul-
tiformat transmission features, and combined with flex-grid
reconfigurable optical add–drop multiplexers (ROADMs) are
typically referred to as EONs. EONs provide higher granu-
larity, flexibility, and efficiency, and enable dynamic network
re-optimization.

However, optical networks have historically been designed
to be operated statically following the “set and forget”
approach. Optical connections are designed so that once

established, they remain uninterrupted over several (e.g., 10)
years; that is, their quality of transmission (QoT) is acceptable
until their end of life (EoL) [2,3]. To guarantee reliability
over long time periods, high physical-layer margins are used
to cover the evolution of the physical conditions and related
modeling uncertainties. In particular, the margins are used to
cover statistical variability of equipment performance due to
the manufacturing process, performance fluctuations from
polarization effects, equipment aging, future fiber reparations
after cuts, increasing interference due to increased network
load, modeling errors, etc. Yet, high margins do not fully pre-
vent outages, i.e., hard failures. These occur due to fiber cuts or
equipment breakdowns and are recovered by the implemented
resiliency strategy (protection, restoration) according to the
related service-level agreement (SLA)/class of service. Between
high margins and resilience strategies, a lot of the efficiency can
be harvested.
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In previous-generation wavelength-division multiplex-
ing (WDM) optical networks, with fixed transponders and
limited-flexibility optical switches, the static operation and
high-margins approach were appropriate. However, EONs
exhibit much broader optimization dimensions, which are
wasted with the current static design approach [2,4]. Telecom
operators must face steep traffic increases while maintaining
the revenue, and they clearly need to reduce overprovisioning
and increase the network efficiency.

A first solution is to remove long-term margins and certain
uncertainties and maintain short to medium term margins.
The margins are checked, using monitoring information and
appropriate models, and adjusted at intermediate periods (i.e.,
on the order of years) to ensure reliability according to the
related SLAs. As a result, connections are allocated enough
margin to safely reach the next period—still considerably lower
than with the current, static, approach. Moreover, uncertainties
in estimation can be reduced. These translate to postponing
or avoiding the purchase of regenerators or transponders,
which leads to capital expenditure (CAPEX) and operational
expenditure (OPEX) savings [5–7].

If we want to find a better trade-off between efficiency and
reliability, i.e., if we want to further reduce margins, we need
to make further steps in network automation. For example,
we can envision operating a connection in a marginless man-
ner, where we regulate its margins and bring its bit error ratio
(BER) closer to the limit. Consequently, we might face cases
where the connection would run out of margin. We refer to
a QoT degradation as a soft failure. When margins are low, a
soft failure would make the QoT unacceptable and the con-
nection infeasible, and would be equivalent to a hard failure.
This would in turn require overprovisioning for protection,
defeating the initial purpose of cutting costs. To avoid that, we
need a highly automated network following a feedback-based
control loop, able to predict, detect, and diagnose health issues
and automatically prevent them, either by directly acting at the
failure cause or by downgrading capacity, diverting traffic, or
ordering manual interventions, according to the service class
[8–10].

To achieve an efficient optical network operation by regu-
lating the margins, we first need to observe the network [11].
With the advent of coherent transmission, several physical-
layer parameters can be monitored at the Rx via DSP. However,
until recently, such information was not exploited for net-
work optimization purposes. The vision of the European
project ORCHESTRA (http://orchestraproject.eu) was to
close and automate an observe–decide–act control loop.
ORCHESTRA harvests the information of coherent tran-
sponders, using them as software-defined optical performance
monitors (soft-OPMs). The feedback, the monitoring infor-
mation, is transferred over a hierarchical monitoring plane
and correlated using machine learning (ML)/data analytics
algorithms to obtain accurate knowledge of the physical layer.
This, in turn, is used to cross-optimize the network and the
physical layers, regulate margins, and reduce overprovision-
ing. ORCHESTRA uses its observe–decide–act control loop
to automate the required mechanisms for trading margin
efficiency for reliability.

The rest of the paper is organized as follows. In Section 2
we discuss the margin efficiency and reliability trade-off
and network automation. Then in Section 3 we present the
ORCHESTRA network solution and continue by presenting
its key modules. In Section 4 we present ORCHESTRA’s
feedback-based QoT estimators, which are key modules in
understanding the actual conditions and estimating mar-
gins. In Section 5 we present a multiperiod planning study
that quantifies the benefits of planning with accurate QoT
estimation and reduced margins. In Section 6 we present the
ORCHESTRA management and control plane, which imple-
ments the observe–decide–act control loop. In Section 7 we
present field experiments performed on Telecom Italia’s prem-
ises deploying ORHESTRA management and control plane
to demonstrate reliable, efficient, and automated network
operation. Our conclusions are presented in Section 8.

2. MARGINS, EFFICIENCY, RELIABILITY, AND
AUTONOMOUS NETWORKING

Previous works [2,3] classified the margins and discussed
their impact on network operation. Margins are defined as
the difference between the signal-to-noise ratio (SNR), or
another QoT metric such as quality (Q) factor or BER, at
the Rx at the network’s current conditions and the related
performance limit. According to [3], there are three types of
margins: system, design, and unallocated . The system margins
include the equipment aging and nonlinear interference (NLI)
effects, which vary with time. As time passes, equipment
such as transponders, amplifiers, filters, etc., age and their
performance deteriorates. Fiber cuts are repaired, increas-
ing the fiber attenuation. Moreover, typically as the network
evolves, new connections are established to support new and
increasing traffic demands, thus increasing the cross-channel
NLI. In addition to these components of the system margin,
we add the operator’s margin and a margin for fast-varying
impairments, both of which can be considered constant over
time. The design margin is the second type of margin and
accounts for QoT modeling inaccuracies. QoT estimation
is a key operation performed when planning, upgrading, or
reconfiguring the network. The inaccuracies come from two
factors: (i) the inaccuracy of the estimation model itself, due
to certain simplifications to reduce complexity and make the
calculations efficient, and (ii) uncertainties of the input param-
eters of the model, since some of them cannot be accurately
and/or continuously measured. Finally, the third margin type
is the unallocated margin, which pertains to the mismatch of
the demand and the capabilities of the transponders. This is
already reduced with the existing-rate flexible/elastic transpon-
ders (with 50–100 Gbit/s granularity) and will diminish with
next-generation finer granular transponders based on probabi-
listic constellation shaping or time-domain hybrid modulation
techniques.

As expected, lowering the margins and increasing efficiency
reduces the network costs. This has motivated various research
studies. The authors of [6,7] studied the planning of an EON
over multiple periods to take advantage of the evolution of
margins over time. Instead of overprovisioning the lightpaths
to ensure an acceptable QoT until the EoL [Fig. 1(a)], the
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Fig. 1. (a) Traditional planning with end-of-life margins, (b) plan-
ning with reduced margins, (c) marginless operation of a 200 Gbit/s
connection.

network is operated with just-in-time, or to be more precise,
with just-in-period margins [Fig. 1(b)].

Note that the resulting savings come with no deteriora-
tion of reliability. The margins in this case are reduced in two
ways. The first is the reduction of long-term/aging margins:
instead of targeting acceptable performance at EoL (i.e., after
10 years), we target shorter time frames (e.g., 2 years). In this
time frame, the network typically has some scheduled mainte-
nance or upgrade window. Before such a scheduled window,
we can recheck and re-evaluate the margins and adjust them
by adding equipment (e.g., regenerator or a parallel line) or
with appropriate reconfiguration actions. This is done to avoid
any decrease in the service availability. Note that the long-term
margins are not meant to cover hard failures, such as fiber cuts
or switch breakdowns, which are covered by the resilience
scheme. The long-term margins cover QoT degradations due
to aging and increased load, which happen incrementally and
slowly.

Second, we also reduce the design margin, by refining the
QoT estimation model and reducing its uncertainties. For
example, since the transmitter (Tx) laser may become detuned,
especially as it ages, a certain part of the design margin accounts
for the uncertainty in the alignment of the Tx laser and the fil-
ters on the path [12]. By developing a process to align the Tx

and filters, we remove the related uncertainty and safely remove
the associated margin. Consider, as another example, the case
where the QoT estimator requires knowledge of the dispersion
coefficients of all fiber spans. These values would be known
only within a certain accuracy, since they are hard to measure,
especially in an operating network. Also, even if they were
measured, the used equipment would introduce some error.
The uncertainty of such a QoT estimator’s input parameters
is coved by the design margin, which would be reduced if
we reduced the uncertainty of these parameters, e.g., with
monitoring and data analytics techniques [2,13,14].

The efficiency increase from the aforementioned margin
reduction methods requires a small change in operation mode,
from the “set and forget” approach to a “check and upgrade”
every couple of years, and yields important cost savings. One of
the key modules is an accurate QoT estimator that understands
the physical-layer conditions at each period and estimates the
QoT for the new or reconfigured connections. The actual
network condition is the reference on top of which we apply
the aging model, so it should be understood to reduce the
system aging margin from EoL to a few periods. By looking at
the evolution over time, we can also refine the aging model.
Moreover, by monitoring the network we can understand its
conditions and improve the accuracy of the QoT estimator’s
input parameters, thereby reducing the design margin.

Thus, improving QoT estimation is a strategic step toward
reliable and efficient optical networking. Tremendous research
efforts have investigated the refinement of existing QoT esti-
mation models [15,16] to account for lightpath specificities
such as channel frequency, dispersion map [17], channel
count, filtering impairments [18,19], linear cross talk, and
polarization-dependent loss [20]. Efforts have also been under-
taken to simplify the models, to reduce computation time, and
thus to make them suitable for dynamic network operation.
In parallel, QoT estimation can also be improved through a
reduction of the uncertainties of the model inputs, as proposed
in [13,14] and demonstrated in [21,22]. Sometimes, sources
of QoT uncertainty can be removed by introducing some
automation processes, e.g., to stabilize parameter values to
their nominal values [12,23]. In a different approach called
probabilistic design, the network can be designed to minimize
the impact of the variations of parameters such as channel
power on the QoT [24]. Recently, many works [25–27]
have suggested that QoT could be accurately predicted with-
out any form of analytical model, through blind ML using
monitored parameters as inputs. Since such techniques rely
on monitoring, they cannot be used in greenfield network
design. Results suggest that blind ML approaches would only
outperform model-based QoT estimators in cases where very
little is known or when model input parameter uncertainty is
extremely high. A discussion on model-based and ML tech-
niques can be found in [14]. Since it has been demonstrated
that monitoring can effectively refine model input parameters,
it seems fair to state that blind ML approaches can only be
useful when combined with a model to cover effects that are
currently not sufficiently well modeled, although even this use
case poses significant challenges in the training.
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An EON can be operated even more dynamically, as it is
possible to adapt the transmission parameters of transpon-
ders and reconfigure the ROADM switches at shorter time
frames. We can reduce margins even further, going closer
to the minimum performance threshold. This is known as
marginless operation. This would increase the efficiency but
could result in certain loss of reliability [8–10]. Considering
the expectations of highly dynamic and volatile traffic with the
emergence of fifth-generation celluar network technology (5G)
and new applications, statistical multiplexing gains currently
not present in optical transport networks can arise. In such an
era, new use cases with classes of service with a wide variety of
resiliency requirements also seem probable.

The benefits of marginless operation can take many forms,
e.g., connections can be assigned higher rates than requested
[Fig. 1(c)], cost in terms of transponders or spectrum can be
saved by adjusting existing connections to meet varying traffic
and/or harvest multiplexing gains, or energy can be saved by
adjusting the symbol rate and/or the forward error correction
(FEC) scheme. For example, assume that a connection carries
both high- and low-priority traffic, and also assume that we
consider as an option the downgrade of its modulation format,
such as from polarization-multiplexing 8 quadrature amplitude
modulation (PM-8QAM; 150 Gbits/s) to PM quadrature
phase-shift keying (PM-QPSK; 100 Gbits/s) when its QoT
degrades (soft failure). We should design the connection so
that we have sufficient capacity for the high-priority traffic,
i.e., the aggregated high-priority traffic constitutes no more
than 100 Gbits/s. The lower-priority traffic would experience
a downgrade in its rate until a new interface and transponder
are provisioned. Alternatively, if the deterioration is foreseen
and the interface and transponder were already deployed, the
lower-priority traffic could be dynamically restored with minor
disruption. Regarding the dynamic adaptation of client and
line optical rates, the recently introduced Flexible Ethernet
(FlexE) can provide the needed flexibility. Another solution
is reported in [28] and relies on a sliceable transponder with
a multiwavelength source, which is capable of adjusting the
client and line rates.

We can also envision connections that consist of pure high-
priority traffic and require their rate to be maintained. For
such a connection, we could either provision it with enough
margin to reach the next upgrade period [as discussed above;
see Fig. 1(b)], predict and schedule an upgrade far in advance
of when it is needed [Fig. 1(c) and [29]], or have a precom-
puted reconfiguration option that guarantees the required
rate (e.g., increase the bandwidth of the filters and push adja-
cent channels to reduce the filtering effect and interference),
which can be done hitlessly (without traffic interruption). We
could also have various types of lower-priority classes, which
could accept certain service deterioration levels. To harvest the
efficiency and reliability trade-offs of these options, we need
further advances in network automation and, in particular,
in failure identification, localization, prediction, and recovery
mechanisms.

Therefore, control and management play very important
roles in marginless network operation [25,30–33]. Such a
mode of operation requires a closed control loop that con-
tinuously monitors, re-evaluates, regulates the margins, and

re-optimizes the network. The control plane has to handle new
types of failures, since soft failures could make connections
unacceptable. A critical phase when a problem is detected
(e.g., a BER above a threshold) is failure identification and
localization [8,10]. First, the control and management plane
should be able to identify the type of problem, which could
be due to any of several devices (e.g., amplifier, fiber, switches,
filter, laser). As an example, the authors of [10] proposed a
method of discerning the following causes: signal overlap,
tight filtering, and signal drift. Then, with the knowledge
of the failure type and its localization, the control plane can
react to maintain the service. The problem of localization was
addressed in [8,34–37] by employing multiple monitoring
locations and correlating monitoring information.

When a traditional hard failure such as a fiber cut occurs,
traffic can only be recovered if it is (re)routed over an alterna-
tive path. For hard failures arising from soft failures, however,
simpler actions such as changing the modulation format can
be taken to avoid rerouting. A summary of possible actions in
the presence of soft failures such as fiber and amplifier aging
and interchannel interference according to classes of service
can be found in [30]. Changing the modulation format has
also been adopted in space-division-multiplexed optical net-
works [31]. The works in [8,12,23] proposed techniques to
recover from filter/laser alignment soft-failures. Recently,
several works implemented recovery or reconfiguration of
transmission parameters via the NETCONF protocol, since
it has emerged for the control of disaggregated networks
[31–33,38,39]. In these works, YANG models are proposed
to enable NETCONF in the reconfiguration of the identified
parameters.

Another important parameter is the speed, as well as the
complexity, of recovery. It has been demonstrated in [30] that
centralized solutions can present scalability problems, lead-
ing to delays in the processing of alarms and, in turn, in the
reaction. Such solutions can exploit (i) on-demand requests
for monitoring information to the network device, as in the
case of [32], which adopted OpenFlow to obtain monitoring
information, or (ii) notifications/alarms, as supported by the
NETCONF Notification message [39]. Such protocol mes-
sages report to the central controller the value of a parameter
monitored at a specific time instant. An alternative solution
could be a telemetry stream between the device and the con-
troller [33] to report a flow of real-time monitored values. Note
that NETCONF has not been designed for “streaming,” and
a widely adopted solution for telemetry is the gRPC protocol
[40]. NETCONF and gRPC could also coexist and be used
according to the network’s needs and applications. Another
solution is to enable some distributed control actions when
recovery speed and responsiveness are of utmost importance.
Preprogramming [41] is a method that instructs/programs
transponders to operate autonomously, e.g., by selecting the
proper transmission parameters (modulation format, symbol
rate, FEC, etc.) depending on the local monitored values, thus
avoiding interacting with the central controller.

Finally, an interesting feature in network automation is
failure prediction, which can be done at various time scales
[29,42]. Medium-term failure prediction can be used to exam-
ine re-optimization/reconfiguration and restoration options
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Fig. 2. ORCHESTRA’s automated observe–decide–act control cycle. Coherent receivers operate as software optical performance monitors
(soft-OPM), ORCHESTRA’s hierarchical monitoring architecture carries this information, and the DEPLOY engine decides how to act and
(re-)optimize the network.

and schedule a manual intervention (e.g., provision a regen-
erator) in case re-optimization cannot resolve the problem.
Shorter-term prediction can be used for proactive restoration,
thus improving the restoration efficiency.

3. ORCHESTRA SOLUTION

The vision of the European project ORCHESTRA was to close
and automate the observe–decide–act control loop (Fig. 2),
enabling higher network efficiency and dynamicity. The loop
starts at the optical coherent transponders that are used as
soft-OPMs. State-of-the-art impairment-monitoring DSP
algorithms were integrated into a soft-OPM suite and inter-
faced with the ORCHESTRA monitoring and control plane.
ORCHESTRA’s hierarchical monitoring infrastructure could
program the soft-OPM and select the monitored parameters,
the monitoring algorithm, the period, etc., and also efficiently
transfer and analyze/correlate data from multiple soft-OPMs.
Custom-developed monitoring agents formed a hierarchy
rooted at the central controller. The application-based network
operations (ABNO) framework [43] was used as the reference
central controller, playing the role of the global coordination
entity, and also bridging the monitoring and control func-
tionalities. Depending on the use case at hand, certain control
actions were examined initially at a local level, i.e., at the moni-
toring agent of the connection. Then, if the problem could not
be resolved, control actions were examined gradually at higher
levels of the hierarchy for multiple and an increasing number
of connections. The target was to increase scalability by keep-
ing the complexity, intervention, and centralized processing
low. The hierarchical monitoring and control architecture is
described in more detail in Section 6.

Every transponder in the network can potentially serve
as a soft-OPM. But we can do even more: a soft-OPM at a
Rx provides aggregate measures over a multilink path. The
ORCHESTRA optimization engine analyzes/correlates infor-
mation from multiple soft-OPMs and other optical monitors
(e.g., power monitors at optical amplifiers and switches),
opening up a multitude of capabilities, such as accurate QoT
estimation under actual network conditions (Section 4), detec-
tion, and anticipation and recovery from failures. This in turn
is used to cross-optimize the network and physical layers. The
advent of EONs vastly increased the optimization dimensions,
while introducing new types of problems. ORCHESTRA
relies on the feedback from soft-OPMs to feed cross-layer opti-
mization algorithms for offline planning and also dynamic use
cases. Lightpaths are provisioned and operated with optimum
network parameters (routes, spectrum, modulation format,
FEC, power, etc.), regulating their margins according to the
related SLAs.

In particular, we developed multiperiod planning algorithms
that exploit all of the optimization dimensions available in
EONs (Section 5). These algorithms account for the actual
physical network state, learned through the feedback and the
QoT estimator, to provision lightpaths with reduced/just-
in-time margins that are adjusted at intermediate periods
to ensure their resilience level. Margins can be reduced even
further, increasing the network’s efficiency with a trade-off in
reliability. To this end, we also developed dynamic algorithms
that utilize the closed control loop and operate connections
close to their minimum acceptable performance thresholds,
regulating their margins and maintaining high efficiency,
continuously, over an infinite time horizon (Section 7).
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model (PLM) used by an algorithm to establish or reconfigure
lightpaths, inputs, and the design and system margins.

4. ACCURATE QoT ESTIMATION

As discussed, an accurate QoT estimator is key for (i) reduc-
ing the margins during planning/upgrades and (ii) realizing
more dynamic operation of the network. Figure 3 shows how
a QoT estimation tool (or Qtool) is used by an optimization
(planning or dynamic) algorithm. The Qtool is typically a
physical layer model (PLM), an analytical or semi-analytical
model of the physical layer based on certain assumptions
that estimates the QoT of new or reconfigured connections
with a certain accuracy (e.g., SNR, BER). The Qtool takes as
input the parameters of the established connections (in the
case of an operating network), and also certain physical-layer
parameters, such as spans, fibers, amplifiers, and node param-
eters. The values of the physical-layer input parameters are
not accurately known due to a lack of measuring equipment,
or to their limited accuracy, outdated measurements, etc. To
cover the model and input parameter inaccuracies, the design
margin is used (2 dB in the SNR, as in Refs. [2,3]). Moreover,
traditional network design is typically performed such that new
connections will have an acceptable QoT at EoL, e.g., after
10 years. Modeling equipment aging, increasing interference,
reparations of fiber cuts, etc., contributes to the system margin
(3 dB in the SNR as a reference).

In ORCHESTRA we use feedback from the physical layer
and ML to improve the accuracy of QoT estimation and
reduce the design and system margins (Fig. 4) [13,14]. By
understanding the actual network conditions, we improve
the accuracy of the parameters used as input in the estimation
and thus reduce the design margin. Moreover, this operation
is repeatable, so we can target shorter time scales, i.e., on the
order of a few years.

In the following we discuss two QoT estimators we devel-
oped that complement each other (see Section 4.C). The
first is used in network upgrading, where we establish new
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Fig. 4. Machine learning physical layer model (ML-PLM) for
reducing the margins.

connections, while the second is used in operation, where we
dynamically reconfigure established connections.

A. Offline QoT Estimator for Network Planning

We assume that we obtain monitoring information from the
coherent Rxs deployed in the network. In particular, we denote
by Q∗(P ) the vector that contains the SNR values of all estab-
lished paths p ∈ P . The mapping Q∗(P ) is nonlinear and
unknown to us. For any set of established lightpaths P , we
denote by Y (P ) the vector of their monitored SNR values.
The monitoring error consists of a systematic and a random
error. The systematic error can be reduced through proper
calibration, while the random error can be reduced by averag-
ing over time (on a shorter time scale than a natural change of
the monitored value would occur). As monitoring errors are
small and can be reduced, we ignore them here for simplicity.
Therefore, we will assume we monitor the true QoT for the
lightpaths (Y (P )= Q∗(P )).

We consider the case where a new lightpath w /∈ P is about
to be established, and we want to estimate (i) the QoT of that
new lightpath w and (ii) the effect of establishing w on the
QoT of the existing lightpaths p ∈ P . QoT estimation, our
goal is to identify a parametric function Q̃ (b, P ) that accu-
rately approximates the actual QoT function Q∗(P ). Here b is
a set of parameters of the model. The function Q̃ (b, P ) does
not have to be a closed-form expression; it can be the output of
a computation program or a simulation. What is important is
that (i) Q̃ (b, P ) approximates Q∗(P ) well, and (ii) given the
vector b, it is computationally easy to obtain Q̃ (b, P ).

We consider a PLM as the approximating architecture. In
this case, Q̃ (b, P ) takes as input b the PLM input parameters,
which can include the length, fiber attenuation, dispersion
and nonlinear coefficients per span, the noise figure of each
erbium-doped fiber amplifier (EDFA), its gain, etc. In our
studies, we used the Gaussian noise (GN) model [15] as the
PLM, and in particular in our implemented GN model, we
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account for the “actual” cross-channel NLI. To be more spe-
cific, we calculate the noise power of the NLI (both self and
cross-channel) for each span, for the actual channel spectrum
position, using Eqs. (128) and (129) of [15]. Then, assuming
incoherent noise accumulation and using Eq. (127) of [15],
we accumulate the NLI noise power over a link and over the
whole path. Although we used the GN model, our ML method
is generic and applicable to other PLMs.

The objective of the ML-PLM is to use monitoring infor-
mation from the established lightpaths Y (P ) to train and
learn the physical-layer input parameters and thus improve
the accuracy of future lightpath QoT estimations. The model
also uses the set of lightpath parameters that are included in
the network state P , which can be the route, central frequency,
symbol rate, modulation format, launch power, etc. The
parameters in P are assumed to be known perfectly, as opposed
to the parameters in b. Regarding the learning algorithm, if
we have closed forms for the partial derivatives ∂ Q̃/∂b j for
all the physical-layer parameters b j of b, we could use the
gradient descent method to obtain better b estimates, as is
done in [13]. Here we assume a generic case where Q̃ (b, P ) is
unknown. Assuming that QoT depends nonlinearly on some
input parameter, we can use a nonlinear fitting method, such as
the Levenberg–Marquardt algorithm. If we start far away from
the optimum, the method might get stuck in a local minimum,
so we can repeat from different starting points.

We start with some default initial physical-layer parameter
vector b0 for each span (e.g., fiber attenuation coefficient,
EDFA noise). In each iteration i we obtain the updated param-
eters bi that minimize the distance, defined as some function
of the error Q (P )− Q̃

(
bi , P

)
[e.g., the mean squared error

(MSE)]. The iterations stop and we obtain the final b∗ values
when certain criteria are met, e.g., the error function reaches
a predefined threshold or a certain number of iterations are
executed. Figure 4 shows a schematic of the ML-PLM. When
we want to establish new lightpaths, we have a new set P ′, and
we estimate Q̃(b∗, P ′). This estimation is done with more
accurate parameters b∗, which, as discussed above, improves
the estimation accuracy and reduces the design margin.

In the following we present an evaluation of the accuracy of
the ML-assisted QoT estimator, ML-PLM, described above
through simulations. We considered the Deutsche Telekom
(DT) topology with 12 nodes and 40 bidirectional links. We
assumed four traffic loads of 100, 200, 300, and 400 total
connections with uniformly chosen source/destination pairs
and random symbol rates from the set {32, 43, 56} Gbaud.
Regarding the physical layer, we assumed a span length of
80 km, an EDFA noise figure of 5 dB, and standard single-
mode fiber (SSMF) with a mean attenuation coefficient of
0.23 dB/km, a mean dispersion coefficient of 16.7 ps/nm/km,
and a mean nonlinear coefficient of 1.3 (W km)−1. We set the
launch power at 0 dBm. The actual (unknown) values of the
fiber coefficients for each span were drawn from uniform distri-
butions ranging by 0%, 10%, or 20% around the above means.
The GN model, which accounts for the actual cross-channel
interference, was used as the ground truth with these values.
For the ML-PLM estimator, the b vector consisted of the atten-
uation, dispersion, and nonlinear coefficients, initiated with

Fig. 5. Accuracy performance of the offline QoT estimator. MSE
and saved design margin for 0%, 10%, and 20% uncertainty as a
function of the number of connections (lightpaths) established in the
network.

their mean values. Thus, the case with a 0% range implies that
the ML-PLM estimator has perfect knowledge of the physical-
layer parameters. The maximum error made by the ML-PLM
before being trained (so using the mean values) was 0 dB, 1 dB,
and 1.9 dB for 0%, 10%, and 20% uncertainty, respectively.
The training of ML-PLM was done with nonlinear regression,
and in particular the Levenberg–Marquardt algorithm.

For each traffic load and uncertainty setting, we executed
500 iterations. For each instance we used 85% of the light-
paths for training and 15% for testing. We did not use cross
validation, since it was not deemed necessary to compare and
select the ML model or some parameter of the model. We
excluded from the testing sets the lightpaths that include links
for which we have no QoT information. The training goal was
to minimize the MSE, but the max overestimation is also a very
useful metric because it defines the design margin. This has to
be used to be on the safe side, so that we never overestimate the
QoT and establish a lightpath with an unacceptable QoT.

In Fig. 5 we see that ML-PLM achieves a very good MSE. As
expected, ML-PLM is affected by the uncertainties. At perfect
knowledge (0%), the fitting algorithm starts from the correct
values and immediately stops with zero error estimations. As
uncertainties increase, the ML-PLM yields a higher MSE and
max overestimation error for a specific load/number of estab-
lished and monitored lightpaths. Viewed differently, it requires
a higher number of monitored lightpaths to obtain the same
level of accuracy. The ML-PLM’s max overestimation was on
the order of 0.1 dB for more than 200 lightpaths (not shown
in the graph). The training time was on the order of minutes
for the ML-PLM/nonlinear regression. Once the model is
trained, estimations are quite fast (<0.1 s). Detailed results are
presented in [14].

B. Online QoT Estimator for Network Operation

We now focus on a specific established connection (or light-
path). To determine whether a lightpath reconfiguration is
feasible, the typical method consists of estimating its pre-FEC
BER and comparing it to the associated FEC limit. This is
typically done with the PLM, which, as discussed, takes various
inputs (e.g., amplifier noise factor, fiber nonlinearity, channel
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power), which are independent of the Rx. So the PLM calcu-
lates the generalized optical signal-to-noise ratio (gOSNR) [15]
before the Rx, where the gOSNR is an extension of the OSNR
that includes, in addition to amplifier noise, all other optical
noise [e.g., from the Kerr effect (nonlinearities) and linear cross
talk]. Then a typical assumption is a linear function to translate
the gOSNR to SNR and closed-form formulas to move from
the SNR to BER.

Instead of relying on a PLM to estimate the gOSNR of an
established connection, we estimate it live using monitored
parameters. The accuracy of the gOSNR estimation is there-
fore independent from the knowledge of the PLM model
inputs. In this way we consider a more generic function for
the transformation of the gOSNR to BER that can capture
the particularities of the transponder at hand such as Tx/Rx
imperfections, nonideal performance of DSP for different
modulation formats, and some advanced impairments that are
typically covered by margins, e.g., filtering effects.

To formulate this, assume an established connection p ,
where p represents the state (specific modulation format, sym-
bol rate, routed over a path that crosses a set of nodes/filters),
and monitored parameters Y (p) (BER and others such as
the 10 dB signal bandwidth) that we want to reconfigure. In
this process we want to estimate the BER at another state p ′,
which includes one or more adaptations such as a change in
its modulation format or an increase in the bandwidth of the
filters (to reduce filtering and interference effects). To do so, we
use a function f ,

gOSNR= f (Y (p), p),

that considers the current state p and monitored values
Y (p) and estimates the current gOSNR. Then we apply the
inverse function f 1 (gOSNR, p ′) to estimate BER′ at state p ′.
Function f can be learned with ML by fitting data captured in
transponder calibration in back-to-back and basic filter con-
figurations, to cover estimates for various modulations formats,
symbol rates, and filter configurations.

Figure 6 shows the fitted BER–gOSNR curves for three
modulation formats supported by the ORCHESTRA proto-
type transponder. Figure 6 also shows an example of moving
from a monitored BER in PM-QPSK to an estimated BER′

in PM-8QAM and 16QAM. For this fitting we used only the
monitored BER as Y (p). We also extended the model to cap-
ture filtering penalties on symbol rate and allocated spectrum
(filter bandwidth) reconfigurations. For that fitting we used
the monitored BER and the 10 dB bandwidth provided by the
coherent Rx. Further details are presented in [8].

C. QoT Model Synergy

The online QoT estimator described in Section 4.B comple-
ments the offline QoT estimator described in Section 4.A.
The offline estimator correlates information about established
connections to determine the actual network conditions and
improve the accuracy of gOSNR/SNR estimation for new con-
nections. It is agnostic to the specifications of the transponder
to be used and considers the filtering effect and other impair-
ments with a certain accuracy. Thus it reduces the margins
compared to previous approaches but still allocates some to

Fig. 6. Fitted BER–gOSNR for three supported modulation for-
mats of the ORCHESTRA prototype transponder.

capture such inaccuracies. The online estimator targets the
reconfiguration of an established connection that uses a specific
transponder, or that crosses specific filters, etc. Therefore, that
model works on top of the gOSNR and captures the particular-
ities that are left out of the offline model, further reducing the
already reduced margins.

5. PLANNING WITH REDUCED MARGINS

If the network is planned with high margins, which is the tradi-
tional approach, the QoT estimator uses a high design margin
and EoL system margin. Thus, the efficiency is low and more
transponders/regenerators are placed, but lightpaths are certain
to be uninterrupted, and to have an acceptable QoT, until EoL.
Instead, if we leverage an accurate QoT estimator, we can use
an appropriate algorithm to plan the network with reduced
margins. In the first period, we will serve the new demands
with a high design margin (no feedback/no established con-
nections to monitor, train, and refine the QoT estimator)
and with a reduced system margin to reach the next upgrade
period (several months to a few years, but sooner than EoL).
At an intermediate period, we train the QoT estimator, and
we reduce the design margin. Therefore, when planning for
the next period, the incremental planning algorithm performs
two tasks: (i) it checks the remaining margins of previously
established connections and reconfigures/adds transponders or
regenerators to restore those that have run out of margin (will
have unacceptable QoT performance), and (ii) it serves the new
demands by placing transponders/regenerators. In both cases
it chooses the configuration of the transponders/regenerators,
and decides the routes and the spectrum allocation, by inter-
acting with the QoT estimator to check the physical-layer
performance. An algorithm for planning the network over
multiple periods with reduced margins is presented in [7].

To quantify the benefits of the ORCHESTRA approach,
the accurate offline QoT estimator developed (Section 4.A),
and the incremental planning algorithm with low margins, we
dimensioned a network over multiple periods and calculated
the CAPEX at each period. We compare that with planning
with EoL margins.

The network topology was the 12-node DT topology,
as above. We planned the network over 11 periods (the
initial/greenfield and 10 incremental/brownfield periods);
a period would roughly correspond to a year. The initial traffic
(period τ0) consisted of 200 connections with a uniformly
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chosen source–destination and uniformly demanded traffic
between 100 and 200 Gbits/s. Thus, the initial traffic was
∼30 Tbps, which was increased by 20% each period by creat-
ing new demands in the same way. We assumed two types of
elastic transponders (ETs): (i) 32 Gbaud, modulating with DP-
QPSK, DP-8QAM, or DP-16QAM and supporting a capacity
of 100, 150, or 200 Gbits/s, respectively, and (ii) 64 Gbaud,
modulating from DP-QPSK to DP-32QAM and supporting
a capacity of 200 to 500 Gbits/s, respectively. The first ET
of 32 Gbaud was assumed to be available at the initial period
τ0 with a price of 1 cost unit (CU), and the second ET of
64 Gbaud was assumed to be available at period τ5 with a price
again of 1 CU (at that period). Prices were assumed to fall by
10% per period (so when the second ET is introduced, the first
ET costs 0.59 CU).

We again used the GN model to model the physical layer.
For the first period τ0 we initialized the model with hetero-
geneous span parameters, similar to those in Section 4. The
actual (unknown) values of the fiber coefficients for each
span were drawn from uniform distributions ranging by 10%
around the aforementioned means. We studied 10 problem
instances with different initial traffic and span parameters
and averaged the results. To model the aging of the network,
we considered the following: increase of fiber attenuation
(e.g., due to cuts) and aging of ETs, EDFAs, and nodes [optical
cross-connects (OXCs)]. The interference was modeled accord-
ing to the network load. Table 1 shows the increase in the
parameters’ values per period. Note that the increase was uni-
form for all spans, but since we started from a heterogeneous
network model, the network remained heterogeneous for all
subsequent periods.

When planning the network with EoL margins, the Qtool
uses a system margin based on the parameters of Table 1,
assuming 10 periods and a full network load (each link having
60× 32 Gbaud connections), which in total is about 3 dB.
The design margin was set to 2 dB (1 dB for model inaccuracy
and 1 dB for input parameter inaccuracy). When planning
the network with reduced margins, the system aging margin
was based on the parameters in Table 1, assuming two periods
(∼0.6 dB) and also actual interference (increasing from ∼0.5
to 1.5 dB according to load). Then we assumed that at each
period we monitor the network before the upgrade and obtain
the SNR values of the established connections (the monitored
values were calculated by the GN model, with the random cre-
ated initial parameters and aging according to Table 1, which
was unknown to the QoT estimator). We used the monitored
SNR values to train the ML estimator. The design margin
was set equal to 1 dB for the model inaccuracy, plus 0.2 dB

Table 1. Parameters to Model the Network Aging

Fig. 7. Total cost (in cost units) and savings of deployed elastic
transponders (ETs) per period when planning with accurate QoT
estimation/reduced margins and with high margins.

(the max overestimation after the extensive simulations in the
previous section), plus the max training error. Note that the
choice of the system margin for two periods and the design
margin greater than 1.2 dB are conservative. In total we harvest
∼3 dB compared to planning with EoL margins over all peri-
ods (noting that interference increases but the design margin
falls as the load increases).

Figure 7 presents the total cost of the deployed ETs per
period for the two provisioning approaches. As expected,
reducing the margins yields lower costs. Reducing the sys-
tem margins postpones the purchase of ETs, and we obtain
savings from the 10% depreciation. Reducing the design mar-
gin avoids the purchase of equipment. Figure 7 also presents
the relative savings, found to be about 20% at the end of the
examined periods. Note that the savings would flatten or even
decrease at later periods if we assumed a single type of ET for
all periods. Also note that in all simulations (10 instances× 11
periods), we never observed a QoT problem; all lightpaths had
an adequate QoT to reach the next period. The closest we came
to QoT blocking was at period τ5, where the new ET (and
thus a new symbol rate) was introduced, and some parameters
were not learned accurately enough, having only the first ET
(32 Gbaud) in the network. A factor not included above is the
time value of money; money saved at intermediate periods can
be invested (or loans can be avoided), resulting in extra savings.
Additional savings can be obtained by power optimization [7].

6. ORCHESTRA MONITORING AND CONTROL
PLANE: DESIGN AND PROTOTYPE

The ORCHESTRA project designed and implemented a con-
trol and management plane reflecting the main functionalities
summarized by the Internet Engineering Task Force (IETF)
ABNO architecture [43]. It included optical connection
provisioning, path computation exploiting databases storing
traffic engineering (TE-DB) and circuit information [label
switched path (LSP-DB)], and operation administration and
maintenance (OAM) procedures. OAM is one of the core
functionalities of ORCHESTRA, since it involves the recep-
tion of monitoring information, the reception of alarms, their
correlation, and the triggering of actions to preserve the service.
According to ABNO, an entity named OAM Handler is in
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Fig. 8. ORCHESTRA’s hierarchical management plane for the
exchange and processing of monitoring information.

charge of OAM functionalities. To overcome scalability issues
in the management of monitoring information and alarms, as
discussed in Section 2, ORCHESTRA proposed a hierarchical
architecture for the management plane [30], as shown in Fig. 8.
In this architecture, the OAM Handler functionalities are
spread among monitoring entities in the hierarchy that are
assigned limited responsibilities.

Each Level 0 entity is responsible for a single lightpath. It
can be programmed (i) to send monitoring information on
demand and (ii) to create and send an alarm when a speci-
fied threshold is exceeded (e.g., a BER above threshold).
Monitoring data and alarms are sent to a specific Level 1 entity.
A Level 0 entity can also make local decisions (e.g., a change
in FEC) to recover from failures that do not affect other enti-
ties. Then, each Level 1 entity has the visibility of a group of
Level 0 entities/lightpaths (we assumed grouping per ingress
node). It processes, correlates monitoring data and alarms
from those lightpaths, and takes appropriate actions; forwards
messages to a specific Level 2 entity; or reconfigures one or
more lightpaths for which it is responsible, without affecting
lightpaths not belonging to its responsibility set. Higher levels
have similar functionalities for larger sets of lightpaths. This
type of approach has been demonstrated to increase the scal-
ability of network management [30] and reduce the delay in
recovery [41]. Finally, the OAM Handler at the root of the
hierarchy is responsible for the whole network and can take
actions if lower levels are not able to recover from a failure or
re-optimize the network accordingly. The hierarchical archi-
tecture can be expanded to account for node and link monitors
(e.g., power monitors), which would follow the same concept
of limiting responsibilities [30]. In the following we focus on
end-to-end/lightpath monitors.

Network (re-)configuration and monitoring information
dissemination in the hierarchical architecture is performed
with the NETCONF protocol. Within the ORCHESTRA
project, several YANG models for NETCONF were pro-
posed to control and manage network devices. One of the
most relevant devices is the flexible/ET, whose implemented
YANG model is shown in Fig. 9. The parameters that can

Fig. 9. Transponder YANG model: (a) configuration parameters,
(b) monitoring parameters.

be configured such as the rate, modulation format, central
frequency, and output power are shown in Fig. 9(a). Monitored
parameters associated with the coherent Rx and physical-layer
performance, such as pre-FEC BER, polarization mode dis-
persion (PMD), and chromatic dispersion (CD), are shown in
Fig. 9(b).

Regarding NETCONF, we implemented the following
messages: <edit-config> to (re-)configure devices such as the
transponder, <get> to request on-demand monitoring infor-
mation (e.g., to Level 0 entities), <rpc-reply> to respond with
the monitored parameters’ values, <subscription> to enable
an entity (e.g., at Level 1) in the hierarchical architecture to
be notified when a problem occurs on a lightpath under its
responsibility, and <notification> to implement the alarm
based on the aforementioned subscription. Note that periodic
monitoring can be programmed on top of these messages,
at the OAM Handler level. So the OAM Handler could be
programmed to periodically poll specific elements for specific
parameters with appropriate <get> messages.

An integrated prototype of ORCHESTRA monitoring and
control plane was developed and experimentally validated
in lab experiments and in a field trial to be discussed in the
following section. This prototype includes an ABNO con-
troller extended to support ORCHESTRA use cases, a custom
hierarchical monitoring architecture and the OAM Handler
implementation (as discussed above), extended databases to
store physical-layer monitoring information (PL-DB), the
DEPLOY module acting as the path computation element
(PCE) and QoT estimator, and a provisioning manager to
enforce control actions through a software-defined networking
(SDN) controller [in particular, OpenDaylight (ODL)].

The monitoring plane is implemented in software as an
N-level infrastructure, composed of a minimum of N = 3
levels: Level 0 maps to lightpaths/end-to-end soft-OPM
monitors, Level 1 maps to ingress nodes (grouping all Level
1 monitors of the lightpaths starting at that node), Levels
2 to N − 1 map to a specific group of nodes (e.g., network
geographical regions, and ultimately a network domain),
and Level N maps to the OAM Handler, as the root of the
hierarchy. Monitor Level 0 interfaces with the Rx DSP as the
lowest management point in the hierarchy. It can provide
monitoring information on demand and also be configured to
generate alarms when a DSP-monitored parameter violates a
threshold (e.g., an excessive BER). Monitors from Level 1 to
Level N − 1 follow a generic architecture composed of (i) a
NETCONF client to interact with lower monitoring entities,
(ii) a correlation engine to process received alarms and produce
(if possible) a cumulative notification for higher entities, and
(iii) a NETCONF server that sends notifications to higher



C20 Vol. 11, No. 9 / September 2019 / Journal of Optical Communications and Networking Research Article

Fig. 10. ORCHESTRA ABNO prototype and external control
and monitoring entities.

entities. The OAM Handler was interfaced with the hierar-
chical infrastructure and plays the role of its root. It opens
the NETCONF sessions toward lower monitoring entities,
subscribes to streams, processes and correlates notifications,
and forwards aggregated notifications to the ABNO controller.

Through ABNO’s northbound representational state trans-
fer application program interfaces (REST APIs), the network
operator can set up, tear down, and reconfigure lightpaths.
Such requests are translated into NETCONF messages to
configure (i) the transponders and the switches to set up the
lightpath and (ii) the monitoring entities to create/adjust the
hierarchical monitoring infrastructure. Failure handling use
cases are triggered through alarms, which are properly aggre-
gated and escalated to the OAM Handler (when needed) and
then managed by related ABNO controller workflows to apply
control reactions as instructed by the DEPLOY tool. Thus,
the ORCHESTRA observe–decide–act control loop achieves
automated recovery from various failure scenarios, yielding a
network with self-healing capabilities. Figure 10 presents the
schematic of the ABNO prototype that was used in the lab and
field experiments.

An innovative control method proposed in the framework
of ORCHESTRA is preprogramming [41]. Such a method
can work both in a hierarchical and a classical management

plane architecture. Preprogramming was proposed to further
increase the scalable management of monitoring informa-
tion and alarms. According to this scheme, transponders are
instructed/programmed to autonomously select the proper
transmission parameters such as the modulation format, sym-
bol rate, and FEC depending on the monitored parameters’
values. This way, there is no need to send an alarm to the cen-
tral controller and wait for computation because devices have
been programmed to react. Such an approach was demon-
strated in [41] to increase alarm scalability management and to
speed up lightpath recovery. In the next section we also present
a demonstration of this approach.

7. DYNAMIC CONFIGURATION EXPERIMENTS

The ORCHESTRA dynamic network operation was demon-
strated in lab experiments and also in a field trial on Telecom
Italia (TIM) premises in Torino. The cable used in the field
trial is deployed between the Torino (Stampalia) and Chivasso
network exchanges and is composed of eight 76-km-long
G.652 fiber spans (Fig. 11). We used five spans to create two
links of three and two spans, denoted as l1 (228 km) and l2
(152 km), respectively. Two lab-hosted ROADMs switched
traffic from l1 to l2. The Tx supported QPSK, 8QAM, and
16QAM modulation formats and 28 and 32 Gbaud baud
rates to achieve net capacities of 100, 150, and 200 Gbits/s
with 12% [low-FEC (LF)] or 28% [high-FEC (HF)] coding
rates. The Rx consisted of a 40 Gsample/s oscilloscope and
offline DSP processing to handle both signal demodulation
and monitoring of multiple transmission parameters.

The Rx DSP was interfaced with the ORCHESTRA Level
0 monitoring agent to report the monitored values and raise
alarms. The various aging scenarios were emulated through a
combination of a tunable optical filter (TOF) and a variable
optical attenuator (VOA). The Level 0 agent was connected
to a three-level hierarchical infrastructure (rudimentary in this
experiment, since only one lightpath was used) and the OAM
Handler. The ABNO controller included the OAM Handler,
the databases, the DEPLOY tool as an online QoT estimator
and PCE, and the ODL controller as the provisioning manager
(see Section 6 and Fig. 10).

Fig. 11. Field trial setup at the TIM premises in the Turin region, Italy.
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Fig. 12. Automatic rate adaptation in the presence of emu-
lated fiber/amplifier aging: (a) learning of short-term performance
fluctuations and (b) evolution over a longer time.

A. Rate Adaptation under Fiber/Amplifier Aging

As the first use case, we considered the rate adaptation of a
connection. This could correspond to a best-effort connec-
tion that operates close to its FEC limit and can reduce its
net rate as time evolves, or a connection with a mix of high-
and low-priority traffic that guarantees 100 Gbits/s and can
make use of a higher rate for best-effort traffic if available.
Fiber/amplifier aging is emulated by increasing the optical
attenuation using the VOA (Fig. 11). As a consequence, the
OSNR falls, where on top of the aging, long-term-trend and
short-term-performance fluctuations naturally occur in the
field.

Prior to the rate adaptation experiment, we measured nine
points of BER and OSNR back-to-back for each modulation
format (Fig. 6). This was done to train the online QoT esti-
mator residing in DEPLOY to convert BER into gOSNR and
also do the opposite, as described in Section 4.B. Thanks to
these BER–gOSNR conversions, we could define appropriate
thresholds for reconfiguring the modulations formats.

At its beginning of life (BoL), the lightpath operated at
100G-QPSK, indicated by state “(1)” in Fig. 12(a). During a
short period, i.e., a few days or weeks of operation (minutes
in the lab), DEPLOY learned the BER average µ and stand-
ard deviation σ in state (1) [Fig. 12(a)]. Based on those and
the soft FEC threshold THSF = 0.02, DEPLOY calculated
the threshold THdown =THSF − k · σ to reconfigure from
8QAM to QPSK, where σ is the learned standard devia-
tion and k = 4. It also calculated the threshold ThUP = f −1

( f (THSF, pQPSK), p8QAM)+ k · σ , to reconfigure from
QPSK to 8QAM, where f −1( f (ThSF, pQPSK), p8QAM)makes
use of the fitted modulation curves f discussed in Section 4.B.
The reason for using k is to avoid a ping-pong effect; the QoT
performance experiences certain natural short-term fluctu-
ations, which could make the connection fluctuate between
the two modulations formats. To avoid this, we introduced
a hysteresis: we increased/decreased the thresholds accord-
ingly to cover some performance variations. In this context,
parameter k balances the modulation format stability and the
minimal margin operation. The calculated thresholds were
THUP = 5.8 · 10−5 to switch from QPSK to 8QAM and
THdown = 0.01998 for the opposite. Based on the observation
of BER= 2.5 · 10−5 and the related thresholds, the lightpath
was reconfigured to 150G-8QAM, state “(2)” in Fig. 12(b),

Fig. 13. FSM for automatic rate adaptation: (a) schematic and
(b) configuration message snippet.

and reached a BER of 1.3 · 10−2 [cf. Fig. 12(b)], within 0.5 dB
of the assumed design margin.

Then the BER increased progressively due to emulated
aging. Once the BER crossed the related threshold in state
“(3)” of Fig. 12(b), we switched back to 100G-QPSK, corre-
sponding to state “(4)” in Fig. 12(b). At state (4), the hysteresis
scheme prevented the system from reverting back to state
(3), despite natural BER fluctuations that might temporarily
validate such a reconfiguration. The connection remained in
QPSK until the network’s EoL.

If we look at the control plane side, the above experiment
was performed with the use of preprogramming. Initially, the
lightpath was established with a northbound interface (NBI)
call to the ABNO controller. Then through the NBI we pre-
programmed the automatic rate adaptation of the lightpath.
The ABNO controller obtained a certain number of monitored
values to calculate the mean and standard deviation. Then it
calculated the thresholds ThUP and THdown, created the finite-
state machine (FSM) for the dynamic rate adaptation, and
installed that to the Rx agent. The Rx agent monitored the
BER, compared it to the current state’s threshold, and auto-
matically switched to the next state when the condition was
satisfied. The central controller (ABNO) was informed about
the modulation format adaptations but did not participate in
those decisions/actions. A schematic of the FSM is shown in
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Fig. 14. Connection’s BER and BW as a function of time, under
increasing filter penalty and reconfiguration.

Fig. 13(a), and the snippet of a configuration message is shown
in Fig. 13(b).

B. Rate Maintenance under ROADM Aging

In this second use case, we considered a gold-class 100G-
QPSK connection that needs to maintain its net capacity.
This can be achieved through FEC (hence the symbol rate)
and/or slot/bandwidth size adaptation. Here we considered the
increased penalty due to the progressive detuning of crossed
filters (in the ROADMs) and the Tx laser frequency over the
years. In this context, we exploited the capacity of the online
QoT estimator (DEPLOY) to accurately predict the BER
based on monitored bandwidth (BW) and BER, as outlined in
Section 4.B and [12].

We emulated 10 cascaded filters and their aging through
progressive reduction of the bandwidth of a TOF (Fig. 11). At
BoL, the gold-class 100G-QPSK connection was established
with high soft FEC (HF= 28%) and three flex-grid slots,
that is, 37.5 GHz (Fig. 14). When, because of filter aging, the
HF BER threshold was reached, the online QoT estimator

Fig. 15. Top: Alarm (notification) for the soft failure. Middle: Soft
failure restoration computation request to DEPLOY and DEPLOY
response to increase the bandwidth of filters. Bottom: Configuration
message to the filter.

(DEPLOY) estimated the BER for the available combina-
tions of FEC and slot sizes (Fig. 14). DEPLOY then informed
ABNO to maintain the same high FEC and increase the slot
size to 50 GHz. This drastically reduced the filter penalty and
successfully recovered the performance with a 2 · 10−4 BER,
within 0.5 dB of the assumed design margin, as seen in Fig. 14.

This experiment was performed under centralized control.
The connection was initially established with an NBI call to
the ABNO controller, which also installed the threshold at
the Rx Level 0 agent. Then as the network aged, the Rx agent
monitored the BER. Once the BER exceeded the threshold,
an alarm was created at the Rx, propagated through the hier-
archical monitoring plane, and reached the OAM Handler
and the ABNO controller (Fig. 15, top). Then DEPLOY esti-
mated the BER for the reconfiguration options and decided to
keep the same FEC and increase the bandwidth of the filters
(Fig. 15, middle). This information was sent from the ABNO
provisioning manager to the ROADM filters (Fig. 15, bottom).

C. Filter: Central Frequency Correction

In the previous experiment, we considered a gold connec-
tion that suffered from an increasing filter penalty due to
the detuning of the Tx laser and the filters. The previous
approach showed a reactive solution to this problem through
reconfiguration. In the following we present an alternative
solution, that of automated Tx–filter alignment. In this exper-
iment we established a connection with a central frequency
of 193.6 THz. The central frequency of the tunable filter was
(de)tuned to +2 GHz to emulate the misalignment of the
Tx/Rx and the path filter cascade. Figure 16 shows the power
spectral density (PSD) before the central frequency alignment
process, where we can clearly observe a distortion in the right
edge of the signal.

Figure 17 shows the monitored parameters (SNR, BER,
and signal bandwidth) during the central frequency alignment
process. We followed a trial-and-error approach that involved
several steps to optimize/align the Tx frequency with the fil-
ter. Initially, we searched around the starting frequency (by
±1 GHz) to decide on the correct direction to move. Then
we chose the direction (+) given the better performance of
+1 GHz compared to −1 GHz (i.e., lower BER and higher
SNR). Then at each state we monitored and obtained the
average and standard deviation, and when we had enough

Fig. 16. Power spectral density before central frequency
optimization.
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Fig. 17. Monitored SNR, log(BER), and signal bandwidth during
the optimization procedure.

accuracy, we compared them to the values of the previous states
to decide on the next move. Until we reached 193.602 THz,
the performance improved. When we moved to 193.603 THz
(step 4), the central frequency was shifted beyond the optimum
and the performance was degraded (higher BER and lower
SNR). Thus, we made a step back and finalized the alignment
at a central frequency of 193.602 THz. In total our alignment
process improved the SNR by 0.5 dB. Note that a 2 GHz
misalignment of the Tx/Rx and filters is considered as a ref-
erence for the related effect. A sophisticated extension of this
automatic filter alignment process can be found in [12].

The three field trial experiments discussed above are also pre-
sented in videos at http://orchestraproject.eu.

8. CONCLUSION

Optical networks’ efficiency is directly connected to their
transmission margins. We can increase the efficiency with no
reliability deterioration by removing estimation uncertainties
and by reducing long-term margins and adjusting them at
intermediate periods. Further reduction of margins trades off
higher efficiency for resiliency and should be done according
to service classes. We presented the work carried out in the
ORCHESTRA EU project, which developed a closed control
loop that monitors, understands, predicts, and regulates the
margins. ORCHESTRA developed the automation mech-
anisms to move toward low-margin, efficient, and reliable
optical networks.
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