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Abstract— Measuring the optical signal to noise ratio (OSNR)
at certain network points is essential for failure handling, for
single connection but also global network optimization. Estimat-
ing OSNR is inherently difficult in dense wavelength routed
networks, where connections accumulate noise over different
paths and tight filters do not allow the observation of the
noise level at signal sides. We propose an in-band OSNR
estimation process, which relies on a machine learning (ML)
method, in particular on Gaussian process (GP) or support
vector machine (SVM) regression. We acquired high-resolution
optical spectra, through an experimental setup, using a Brillouin
optical spectrum analyzer (BOSA), on which we applied our
method and obtained excellent estimation accuracy. We also
verified the accuracy of this approach for various resolution
scenarios. To further validate it, we generated spectral data
for different configurations and resolutions through simulations.
This second validation confirmed the estimation quality of the
proposed approach.

Index Terms— Machine learning, optical performance
monitoring, optical signal to noise ratio, optical spectrum.

I. INTRODUCTION

THE optical signal to noise ratio (OSNR) is considered
one of the most important signal quality parameters to

measure. It is transparent to the bit rate and modulation
format and it can be easily correlated to the bit error rate
(BER) [1]. One of the most common method to measure
the OSNR employs optical spectrum analyzers (OSAs) [2].
By interpolating the noise level at the sides of the con-
sidered channel, the OSA allows the measurement of the
amplified spontaneous emission (ASE) noise introduced by
the optical amplifiers and other noise-sensed impairments.
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Such measurements are typically taken offline to optimize a
newly deployed connections or for troubleshooting failures.

Issues arise in wavelength switched optical networks
employing ultra-dense wavelength division multiplexing
(ultra-DWDM) or flex-grid filters [3]. In such networks,
the channels exhibit different noise levels, according to their
routes. Furthermore, a connection along its path crosses cer-
tain reconfigurable optical add/drop multiplexers (ROADMs),
which employ optical filters. The filters introduce a sharp
power drop between the channels, making the measurement
of the noise level challenging [4]. Figure 1 shows two acqui-
sition examples of filtered channels where it is apparently
difficult to identify the noise level. Another issue is the
filter cascade effect (FCE): after several filters the pass-band
tightens, distorting the signal and making even harder the
identification of the noise level [5]. Thus, measuring the
OSNR has to be done in-band [3]. Since the introduction
of coherent receivers polarization multiplexed (PM) channels
are mostly used, making polarization nulling techniques for
measuring OSNR unsuitable. A method is to establish the
connection, measure the signal and turn it off to measure
its noise. However, this cannot be done while the network is
operating. Failure handling and dynamic network optimization
in low margin and/or in disaggregated networks requires to
measure the OSNR in-band and non-intrusively, as the network
operates [6], [7].

Nowadays, very high-resolution optical spectrometry equip-
ment are available, as for example the Brillouin optical spec-
trum analyzer (BOSA) [8]. This device exploits the stimulated
Brillouin scattering (SBS), a non-linear optical effect that
causes a very narrow filtering [9], which allows the BOSA to
achieve spectral resolutions up to 0.1 pm (12.5 MHz). On the
other hand, the classic OSAs range in the order of 0.01 nm
(1.25 GHz) [10]. Authors in [11] proposed to use a high-
resolution spectrum analyzer for in-band OSNR monitoring.
However, such equipment is bulky and expensive, thus hard to
be used in deployed networks, in the wild. Much cheaper and
less accurate solutions, referred to as channel monitors [12],
have also recently become available, and could potentially
be used for in-band OSNR monitoring at ROADM nodes.
However, it is unclear which spectral resolution and what
processing method must be used to achieve good accuracy.

Machine learning (ML) has recently been adopted in several
scientific fields and is also becoming attractive in optical
communications. In [13], the authors considered four common
ML models, and in particular, support vector machine (SVM),
artificial neural network (ANN), k-nearest neighbors (KNN)
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Fig. 1. Optical spectra before (blue) and after (orange) the 50 GHz-bandwidth
filter captured at high-resolution (0.1 pm) in the experimental setup. The red
lines indicate the noise level floor.

Fig. 2. Schematic diagram of the experimental setup for the high-
resolution optical spectra acquisition. PM-IQ-MOD: polarization multiplexed-
IQ-modulator, DAC: digital-to-analog converter, VOA: variable optical
attenuator, BOSA: Brillouin optical spectrum analyzer.

and decision tree, and identified SVM as the most promising
approach for OSNR estimation. However in [13], most of the
spectral data were generated with a simulation tool and only
few with experiments. Moreover, they considered classification
with 1 dB accuracy, which is rather coarse, depending on the
use case at hand. Finally, they processed wide and not in-band
spectrum, which is not available in deployed filtered networks.

In this letter, we propose a method that, despite the afore-
mentioned challenges, estimates accurately the OSNR from
the in-band optical spectrum in short-distance scenarios. For
longer distance applications, the contribution of nonlinearities
should be also considered [14]. We used a BOSA to capture
high-resolution experimental spectral data, and in turn train
two ML regression methods for estimating in-band OSNR: a
Gaussian Process (GP) and an SVM model. Relying on high
resolution optical spectra theoretically allows the identification
of the channel noise level more precisely than a standard
OSA [6]. To evaluate the effect of the resolution on the
estimation accuracy, we applied the same methods with lower-
resolution spectral input. Finally, we carried out a further
validation of the proposed ML-based process using simulation-
generated optical spectra with different modulation formats
and various filter and noise scenarios. The proposed GP ML
method achieved a maximum error of 1.1 dB in all the experi-
mental scenarios, where OSNR ranged from 10 to 30 dB, and
a maximum error of 0.3 dB in all the simulated scenarios,
where OSNR ranged from 22 to 35 dB. Also, we did not
observe any deterioration of accuracy for resolutions up to
1.25 GHz.

II. EXPERIMENTAL SETUP AND SPECTRAL PROCESSING

Figure 2 depicts the experimental setup used to cap-
ture several high-resolution optical spectra. We generated a

28 GBd polarization multiplexed-quadrature phase shift keying
(PM-QPSK) modulated signal, with a tunable laser working at
1550.918 nm. No pulse shaping was used. We obtained back
to back (B2B) measurements and transmitted the signal over
4 different distance paths: 35 km, 50 km, 150 km and 200 km,
using the ADRENALINE testbed. At the output of the testbed,
we placed a variable optical attenuator (VOA) and then an
erbium-doped fiber amplifier (EDFA) operating at constant
power to emulate more spans and obtained 16 different OSNR
levels. Finally, we acquired the spectra using the BOSA. For
each scenario, we collected a total of 160 optical spectra,
specifically 10 for each VOA level (5 for each polarization
state). The optical signal passes through an optical filter when
entering and through another when exiting the ADRENALINE
testbed: the 35 km and 50 km scenarios had entry/exit optical
filters with 100 GHz-bandwidth, while the 150 km and 200 km
cases, had 100 GHz entry and 50 GHz-bandwidth exit filter.

We then processed the collected spectra. During this phase,
we applied a 50 GHz-bandwidth optical filter to the acquired
spectra. This was done so as to create a variety of possible
realistic network conditions, such as: laser drift and filter
tightening, by misaligning the filter with the laser and reducing
the size of the filter, respectively. Then after applying the
filter, we cut the spectra at the filter edges to replicate a
real DWDM spectrum, where each channel is bounded by its
adjacent, thus resulting in a narrow area for measuring the
OSNR. Figure 1 shows examples of high-resolution filtered
optical spectra together with their original pre-filtered versions.
As expected, the filter removes information at the sides of the
channel, making sometimes infeasible to identify the noise
actual level.

We represent the acquired optical spectrum with the vector
s of length n. The length n depends on the equipment spectral
resolution r (GHz) and on the network allocated bandwidth
b (GHz), which corresponds to the configuration of the filters
along the path, so that n = b/r . When measuring with the
BOSA at high-resolution (r = 12.5 MHz) and for a filter
bandwidth b = 50 GHz, the length n was equal to 4000.
To examine the accuracy of the proposed OSNR estimation
method, described in the next Section, in the case of an OSA
or a channel monitor, i.e. with a resolution of r = 1.25 GHz,
we post-processed the collected high-resolution spectra to cre-
ate low-resolution versions. To do so, we averaged the spectra
in the linear domain, reducing their length to n = 40. Theo-
retically, we expect a higher accuracy with higher-resolution.
We then associated each spectrum s to its reference OSNR
value y, which was calculated through the integral method on
the high-resolution spectra before the filter application. Spectra
with OSNR reference values lower than 8 dB were excluded
a priori from further processing, since in real systems such
low OSNR signals would not be kept in operation.

III. PROPOSED ML OSNR ESTIMATOR

Our goal is to find the mapping f between the connec-
tion’s spectrum s and its OSNR value y, that is y = f (s).
We denote with the matrix Sc, of dimensions n × m, the set
of m collected spectra of signals with the same parameters
c = (r, b, q), where r is the spectral resolution, b is the filtered
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bandwidth and q is the connection symbol rate. We also
denote by vector yc, of length m, their reference OSNR values.
To approximate the estimation function f , we implemented a
ML model Qc specific for channels with parameters c. Thus,
we trained Qc with the sets (Sc, yc) as input. Let ŷc = Qc(Sc)
be the estimated OSNR values and εc = ŷc− yc the estimation
error. The goal of training is to identify Qc so as to minimize
some function of the estimation error εc, for example the mean
squared error (MSE).

SVM and GP are two nonparametric ML techniques for
classification and regression, which rely on kernel functions.
We formulated the estimation as a regression problem and
we trained the SVM and GP models using the linear and the
squared exponential kernel functions, respectively.

As mentioned, for each path and VOA configuration in
the testbed, we collected a total of 10 spectra, 5 for each
polarization state. To improve the quality of the considered
spectral data, we first time-averaged the 5 spectra of each
polarization state, and added up the 2 resulting spectra. Indeed,
time averaging is a typical process to reduce the monitoring
errors and the randomness of Gaussian effects. Furthermore,
to reduce the effect of a laser drift, we identified the channel
central frequency of each spectrum (detecting the peak relative
to the carrier) and re-aligned it based on that.

The proposed ML-based estimation method requires for
training the reference OSNR values. We described above
how we obtained the reference OSNR values in the testbed.
In operating networks, assuming deployed channel monitors
at the nodes, we could measure the in-band OSNR of PM
signals with the On/Off method [3] during their provisioning,
before the channel operates. We can make use of the SNR
monitored at the DSP of the coherent receiver after making
certain assumptions and converting it to OSNR. We can also
perform experiments in the lab to complement the above. Once
the ML algorithm is trained with the spectra Sc and their
reference OSNR values yc, it estimates the OSNR ŷ of an
operating channel with the same parameters c, assumed to be
known by the control plane, from its spectrum s.

IV. RESULTS AND DISCUSSION

We evaluated the estimation performance of the proposed
ML method (Section III) using the high resolution spectra
acquired in the experimental setup (Section II). To be more
specific, all acquired spectra comprised the set Sc with para-
meters c = (r = 12.5 MHz, b = 50 GHz, q = 28 GBd). The
total number of spectra m was 198, and we used the ∼85%
(169) of these to train the algorithm, whereas the remaining
∼15% (29) for testing it. To evaluate the estimation accuracy,
we randomly shuffled the training and testing sets 200 times,
trained a different ML model each time and tested it with the
corresponding sets. In the first part of this section we report
the results of the best performing ML model, which was GP.

Figure 3 shows the reference and the estimated OSNR
values for the 50 km path distance scenario as a function
of the different VOA levels. We trained the GP ML model
with the high resolution spectra training set with all the
path distances (and B2B) and plot the spectra of the 50 km
signals from the testing set. Figure 4 shows the probability

Fig. 3. Reference and predicted OSNR values as function of the VOA levels
for the 50 km distance scenario.

Fig. 4. Probability density function of the OSNR estimation error of the GP
model and high-resolution spectra. The maximum error is highlighted in the
red circle.

density function (PDF) of the error made by the GP with
respect to the reference for the high-resolution optical spec-
tra. As highlighted in the figure inset, the mean squared
error (MSE) was 0.0070 dB and the maximum error (MAX)
was 1.1420 dB. The accuracy achieved with the low-resolution
spectra (which correspond to different parameters c and a
different trained model Qc), were identical to those of the
high-resolution case. Therefore, concerning the experimental
acquired optical spectra, no difference arose between the two
resolution versions. We did not observe any dependence of
the estimation error with respect to the reference OSNR in
the range between 10 dB to 30 dB of the experimentally
acquired data. It is worth noting that the reference OSNR and
the spectra used in the ML method were acquired with a state
of the art measuring equipment (BOSA) with a dynamic range
of > 80 dB.

For a further validation, we carried out several VPI-based
simulations and collected additional sets of optical spectra.
Figure 5 shows the VPI simulation setup. We created a
28 GBd PM-QPSK signal with roll-off factor α = 1, yielding
a 112 Gb/s connection. A second order Gaussian optical
filter was used to emulate the effect of passing through a
number of ROADMs. We considered 16 VOA levels and a
filter with 37.5 GHz bandwidth. In addition, we modified
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Fig. 5. Schematic diagram of the VPI simulation setup. TX: optical
transmitted signal, VOA: variable optical attenuator, EDFA: erbium-doped
fiber amplifier, OBP: optical bandpass filter, OSA: optical spectrum analyzer.

Fig. 6. Probability density function of the error committed by the GP
while predicting the OSNR using PM-16QAM as modulation format for the
high-resolution VPI simulated spectra.

TABLE I

SUMMARY RESULTS FOR THE SIMULATED OPTICAL SPECTRA

the filter central frequency and bandwidth to emulate two
realistic scenarios: filters shift/laser drift (± 1 GHz), and
FCE (reducing the 37.5 GHz filter to 25 GHz). We collected
the spectral data by an OSA-VPI module with 0.1 pm and
0.01 nm resolutions, and in total we acquired 96 optical
spectra for each resolution. Exploiting the same VPI setup,
we also generated a 224 Gb/s PM-16QAM signal with again
a 37.5 GHz filter configuration and collected 128 spectra
for each resolution scenario. In total we created four sets
of spectra according to the related parameters c: high and
low-resolution for PM-QPSK and PM-16QAM. As before, for
each set we used 85% of the spectra for training and the 15%
for testing. We shuffled the spectra of each set 200 times,
each time we trained, estimated, and obtained the errors.
Figure 6 shows the estimation error PDF with high-resolution
spectra and the PM-16QAM channel. We summarize all the
results for both the ML models in Table I. We observed a
maximum OSNR estimation error lower than 0.4 dB in all the
considered scenarios. Again, as in the experimental results,
minor deviations were observed when comparing the two
resolution versions of the spectra.

Future steps involve the deployment of a new experimental
setup that will include optical filters and a coherent OSA
(150 MHz resolution) and/or channel monitors to collect
the optical spectra. We will verify the performance of our
proposed method in such a more realistic setup. We would also
examine the generality of the created models and the depen-
dence on specific transmission parameters, e.g. train the ML
with spectra of a specific set of parameters (e.g. modualtion
format or roll-off factor), and test it with spectra of different
parameters.

V. CONCLUSION

We developed a machine learning-based in-band OSNR
estimator, relying on GP or SVM models. We evaluated its
estimation accuracy with experimental and simulation gener-
ated spectra. The results showed an excellent accuracy of the
proposed process, a maximum error of 1.1 dB in experimental
and 0.3 dB in simulated scenarios.
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