852 J. OPT. COMMUN. NETW./VOL. 10, NO. 11/NOVEMBER 2018

Siokis et al.

Layout Model for Optical Interconnects
Based on A-Routing Grids and
Topology Embeddings

Apostolos Siokis, Konstantinos Christodoulopoulos, and Emmanouel (Manos) Varvarigos

Abstract—Optical technology is being promoted as a
highly promising, energy-efficient interconnect solution
for next generation data centers and high performance
computing systems. To overcome the energy and band-
width limitations of electrical interconnects, all-optical
technologies will be deployed at even shorter distances
in the near future (board-to-board, on-board, and on-chip).
On-board layout models for electronic interconnects, in-
cluding the Thompson model [J. Comput. System Sci.,
vol. 28, no. 2, pp. 300, 1984], have long been proposed in
the literature and corresponding area-efficient layouts
have been found [Int. Conf. Parallel Processing, 2000] for
a number of popular topologies. However, optical on-board
interconnects have important differences from electrical
ones, requiring the introduction of appropriate layout mod-
els for them. In this work, we look into the differences be-
tween electronic and optical on-board layouts, and propose
optical interconnection layout models. In particular, we ex-
amine A-routing grids for on-board optical interconnects in
which routing options other than the traditional vertical-
horizontal one are used (1 is the number of permitted rout-
ing options). We define 2D mesh topologies, based on the
proposed A-routing grids, achieving better bisection width
and bisection width over area ratios than with rectangular
(A = 2) grids. We also propose topologies with high connec-
tivity degrees that fit the examined A-routing grids and
present their on-board layouts.

Index Terms—Optical interconnects; Optical printed
circuit boards; Topology lay-outs; A-routing.

I. INTRODUCTION

he proliferation of the Internet, the ever-increasing
use of wireless and cellular networks, and the expan-
sion of information-centric services and applications over
them are stressing the capabilities of the interconnection
networks of data centers (DCs): annual global DC IP traffic
will reach 15.3 ZB (zettabytes) by the end of 2020, up from
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4.7 7B in 2015, while the portion of traffic residing within
the DC will account for 77% [1]. A similar trend is observed
in the high performance computing (HPC) industry, where
the first Exaflop system is expected around 2020 [2].
Electrical interconnects cannot keep pace with the increas-
ing bandwidth needs due to wiring density [3,4], high
power dissipation, increased signal degradation, and cross-
talk between neighboring channels.

All-optical technology promises high-bandwidth energy-
efficient interconnects for next generation DC and HPC
systems. Optical fibers, formerly used mainly in long-
haul networks, have replaced copper-based links in wide
area networks (WANs) and metropolitan area networks
(MANSs), and are gradually being increasingly adopted into
the networks inside DCs and HPC systems. Today, optical
technology is used for interconnecting the top of rack (ToR)
switches, i.e., for rack-to-rack communication. Even so,
bandwidth needs and power consumption for communica-
tion tasks in DCs still constitute daunting issues. To cope
with the aforementioned challenges, optics will be deployed
at even shorter distances and lower packaging levels: board-
to-board, on-board, and even on-chip. This new era brings an
entirely new technology portfolio of network modules for
short distance communication. These include optical printed
circuit boards (OPCBs), printed with multi-mode (usually
polymer) [5,6] or single-mode (polymer or glass) waveguides
[7,8], as well as optochips with integrated transmitter (Tx)
and receiver (Rx) elements [9], and electro-optical router
chips with integrated vertical-cavity surface-emitting lasers
(VCSELSs) and photodiode (PD) arrays [10]. An important
part of this trend is silicon photonics, emerging as a powerful
technology for optical connectivity [11].

Several architectures for rack-to-rack communication
based on optical interconnects can be found in Ref. [12].
Architectures for the on-chip level of the packaging hier-
archy have also received a lot of attention [13-17]. For
the intermediate on-board (on-OPCB) packaging level, how-
ever, most of the proposed solutions are mainly passive ar-
chitectures targeting backplane deployment, such as
parallel waveguide arrays [18], a waveguide-based optical
bus structure [19], meshed waveguide architectures [20],
a shared bus [21], and a regenerative bus structure [22].
An EOPCB prototype hosting two optoelectronic router
chips [10] communicating via polymer multi-mode wave-
guides was presented in [23]. In our work, we focus on lay-
outs of network topologies using active elements on-board
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(chips). Designing an efficient on-board layout for an inter-
connection network is important since more compact
layouts reduce cost (fewer boards and chips) and achieve
better performance. In Ref. [24], we outlined a layout strat-
egy for point-to-point optically interconnected topologies of
optochips suitable for OPCBs, taking into account the
differences between electrical and optical on-board commu-
nication (described briefly in Section II). In Ref. [25], we fo-
cused on topologies using multi-point links (links on which
more than two nodes are connected) and offering certain ad-
vantages, such as simplicity, for optical interconnects over
short distances (particularly when combined with WDM)
due to their simple broadcast/multicast and select nature.

In the current work, we propose optical interconnection
layout models that account for the differences we identified
between electrical and optical on-board communications. In
particular, we propose A-routing layout models in which a
number 1 of routing options are used for laying out the links
on on-OPCB networks, as opposed to the layout strategies
presented in Ref. [24] that allow only horizontal and vertical
(thus, representing the special case 4 = 2). This approach
leads to point-to-point topologies with increased connectiv-
ity degrees for a given layout area, achieving higher bisec-
tion width and higher bisection width over layout area ratio.
The layout of these topologies using the proposed i-layout
models leads to area savings compared to the respective lay-
outs that assume a horizontal and vertical (1 = 2) routing
grid. Furthermore, by using more routing options, the
length of the links is reduced to the 1-distance, which for
A > 3 can be very close to the Euclidean (1 = c0) as opposed
to the Manhattan (1 = 2) distance between points. To em-
phasize the advantages obtained through the proposed
A-layout models, we focus on the case 4 = 3 and propose
optimal layouts for a multi-dimensional mesh of fully con-
nected networks+ (MFCN+), torus+, and mesh+ topologies;
and 2D H,,- MFCNs, H,,-torus, and H,-mesh topologies. We
examine the layout area, the insertion losses, the layout
efficiency, the bisection width, and the ratio of bisection
width to required area, which are the most important
metrics in judging the capabilities and the efficiency of
the topologies when used for computations.

The organization of the remainder of the paper is as
follows. In Section II we propose the 1-layout optical inter-
connection models upon which the topology layouts pre-
sented in this paper are based. We also describe the
waveguide structures and the performance metrics used.
In Section III, we examine 2D mesh topologies based on
various A-routing grids defined in Section II. In Section IV,
we discuss how collinear layouts of FCNs and other
topologies can be adjusted to the proposed A-routing grids.
In Section V, we propose some logical topologies, whose
A-layouts are subsequently given in Section VI. In
Section VII, we conclude the paper.

II. Layoutr MobpgLs, BUILDING BLOCKS, AND
PERFORMANCE METRICS

To solve layout problems within a mathematical
framework, assuming electrical interconnects, Thompson
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developed a formal model for graph layouts [26]. In the
Thompson grid model, a layout for a graph is characterized
as an embedding onto an orthogonal 2D grid. Links (wires)
run along grid lines. Each node (a chip or a group of chips,
as will be explained shortly) is mapped to a region of the
grid. In the original Thompson model, two layers of wiring
are assumed: one is used for the vertical segments and the
second for the horizontal segments of the links. Bends are
realized using “vias” that connect the two layers, and no
crossings are allowed. The area of the layout is the smallest
rectangle containing all nodes and links, and determines to
a large extent the cost and the speed of the module. In the
multilayer grid model [27], the nodes of the graph are em-
bedded in the 2D grid of the first layer and more than two
wiring layers are assumed, leading to reduction in the
layout area, volume (the number of layers times its area),
and maximum wire length.

Optical on-board communication differs significantly
from electrical on-board communication. The nodes on
OPCBs are interconnected using integrated waveguides,
and the chip-to-board and board-to-chip couplings are
usually implemented using 45° micromirrors. Y-shaped
splitter/combiners on-board are also possible. The most
“expensive,” in terms of losses, building blocks are the
chip-to-board and board-to-chip coupling elements, followed
by the splitters and combiners, which are themselves fol-
lowed by the bends and finally by the crossings. The greatest
challenge for the implementation of OPCBs in practice is to
keep the insertion losses low (especially for chip-to-board
and board-to-chip connections). The main differences be-
tween electrical and optical on-board communications are
that (i) crossings with various crossing angles 0 are allowed
in the same layer and (ii) &' -degree waveguide bends can be
implemented in the same layer requiring a (non-sharp)
bending radius r; (where 1 is the number of the permitted
routing options, see below) to allow the propagation of light.

To define some basic OPCB model, we can consider a
node to be a chip with embedded optical transmitter and
receiver channels (as in [10,20]), hosting the processing el-
ements and the routing logic. Alternatively, a node could be
an optoelectronic router chip interconnecting host opto-
chips (that host the processors) in a star topology. In what
follows, we assume OPCBs with two symmetrical wave-
guide layers, each for one direction of communication be-
tween nodes. OPCBs with more than two layers have
been demonstrated in Ref. [28]. However, in this work
we examine layouts assuming two waveguide layers, as
mentioned above. We plan to generalize our results for
boards with more than two layers in the future. Note, how-
ever, that one of the advantages of introducing A-routing
grids for OPCBs is that they make less important the
use of additional layers for laying out the wires. The wave-
guide width is usually 50 or 100 pm and the standard
waveguide pitch (waveguide spacing between straight
waveguides) is 250 pm, which are 2 orders of magnitude
lower than the bending radius and are thus safely
neglected in our area calculations.

The layout of a topology (based on a specific layout grid
model) determines the number of used building blocks as
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well as the way these are interconnected. The layout also
determines the worst-case losses experienced by an optical
path and the layout area (height, width). The power budget
is the difference between the optical transmission power
and the photodetector’s sensitivity. The optical signal qual-
ity deteriorates as the light travels from the light source
through chip-to-board and board-to-chip coupling elements
and on-board waveguide structures until it reaches the
photodetector in another chip. The total loss of an optical
path can be estimated by adding the insertion losses of the
respective elements along the path. Considering the worst
path losses and comparing that to the power budget deter-
mines if the layout is feasible.

The most important layout metric is the layout area. In
many densely connected (high degree) topologies, the area
is taken mostly by the links as opposed to the nodes. Area-
efficient layouts improve the cost and the performance of
the resulting architectures (smaller and fewer boards,
smaller link lengths). Other metrics of interest are the total
number of bends and the total number of crossings.
Another factor that could influence the topology layout is
heat dissipation, which is not considered in this work.
The performance metric of the logical topology that we
use is the bisection width, defined as the smallest number
of links that have to be removed in order to split the net-
work into two equal parts. It is related to the ideal through-
put (i.e., throughput under ideal routing and conditions)
under uniform random traffic (URT), where each node
sends an equal amount of traffic to every other network
node [29]. Another metric that we use is the ratio of the
bisection width to the required layout area. Given the total
number of nodes, bisection width over area characterizes
the overall performance over cost of the architecture (both
the logical topology and its specific layout). The larger the
bisection-width/area ratio, the most cost-efficient is the
design for a given performance. Table I summarizes the
aforementioned performance metrics, which will be used
to evaluate our layouts in the following sections.

Taking into account the specificities of OPCB designs
outlined above, the power budget constraints, and the per-
formance metrics, we modified the classic layout model of
electrical interconnects in a form suitable for OPCBs [24].
The traditional (1 = 2) layout strategies we proposed in
[24] follow an X-Y routing strategy, as the layout model as-
sumed there allows only vertical and horizontal routing of
links. Figure 1(a) depicts an example of a 3 x 2 x 2 mesh

TABLE I
PERFORMANCE METRICS OF INTEREST
Physical Layer Network
Impairment Layout Performance
Related Related Related
Insertion Losses ° o
Area o
Bends o °
Crossings o o
Bisection width ° o
Bisection- . .
width/Area
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laid out in a 2D grid of 3 x 4 nodes, with wires also laid
outin a 2D grid. The wiring, although depicted in one layer,
is done in two (or more) layers, and Figs. 1(b) and 1(c) show
the related two-layer implementation. Figure 1(d) depicts
the topology layout using optical interconnects assuming
90° crossings. A second identical layer is required for the
reverse communication direction.

A. 1-Geometry and Respective Routing Grids

In this paper, we propose a more general layout model
appropriate for OPCBs that leads to more efficient layouts.
We harvest the possibility of on-board waveguides crossing
at various angles in the same layer (something not possible
with electrical interconnects, as they would correspond to
short-circuits) and adapt new layout models in which vari-
ous routing angles are used. The new layout models we pro-
pose are based on A-geometry, where A represents the
number of routing directions and 180°/1 the admissible
routing angles [30]. For 1 = 2, we get the routing grid of
the original model that allows only horizontal and vertical
routing options (routing angles of 0°, 90°, 180°, and 270°).
For 1 = 3, the routing options differ by 60°. For 1 = 4 and
A = 6 the routing angles differ by 45° and 30°, respectively.
Different values for A result in different A-routing grids and
layout models. By using A-routing grids with A > 2, we can
define topologies with higher connectivity degrees and
greater bisection width within a given area. Furthermore,
as 4 increases the length of the links is reduced over the
Manhattan distance lower bound of the A = 2 case, approxi-
mating the Euclidean distance as 1 approaches infinity. A
key point here is that the shape of the nodes changes as the
routing grid changes. In the Thompson model (where A = 2)
a node occupies a square in the routing grid of side size
related to the node degree. In the routing grid with 1 = 3,
for example, no square shapes are allowed, so the node
shape has to change. Note that the chip could still be
square, but the regular hexagon will circumscribe the
square. In this case, this regular hexagon is considered a
node in the model. In this work, we examine layouts over
A-routing grids with A = 3, 4, 6, focusing mostly on the case
A= 3. Figure 2 depicts the respective routing grids for
1=2,3,4,6.

B. 1 = 3 Layout Model (6 = 60°)

For the sake of being specific and to identify the advan-
tages of A-layouts for OPCBs, we will sometimes focus on
topology embeddings for the 4 = 3 or 60° layout model, de-
scribed in more detail in the current subsection. The node
shape for 1 = 3 is a regular hexagon. The layouts in the 60°
grid use three dimensions for the waveguides: x, y, z (see
Fig. 3). Two parameters that are important for the layouts
discussed in Section V are the x-bending area and the 1 = 3
distance between nodes, briefly discussed below.

The x-bending area is an equilateral triangle that is
formed by the waveguides of dimensions y and z and the
north side of a node from which waveguides of dimension
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(a) 2D grid array (3 x 4) lay-out of 3 x 2 x 2 mesh, (b) and (c) layers one and two implementing the horizontal and vertical elec-

trical wires. (d) Topology implementation using optical interconnects.

(@)

(c) (d)

Fig. 2. A-routing grids for (a) A =2,(b) 1 =3, (¢c) A =4, and (d) 1 = 6.

x exit (Fig. 3). The aggressive 120° bends depicted in Fig. 3
can be replaced by two 60° bends, which have lower losses
[see Fig. 4(a)]. All waveguide bends of dimension x should
take place in the bending area to avoid waveguide overlaps
and the coexistence of a bend and a crossing in the same
spot due to the waveguides of dimensions y and z. In the
layouts we propose for the 60° routing grid, all three north
sides of the node are used. If d is the number of links

MW

max(d+2,tracks,+2)

Fig. 3. x-bending area and distance between nodes for the layouts
of the examined topologies in the routing grid with 1 = 3.

1

1

(@ (b)

Fig. 4. (a) x-bending area for a 5 x 5 MFCN+ (six tracks are re-
quired for the FCN of dimension x), and (b) the distance between
two nodes.

originating at (or ending to) one side of the node (then
3d is the node degree, as only the three north node sides
are used), to ensure that the bending area includes all
waveguide bends, we require

d + 2 + 2T = max(d + 2, tracks, + 2), or

{max(d ,tracks,) — dJ
T = 5 ,

where T is the number of additional tracks we have to allow
in the base of the triangle to ensure that x-bending area
will contain all bends (see Figs. 3 and 4). Parameter
tracks, is the number of tracks in dimension x. A case
where tracks, is greater than d is shown in Fig. 4(a), where
the left side of a FCN of five nodes in the waveguides of
dimension x is depicted (the topology of the whole network
is a 5 x 5 MFCN+, see Section V). In this case, tracks, = 6
and d = 4, leading to 7' = 1. In addition to accounting for
the size of the x-bending area, the 1 = 3 distance between
nodes should also be carefully chosen so as to avoid wave-
guide overlaps and the coexistence of a bend with a cross-
ing between dimensions y and z (taking into account 7).
The distance between two nodes (in all three dimensions)
should be

D = tracks, + tracks, + 2T - d,

as can be seen from Figs. 3 and 4(b).

ITI. MEsH ToPOLOGIES FOR VARIOUS A-ROUTING GRIDS
(A=2,3,4,6)

We now return to the general A-routing grid and examine
k x k J-mesh topologies that can fully exploit the available
layout surface of the A-grid. For instance, 2D mesh
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topologies fit well in the routing grid with A = 2 and have a
straightforward layout. In a similar way, we can define
k x k A-meshes as mesh-like topologies that fit the respec-
tive A-routing grid and have larger connectivity degree and
smaller diameter than 2D meshes. In these topologies, the
node degree and the logical topology (which node is con-
nected with which) is determined by the A-routing grid.
We depict the & x & 1-mesh topologies in Fig. 5, for A = 2,
3, 4, 6, along with the routing grid they belong to. In these
topologies, no bends are present (only crossings). The node
shape for 2 =3 and 1 = 6 is a regular hexagon. In these
cases, nodes can be arranged in a way so that the layout
area is either a rhombus or a rectangle (see Fig. 5). Since
in the routing grid with A = 6, three lines (waveguides) in-
tersect at the same point, and such a waveguide structure
would be infeasible as it would exhibit very high loss and
very accurate fabrication process, in the topologies of
Figs. 5(e) and 5(f), the vertical lines (present in the grid)
were removed in the proposed topologies. Thus, the maxi-
mum node degree is 10 instead of 12. Note that these lay-
outs would be similar assuming electrical interconnects. In
this case, however, a variation of the Thompson model
should be used with 1 layers, one for every routing option.
In the case of optical interconnects, only two layers are
required in all cases (one for every communication direc-
tion). This is possible because crossings are allowed in
the same layer. To compare the various A-mesh networks,
we assume that 2-mesh is the baseline scenario. For
fair comparison of the layouts obtained under different
A-routing grids, we assume that the area of the nodes is
the same in all topologies. Let a; be the side of the polygon
representing a node in the A-routing grid. Then, we have

3v8 5 _

5 43 =03 > 0 ~ 0.62a5.
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Furthermore, ag = a3 and ay = ay. We assume that the
area of the nodes is the smallest possible (related to the
node degree). In calculating the bisection width, we count
bidirectional links. To obtain the bisection in terms of uni-
directional links, the respective bisection width in bidirec-
tional links can be multiplied by 2.

Theorem 1. The kxk 3-mesh (A=3) has bisection
width 2k - 1.

Proof. The & nodes found in the bisection of this topology
contribute 2 links to the bisection width, except for one
node that contributes 1 link. Thus, the bisection width is
2k — 1. O

Theorem 2. The kxk 4-mesh (A =4) has bisection
width 3% - 2.

Proof. The & — 2 nodes located at the bisection of this
topology contribute 3 links to the bisection width and 2
nodes contribute 2 links each. Thus, the bisection width
is3(k-2)+2-2=3k-2. O

Theorem 3. The kxk 6-mesh (A =6) has bisection
width 5k — 4.

Proof. The bisection width of this network equals that of
a 4-mesh with an additional 2(% — 1) links, thus it is equal
to 3k — 2 + 2k — 2 = 5k — 4 links. O

Since the bisection width of the £ x %k 2-mesh (1= 2)
has bisection width %, we can see that, by exploiting the
A-routing available on optical interconnects, the bisection
width increases by a factor of roughly (1-1), and the
(networking) performance of the resulting topology
increases correspondingly.

Table II summarizes the main attributes of the exam-
ined A-mesh topologies. The area attributes have been
calculated using simple trigonometric laws. Figure 6

Fig. 5. Meshes that naturally fit the respective routing grid. (a) 4 x 4 2-mesh, (b) 4 x 4 3-mesh (rhombic arrangement of nodes), (c) 4 x 4
3-mesh (rectangular arrangement), (d) 4 x4 4-mesh, (e) 4 x4 6-mesh (rhombic arrangement), and (f) 4 x4 6-mesh (rectangular
arrangement). Red lines indicate the layout area and height (for rhombic meshes).
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TABLE II

ATTRIBUTES OF THE k x k A-MESHES
A Bisection Width Area (Width x Height) Crossings
2 k ag - S x ay - (3k - 1)/2 0
3 (rhomb.) 2k -1 218 -a3-kx1.89-a3-k 0
3 (rect.) 2k -1 as-(k-2.184+0.87)x1.89 a3k 0
4 3k -2 ay - (Tk-8)/A xay - (5k—1)/4 1 (90°)
6 (rhomb.) 5k-4 ag - (2.89% — 0.58) x 0.87ay - (2.89% — 0.58) 3 (60°, 90°, 60°)
6 (rect.) 5k-4 ag-2.887 -k xag - (5k — 1)/2 3 (60°, 90°, 60°)
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Fig. 6. Comparison of the 1-meshes for 1 = 2, 3, 4, 6. (a) Required area, (b) layout efficiency, (c) bisection width, and (d) ratio of bisection

width to required area.

compares the -meshes for different values of A. In particu-
lar, Fig. 6(a) depicts the required area for various network
sizes, while Fig. 6(b) illustrates the layout efficiency, de-
fined as the ratio of the total area taken by the nodes to
the total layout area. Figures 6(c) and 6(d) depict the bisec-
tion width of the logical topology and the ratio of the bisec-
tion width to the available area, respectively. As mentioned
in Section II, small layout areas lead to cost-effective archi-
tectures requiring smaller and fewer boards, and also
smaller link lengths. High layout efficiency ratios (ideally
equal to 1), indicate that the layout area required for the
links is relatively small. Higher bisection width leads to
better performance under traffic patterns with no underly-
ing locality (i.e., under URT). Finally, high bisection-width/
area ratio indicates that the architecture achieves good
network performance for a given layout area. The results
shown in Fig. 6 for 1 =3 and 1 =6 are for the rhombic
meshes, and are very close to the results assuming rectan-
gular meshes. The most efficient usage of area is achieved
by 2=3 mesh [Figs. 6(a) and 6(b)], while 1 =4 and

6-meshes require more area to allow the links connecting
nodes located diagonally (for example nodes 1 and 6 in
Fig. 5(d) and nodes 1, 6 and 7 in Fig. 5(e)). However, the
6-mesh has the highest bisection width compared to the
rest of the mesh topologies.

The greatest bisection-width/area ratio is achieved by
A = 6 (30°) meshes, except for the case of a 4-node topology,
which is identical to a 1 = 4 mesh (the optimal layout of a
4-mesh is achieved using the 1 = 4 grid and not in the case
where 4 = 6). Generally, as A increases, the ratio of bisection-
width/area also increases. This is one of the main reasons for
introducing the A-routing layout model, and also indicates a
significant advantage of optical over electrical layouts.

IV. CoLLiNEAR Layouts oF FCNs IN A-RouUTING
GRmDS WITH A = 2, 3, 4, 6

In this section, we present efficient layouts of a FCN
logical topology on a A-routing grid with 1 =2, 3, 4, 6.
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The FCN topology is particularly important, as any other
topology is a subgraph of it. Thus, an FCN layout gives rise
in a natural way to a (not necessarily efficient) layout of any
other topology, by removing the missing links and collaps-
ing the grid lines not used in the layouts.

Figure 7 depicts collinear layouts of FCNs on routing
grids with 4 = 2, 3, 4. In a similar way, layouts of topologies
with smaller connectivity degrees (rings, chain arrays) or
other collinear layouts of multi-dimensional topologies
(mesh, torus, etc.) designed for the routing grid with 1 =
2 can also be adjusted for the routing grids with 1 = 3 or
4. In principle, using higher values for A can reduce the link
lengths, approximating the Euclidean distance as 1 — .

The layout used in Fig. 7(a) for a FCN is the layout pre-
sented in [31] adjusted for OPCBs (see also [24]). In this
layout, the network nodes are numbered from 1 to N,
and we refer to a link as being of ¢ype-i if it connects
two nodes whose identity numbers differ by i. Thus, the
N(N -1)/2 links of the FCN can be categorized as of type
1,2,3,...,N -1, and there are N —i type-i links. In the
routing grid with 4 = 4, the 90° bends have been replaced
by 45° bends, which have smaller losses [Fig. 7(b)]. In the
A = 3 grid [Fig. 7(c)], there are 60° bends and there is only
one bend for every connection. In Fig. 7(d), the waveguides
are folded to reduce the required layout area. In Fig. 7(e),
an alternative placement of the nodes is depicted. The lay-
outs of Figs. 7(c)-7(e) can be also reproduced in the 1 = 6
routing grid, since this grid contains all the routing options
of the 1 = 3 grid. For 1 = 2, all bends take place in the area
above the nodes (in an imaginary rectangle). For A = 3, 4,
the area where the bends take place is extended beyond the
area above the nodes. This makes the 2D layout of multi-
dimensional topologies (such as meshes, tori, etc.) difficult
due to the waveguides from columns, leading to the coex-
istence of bends and crossings in the same spot (such wave-
guide structures do not exist). Furthermore, the layout in
Fig. 7(d) requires a lot of bends, which are lossy. The wave-
guide bends of this layout are 60° bends, which exhibit
lower losses than 90° bends. However, most of the losses

(a)
(c) (d)

Fig. 7. Collinear layouts of a FCN of N = 5 nodes. The A-routing
grids used are (a) 1 =2, (b) 1 =4, (¢c) 1 = 3, (d) 4 = 3 (alternative
design), and (e) 4 = 3 (other alternative).

Siokis et al.

have already taken place in 60° for a 90° bend (90% for pol-
ymeric 75 pm multimode waveguides and 5 mm bending
radius) [32]. The layout of Fig. 7(e) can be modified to allow
multidimensional topologies (Section VI).

V. Tororocies MFCN+, Torus+, MESH+,
2D H,-MFCN+, 2D H, -Torus+, 2D H,-MEgsH+

In this section, we describe other logical topologies that
are of interest as they fit well with the 1 = 3 routing grid
and exploit the higher connectivity degrees these grids pro-
vide. In particular, we focus on the MFCN+, torus+, and
mesh+ topologies. As discussed in Section II.B, the 1 =3
routing grid offers three routing options for the links, and
the topologies proposed arise naturally from these routing
options. In this section, we describe these topologies briefly
and also find their bisection widths. Their layouts will be
given in Section VI.

A 2D MFCN+ is a mesh-like topology in which there is
full connectivity along all three routing options (rows,
columns, and the antidiagonals). Similarly, 2D mesh+ and
torus+ topologies are 2D mesh and torus networks, respec-
tively, with additional connectivity (signified by the +)
in the antidiagonals. Examples of these 2D topologies
(and layouts for 1= 3) are depicted in Figs. 8(a)-8(c).
Mesh+ is actually the same topology as the 3-mesh.

We denote by Cy (i) =i - (INV — i) the number of links that
have to be removed in order to cut a fully connected net-
work in two sets of i and N —i nodes. We can then prove
the following results for the proposed networks.

Lemma 1. The bisection width of a 2 x £ 2D MFCN+ is

k2| B
5|+ 5

Proof. Clearly, |2 | is the bisection width of a fully con-

nected network, while kL%J is the bisection width of a
kxk 2D MFCN, a topology with full connectivity along
rows and columns. The antidiagonals contribute (see Fig. 9
for a 6 x 6 MFCN+)

k k

links, which leads to a bisection width of

=
2
kY i+

i=

VS
iy

—

O
Lemma 2. The bisection widths of a £ x £ 2D mesh+ and of
a k x k 2D torus+ are 2k — 1 and 4% — 2, respectively.

Proof. Since a 2D mesh+ is actually a 3-mesh, its bisec-
tion width is 2k — 1. The bisection width of a 2D torus+ is
two times the bisection width of the respective mesh+. O
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Fig. 8. Layouts of 4 x 4 topologies we propose, which fit the routing grid with 4 = 3: (a) 2D mesh+, (b) 2D torus+, and (c) 2D MFCN+.
(d)-(f) depict the respective layouts for a routing grid with 4 = 2 (the numbers represent the additional tracks due to the antidiagonals).
The red waveguides in the figure represent the waveguides of the antidiagonals.

Multi-dimensional MFCN+, mesh+, and torus+ net-
works are defined using the 2D layouts of MFCN, mesh,
and torus networks, respectively. To obtain an m-dimen-
sional MFCN+, mesh+, or torus+ network, we create the
/2 x 2 = (/N x /N 2D layout of the m-dimensional
MFCN, mesh, or torus network (see [27] and [24]) and
we add the connections of the antidiagonals in the 2D lay-
out. The bisection width of such m-dimensional topologies
is given by the following theorems.

Theorem 1. The m-dimensional MFCN+ has bisection

width
k2| kY
m-1|7"_ v
K M+ -

Proof. We know that 21| £’ | is the bisection width of an
m-dimensional MFCN. In an MFCN+, there are k%' /8 addi-
tional links due to the diagonals. This is obtained by
Lemma 1 and from the fact that 2™/2 x k/2 instead of
k x k is the number of nodes in the 2D layout. O

Theorem 2. The bisection widths of an m-dimensional
mesh+ and of a m-dimensional torus+ are

Fig. 9. Contribution of the antidiagonals to the bisection width
for a 6 x 6 MFCN+ (only some of the links are depicted).

km—l + km/z -1
and
2™ + % - 1),

respectively.

Proof. An m-dimensional mesh has a bisection width
equal to 2771, In a mesh+, we have £™/2 — 1 additional links
due to diagonals (instead of the % — 1 links of 2D mesh+).
The bisection width of an m-dimensional torus+ is twice
that of a respective mesh+. 0

We also examine hexagonal topologies, such as
H,-MFCN, H,-torus [33], and H,-mesh [34]. In an
H,-mesh (similarly for an H,-torus and an H,-MFCN),
there are N = 3n2% - 3n + 1 nodes. There are 2n — 1 rows
in every dimension/direction (three dimensions are avail-
able), and the number of nodes in the middle row (along
any dimension) is ¢ = 2n — 1. Hexagonal 2D mesh, torus,
and MFCN networks are depicted in Fig. 10. It is well
known that the space cannot be filled with regular tetrahe-
drons. For this reason, the definition of higher dimensional
hexagonal networks is not straightforward [35,36]. Thus, in
this work we focus only on 2D hexagonal topologies that fit
the routing grid with A = 3.

Theorem 3. A 2D H,-MFCN has bisection

width 2n2(n - 1).

Proof. We define dimensions x, y, z as shown in Fig. 11
and calculate separately the contribution of each link
dimension to the bisection width. An example is shown
in Fig. 11, where only some links are depicted in the
network. The number of dimension x links contributing
to the bisection width is
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Fig. 10. Layouts of the hexagonal topologies in the routing grid with 1 = 3. (a) H3-mesh, (b) Hs-torus, and (c) H3-MFCN.

BW,=2(C,(1) +C,41(2) + -+ + Cy,5(n=1)) + Cg,_1(n - 1)
n-1
= (n—1)|:22i+n:| =n2(n-1).
i=1

The number of dimension y links contributing to the bisec-
tion width is

BWy = CQn—l(n - 1) = n(n - 1)7
while the corresponding number of dimension z links is

BW, = 2[C,11(1) + Cppy2(2) + -+ + Cop2(n = 2)] + Coy,_1(n)
n-2
=2n) i+n@n-1)=nn-1>2

i=1

Thus, the total bisection width is equal to
BW, +BW, + BW, = 2n%(n - 1).

O

Theorem 4. The bisection width of a 2D H,-mesh is
4n - 3 and that of a 2D H,-torus is 8n - 6.

Proof. An H,-mesh has ¢t =2n -1 nodes across the
bisection, each contributing 2 links to the bisection width,
except for one node that contributes 1 link. Thus, its bisec-
tion width is 2n-2)-2+1=4n-3. An H, -torus has

Bisection Width

Fig. 11. Bisection width in an H3-MFCN (only some of the links
are depicted).

twice the bisection width of an H,-mesh due to the
wraparound links. O

VI. MFCN+, Torus+, MEesu+, 2D H,-MFCN+, 2D
H, -Torus+, anp 2D H,-MEesH+ LAyouTs FOR A = 3
(6 = 60°)

In this section, we examine layouts for the topologies
defined in the previous section, based on the layout of
Fig. 7(e). Examples of layouts for 4 x 4 mesh+, torus+,
and MFCN+ networks in the 1 = 3 routing grid are given
in Figs. 8(a)-8(c). Similar are the layouts assuming electri-
cal interconnects. They do not require distance equal to the
bending radius between adjacent links. However, they re-
quire three layers, one for every routing option.

The number of tracks required in the %&™/2xk™/2 2D
layout of a row (or column) of an m-dimensional mesh,
torus, and MFCN and 1 = 2 [27] is

(for anm — dimensional mesh)

(for a torus), and

(for an MFCN),

respectively. The node degree of these networks is m(k — 1)
for MFCN, and 2m for mesh and torus (in a mesh, 2m is the
maximum node degree). Therefore, in the 2D £™/2 x /2
layouts, the number of waveguides along a single row or
column is equal to m(k - 1)/2 for MFCN, and equal to m
for mesh and torus networks. Table III summarizes the
attributes of the layouts of all examined m-dimensional
topologies. The layouts of topologies MFCN, torus, and
mesh use the 1 = 2 routing grid. The rest of the topologies
use the A = 3 routing grid.

The parameters DyreN+ s Drorus+» DMesht> @and Dy, _mron
defining the distance between two nodes in Table III equal
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TABLE III
ATTRIBUTES OF THE M -DIMENSIONAL ToroLoGIES MESH+, Torus+, AND MFCN+ IN THE RoUTING GRID WITH A = 3

Topology Layout Width or Side of Regular Hexagon (for Hexagonal Topologies) Crossings (90° or 60°) Bends (90° or 60°)
MFCN T ' 2
Em/2 . (as + LI%J,‘2 Z k) LkZka 1 I_k2J Z ki
i=0
-1 _
Torus B2 (ag +2ry Y k) 2(km-1 - Z ) 2
i=0 i=0
[51-1 ) %1-1
Mesh B2 (ag 4 15 Z k) Z ki 2
i=0 =
21-1 31
MFCN+ R"/% - 2a5 + ("2 = 1)(Dypen+ + Drs +75|45] Y & | ot 4 g2 Z 9 or 4
i=0 i=
-1 -1
Torus+ E"/2 - 2a3 + (™% = 1) (Droruss + Drs +2r5 Y K 2™ L+ B2 -1- ) " k) 2or4
i=0 i=0
i -1
Mesh+ B2 - 2a5 + (B™/? = 1)(Dyeshy + Drs +73 Y K Rnlp /2 —1- 3" R 2or4
i=0 =0
H,-Mesh n-2a3+ (n-1)2r3 + 2r3 (4n -5) 2
H,-Torus n-2as+ (n—1)3rs + 4rs 2(4n - 5) 2
H,-MFCN n-2as + (n - 1)(Dy, _yrox + Vrs + 2|2 rs 200 - 1)2(n +1/2) 4

[51-1
Dyreny =2Tvren+ +2{ Jzk‘——(k 1H+1

m(k-1),| &Y R ) -2 (k-1
=2|jnax(2( ) L4J21_0 ) 5 ( )J

2

kz []1
L JZk‘——(k 1 +1,

31-1
DTorus+ = 2TT0ruS+ +4 Z k-
i=0
max(m 22( 2~ lkl) g1
=2 4 b 1
5 + ; F-m+1,
-1
Ditesh+ = 2T Meshr +2 Z k'-m+1
i=0
max(m ZH 1k‘) #-1
=2 2 t— 1
5 + ; ki-m+1,
t2
Dy, _wmren = 2Ty, -mroN + 2 LZJ —-t+2
max( ) t+1 £2
=2 * +2{ZJ—t+2.

Layout height_is equal to +/3/2 of the respective width for
topologies MFCN+, mesh+, and torus+. For the hexagonal
topologies,

B ,/9—12(1—N)+ 1

6 2

For all topologies depicted in Fig. 8, the number of addi-
tional tracks we have to allow in the base is T = 0.

These topologies fit better the A =3 routing grid than
the 4 = 2 routing grid. To show this, we also examine lay-
outs of such (2D) topologies in the routing grid with 1 = 2
which are depicted in Figs. 8(d)-8(f). In all three layouts
with 1 = 2, all links of the antidiagonals originate from the
bottom of the nodes. Three bends are needed to reach the
node-destination.

For mesh+, two additional tracks are required for
the antidiagonals in a single row or column, leading to
2(k — 1) additional tracks [compared to a simple mesh net-
work; see Fig. 8(d)]. In torus+, the layout is the same as
that of a mesh+, with extra tracks for the wraparound links
in the antidiagonals. The additional tracks are 2(k —2) - 1
compared to a mesh+. Thus 2(k-1) +2(k-2)-1 =4k -7
additional tracks are required compared to a simple torus
network. In the layout we use for an MFCN+,

k-1 k-2 J k(k — 1) k-2
i+2> Y i= 5 +Y G+ 1)
i=1 =1 i=1 =1

tracks are required for the antidiagonals (compared to a
simple MFCN topology). An example is shown in Fig. 12
for a 6 x 6 MFCN+. We add along the antidiagonals to cal-
culate the total number of additional tracks. A total of

k17 tracks are needed for the main antidiagonal, and

k-2
2yk2

Y_, 1 for the remaining antidiagonals.

The maximum number of crossings is eight (90° cross-
ings) for the 2D mesh+ in A = 2. For torus+, the maximum
number of crossings appears in the wraparound link along
the middle column, and is equal to the bisection width of
the logical topology minus the number of tracks of the
first row and the number of tracks of the antidiagonals
of the last row [see Fig. 8(e)]. Similar things hold for the
MFCN+. The worst-case crossings for the A = 3 routing
grid are equal to the respective bisection width minus
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Fig. 12. 2D layout of a 2D MFCN+ in the routing grid with 1 = 2
and the number of additional tracks (compared to an MFCN). The
links of the network are not depicted. The numbers at the left of the
nodes represent the number of additional tracks that every node
inserts below the row in which it belongs. The numbers in the
right-most area of Fig. 10 represent the total number of additional
tracks needed for a single row. We add along the antidiagonals to
calculate the total number of additional tracks. The number of ad-
ditional tracks along columns equals the number of additional
tracks along rows.

the tracks of the first row containing the waveguides of di-
mension x (they appear in the waveguide of dimension y
found near the bisection). For mesh+, this number is an
upper bound on the number of crossings. For the worst-case
length of the waveguides, we use the length of the wave-
guide of dimension y (could be a waveguide of dimension
x or z), which is found near the bisection of the network.
The worst-case losses are calculated by adding the losses
of the waveguide length in the worst case, the losses of
the crossings in the worst case, and the losses of the re-
quired bends. In this way, we calculate an upper bound
for the worst case (total) losses. For the hexagonal topol-
ogies, the waveguide length in the worst case is the length
of the waveguide that connects the rightmost node with the
leftmost node in a middle row in the topology containing
2n —1 nodes (along any one of the three dimensions).
The number of crossings for these topologies is given by
the two following theorems.

Theorem 5. The number of crossings in a 2D H,,-MFCN
is (n —1)2(2n + 1) in the worst case.

Proof. Without loss of generality, we examine the num-
ber of crossings found in the longest waveguide of dimen-
sion z (Fig. 13). We examine the number of crossings caused
by waveguides of dimensions x and y separately. We denote
the number of crossings caused by the waveguides of di-
mensions x and y as cross, and cross,, respectively. Then

cross, =[Cr41(2) + Cpi2(3) + ... + Cgyp(n - 1)]
+[Con-1(n) + Copo(n) + ... + Cp 1 (n)]

n-1 n-1
=n-1)) i+n)y j= (”T‘l)[(n+ 1)(n-2) +n?,
i=2 j=1
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Fig. 13. Number of crossings in the worst case found in the lon-
gest waveguide of dimension z in an H3-MFCN (the links of the
topology are not depicted).

and
cross, = [C,(1) +C,11(2) + ... + Cg,o(n - 1)]
+[Cop_1(n) + Copo(n) + ... + Cp 1 (n)]

n-1 n-1
. . nn-1)(2n-1
:(n—l)E l+n§]=$.
i=1 j=1
Thus,

cross, +crossy, = (n-1)(2n?-n-1) = (n - 1)%(2n + 1).

O

Theorem 6. The number of crossings is 8n — 10 for a 2D
H,-torus and at most 4n — 5 for a 2D H,,-mesh, in the worst
case.

Proof. A wraparound link in a middle row of a 2D H,,-to-
rus meets 2-[(t-2)-2+4 1] =8n-10 waveguides. An
upper bound for the number of crossings in an H,-mesh
is 4n — 5 (half the waveguides of the respective torus). O

A. Application To Example Technologies

In this section, we evaluate the layout area, losses, bisec-
tion width, and bisection-width/area ratio for some of the
topologies considered under the A = 2 and a A = 3 layout
models, assuming specific example technologies. We also
discuss the advantages of going to higher 1 layout models.

For the results presented in this section, we assumed op-
tical waveguides with propagation loss equal to 0.005 dB/mm,
bending radius of 15 mm for 90° bends with 0.8 dB loss per
bend, and 90° crossings with 0.0212 dB per crossing [37]. The
side of the node is ay = (d + 1) - ry, where ry is the bending
radius in the 1 = 2 routing grid. For the 4 = 3 routing grid,
we have ag = 0.62 - a3 and bending radius r3 = 0.62 - ry. The
values used for the routing grid with 1 = 3 are: bending radii
of 9.3 mm for 60° bends with 0.9 dB losses [37] (taking into
account that a 60° bend has losses equal to 90% of the losses
of a 90° bend of the same bending radius [32]) and 60°
crossings with 0.0303 dB losses per crossing.

Figures 14(a) and 14(b) show the required area and the
worst-case losses for a torus+ topology laid out in routing
grids with A = 2 and A = 3, respectively. The 1 = 3 layout of
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Fig. 14. Comparison between (a) a 2D torus+ laid out in the routing grid with 4 = 2 and (b) of the same torus+ laid out in the routing grid

with 2 = 3 with node side equal to az = 0.62 - a,.

the torus+ topology requires a smaller area and achieves less
loss than the 4 = 2 layout of the same topology. This was ex-
pected, since the torus+ topology was designed to fit the A =
3 routing grid. Similar are the results for the mesh+ and
MFCN+ topologies. For the MFCN+ topology, the required
area is up to 65% smaller for the layout in the A = 3 routing
grid compared to the layout in the 1 = 2 routing grid.

Figure 15 compares the torus and torus+ topologies in
terms of bisection width and the ratio of bisection-width/
area. The torus topologies were laid out in the routing grid
with 4 = 2, and the torus+ topologies in the routing grid
with 1= 3. The topologies of higher dimensions have
greater bisection width [Fig. 15(a)]. However, the 2D topol-
ogies achieve better bisection-width/area ratio compared to
the topologies with higher dimensions [Fig. 15(b)]. The to-
rus+ topologies have greater bisection width and achieve
higher bisection-width/area ratio compared to the torus

Bisection Width

70 +

—4—2DTorus —#&—2DTorus+

60

~+—3DTorus+

—>—3DTorus

topologies. The worst-case losses are lower for the torus
topologies. However, in both torus and torus+, the worst-
case losses are lower than the usual power budget of
15 dB. For example, for 64 nodes, the power loss is about
7 dB for torus+ and 4.75 dB for torus. The results are sim-
ilar for mesh topologies. For the MFCN and MFCN+ topol-
ogies, the bisection width increases as the number of
dimensions decreases. A MFCN+ has greater bisection
width than a respective MFCN. Regarding bisection-
width/area ratio, 2D MFCN+ topologies are better than
the respective 2D MFCN topologies for fewer than 36 nodes
and worse for more than or equal to 36 nodes. This happens
because in MFCN+ the x-bending area and T increase as
the number of nodes increases.

Figure 16 depicts a comparison among all 2D topologies
(recall that 2D topologies have the highest bisection-
width/area ratio). The hexagonal topologies exhibit the

Bisection Width/Area
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Fig. 15. Comparison of topologies torus and torus+. (a) Bisection width, and (b) bisection-width/area ratio.
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Fig. 16. Comparison of all 2D topologies. (a) Bisection width. (b) Bisection-width/area. (¢) Worst-case loss.
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highest bisection width compared to the other 2D topol-
ogies. The torus+ topology exhibits the highest bisection-
width/area ratio. In all cases, the worst-case losses are
below the usual power budget of 15 dB, except for
MFCN+ and MFCN, where the worst-case losses are
greater than the 15 dB power budget for node size above
36 and/or number of nodes above 49 nodes. Evidently,
higher 1 layout models can lead to higher bisection width
and bisection-width/area values.

VII. CoNCLUSION

Optical technologies will be deployed over ever shorter
distances (board-to-board, on-board, on-chip) in the near
future to cope with the energy and bandwidth limitations
of DC and HPC electrical interconnects. We defined new
optical layout models that account for the differences be-
tween electrical and optical on-board communications.
The new models increase the number of routing options
available at the on-OPCB level of the packaging hierarchy.
We defined 2D mesh topologies based on routing grids with
A = 3,4, 6,which achieve greater bisection width and bisec-
tion-width/area ratio than the usual mesh topology in the
A = 2 routing grid. We discussed how collinear layouts of
FCNs are also helpful in laying out other topologies on
the proposed A-routing grids. We proposed topologies with
high connectivity degrees, and discussed their layouts in
the routing grid with 1 = 3. We showed that these topol-
ogies naturally fit the 1 = 3 routing grid, exhibiting signifi-
cantly lower layout area and losses over their respective
layouts in the 4 = 2 routing grid. We also examined 2D hex-
agonal topologies laid out in the routing grid with A = 3.
From all the examined topologies, torus+ topology achieves
the best bisection-width/area ratio. Future work includes
the generalization of our results for boards with more than
two layers.
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