
Inter-Domain Optimization and
Orchestration for Optical
Datacenter Networks

G. Landi, M. Capitani, A. Kretsis, K. Kontodimas, P. Kokkinos, D. Gallico, M. Biancani,
K. Christodoulopoulos, and E. Varvarigos

Abstract—Hyperscale datacenters (DCs), spread in vari-
ous locations around the globe, provide computing and
storage resources for cloud and other applications. Elastic
optical networks (both landline and subsea) operated by a
single ormultiple entities are used to form the inter-DC net-
work and serve the constantly increasing traffic. In addi-
tion, optical switching technologies are researched for
intra-DC networks as a means to achieve higher capacity
and energy efficiency. Joint optimization and orchestration
of inter-DC and intra-DCnetwork infrastructures is the key
for realizing the network virtualization and network as ser-
vice visions. We present a hierarchical software defined
networking orchestration platform that treats intra-DC
and inter-DC networks as domains and cooperates with
domain specific orchestrators/controllers to achieve inter-
domain, end-to-end orchestration. The systems developed
are evaluated both in an emulated and in a realistic testbed,
showcasing dynamic end-to-end path establishment
functionality with dedicated capacity and low control
overhead.

Index Terms—Elastic optical networks; Inter-domain
orchestration; Optical datacenter networks; Software-
defined networking.

I. INTRODUCTION

T he migration of applications to cloud datacenters
(DCs), their size, and their world-wide placement

leads to the proliferation of DC-oriented traffic. This traffic
is served by inter-DC and intra-DC networking infrastruc-
tures that play a major role in the performance experi-
enced. In particular, hyperscale cloud DCs will account for
83% of the public cloud servers in 2020, as reported in
Ref. [1]. Also by 2020, more than 90% of DC traffic will be
originated or terminated in a DC (intra-DC). Moreover, the
inter-DC traffic is expected to account for almost 9% of total

DC traffic, higher than the 7% reported at the end of 2015,
and it is growing faster than the traffic to end users or the
intra-DC traffic.

Several key communication use cases are inter-domain,
meaning that they span across multiple DCs, from a server
in one DC (intra-DC domain) to another in a different DC
(intra-DC domain), crossing over the wide area transport
networks that interconnect the DCs (inter-DC domain).
Examples of such use cases include load balancing, redun-
dancy, and disaster recovery operations, as well as services
deployed across multiple DCs (e.g., content distribution
networks), where the virtual instances running at different
locations need to interact with some quality of service
(QoS) guarantees [2]. Such scenarios require low-latency
inter-domain connections, dynamic and dedicated capacity
allocation, and isolation.

In this paper, we consider scenarios where the inter-
domain demands cross management/technological
domains that belong to the same administrative entity,
e.g., a cloud provider owning both the DCs and the net-
working infrastructure interconnecting them. The interac-
tion between administrative domains under the control of
different actors (e.g., different DC providers and network
operators) raises issues related to the federation of services
and infrastructures as well as to business aspects that re-
quire additional considerations. For example, policy-driven
mechanisms to regulate the advertisement of the resources
offered to federated domains, dedicated procedures for
authentication and authorization, as well as suitable ap-
proaches for service level agreement (SLA) management,
would be required to address the challenges of multi-
administrative-domain scenarios. This is out of the scope
of this paper and it is left for future work.

The increase in volume and dynamic requirements of DC
traffic brings new challenges in their design. Today, a
number of technologies promise to satisfy these network
requirements. In the transport network segment (inter-
DC), elastic/flexible optical networks (EONs) [3] address
the inefficiency problems of traditional WDM networks,
providing a fine granular solution for sub- and super-
wavelength capacity. Optical switching is also gaining
momentum as a potential solution for intra-DC, due to
its inherent speed, energy efficiency, and transparency to
bitrate and protocols. In this context, optical technologieshttps://doi.org/10.1364/JOCN.10.00B140

Manuscript received February 5, 2018; revised May 22, 2018; accepted
May 29, 2018; published June 28, 2018 (Doc. ID 322539).

G. Landi and M. Capitani are with Nextworks, Pisa, Italy.
A. Kretsis (e-mail: akretsis@mail.ntua.gr), K. Kontodimas, P. Kokkinos,

and K. Christodoulopoulos are with the Department of Computer
Engineering and Informatics, University of Patras, Patras, Greece.

D. Gallico and M. Biancani are with Interoute S.p.A., Roma, Italy.
E. Varvarigos is with the School of Electrical and Computer Engineering

(ECE) of the National Technical University of Athens (NTUA), Greece. He is
also with the Department of Electrical and Computer Systems Engineering,
Monash University, Australia.

B140 J. OPT. COMMUN. NETW./VOL. 10, NO. 7/JULY 2018 Landi et al.

1943-0620/18/07B140-12 Journal © 2018 Optical Society of America

https://doi.org/10.1364/JOCN.10.00B140
mailto:akretsis@mail.ntua.gr
mailto:akretsis@mail.ntua.gr
mailto:akretsis@mail.ntua.gr


ranging from hybrid electrical/optical switching to all-opti-
cal packet switching have also emerged. The NEPHELE
EU project [4] leverages hybrid electrical/optical switching
to attain the ideal combination of high capacity at reduced
cost and power, compared to state-of-the art DC networks.
Both inter- and intra-DC networks require optimization
and orchestration mechanisms for deciding on the alloca-
tion of network resources, for the configuration of their
parameters, and for performing the actual allocation.

In this paper, we present a software defined networking
(SDN)-based optimization and orchestration platform
for inter-domain DC networks that includes both an
elastic optical inter-DCnetworkdomain andhybrid optical–
electrical intra-DC network domains, as those envisaged
in NEPHELE [4]. Using SDN, the forwarding decisions
are taken centrally, enabling dynamic capacity allocation
in the inter-domain networks, on demand adaptation of
connections, and rerouting of traffic according to network
and application characteristics. The developed platform,
called the NEPHELE Inter-Domain network Orchestrator
(NIDO), adopts a hierarchical approach. The centralized
inter-domain network orchestrator NIDO cooperates
through respective interfaces with single-domain-specific
SDN-based orchestrators/controllers: OCEANIA [5] for
intra-DCdomains and JULIUS [6] for the inter-DC domain.

Multi-domain orchestration was also presented in other
works, applying stateful hierarchical path computation el-
ements (H-PCE) and/or hierarchical SDN controllers for
the orchestration of heterogeneous (Ethernet, OpenFlow/
GMPLS) intra-DC and inter-DC domains [7]. Approaches
based on the Application Based Network Operations
(ABNO) concept [8] were presented in Refs. [9,10], with
orchestrators able to jointly manage cloud and networking
resources, operating over multi-layer and multi-domain
network controllers. However, these solutions did not focus
on specific intra-DC technologies and topologies. This is the
first time, to the best of our knowledge, that interconnec-
tion technologies such as hybrid electrical–optical switch-
ing, through OCEANIA orchestrator (presented in Ref. [5])
and EON, and through JULIUS orchestrator (presented in
Ref. [6]), are put under a common orchestration framework,

namely NIDO, providing actual end-to-end, from one
server to another, inter-domain, dedicated capacity in
real time. We evaluated the systems developed (NIDO,
OCEANIA, JULIUS) both in an emulated and in a realistic
testbed, showcasing fast and efficient orchestration by
providing dynamic inter-domain path establishment and
allocation of capacity with low control overhead.

The remainder of this paper is organized as follows.
Section II presents NIDO and an overview of the
NEPHELE approach for inter-domain orchestration, while
Section III presents the workflows associated to relevant
use cases. Section IV describes the NEPHELEDC architec-
ture, the hybrid opto-electric infrastructure, and the SDN-
based network control and cloud orchestration platforms.
The NEPHELE intra-DC SDN controller and its software
prototype, OCEANIA, are presented in Section V, while the
inter-DC controller JULIUS is described in Section VI.
Performance results on the emulated and the realistic
testbed are reported in Section VII. Finally, the paper is
concluded in Section VIII.

II. NIDO—INTER-DOMAIN ORCHESTRATION

A. NIDO Operation

The overall architecture for the control of inter-domain
network connections between servers located in different
DCs is presented Fig. 1. NIDO is able to achieve end-to-
end network resource allocation by coordinating the ac-
tions of the lower layer intra-domain and inter-DC SDN
controllers.

The adopted hierarchical approach enables NIDO to ef-
ficiently operate over different types of domains, changing
the intra-domain controller and/or the related data-plane
network technology of any domain (DC, core, metro, access
network, or even for 5G fronthaul), while hiding the details
from the applications utilizing NIDO. This means that
OCEANIA and JULIUS can be interchanged with other
domain-specific orchestrators. Thus, NIDO is more robust
and flexible in comparison to network/technology-specific

Fig. 1. NIDO inter-domain orchestration.

Landi et al. VOL. 10, NO. 7/JULY 2018/J. OPT. COMMUN. NETW. B141



related systems that were presented in Ref. [11]. Details
for the OCEANIA intra-DC domain orchestrator for
NEPHELE-based DC networks [4] (Section IV) are pre-
sented in Section V, while the JULIUS orchestrator for
inter-DC EON domains is presented in Section VI.

Cloud orchestrators, such as OpenStack, can be ex-
tended to interact with NIDO, building inter-domain net-
works, interconnecting their virtual computing and storage
instances across multiple DCs. For this reason, NIDO ex-
poses (Fig. 1) at its northbound interface (NBI) the appro-
priate REST APIs to enable the integration of such cloud
orchestrators, making it possible to set up and tear down
QoS guaranteed end-to-end connections, as part of the
whole workflow for cloud service provisioning, termination,
migration, or recovery. For example, Fig. 2 shows the work-
flow for the provisioning of a dedicated inter-domain trans-
port network connection between two servers belonging to
two different DCs, in order to enable a suitable inter-
connection between virtual instances placed in those serv-
ers. Initially, when a new domain is added through NIDO,
there is a process for building the multi-domain network
topology (Steps 1 and 2). The network provisioning is ini-
tiated by a cloud orchestrator that triggers the entire au-
tomated procedure (Steps 3–6) to establish an end-to-end
path from a server in DC-1 to a server in DC-2, through
which the virtual instances’ traffic will be carried. This ap-
proach allows for hiding the internal details of the network
topology, protocols, and configurationmechanisms from the
cloud controller, which uses only abstract and technology-
agnostic, domain-independent interfaces (based on REST-
APIs) to request connections with the desired QoS (capac-
ity and latency) parameters.

NIDO’s internal procedure for establishing an end-to-
end network service consists of two main steps. NIDO com-
putes initially the loose domain path for the requested
inter-domain connection, i.e., the sequence of domains that
must be traversed, together with the edge nodes at each
domain. In the second step, NIDO issues requests to set
up the intra-domain network connection in the domains re-
turned in the domain path, utilizing the NBI of the respec-
tive intra-domain controllers (i.e., OCEANIA for intra-DC
networks and JULIUS for the inter-DC transport network).
Figure 2 indicates also the actions taken by the JULIUS
controller: receiving the respective inter-DC request,
asking from the internal PCE for a path, and actually
reserving the optical path by interacting through
OpenFlow (OF) protocol [12], with the required SDN-
enabled optical switches. Once all the intra-domain paths
have been established and acknowledged to NIDO, the
end-to-end inter-domain path becomes active.

The adopted intra-DC (NEPHELE) and inter-DC (EON)
architectures are all optical, and their related controllers
(OCEANIA and Julius, respectively) utilize appropriate
reservation/path establishment processes that can guaran-
tee in each individual domain the requested capacity, mini-
mumdelay (equal to the propagation delay in that domain),
and ultra-low packet drop ratio. Domain to domain (inter-
domain) communication is performed using a DC gateway,
an IP router at the edge of the DC, which is connected to
an IP router attached to the ingress ROADM of the EON.
At these routers, we can reserve capacity and provide
specific latency or dropping ratio QoS guarantees using
well-established mechanisms, such as integrated services
(IntServ) and differentiated services (DiffServ). NIDO

Fig. 2. Workflow for provisioning of a dedicated inter-domain path through NIDO.

B142 J. OPT. COMMUN. NETW./VOL. 10, NO. 7/JULY 2018 Landi et al.



collects the propagation latency specifications of the
different intra-domain paths, subtracts them from the end-
to-end latency requirement, and enforces that to the inter-
domain links. Capacity and loss are satisfied more easily,
since these are deterministically provided by all related
intra-domain all-optical paths. Finally, note that NIDO
can use the load/latency as the criterion for selecting the
inter-domain link. In the current implementation, NIDO
establishes end-to-end paths and reserves the required
capacity, while with the simple extensions indicated above
it can enforce other QoS requirements, such as end-to-end
latency and the packet loss ratio.

NIDO is responsible for maintaining the status of the
different inter-domain paths, together with their relation-
ship to the list of intra-domain paths that compose them.
The abstract network topology is also kept updated accord-
ingly, modifying the resource availability on the inter-
domain links based on the active inter-domain paths.
Recovery in the adopted multi-domain scenario is quite
complicated. Domain specific restoration/protection proc-
esses can handle link/connection failures in each domain.
If such recovery violates the QoS requirements or the fail-
ure is in an inter-domain link, the recovery could be
handled by a similar process as the end-to-end connection
establishment process, described above, where the failed
link is removed (by NIDO or the domain controller, depend-
ing on the failure type) from the possible solution space,
and the NIDO inter-domain calculation process is
repeated. Such an advanced concept is left for future work.

The proposed NIDO architecture is extendable. It is pos-
sible to addand removedomainsdynamically, specifying the
type of plug-in that must be used to interact with the asso-
ciated controller. Furthermore, it is possible to extend the
architecture to support infrastructure federations, and en-
able the integration of services and (virtual) resources from
different providers. Thiswould requiremechanisms toman-
age SLAs, business aspects, and architectural principles
based on brokering or peer-to-peer interactions. In particu-
lar, to support the peer orchestration model, the NIDO
architecture would need to be extended with discovery
mechanisms, cooperative approaches for inter-domain path
computation (e.g., following the backward recursive PCE-
based computation procedures defined in RFC 5441 [13])
and policies for disclosure of topology information between
peering domains. Finally, the adoption of NEPHELE archi-
tectures in network functions virtualization (NFV) environ-
ments would require additional interfaces where NIDO
interacts with NFV orchestrators (NFVOs), for example,
actingas aWANinfrastructuremanager (WIM). In this con-
text, beyond the provisioning of transport connections
betweenDCs orNFVI point of presence (PoP)s,NIDOwould
also need to implementmechanisms formanagement of ser-
vice function chains and traffic steering.

B. NIDO Architecture

Figure 3 shows the functional architecture of NIDO. The
architecture follows some of the principles of the ABNO
architecture, defined in IETF RFC 7491 [8], including,

for example, components for path computation (equivalent
to the ABNO PCE), topology management [similar to the
Traffic Engineering Database (TED)], and provisioning
management. However, NIDO components are focusing
on the specific challenges of multi-technology domain sce-
narios, implementing a topology representation that is
based on the concept of network domains, edge nodes, and
logical inter-domain and edge-to-edge intra-domain links.
Moreover, the specific functionalities of the ABNO control-
ler that handles the network requirements from the
applications are implemented through the multi-domain
connectivity manager. This entity is specifically designed
to operate in combination with cloud management plat-
forms, triggering the configuration of the network based
on the requirements of cloud services.

In the NIDO architecture, themulti-domain connectivity
manager is the entry point of the system, and it handles the
operational requests for the provisioning of inter-domain
network connections. At its northbound, it offers the
REST APIs to create, tear down, and retrieve the network
paths, and it handles internally the lifecycle of all the inter-
domain connections managed by NIDO.

The NIDO REST API has been specifically developed to
address the needs of multi-domain orchestration while ex-
ploiting the capabilities of the intra-domain controllers
OCEANIA and JULIUS. It allows the user to specify end-
to-end paths with reserved capacity to be established be-
tween hosts belonging to the DCs. These APIs, while based
on the abstraction approach also adopted in the transport
APIs defined by the Open Networking Foundation (ONF),
are designed around a NEPHELE specific information
model focused on DC entities, such as DC hosts, DC gate-
ways, and inter-DC connections. This information model
fully abstracts the complexity of connecting different tech-
nological domains, as well as the details of the intra-domain
paths and the interaction with different SDN controllers.

The multi-domain connectivity manager is also respon-
sible for maintaining the status of each inter-domain con-
nection and its relationship with the intra-domain network
connections (i.e., path on the intra-DC or in the inter-DC
network) that compose the end-to-end path. The persistency

Fig. 3. NIDO functional architecture.

Landi et al. VOL. 10, NO. 7/JULY 2018/J. OPT. COMMUN. NETW. B143



of inter-domain and intra-domain paths is guaranteed
through the path DB. Moreover, the multi-domain connec-
tivity manager coordinates the procedures to compute and
instantiate the paths across the different domains.

The provisioning manager is the functional entity
responsible for the provisioning of the single intra-domain
paths at the southbound. It is triggered by the multi-
domain connectivity manager, and it issues provisioning
requests to the child SDN controllers handling the differ-
ent domains. The provisioning manager has multiple
plugins to manage the specific APIs exposed by each child
controller; for example, the OCEANIA plugin includes a
REST client to invoke the functions provided by the
OCEANIA controller to create network connections in
NEPHELE DCs (Section V). In addition, the provisioning
manager offers a management interface, based on REST
APIs, for the configuration of network domains, and it trig-
gers the multi-domain topology manager to update the
whole network topology according to the abstract topology
gathered on each single controller.

Themulti-domain topologymanager is the entity respon-
sible for building andmaintaining an abstract inter-domain
topology, based on the information collected about single do-
mains from the provisioning manager plugins. The multi-
domain topology includes the concepts of network domains,
edge nodes, hosts, and inter-domain links (intra-DC and
inter-DC), as well as resource availability in terms of capac-
ity of the inter-domain links. The internal details of each do-
main are considered out of scope, assuming a flat full mesh
connectivity among all the edge nodes of a single inter-DC
domain anda full connectivity between eachhost and all the
network gateways in a DC network. The topology is per-
sisted in a database (the topology DB). In terms of network
nodes and links, it is updated based on the network domains
added or removed in the system, while the resource avail-
ability on the inter-domain links is modified according to
the established paths.

Finally, the multi-domain path computation manager
provides the functionalities for the computation of the do-
main chain to be traversed by the requested inter-domain
paths, including the edge nodes for ingress and egress at
each domain. The multi-domain path computation man-
ager may support different algorithms, which run over
the abstract network topology handled by the multi-
domain topologymanager. The current version of NIDO im-
plements an algorithm that performs load balancing
among the inter-domain links, distributing the traffic load
across different domain ingress and egress edge nodes.

NIDO comes with a simple user interface through which
it is possible to add new domains, to view the multi-domain
network topology, and to request and view inter-domainnet-
work connections. The NIDO software prototype was devel-
oped in Java and released as open source software [14].

III. WORKFLOWS FOR INTER-DOMAIN COMMUNICATIONS

This section provides examples of workflows for the
management and control of cloud services, where NIDO

is used for setting up inter-domain paths, providing
dedicated capacity and isolation to the traffic flows of
the respective services. In particular, in the presented
workflows, it is assumed that a cloud orchestrator oversees
the cloud operations of various DCs, interacting with DC-
located cloud platforms. This cloud orchestrator is also
responsible for interacting with NIDO. For example, in
Ref. [15] a disaster recovery layer (the cloud orchestrator
in our context) operates over a pair of OpenStack enabled
datacenters (the cloud platforms in our context), enabling
virtual machines (VMs) and volumes to be protected and
recovered in another DC, in case of a disaster.

A. Provisioning of a Distributed VDC

Figure 41 shows the workflow for the provisioning of a
distributed virtual datacenter (VDC), where the VMs com-
posing the cloud service are placed in two different DCs and
need to communicate with a given capacity. This scenario
can easily be extended to other QoS metrics and several
DCs just by provisioning additional network connections
among all the DC servers involved in the cloud service
and setting up in this way an inter-domain virtual network.

The traditional approach is based on the provisioning of
VMs and overlay virtual networks in the two DCs (Steps
1–5). The creation of the overlay virtual network is typi-
cally performed through the configuration of virtual
switches, such as an open virtual switch (OVS) [16], run-
ning on the servers where the VMs are placed, e.g., utilizing
cloud platform components like OpenStack Neutron.
However, this procedure does not allow configuration of
the underlying transport network in the different domains
traversed by the VMs traffic and, thus, it cannot provide
QoS guarantees.

Through NIDO, the workflow is extended with an addi-
tional step triggered by the cloud orchestrator (Step 6).
After the creation of the overlay virtual network and the
allocation of the VMs, the cloud orchestrator invokes
NIDO to request the provisioning of inter-domain network
connections with specified capacity between the servers
where the VMs are placed. This request triggers in turn
the entire automated procedure (Steps 7–9) to establish

Fig. 4. Workflow for provisioning of a distributed VDC.

1In the figure we omit the reply messages for simplicity.

B144 J. OPT. COMMUN. NETW./VOL. 10, NO. 7/JULY 2018 Landi et al.



an end-to-end path from a server in DC 1 to another in DC
2, through which the VMs traffic will be carried.

B. Cloud Service Recovery

Mechanisms for cloud service recovery are usually pro-
vided by cloud operators in order to offer a certain level of
protection against data loss in case of infrastructure fail-
ures or disruptive actions on the VMs [2,15]. Snapshots
of active VMs are captured periodically and are moved
to a remote DC, so that they can be re-used to re-instantiate
the service during disaster recovery procedures. The trans-
fer of VM snapshots between DCs generates a huge amount
of traffic that is currently carried through the same connec-
tions used for serving the traffic of active VMs. This may
create overloading situations, impacting the performance
of the running cloud services. To solve this issue, NIDO
allows creating dedicated-isolated inter-domain network
connections with a given amount of reserved capacity, so
that they can be used exclusively to transfer the VM snap-
shots without interfering with other cloud service traffic.

Figure 52 shows the workflow for the provisioning of a
dedicated network connection between DC 1, where the
reference VM is running, and DC 2, i.e., the target DC
where the VM snapshot will be saved. The whole procedure
is coordinated by the cloud orchestrator. In Step 2, it re-
quests from the cloud platform to create a snapshot of the
VM. In Step 3, it interacts with NIDO, requesting the pro-
visioning of the connection between the source and target
server (Steps 4–6), while in Step 7 it requests the migration
of the VM snapshot to the target DC. The related traffic will
be routed through the end-to-end (intra-DC and inter-DC)
network path established in the previous stage.

IV. NEPHELE DATACENTER ARCHITECTURE

This section describes the architecture of the NEPHELE
[4,17] intra-datacenter network (DCN), presenting the
main technologies adopted at the data plane level and the
high-level mechanisms offered by the SDN control plane
and the cloud platform to efficiently manage its resources.
The internal details of the NEPHELE intra-DC SDN
controller are provided in Section V.

The NEPHELE DC follows the SDN approach: the data
and the control plane are decoupled and interact through
open interfaces and protocols at the southbound interface
(SBI) of the SDN controller. The SDN controller through its
NBI can provide network customization to applications,
delivering connectivity and specific capacity. On top of that,
a cloud management platform orchestrates all the DC
resources (computing, storage, and networking) by inter-
acting with the related resource controllers to deliver
end-to-end cloud services to upper layer applications.
The NEPHELE architecture is compliant with this trend
and follows a three-layer architecture:

• The DCN data plane employs hybrid optical–electrical
switching to support high capacity and energy efficiency.

• The DCN network control framework is based on an SDN
controller that interacts with the hybrid optical/electrical
DCN through SBI, and also offers NBI to the cloud
orchestrator

• The cloud orchestrator operates jointly the whole DC
infrastructure, coordinating the resource allocation
(computing, storage, and DCN), delegating the actual
DCN configuration to the network control framework.

A. Data Plane Architecture

TheNEPHELEDCNdata plane (Fig. 6) is based on a flat
topology with two tiers that can be easily scaled in the east–
west direction without increasing traffic latency and con-
gestion. The network is divided into pods, each containing
W racks, and there are P pods in the network. Each rack
contains a number of innovation zones, where an innova-
tion zone is a collection of hosts, storage, memory, and other
devices. A rack uses a hybrid electrical/optical top-of -rack
(TOR) switch (first tier) to connect to an all-optical network
(second tier) that interconnects the pods. All TORs in a pod
are connected with one optical port to a POD switch, form-
ing a star topology. The POD switch is built with arrayed
waveguide gratins (AWGs), splitters, combiners, and
wavelength selective switches (WSSs). P POD switches

Fig. 5. Workflow for migration of a VM snapshot.

Fig. 6. NEPHELE data plane architecture.2In the figure we omit the reply messages for simplicity.

Landi et al. VOL. 10, NO. 7/JULY 2018/J. OPT. COMMUN. NETW. B145



are connected with R unidirectional rings to create an all-
optical network that we call optical plane.

To scale the network, we connect I parallel (independent)
optical planes, each of which consists of P POD switches.
Each TOR switch is connected to all the I POD switches of
the pod, where each (north) port of the TOR switch is
connected to a different POD switch. The TOR also has
S (south) ports facing the innovation zones.

The NEPHELE optical network uses WDM and time
division multiplexing (TDM). Regarding WDM, the key
concept is that each rack listens to a specific wavelength,
and there are W wavelengths used in the network, which
equals, by design, the number of racks in a pod. Thus, in
each pod, each TOR is reached via a different wavelength,
and wavelengths are reused in different pods. Each port of
the TOR is equipped with a tunable laser that tunes ac-
cording to the selected destination. Each optical link from
TOR to POD (or POD to TOR) switches carries a single
wavelength at a time, while wavelengths are multiplexed
in the fiber rings connecting the POD switches.

The network operates in a slotted manner (TDM), where
T slots form a period. In the upstream direction, wave-
length assignment is performed dynamically, per TDM slot,
identifying uniquely the position of the destination TOR
switch within the target POD switch. The slot containing
the optical signal is then switched all-optically in the net-
work of POD switches, so in the east–west and downstream
directions the wavelength assignment is static.

B. SDN-Based Control and Orchestration
Architecture

The goal of the NEPHELE DCN control framework is to
provision intra-DC connections and optimize the usage of
the DCN physical infrastructure, while guaranteeing the
desired level of QoS for the applications running in the
virtual environments. To do so, it makes use of the WDM
and TDM concepts to achieve fine granularity and dynam-
icity in the assignment of network resources.

In NEPHELE, DCN resource allocation is driven from
applications and the related traffic dynamics. These are
captured in a traffic matrix built according to the cloud ser-
vice requests. This approach makes it possible to transfer
application awareness from the cloud platform to the net-
work control plane, enabling a more tight cooperation be-
tween the cloud orchestrator and the SDN controller. This
implies that the cloud orchestrator is capable of managing
enriched cloud service models, with service templates de-
scribing network requirements and traffic patterns, as
expected by the cloud applications. These parameters con-
stitute the input to the network controller and feed advanced
algorithms for application-aware network allocation [18].

The NEPHELE control and orchestration architecture
is shown in Fig. 7. The cloud management platform
(e.g., OpenStack) orchestrates the resources (computing,
storage, DCN) of the entire DC and delivers virtual infra-
structures to different tenants. The DCN is controlled

through the centralized SDN controller, which implements
the network logic. For scalability purposes, the logic of the
SDN controller can be split across several entities following
a hierarchical approach, with child controllers dedicated to
optical planes or pods and an upper-layer/parent-controller
responsible for coordinating them. The SDN controller
prototype that was developed (see Section V) followed a
strictly centralized approach.

V. OCEANIA–NEPHELE SDN CONTROLLER

The NEPHELE SDN controller prototype, called
OCEANIA, was developed in the OpenDaylight (ODL)
framework [19].

OCEANIA has the complete view of the NEPHELE
DCN, composed of the hybrid TOR and POD switches
and hosts. It offers a REST API at its NBI to receive service
requests that describe the application traffic requirements,
driving the creation of new or the adaptation of existing
network connections. The OCEANIA REST API is an ad
hoc development that allows for specifying both the end-
points and the capacity of the network connections to be
established between DC nodes to optimize the translation
of these requirements into the allocation of optical resour-
ces. Such requirements are translated appropriately to
form the input of the optimization engines, which decide
on the allocation of the resources. The resource allocation
decisions are then translated into a set of OF [12] rules that
are installed into the DCN data plane devices (TOR and
POD switches), configuring their forwarding behavior.
The interaction of OCEANIA with the data plane is based
on extended OF messages that support advertisement,
operational configuration, and monitoring.

OCEANIA is released as open source software [20] and
was also publicly demonstrated [21]. In the following we
present its internal mechanisms and workflows.

A. SDN Controller Functional Architecture

OCEANIA, NEPHELE’s SDN controller, adopts a dual
strategy for resource allocation, with real-time reactions

Fig. 7. NEPHELE control and orchestration frameworks.

B146 J. OPT. COMMUN. NETW./VOL. 10, NO. 7/JULY 2018 Landi et al.



for short-term decisions and periodic reconfiguration of the
entire DCN for medium-/long-term decisions.

The short-term strategy is applicable to service requests
that require the upscale or downscale of already active
services, and to react to data plane failures with fast recov-
ery. These cases require high dynamicity, and thus the SDN
controller adopts fast “online” or “incremental” algorithms
[18] to react quickly to such single (or few) events, even if
leading to suboptimal solutions. The short-term strategy
takes into account the new requests and incrementally
adapts the previous DCN allocation. This strategy is well
suited for on-demand provisioning and fast recovery of net-
work connections. However, in order to maximize the DCN
usage, a second, medium-/long-term strategy provides bet-
ter performance. In this case, application traffic profiles are
used as input to build an application-aware traffic matrix
that can be updated over long periods. Offline scheduling
algorithms that can take long computation time are used to
optimally allocate the resources in this case.

Figure 8 shows the OCEANIA functional architecture,
including the main components and interactions for
short- and medium-/long-term resource allocation. The in-
teraction between the SDN controller and the data plane is
performed via the SBI; the extended OF protocol is used for
configuring TOR and POD switches and the OVSDB [22]
protocol for configuring the OVS instances on the servers.

The core services provide basic functions, abstracting the
physical resources with unified information models. These
services are invoked by higher layer SDN applications, to
collect the network topology or monitoring information or
to issue configuration commands through protocol- and
technology-agnostic interfaces. In compliance with the
ODL framework, all the interfaces of the services use
YANG models [23] and can be invoked by other ODL
components or by external entities via REST APIs.

The NEPHELE DCN logic is implemented in the
programming applications. They employ special purpose
optimization algorithms for short- and medium-/long-
term resource allocation decisions at the ONLINE
COMPUTATION ENGINE and at the traffic offline sched-
uling engine, respectively. The application affinity service

coordinates the workflows for DCN resource allocation
based on traffic profiles and requirements. As in core ser-
vices, all the DCN programming applications expose REST
APIs to enable the interaction with the cloud platform.

B. DCN Configuration Workflows

This section describes the internal workflows to allocate
network resources in the NEPHELEDCN following the ap-
proach based on the periodic reconfiguration of the whole
infrastructure, with the optimal allocation solution com-
puted by the offline scheduling engine [18].

The workflow initiates from the application affinity ser-
vice, when it receives a request to initiate a network con-
nection for a particular application profile. The details of
the requested connections are forwarded to the traffic ma-
trix engine, which updates the current traffic matrix with
the new data. Then, the offline engine starts to re-compute
the allocation of the network resources for the entire DCN
(see Fig. 9).

Depending on the DCN dimension, the offline engine
computation may take time, so the application affinity ser-
vice periodically requests the engine until the result is
available (see Fig. 10). The network allocation solution pro-
vides the timeslots and destinations (wavelengths) to be
used for the communication of each source, taking into ac-
count the architecture constraints (use single Tx and Rx at
each timeslot, and no wavelength or timeslot conversion).
As soon as the computation terminates, the application
affinity service forwards the solution to the flow manager,
which de-aggregates the data contained in the matrix and

Fig. 8. NEPHELE SDN controller: functional architecture.

Fig. 9. Workflow for creation of a new application profile.

Fig. 10. Workflow for updating DCN resource allocation.

Landi et al. VOL. 10, NO. 7/JULY 2018/J. OPT. COMMUN. NETW. B147



returns the list of the flow rules to be installed on the physi-
cal devices.

The flow rules defined in NEPHELE extend the tradi-
tional rules of the OF protocol. In particular, the flowmatch
structure defines a wavelength and the timeslots (de-
scribed in a bitmap) to classify the incoming traffic on op-
tical ports, while the same parameters are defined in the
flow action structure to specify a cross connection between
twoWDMports for the given set of timeslots. The flow rules
resulting from flow manager elaboration are then written
in the ODL configuration data store, triggering the proce-
dures at the OF plugin to send the associated flow mod
messages. At the data plane level, the OF messages are
intercepted by device-specific agents, which handle the
translation to configuration commands toward the FPGA
controlling the data plane hardware.

C. NEPHELE Controller Prototype

The proof-of-concept prototype of OCEANIA [20] is
based on the ODL controller, lithium version, with ex-
tended internal components and a set of SDN applications
developed from scratch. In particular, regarding the con-
troller internal modules, the OF ODL plugin was enhanced
to support the definition of wavelengths and timeslots in
OF rules at the SBI. Moreover, the traffic matrix engine
and the (online and offline) scheduling engine were devel-
oped as external SDN applications that make use of the
controller’s REST APIs. In particular, the scheduling en-
gine is a standalone application written in C, and the algo-
rithm implementation is a translation of MATLAB code
converted using MATLAB coder. The other SDN applica-
tions are Java applications based on the Spring MVC
framework.

The prototype provides mechanisms for (i) accepting re-
quests that specify connectivity requirements between in-
novation zones (Section IV) with a specific capacity;
(ii) aggregating these requests into a global DCN traffic
matrix; (iii) computing a network-wide resource allocation
solution for the specified DCN traffic load; (iv) translating
the allocation solution in the set of extended OF rules; and
(v) requesting the OF plugin to install these rules for the
configuration of the DCN data plane devices, the POD, and
TOR switches.

OCEANIA provides a NBI REST API through the appli-
cation affinity service, enabling its integration with cloud
management platforms, like OpenStack. Moreover, the
ODL DLUX graphical user interface (GUI) was extended
for OCEANIA. Through the GUI we can request new
DCN connections, and visualize the traffic matrix and the
installed flows. The GUI also provides a monitoring and
diagnostic tool for DCN administration purposes.

The OCEANIA prototype was demonstrated with a mix
of emulated and physical devices in Ref. [21]. The demon-
stration (Fig. 11) included the entire DCN configuration
workflow, from the specification of new application-based
connections via the GUI, to the calculation of the resource
allocation solution and its elaboration, up to the OF-based

interaction with the optical data plane through the OF
agents.

VI. JULIUS—INTER-DC ORCHESTRATOR AND EMULATION

PLATFORM

JULIUS [6] is the orchestrator for inter-DC EON. It uti-
lizes Mantis’ [24] path computation element (PCE), provid-
ing optimization logic in multi-layer IP/optical networks.
JULIUS also incorporates a complete emulation platform
for SDN-based, multi-layer IP/optical networks, enabling
the development and evaluation of protocol extensions
[e.g., OF, path computation element protocol (PCEP)]
and resource optimization algorithms. The network emu-
lation platform is based on Mininet [25]. The emulation
environment can be used as a proof-of-concept demonstra-
tion of the maturity of the JULIUS orchestrator and sup-
port its adoption in real SDN-enabled IP/optical networks.
JULIUS is organized in three layers (Fig. 12): the access
layer, the orchestration layer, and the execution layer.

Fig. 11. Prototype of NEPHELE controller.

Fig. 12. JULIUS architecture and its main modules.

B148 J. OPT. COMMUN. NETW./VOL. 10, NO. 7/JULY 2018 Landi et al.



A. Access Layer

The access layer handles the interaction with users
either through a web-based GUI (Fig. 13) or appropriate
REST APIs. The user requests that arrive at the access
layer are translated into commands and sent to the orches-
tration layer. The access layer enables users to build various
network emulation scenarios, execute them, and analyze
their performance easily using the exposed interfaces.

B. Orchestration Layer

The orchestration layer creates and manages the emu-
lation environment and coordinates the execution of the
users’ requests from the access layer to the execution layer.
It consists of the JULIUS orchestrator, the JULIUS SDN
controller, and a number of auxiliary modules that are
responsible for the emulated network infrastructure. The
JULIUS orchestrator’s primary task is the preparation
and management of the emulation based on the user pref-
erences coming from the access layer. Furthermore, the
JULIUS orchestrator constantly monitors all the modules
and reacts accordingly either to changes requested from
the access layer or to any malfunction.

The second basic module is the JULIUS SDN controller,
which is responsible for the control of the IP/optical net-
work. For the implementation of the SDN controller, we ex-
tended the Ryu SDN framework [26]. The interaction of the
JULIUS controller with the devices (packet and optical
switches) is done via SBI using appropriate protocols (OF
and OF with Optical Extensions). The JULIUS controller
also provides a RESTful API, through which it receives and
serves requests from the access layer.

In addition to the above, the orchestration layer also
includes third-party open source tools, which are put to-
gether with the JULIUS orchestrator and the SDN control-
ler in order to build the emulation environment. We used
the Mininet emulator, the OVSs for L3 switches, and LINC
switch for Optical Emulation (LINC-OE) [27] to emulate
optical switches (ROADM) and hybrid switches. The
JULIUS controller interacts with these using OF 1.3 with
Infoblox Optical Extensions, to emulate the peculiarities of
the optical switches.

The orchestration layer also includes the databases that
contain information regarding the capabilities and the cur-
rent state of the network: the TED and the label switched
path database (LSP-DB). These databases, which are kept
up to date by the JULIUS orchestrator and the SDN con-
troller, are used in the computations carried out in the ex-
ecution layer.

C. Execution Layer

The execution layer consists of the PCE that provides to
the orchestration layer the algorithmic logic for performing
efficiently the various network resource allocation deci-
sions. PCE interacts with the JULIUS SDN controller,

using the PCEP, receiving requests for serving new connec-
tions or re-optimizing existing ones. For the PCE imple-
mentation in JULIUS we used an extended version of
Mantis [24], which contains algorithms for a number of net-
work resource allocation operations including routing and
wavelength assignment (RWA), route and spectrum alloca-
tion (RSA), network re-optimization (including spectrum
defragmentation), capacity on demand and calendaring op-
erations, and restoration decisions. Mantis acts as a state-
ful PCE taking its decisions based on the current network
topology (information from the TED) and the state of all the
previously computed and established paths along with
their required resources (information from the LSP-DB).

VII. EVALUATION—PERFORMANCE

We evaluated the proposed hierarchical SDN-based
inter-domain orchestration platform both in an emulated
and a realistic testbed. The purpose was to showcase
dynamic inter-domain path establishment and allocation
of capacity with low control overhead. As discussed in
Section II.A, the proposed architecture assumes all-optical
network (Intra-DC and inter-DC) domains and resource al-
location mechanisms through the related domain control-
lers that provide dedicated capacity, latency equal to the
propagation delay, and negligible losses in each domain.
NIDO establishes end-to-end paths reserving the required
capacity, while with simple extensions it can enforce other
QoS requirements such as end-to-end latency and the
packet loss ratio.

Initially, the performance of the OCEANIA prototype
was validated in a Mininet-based emulated network envi-
ronment, to evaluate the system scalability when operating
with different DCN sizes. In particular, the number of pods
varies from 2 to 6, representing sample topologies for mini
to medium DCNs (from 3200 servers up to 9600 servers),
with a variable number of total network nodes (i.e., TOR
and POD switches) controlled by OCEANIA from 164 up
to 492. The controller was tested by requesting and termi-
nating flows with randomized back-off on the emulated
data plane, with around 240 requests. The average of the
time required to re-configure the entire DCN when a new
flow is instantiated is between 3.6 and 4.2 s, depending on
the size of the reference DC. Similarly, JULIUS design and
implementation was thoroughly validated by using it for
the emulation of various fixed-grid and flex-grid optical
networks, which differ in size and available optical devices.

Next, the overall hierarchical SDN-based inter-domain
orchestration platform (NIDO), along with OCEANIA and
JULIUS, was deployed and functionally validated in a test-
bed using OpenStack as a cloud platform, with a Mininet-
based emulated, inter-domain network [Fig. 14(a)], with
three intra-DC and one inter-DC network domains of var-
iable sizes. The internal topology of each DCN includes
three optical planes, each of them with 10 POD switches.
Each POD switch is in turn connected to 10 TOR switches.
In each DC, the three TOR switches act as gateways toward
the inter-DC network. The inter-DC network includes nine
core nodes, while three edge nodes connect to each DCN.

Landi et al. VOL. 10, NO. 7/JULY 2018/J. OPT. COMMUN. NETW. B149



The experiments were based on multiple inter-domain
requests to set up and tear down end-to-end connections
between hosts located in different DCs, triggered through
the NIDO NBI. We executed five different sets of tests de-
pending on the rate (number of requests per second) used to
trigger the NIDO orchestrator, with a duration set at 600 s
for all the tests. The request rates were: 0.2, 0.5, 1, 1.5, and
2 requests/s. The network orchestrator decomposes the re-
quests in the inter-DC network request part (source and
destination DCs) and inter-DC network requests, trigger-
ing requests to the NBI of each respective controller.

In Fig. 14(b) we report the average time required for
NIDO to perform each sub-task of the orchestration process
as a function of the different request rates. We can see that
in all cases the computation time is negligible, as NIDO
operates on an abstract view of the network that consists
of only DCNs/inter-DC networks as nodes and border links

as edges. Furthermore, most of the path instantiation time
(time between the initial setup request sent to a domain
controller and the last intra-domain path activation) is
spent establishing the paths in the single domains. The
average time between the request’s arrival and the path
activation is between 4 and 4.5 s, which includes also
the overhead intrinsic in the orchestration process, i.e.,
polling the controllers to check the instantiation results
and the resource allocation on the devices.

VIII. CONCLUSION

We present a hierarchical orchestration platform for
inter-domain DC networks that includes hybrid electri-
cal/optical intra-DC networks with WDM and TDMA tech-
nologies and an elastic optical inter-DC network. The
platform utilizes a hierarchy of controllers, where child
controllers are responsible for resource allocation in single
DCNs and in inter-DC network domains (e.g., based on
flex-grid optical technologies), while a parent controller
(NIDO) coordinates the end-to-end service provisioning.
The platform was functionally validated by demonstrating
dynamic and end-to-end allocation of capacity in an
emulated inter-domain testbed.

The presented work can be extended in several direc-
tions. The introduction of other technological domains at
the DC or at the inter-DC network would require the adop-
tion of additional specialized child controllers that would
need to interoperate with NIDO. Another interesting topic
is to extend the architecture toward infrastructure federa-
tions, enabling the integration of services and (virtual) re-
sources from different providers. Finally, the adoption of
NEPHELE architectures in NFV environments would re-
quire NIDO to interface with NFVOs, for example, acting
as a WAN infrastructure manager (WIM).

ACKNOWLEDGMENT

This work received funding from the European Union’s
Horizon 2020 research and innovation program under
grant agreement No. 645212 (NEPHELE).

REFERENCES

[1] “Cisco Global Cloud Index: Forecast and Methodology,
2015–2020,” Cisco White Paper, Oct., 2017.

[2] P. Kokkinos, D. Kalogeras, A. Levin, and E. Varvarigos,
“Survey: Live migration and disaster recovery over long-
distance networks,” ACM Comput. Surv., vol. 49, 26, 2016.

[3] K. Christodoulopoulos, I. Tomkos, and E. A. Varvarigos,
“Elastic bandwidth allocation in flexible OFDM-based
optical networks,” J. Lightwave Technol., vol. 29, no. 9,
pp. 1354–1366, 2011.

[4] NEPHELEEUH2020 project [Online]. Available: http://www.
nepheleproject.eu/.

[5] G. Landi, M. Capitani, D. Gallico, M. Biancani, and K.
Christodoulopoulos, “An application-aware SDN controller
for hybrid optical-electrical DC networks,” in Int. Conf.
Networks (ICN), 2017.

Fig. 13. JULIUS user interface: emulated network topology and
established optical connections.

Fig. 14. (a) Virtual network topology for inter-DC testbed and
(b) average required time for each sub-task for end-to-end path
establishment.

B150 J. OPT. COMMUN. NETW./VOL. 10, NO. 7/JULY 2018 Landi et al.

http://www.nepheleproject.eu/
http://www.nepheleproject.eu/
http://www.nepheleproject.eu/
http://www.nepheleproject.eu/


[6] A. Kretsis, L. Corazza, K. Christodoulopoulos, P. Kokkinos,
and E. Varvarigos, “An emulation environment for SDN
enabled flexible IP/optical networks,” in Int. Conf.
Transparent Optical Networks (ICTON), 2016.

[7] R. Casellas, R. Muñoz, R. Martínez, R. Vilalta, L. Liu, T.
Tsuritani, I. Morita, V. López, O. de Dios González, and
J. P. Fernández-Palacios, “SDN based provisioning orchestra-
tion of OpenFlow/GMPLS flexi-grid networks with a stateful
hierarchical PCE,” in Optical Fiber Communication Conf.
(OFC), 2014.

[8] D. King and A. Farrel, “A PCE-based architecture for
application-based network operations,” IETF RFC 7491,
Mar. 2015.

[9] R. Muñoz, R. Vilalta, R. Casellas, R. Martinez, T. Szyrkowiec,
A. Autenrieth, V. Lopez, and D. Lopez, “Integrated SDN/NFV
management and orchestration architecture for dynamic de-
ployment of virtual SDN control instances for virtual tenant
networks [Invited],” J. Opt. Commun. Netw., vol. 7, no. 11, pp.
B62–B70, 2015.

[10] R. Vilalta, A. Mayoral, R. Muñoz, R. Casellas, and R.
Martınez, “Multitenant transport networks with SDN/NFV,”
J. Lightwave Technol., vol. 34, no. 6, pp. 1509–1515, 2016.

[11] H. Yang, J. Zhang, Y. Zhao, J. Han, Y. Lin, and Y. Lee,
“SUDOI: Software defined networking for ubiquitous data
center optical interconnection,” IEEE Commun. Mag., vol. 54,
no. 2, pp. 86–95, 2016.

[12] Open Networking Foundation, “OpenFlow switch specifica-
tion, version 1.3.1,” ONF TS-007, Sept. 2012.

[13] J. P. Vasseur, R. Zhang, N. Bitar, and J. L. Le Roux, “A back-
ward-recursive PCE-based computation (BRPC) procedure to
compute shortest constrained inter-domain traffic engineer-
ing label switched paths,” IETF RFC 5441, Apr. 2009.

[14] NEPHELE-NIDO [Online]. Available: https://github.com/
nextworks-it/nephele-nido.

[15] L. Tomás, P. Kokkinos, V. Anagnostopoulos, O. Feder, D.
Kyriazis, K. Meth, E. Varvarigos, and T. Varvarigou,
“Disaster recovery layer for distributed OpenStack deploy-
ments,” IEEE Trans. Cloud Comput., 2017.

[16] Open vSwitch [Online]. Available: http://openvswitch.org/.

[17] P. Bakopoulos, K. Christodoulopoulos, G. Landi, M. Aziz, E.
Zahavi, D. Gallico, R. Pitwon, K. Tokas, I. Patronas, M.
Capitani, C. Spatharakis, K. Yiannopoulos, K. Wang, K.
Kontodimas, I. Lazarou, P. Wieder, D. I. Reisis, E. M.
Varvarigos, M. Biancani, and H. Avramopoulos, “NEPHELE:
An end-to-end scalable and dynamically reconfigurable opti-
cal architecture for application-aware SDN cloud datacen-
ters,” IEEE Commun. Mag., vol. 56, no. 2, pp. 178–188, 2018.

[18] K. Christodoulopoulos, K. Kontodimas, A. Siokis, K.
Yiannopoulos, and E. Varvarigos, “Efficient bandwidth alloca-
tion in the NEPHELE optical/electrical datacenter intercon-
nect,” J. Opt. Commun. Netw., vol. 9, no. 12, pp. 1145–1160,
Dec. 2017.

[19] OpenDaylight, Mar. 2017 [Online]. Available: https://www.
opendaylight.org/.

[20] OCEANIA—NEPHELE SDN controller code, Mar. 2017
[Online]. Available: https://github.com/nextworks-it/oceania-
dcn-controller.

[21] G. Landi, I. Patronas, K. Kontodimas, M. Aziz, K.
Christodoulopoulos, A. Kyriakos, M. Capitani, A. F.
Hamedani, D. Reisis, E. Varvarigos, P. Bakopoulos, and H.
Avramopoulos, “SDN control framework with dynamic re-
source assignment for slotted optical datacenter networks,”
in Optical Fiber Communication Conf. (OFC), 2017.

[22] B. Pfaff and B. Davie, “The open vSwitch database manage-
ment protocol,” IETF RFC 7047, Dec. 2013.

[23] M. Bjorklund, “YANG—A datamodeling language for the net-
work configuration protocol (NETCONF),” IETF RFC 6020,
Oct. 2010.

[24] A. Kretsis, K. Christodoulopoulos, P. Kokkinos, and E.
Varvarigos, “Planning and operating flexible optical net-
works: Algorithmic issues and tools,” IEEE Commun. Mag.,
vol. 52, no. 1, pp. 61–69, 2014.

[25] Mininet—An Instant Virtual Network on your Laptop
(or other PC) [Online]. Available: http://mininet.org/.

[26] Ryu SDN framework [Online]. Available: http://osrg.github.
io/ryu.

[27] LINC-OE Optical Switch Emulation [Online]. Available:
https://github.com/FlowForwarding/LINC-Switch.

Landi et al. VOL. 10, NO. 7/JULY 2018/J. OPT. COMMUN. NETW. B151

https://github.com/nextworks-it/nephele-nido
https://github.com/nextworks-it/nephele-nido
https://github.com/nextworks-it/nephele-nido
http://openvswitch.org/
http://openvswitch.org/
https://www.opendaylight.org/
https://www.opendaylight.org/
https://www.opendaylight.org/
https://www.opendaylight.org/
https://github.com/nextworks-it/oceania-dcn-controller
https://github.com/nextworks-it/oceania-dcn-controller
https://github.com/nextworks-it/oceania-dcn-controller
http://mininet.org/
http://mininet.org/
http://osrg.github.io/ryu
http://osrg.github.io/ryu
http://osrg.github.io/ryu
http://osrg.github.io/ryu
https://github.com/FlowForwarding/LINC-Switch
https://github.com/FlowForwarding/LINC-Switch

	XML ID ack1

