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Abstract. Short distance optical interconnects are a promising solution for tackling the 
bandwidth and low energy consumption requirements of next generation Data Centers (DC) 
and High Performance Computing (HPC) systems. The realization of optical switching should 
offer scalability, allowing the interconnection of multiple racks and/or servers/compute nodes, 
and quick reconfiguration times. To this end, fast small-radix MicroRing Resonator (MRR)- 
and Mach-Zehnder Interferometer (MZI)-based space switching devices, capable of 
supporting multiple optical signals multiplexed through Wavelength Division Multiplexing 
(WDM) have been reported. Using such devices as building blocks we evaluate the 
performance of a number of simple electro-optic switch architectures based on successive 
wavelength selection, WDM multiplexing and space switching, attempting to achieve scalable 
switching fabrics with good throughput performance on average using little additional 
hardware and few switching stages, thus lower total insertion losses as well as lower power 
consumption. The price paid for such architectural simplicity is that it introduces additional 
constraints on the feasible permutation matrices of such switching fabrics, affecting 
performance for some traffic patterns. We discuss the trade-offs between performance and 
hardware requirements and based, on our findings, we propose alternative architectures that 
overcome these limitations. 
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1. Introduction  

 The bandwidth requirements within Data Centers (DC) are increasing rapidly due to 
both processor evolution and the continuous growth of Big Data analytics and cloud-based 
applications: the annual global cloud traffic is predicted to quadruple by 2019 (from 2.1 to 8.6 
ZettaBytes [1]). Power consumption poses another important issue as global DC power 
consumption is projected to rise to 1012 billion kWh in 2020 [2]. A similar trend is observed 
in the High Performance Computing (HPC) community where off-chip bandwidth of tens of 
Tb/s will be demanded to meet future HPC requirements [3].  
 Optics is a promising energy-efficient solution providing terabit transmission through 
Wavelength Division Multiplexing (WDM) that could satisfy the increasing bandwidth needs 
of DCs and HPCs. Optics has already found its way inside DCs and HPC systems and is 
expected to be deployed over ever shorter distances (board-to-board, on-board, and even on-
chip) [4] in the near future, for both data transmission/reception and switching. A number of 
hybrid and all-optical architectures for rack-to-rack communication in DC and HPC systems 
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can be found in [5] (and references cited there) where energy consumption benefits from the 
application of optics in such environments are also discussed. An important part of this trend 
is silicon photonics (Si-Pho), emerging as a powerful technology for optical connectivity in 
integrated circuit environments [6]. The realization of switching in the optical domain should 
offer scalability in the interconnection of multiple racks and/or on-board compute nodes (in 
HPC systems), while achieving fast reconfiguration times. In DCs in particular, the packet 
sizes cluster around 200 and 1400 Bytes (see discussion in [5]). They are either small control 
packets or parts of large files that are fragmented to the maximum packet size of the Ethernet 
networks (1500 Bytes). In order for a switch to operate at packet granularity, reconfiguration 
times of a few nanoseconds or less are best (a 200 Byte packet needs 40 ns to be transmitted 
assuming 40 Gb/s channels). Optical switching can be realized by configuring various 
devices, such as Micro-Electro-Mechanical Systems (MEMS), MicroRing Resonators (MRR), 
and Mach-Zehnder Interferometers (MZI). The typical limitation of the former is their slow 
reconfiguration times making them suitable only for slow optical circuit switching (OCS), 
even though faster MEMS-based switches have been recently reported [7]. Since fast 
switching times are required for DC and HPC, the development of MZI- and MRR-based fast 
Si-Pho switches is an area of intense research focus. In particular, 4×4, 8×8, 16×16 MZI and 
MRR space switches have been reported [8]-[13] based on multiple 2×2 MZI and MRR 
switching elements, respectively delivering  reconfiguration times below 5 ns. 
 Architectures based on such photonic switches, combined with the WDM capability 
of optics in order to achieve high connectivity degrees are described in [14]. [15] presents a 
8x8 switch architecture where 2 groups of 4 data signals are multiplexed using WDM in a 
single signal that is then spatially (in the space domain) switched using a 2×2 MZI switch. In 
PhoxTrot project [16, 17] a similar approach is followed, where 12 optical channels each 
carrying a rate of 40 Gb/s are multiplexed in a single signal that is then spatially switched 
using a 4×4 MZI switch (and then demultiplexed), leading to a 48×48 switch with near 2 
Tbp/s maximum throughput. In what follows we will refer to this approach as the PhoxTrot 
switch. In [12] the scalability of MRR based switch fabrics for WDM signals is examined for 
DC application, showing that a 128×128 switch with 6 wavelengths per port is feasible, 
assuming however a large power budget (35dB). 
 In the present work, we examine a number of straightforward switch architectures, 
like the ones discussed above, where multiple optical inputs are multiplexed in a WDM 
signal, which is then switched in the space domain using a single (MZI- or MRR-based) chip, 
and is demultiplexed at the output in order to reach the desired destination. In this way, high-
radix switches can be built with few optical switching stages, resulting in low total insertion 
losses, thus addressing the main scalability limitation of silicon photonic space switching 
elements. We discuss the advantages in hardware requirements of these approaches compared 
to other wavelength-space alternatives, such as the architectures proposed in [18, 19] based on 
Semiconductor Optical Amplifiers (SOA). We also discuss how these architectures can be 
expanded in order to interconnect multiple state-of-the-art electronic switches leading to 
larger electro-optic switching structures. These approaches offer scalability, achieving good 
throughput on average with little additional hardware and smaller optical paths in terms of 
basic switching elements. The architectures discussed have different hardware requirements 
and different functionality, in terms of the input-output permutations they can switch in a 
single step without contention. Their blocking and non-blocking characteristics are discussed 
based on the scheduling complexity they require and the maximum throughput they achieve. 
We also discuss the performance-hardware requirements, the functionality limitations and the 
blocking/non-blocking characteristics of them, the trade-offs involved and, based on our 
findings, we propose alternative architectures to overcome these limitations. 
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 In Section 2, we define the class of switch architectures to be studied, viewing the 
PhoxTrot switch as a single case of this class, and we compare them to other configurations 
and architectures, in terms of hardware requirements, functionality and power consumption. 
In Section 3, we discuss the implications on scheduling that limit throughput and lead to 
speedup requirements. In Section 4, we examine the performance of such architectures (in 
terms of throughput and required speedup) for various traffic patterns. In Section 5, we 
discuss a variation of these architectures interconnecting multiple state-of-the-art electronic 
switches that can lead to larger electro-optic switching structures. In Section 6, we present 
alternative architectures without the aforementioned constraints, while in Section 7 we 
conclude this paper. 

2. Electro-Optic Switch Architectures 

 In this section we first give some important, well known definitions regarding the 
blocking/non-blocking properties of a switching fabric (Section 2.1). We also discuss the 
buffer organization in switching fabrics and the way they relate to speedup (Section 2.2). 
Then we briefly describe the PhoxTrot switch architecture. We also define a class of similar 
switch architectures, viewing the PhoxTrot switch as an instance of this class (Section 2.3), 
investigate its merits and compare its hardware requirements to those of other configurations 
(Section 2.4). We also discuss options for this family of architectures regarding buffer 
organization in the inputs and scheduling decisions (Section 2.3.1). 
 

2.1. Blocking and Non-blocking Switching Fabrics 
 
 The switching fabric is the heart of modern routers and switches. In what follows we 
will assume packets of fixed and equal length, called cells. A switching pattern is a particular 
set of connections between input and output ports of the switch. The following constraints 
must be satisfied for any switching fabric providing point-to-point connectivity: 

Constraint C1) a single input is connected to at most one output 
Constraint C2) at most one input is connected to a single output  

If input i wants to connect to output π(i), i=1,2,…, N, constraints C1 and C2 basically state 
that π( ) should be a permutation function. A switching pattern satisfying constraints C1 and 
C2 (i.e., a permutation input-output pattern) is a blocking switching pattern if the data cells 
cannot be transmitted on all connections simultaneously without collisions. A switch 
exhibiting blocking switching patterns is a blocking switch, while a switch that does not 
exhibit such patterns is a non-blocking switch [20]. The number of switching patterns that 
satisfy constraints C1 and C2 for switches of size N×N is N!, equal to the input-output 
permutations. We define the functionality of a switch as the number of different input-output 
permutations it can handle. A non-blocking switch has a functionality of N! A blocking 
switch has reduced functionality, but possibly requires lower cost and fewer components for 
its implementation. Finally, a common distinction for non-blocking switches, is between 
Strictly Non-Blocking (SNB) and Rearrangeably Non-Blocking (RNB) [20]. In the former, a 
connection can always be set up between any idle input and any idle output without disturbing 
connections already set up. In the latter when establishing a connection between an idle input 
and an idle output, internal paths of existing connections may have to be rearranged to set up 
that connection. SNB is desirable for circuit switching so as not to disturb existing circuits. 
For packet switching, RNB switches work equally well, assuming that an appropriate 
algorithm is executed in every step to ensure non-blocking switching configurations. 
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2.2. Buffer Organization in Switches and Speedup 
 

 A traditional distinction regarding the buffer placement and organization in switches 
is between Input-Queued (IQ), Output-Queued (OQ) and Combined Input and Output Queued 
(CIOQ) approaches [21, 22]. An important design parameter of switching fabrics is speedup. 
Speedup S is defined as the ratio of the switch bandwidth provided to the minimum switch 
bandwidth needed to support full throughput on all inputs and outputs [23]. An N×N switch 
with speedup of S can remove up to S cells from each input and transfer at most S cells to 
each output in a time slot. S>1 requires faster internal line rates (compared to the input and 
output port line rates), and memory with shortened access time and faster scheduling 
decisions. Furthermore, S>1 is required to perform output buffering, given that the line rates 
of the output ports are the same to those of the input ports. It is well known that OQ switches 
require speedup S=N to achieve full throughput. IQ switches can operate with S=1 applying 
what is known as Virtual Output Queues (VoQ) concept in the inputs [24] to avoid 
performance degradation due to Head-Of-Line (HOL) blocking [21]. For 1 < S < N a CIOQ 
approach is required. CIOQ switches can exactly emulate the behavior of an OQ switch using 
a speedup of 2-1/N [25]. 

 
2.3. WS–mSS Switch Architectures 

  
 We first describe briefly the architecture of a 48×48 electro-optic router chip 
currently pursued within the PhoxTrot project and comprising a 4x4 Si-Pho switching matrix 
equipped with wavelength MUX/DEMUX stages at every of its I/O ports. [16, 17]. The heart 
of the PhoxTrot router chip is a 4×4 Benes photonic switching fabric consisting of multiple 
cascaded 2×2 switching elements. This photonic switch performs Space Switching (SS), since 
it does not consider/distinguish based on the wavelength of the switched traffic. The 2×2 
switching elements are Mach Zehnder Interferometer (MZI) switches that have been so far 
demonstrated in several switch matrix implementations as reliable and broadband switching 
modules, usually exploiting electro-optic-switching mechanism [8]-[13]. MZI-based Si-Pho 
switches have been shown also in higher radix arrangements co-integrated even with all 
necessary CMOS driving circuitry on the same chip [13].   Figure 1a depicts such a 4×4 non-
blocking switching matrix consisting of 6 symmetric single-arm MZI-based switching 
elements arranged in a Benes topology, while many 4×4 switching matrices can be combined 
in larger switching topologies with a higher port count, towards implementing larger photonic 
n×n switching fabrics. The reconfiguration time of this 4×4 switch is 1.4 ns. 
 The overall router chip architecture that will incorporate the 4×4 SS, under study in 
the framework of PhoxTrot, will route a stream of 12 multiplexed signals (using WDM) per 
port of the 4×4 photonic non-blocking switch, leading to 4×12 input and 4×12 output 
multiplexed signals, creating a 48×48 switching element. The transmitter and receiver 
modules of the router chip will rely on flip-chip bonded Vertical Cavity Surface-Emitting 
Laser (VCSELs) [26] and Photodetectors (PDs), respectively, with every VCSEL of the 12-
VCSELs array emitting at different wavelength from 1520nm to 1580nm and supporting 
multi-level modulation formats with a bit rate up to 40 Gb/s [27].  The 12 input channels are 
WDM multiplexed (MUX) through a combiner or an Array Waveguide Grating (AWG) and 
fed into the first input port of the 4×4 SS switch. They are demultiplexed (DEMUX) at the 
output with an AWG, and thus each input pin is being forwarded to the corresponding output 
pin. The router chip follows an IQ approach with VOQ organization of the input buffers. A 
CIOQ approach was not preferred, as it would require opto-electronic and electro-optic 
conversions at both ends. An OQ approach requires speedup S=4, something not practical due 
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to the high line rates, unless the input and output channel rates were reduced to 10Gb/s. An 
illustration of the router chip architecture is depicted in Fig. 1a. In order to allow Wavelength 
Selection (WS) in the inputs, either a 12×12 electronic switch is required in the input and/or 
appropriate buffer organization (see Section 2.2.1). Since a Wavelength Selection (WS) stage 
(implemented in the electronic processing part) is followed by a Space Switching stage for the 
multiplexed WDM signal (mSS), we will refer to such an architecture as a WS-mSS switch. 

 

Fig. 1 a Single chip implementation of a 48×48 WS-mSS switch: 12 signals are multiplexed in each input of the 
4×4 Space Switch (SS), and they are switched to the appropriate SS output port, where they are demultiplexed. b 
Alternative implementation of the 48×48 WS-mSS switch: 4 Linecards interconnected using the 4×4 optical switch 
on backplane or on a different card. c 192×192 switch constructed by using 4 48×48 electronic switches, 4 4×4 SS 
and 12 signals (de)multiplexed in a single (output) input. 
   
 An alternative implementation of the same WS-mSS architecture is depicted in Fig. 
1b. A key difference of this version is that the inputs and outputs are electrical signals. Optics 
is used only internally in the switch. This allows buffering and electronic processing at the 
outputs as well, leading to a CIOQ approach, which can provide S>1. In Fig.1b this version is 
depicted using 4 linecards, corresponding to the 4 interconnected groups of inputs-outputs 
(wavelengths), and the 4×4 optical SS is located on the backplane or on a different linecard.  
 The aforementioned WS-mSS architectures can be generalized assuming a single n×n 
optical Space Switch (SS) and n m×m Wavelength Selection (WS) elements, where m is the 
number of wavelengths that can be multiplexed in a single optical signal, leading to N×N 
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swiching fabrics, with N=n·m. In this case, input (or output) port i of the N×N switching fabric 
belongs to group � = ��/�� of the SS and to the input (output) pin � − (� − 1) ∙ � of the 
respective WS group. PhoxTrot case can be seen as a special case of this architecture with 
n=4, m=12 and N=48.  
 Ideally, EO and OE conversion would occur only in the inputs and outputs, 
respectively, of an all-optical DC or HPC network, using purely optical switching in-between. 
However, since large DC and HPC networks contain thousands of switches (as opposed to 
long-haul and metro networks where 10-100 nodes are found) and short-range optical 
transmitters are used,  OEO conversion and/or optical signal amplification is unavoidable. 
The latter should be avoided as well due to power consumption: a 40 Gb/s VCSEL-based link 
has a power consumption of 22.3 pJ/bit leading to 0.892W [28], while an amplifier has a 
power consumption of 0.5-1 W depending on the type of amplifier ([2], p. 23, 24). Instead of 
using amplification or OEO conversion between WS-mSS chips, OEO conversion was 
incorporated in the chip architecture of Fig. 1a. Most “all-optical” DC and HPC architectures 
presented in the literature (see [5]) are based on high-radix all-optical switches used to replace 
the higher layers of the fat tree architectures in DC networks (aggregation, core), leading to 
fewer tiers and flatter architectures. Thus, up to the Top-of-Rack (ToR) layer is the electronic 
domain and the highest layer is the all-optical part of the fat tree, using the optical switches. A 
similar approach using WS-mSS is described below.  
 Multiple WS-mSS switching elements can be used in order to interconnect multiple 
state-of-the-art k×k electronic switches, with k=n·m, assuming n n×n SS and that m 
wavelengths can be multiplexed in a WDM signal, leading to an N×N switching element with 
N=k·n=m·n2. In this way, in the first stage there are n k×k electronic switches. The output 
ports of the k×k switches are divided in n=k/m groups, where the m wavelengths of a single 
group are multiplexed in a single signal. In the second stage, n n×n SS elements are used. A 
single group � ∈ [1,2, . . , �] of multiplexed signals of a single kxk electronic switch � ∈[1,2, . . , �] is connected to input port i of SS element j. In the third stage there are n groups of 
de-multiplexing elements. Output port � ∈ [1,2, . . , �] of SS � ∈ [1,2, . . , �] is connected to de-
multiplexer l of group o. Thus, n k×k electronic switches and n n×n SS are required in total. In 
Figure 1c an example is presented for k=48, n=4, m=12 leading to a 192×192 swiching 
element requiring 4 48×48 electronic switches and 4 4×4 SS. For comparison, a 192×192 fat 
tree implementation based only on 48×48 electronic switches requires 12 electronic switches 
interconnected in a 2-layer fat tree. Using this concept electro-optic switches with extremely 
high radix can be realized, achieving port numbers far beyond what current exclusively 
electronic or exclusively photonic switches can offer. 
  

2.3.1. Buffer organization at the inputs 
 
 In the following, we outline 2 architecture variations regarding the VOQ organization 
at the inputs, to avoid HOL effects, as well as switch scheduler/allocators arrangements. 
 The first version of the architecture requires additional n m×m electronic switches: a 
single m×m electronic switch (with its m VOQs per input) is present after the PDs and before 
the VCSELs in order to select the appropriate wavelength/VCSEL. In this version, after the 
PD, there are n VOQs for a single input, each corresponding to a different desired output port 
of the n×n SS element followed by the m VOQs for the m×m WS electronic switches (thus 
n+m VOQs/input port in total). This version lends itself to n+1 separate scheduling decisions: 
1scheduler is used for the n×n SS and n for the respective m×m electronic switches (depicted 
in Fig. 2b for the PhoxTrot case). The SS scheduler will configure the n×n SS and will decide 
which groups of VOQs will be used to forward the cells to the m×m VOQs that follow. Note 
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that in this case, switching using the WS-mSS consists of two separate switching stages: the 
SS must stay in a configuration for 2 cycles for scheduling incoming cells. In order for a cell 
to be able to be served in a single scheduling slot of the WS-mSS, a speedup value equal to m 
would be required for the m×m switching elements. 

 

Fig. 2 a 5 schedulers: 1 for the 4×4 SS and 4 for the respective 12×12 electronic switches and the respective VOQ 
organization in the electronic part of the PhoxTrot chip. b A single scheduler for both the WS and SS tasks and the 
respective VOQ organization in the electronic part of the PhoxTrot chip. 
 
 The speedup requirements of the electronic switch can be eliminated if N=n·m VOQs 
are used for every input port. The N VOQs are divided in n groups of m VOQs. The n groups 
correspond to the n outputs of the n×n SS element. In principle the m×m switches can be 
avoided completely (Fig. 2b). The (single) scheduler will configure the n×n SS matrix using a 
specific scheduling algorithm. Based on this decision, it will use the respective groups of m 
VOQs in order to determine which cells it will finally forward to the chosen input ports of the 
n×n SS. For example, if the scheduler in Fig. 2b decides to connect the input port 4 of the SS 
to SS output port 2, it will use the 12 VOQs contained in VOQ groups 2 for all the 12 inputs 
of group 4. Note that the scheduling decisions could again be broken in n+1 schedulers: the 
SS scheduler decides the VOQ groups that will be used in the input ports while the remaining 
n decide which cell will be forwarded from the selected (by the first scheduler) VOQ groups. 
 

2.4. Electro-optic Switch Architectures: Hardware Requirements, Functionality and 
Power Consumption Comparison 

 
 In this section we compare the Ws-mSS architectures presented above with silicon 
photonic switches employing only space switching, as well as other space-wavelength 
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switching architectures, in terms of cost, functionality and energy consumption. We assume 
that we have packet switching and that buffering and signal regeneration are used in all cases. 
Thus, for all N×N packet switch architectures presented below (both SS and WS/SS), N lasers 
and N receivers are used. Finally, we also compare the WS-mSS approach of Fig. 1c to an all-
electronic switching case. 
 The first two columns in table 1 present the total number (and the size) of basic 
switching elements as well as the number of switching elements found in the worst case 
optical data path for the respective architectures. The following columns present the 
technology of the switches, the switching type (either SS or SS combined with WS, using m 
wavelengths), the functionality of the switch and the minimum required speedup S to achieve 
100% throughput, given that the HOL effect has been eliminated through VOQs in the inputs. 
For the WS-mSS case, the N VOQ’s/input are treated as described in Section 2.3.1. 
 The first 3 architectures are common switch topologies implemented using MZI- or 
MMR-based silicon photonics devices [9] assuming only Space Switching (SS). A basic 2×2 
MZI switching element consists of two interferometers linked by two arms with an equal 
length. By changing the phase difference of the two arms, the MZI is switched from “cross” 
to “bar” state. A basic 2×2 MRR switching element consists of two silicon MRR’s and two 
crossing silicon waveguides. The “cross” and “bar” states are implemented by actively 
changing the on- and off- resonance of the MRRs to the input signal. The cross-point 
topology is a crossbar-like configuration requiring N2 basic 2×2 switching elements arranged 
in an N×N mesh. The Switch and Select topology is a tree-like topology where the number of 
switching stages is 2·log2N for all paths, employing only 1×2 and 2×1 basic switching 
elements. The Benes topology requires the minimum (for non-blocking design) number of 
switches and switching stages, and this is why it is arguably the most popular choice for such 
switch implementations [8]-[13]. The RNB feature of this topology requires that an 
appropriate algorithm is executed at every step to ensure non-blocking switching 
configurations. The main scalability limitation of all these approaches is the insertion loss. 
Optimistically, each MZI has insertion losses of 1.5 dB [9]. Taking into account a typical 
laser output value of +3dBm for the transmitter (typical value for VCSELs) and that typical 
receiver sensitivities hardly go lower than -11dBm for >25Gb/s data rates [9], the available 
power budget for >25Gb/s optical links turns out to be lower than 14dB. Relaxing the data 
rate to 10Gb/s can increase the power budget to higher than 20-25dB. Assuming N=n=32, the 
9 switching stages of a solely SS Benes-based approach give 13.5 dB insertion losses, leaving 
almost no margin for additional loss parameters originating from I/O coupling stages and for 
additional parameters affecting signal quality, like crosstalk, when targeting 40Gb/s data rate 
links. The optical data path (the modules the optical signal will meet) in a WS-mSS approach, 
assuming an n×n Benes SS, and m wavelengths per input/output consists of the multiplexer 
(m×1 MUX), followed by 2·log2n-1 switching stages and the de-multiplexer (1×m DEMUX). 
Assuming 1 dB insertion loss for the (DE)MUX [9], an N=32 WS-mSS with n=4 and m=8 
requires 3 switching stages, yielding insertion losses equal to 6.5 dB. The insertion losses for 
SS and WS-mSS MZI switches of various sizes are shown in Fig. 3a, using the 
aforementioned values for the MZI and the MUX/DEMUX, assuming Benes topologies for 
the space switches. Already for m=2 the WS-mSS approaches give fewer losses than the 
respective SS approaches. For m=16 the power budget requirements using WS-mSS switches 
is less by 10dB than the respective SS implementations. In Fig. 3b we present the power 
consumption for the same cases of Fig. 3a. Since the number of transmitters and receivers is 
the same for all architectures, their power consumption is not taken into account. A MZI has a 
power consumption of 2 mW [9] while the AWG (DE)MUX are passive. Since WS-mSS 
switches increase the port number without additional active elements, they are more energy 



 
efficient than SS switches. 
compared to the SS implementations
 

Table 1: Electro-Optic Switch architectures: Cost and Functionality Comparison.
 # of switching 

elements 

Benes N·log2N-N/2  
(2×2 SS) 

Cross-point N2 (2×2 SS) 

Sw. & Select 2·N·(N-1) 
(1×2 & 2×1 SS) 

SOA WS-SS 2·N 
(1×n & n×1 SS) 

 
OSMOSIS 4·N  

(m×1 SS & m×1 
WS) 

 
WS-mSS n·log2n - n/2 (2×2 

SS) 

 
 As discussed above, WS
and lower power consumption
of the WS-mSS switch, which is 
and its impact on scheduling is examined in detail in Section 3. 
functionality can reduce throughput up to 1/min(
appropriately chosen traffic patterns. Vice v
depicted in Fig. 1b, where the optics reside inside the switch, speedup equal to min(
needed to ensure 100% throughput for all cases. 
uniformly distributed numbe
speedup requirements are much less (closer to 1).
WS-mSS on throughput and speedup requirements is discussed in more detail in Section 4. 
Figure 3c the maximum throughput
and 3b. The number of cells 
distributed from 1 to 1000. 
m=32 and 64 (giving N=128 and 256) the respective throughput values are 0.903 and 0.92 
(not shown in Fig 3c). Thus, WS
while exhibiting all the advantages described above: 
consumption. It follows from the discussion above that i
with 100% throughput in all cases 
dimension (n or m) should be 
preferable to use small n and large 
requirements on average, for large switch sizes
internal line rates of the switch 
speedup requirements) are discussed in 

SS switches. For m=16 the WS-mSS switches require less than 
implementations. 

Optic Switch architectures: Cost and Functionality Comparison.
data path  

(Worst case) 
Technology Switch  Blocking/ 

Functionality

2·log2N-1 (2×2 SS) MZI or  
MRR 

SS RNB 

2·N-1(2×2 SS) MZI or  
MRR 

SS SNB 

2·log2N (1×2 & 2×1 SS) MZI or  
MRR 

SS SNB 

1×n SS, n×1 SS SOA SS/WS  
(m λ’s) 

SNB 

m×1 MUX ,EDFA, 1×2N 
splitter, m×1 SS, 1×m 
DEMUX, 1 m×1 WS  

SOA SS/WS  
(m λ’s) 

SNB 

m×1 MUX, 2·log2n-1 (2×2 
SS), 1×m DEMUX 

MZI or  
MRR 

SS/WS  
(m λ’s) 

B / n!·

, WS-mSS approaches allow greater scalability, with 
consumption than SS approaches. The price paid is the reduced functionality 

which is n!·(m!)n (<N!). The functionality of the WS
and its impact on scheduling is examined in detail in Section 3. This lower (
functionality can reduce throughput up to 1/min(n,m) in the worst case for certain 

traffic patterns. Vice versa, assuming the version of the architecture 
depicted in Fig. 1b, where the optics reside inside the switch, speedup equal to min(
needed to ensure 100% throughput for all cases. However, on average (assuming i.i.d. and 
uniformly distributed number of cells for every input/output port communication), the 
speedup requirements are much less (closer to 1). The impact of the blocking functionality of 

mSS on throughput and speedup requirements is discussed in more detail in Section 4. 
he maximum throughput (on average case) is depicted for the same cases of Fig. 3a 
he number of cells for every input/output port communication

 After m=4, the maximum throughput increases 
=128 and 256) the respective throughput values are 0.903 and 0.92 
Thus, WS-mSS approaches can achieve high throughput on average 

while exhibiting all the advantages described above: high-radices, fewer losses, 
rom the discussion above that in order to design a WS

in all cases and relatively low speedup requirements
) should be sufficiently small. As it will be argued in Section 4.

and large m than the opposite in order to achieve lower speedup 
for large switch sizes. Alternative WS-mSS architectures

internal line rates of the switch are kept equal to the input and output channel rates 
are discussed in Section 6. 
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than 96% power 

Optic Switch architectures: Cost and Functionality Comparison. 
Blocking/ 

Functionality  
S 

RNB / N! S=1 

SNB / N! S=1 

SNB / N! S=1 

SNB / N! S=1 

SNB / N! S=1 

·(m!)n S≥1, 
 S≤min(n,m) 

mSS approaches allow greater scalability, with fewer losses 
The price paid is the reduced functionality 

The functionality of the WS-mSS approach 
lower (blocking) 

) in the worst case for certain 
the version of the architecture 

depicted in Fig. 1b, where the optics reside inside the switch, speedup equal to min(n,m) is 
However, on average (assuming i.i.d. and 

r of cells for every input/output port communication), the 
The impact of the blocking functionality of 

mSS on throughput and speedup requirements is discussed in more detail in Section 4.  In 
for the same cases of Fig. 3a 

for every input/output port communication is uniformly 
 slowly. For n=4, 

=128 and 256) the respective throughput values are 0.903 and 0.92 
mSS approaches can achieve high throughput on average 

fewer losses, low power 
n order to design a WS-mSS switch 

low speedup requirements, at least one 
in Section 4.3, it is 

achieve lower speedup 
architectures where the 

the input and output channel rates (no 
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Fig. 3 a Comparison in terms of insertion losses for various SS and WS-mSS switches. b Comparison in terms of 
power consumption for various SS and WS-mSS switches. c Maximum throughput on average for various WS-
mSS switches: all-to-all traffic with the number of cells for every input/output port communication uniformly 
distributed from 1 to 1000. 
 
 We also compare the aforementioned architectures with two switch architectures, 
presented in the literature, combining space and wavelength switching (SS and WS). Both 
architectures are based on Semiconductor Optical Amplifiers (SOA). The wavelength-space 
non-blocking architecture presented in [18] needs n m×m electronic switches for wavelength 
selection without using any (DE)MUX. For the space switching part, it requires N 1×n and N 
n×1 space switches. For every 1×n SS, n SOAs are required (assuming n≤32). For every n×1 
SS, 1 SOA is required (assuming n≤32). The total number of SOAs is N·(n+1): however, only 
2N SOAs will be active for a full input-output permutation (1 SOA active for every 1×n or 
n×1 SS). The second architecture (OSMOSIS [19]) follows a broadcast and select approach 
implementing a N×2N switch (each output has two receivers, Rx, for optimized performance). 
In the broadcast phase, n broadcast units are used, each containing an m×1 multiplexer, an 
EDFA amplifier and an 1×2N splitter. In the select phase, 2N select units are used, each 
containing two stages of m SOA optical selector gates. A first SOA gate selects the correct 
fiber or spatial group. A second SOA gate, after demultiplexing, then selects the correct 
wavelength within that fiber. The active elements for a full input-output permutation are 2N 
SOAs and n EDFAs. Note that OSMOSIS architecture against which MZI WS-mSS 
architecture is compared is the most energy efficient of the architectures examined in [5] 
(p.24). The disadvantage of both approaches described above is that they require large arrays 
of SOAs which are expensive and power hungry. 
 Taking into account that an active SOA requires around 0.46W [18] for N=64, with 
n=m=8, the SOA WS-SS and OSMOSIS switching matrices have a power consumption of 
59W and 67W, respectively (assuming 1W for the EDFA amplifiers). A solely SS 64-port 
Benes switch requires 0.704 W (352 2×2 MZIs and 11 switching stages) and a Benes-based 
WS-mSS with n=m=8 requires 0.04 W (20 2×2 MZIs, 5 switching stages, passive AWG 
MUX/DEMUX). The WS-mSS approach can also be used in SOA-based switches in order to 
reduce energy consumption. For instance the 20 2×2 switches required for a 64-port SOA-
based WS-mSS with n=m=8 require 36.8 W (assuming 4 SOAs for the implementation of a 
2×2 switch). 
 Finally, we compare an architecture based on WS-mSS switches and an all-electronic 
architecture assuming a small DC cluster of 768 servers. For the comparison we assume that 
the 768 servers are interconnected using: a) a fat tree topology based on commodity 48-port 
electronic switches (the usual topology in modern DCs) and b) a topology based on WS-mSS 
switches with n=16 and m=12. In order to implement a 768-server full bisection fat tree 
topology using 48-port switches, 48 switches are needed, arranged in 2-layers: 32 switches 
are needed for the first layer (ToR) and 16 switches for the second layer. Half of the ports of 
the 48-port ToR switches are connected to the servers and the other half to the switches in the 
second layer. Assuming that the typical operating power of a commodity 48-port electronic 
switch is 390W [29], the total energy consumption of the all-electronic fat tree is 18.72 KW. 
Using WS-mSS switches, the resulting 768-server topology is similar to the one presented in 
Fig. 1c. In this case however we have 16 48×48 electronic switches (instead of 4 as in Fig. 1c) 
and 4 WS-mSS switches with n=16 and m=12 (instead of the 4 WS-mSS with n=4 and m=12 
of Fig. 1c). The energy consumption of the 16 electronic switches is 6.24 KW. The optical 
switching matrix consists of 4 16×16 SS, each one containing 56 2×2 MZI switching 
elements with 2 mW power consumption. Thus, the total energy consumption of the optical 
switching matrix is 0.448 W. To perform a fair comparison with the all-electronic 
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architecture, the energy consumption of the N optical links must be taken into account as well. 
Assuming 22.3 pj/bit energy consumption for a 40 Gb/s VCSEL-based link [28], we have 
0.892W for a single link and 685,056 W for the 768 optical links required in the architecture. 
Therefore, the total energy consumption of the WS-mSS scenario is 6.926 KW, leading to 
63% energy savings compared to the all-electronic fat tree architecture. If Valiant routing is 
used (see Section 4.3) then the 768-server architecture based on WS-mSS switches and S=1 
will experience no throughput degradation compared to non-blocking switches. 

3. WS-mSS Switch Scheduling 

 In this section we examine the restrictions that are imposed on scheduling a WS-mSS 
switch, due to its architecture peculiarities and reduced (blocking) functionality. In 3.1 we 
examine the constraints that a permutation matrix of WS-mSS switches must satisfy. In 3.2 
we describe simple scheduling algorithms for the WS-mSS. In 3.3 we give a lower bound for 
the number of required scheduling steps. Based on this, we derive the speedup and throughput 
values for the architecture at hand. 

 
3.1. Permutation Matrices 

 
 A permutation matrix Ps is an N×N matrix representing a feasible configuration of an 
N×N switch in scheduling cycle s. Entry (i, j) in Ps is either 1 (indicating that in the current 
time slot in-port i will send a packet to out-port j) or 0 (no communication between ports i and 
j). Permutation matrices for simple non-blocking switches have the following properties:  

Constraint C1) there is at most one “1” along a single row, and  
Constraint C2) there is at most one “1” along a single column  

These are the same constraints C1 and C2 mentioned in Section 2.1, expressed in terms of 
permutation matrices. We will describe the permutation matrices for a WS-mSS switch by 
defining first two more matrices: 1) SPs: an n×n permutation matrix that describes the state of 
the SS part of the WS-mSS switch in scheduling cycle s, and 2) WPs,i,j : an m×m permutation 
matrix that describes the state of the WS part of the WS-mSS switch for input i and output j of 
the nxn SS in scheduling cycle s. Entries in permutation matrices Ps for a WS-mSS switch are 
either 1 or 0 according to the following rule: 

 

��(�, �) = � 1, if	���(�′, �′) = 1	and	 ��,!′,"′(� − (�′ − 1) ∙ �, � − (�′− 1) ∙ �) = 10,																																																																																																											otherwise+ 
 
where Ps (i,j) denotes entry (i, j) in Ps, i, j ∈{1,2,…,N},  � ′ = ��/�� and � ′ = ��/��. Thus, in 
addition to the restrictions C1 and C2 mentioned above for non-blocking switches, two more 
constraints should be satisfied for permutation matrices Ps for N×N WS-mSS switches:  

Constraint C3) there is at most one “1” along a single row of SPs, and  
Constraint C4) there is at most one “1” along a single column of SPs.  

An example for Ps with n=4 and m=12 (the PhoxTrot case) is depicted in Fig. 4. Since there 
are n! and m! SPs and WPs,i,j configurations/permutations, respectively, and n input (and 
output) space-switching ports, a WS-mSS has a functionality of n!·(m!)n, as opposed to the N! 
functionality of an N×N non-blocking switch. The additional restrictions, coming from the 
smaller number of feasible input-output permutations, have implications on the switch 
performance that will be examined in Section 4.  



 

Fig. 4 Example of a specific permutation matrix for a WS
Ps(48,27)=1 since SPs(4,3)=1 and WP

 
3.2. Simple Scheduling Algorithms

 
 A (packet) switch scheduler must perform, for every scheduling cycle, a matching 
between the input and the output ports of the switching fabric, based on the request matrix, in 
order for the switch to be configured appropriately. A request matrix is an 
containing a 1 in position (i, 
cycle s, or 0 otherwise. The 
found in time O(N5/2) for an 
performed, since it is simpler to implement and has a faster running time. There exist several 
well known maximal matching heuristics ([
the VOQ sizes or the waiting times of the cells [
algorithms for the (i) separate schedulers and (ii) single scheduler versions of the WS
architecture outlined in Section 2 based on 
 
• Simple Scheduling algorithm for single scheduler version:
1. Execute maximum matching algorithm for 
2. View Ps as an n×n matrix 

previous step for m×m block located in position (
3. Execute maximum matching algorithm on 
4. Based on SPs update Ps (set 0 in all entries of the unused 
 
• Simple Scheduling algorithm for separate schedulers version:
1. SS scheduler: execute maximum matching algorithm for 
2. WS schedulers: execute maximum matching algorithm for 

WPs,i,j permutation matrices
3. Ps is constructed based on
 
The algorithms were described assuming that an (optimal) maximum matching algorithm, 
such as [30], will be used in the individual steps outlined above. Any 
matching algorithm could also be used instead.
 

3.3. Lower Bound for the Required Scheduling Steps using a WS
 

 

Example of a specific permutation matrix for a WS-mSS switch with m=12 and n=4 (the PhoxTrot case). 
WPs,4,3(12,3)=1. 

Simple Scheduling Algorithms 

switch scheduler must perform, for every scheduling cycle, a matching 
between the input and the output ports of the switching fabric, based on the request matrix, in 

the switch to be configured appropriately. A request matrix is an 
, j) if input port i wants to communicate with port 

, or 0 otherwise. The maximum (optimal) matching for a single scheduling s
) for an N×N switch [30]. In practice maximal matching

since it is simpler to implement and has a faster running time. There exist several 
well known maximal matching heuristics ([31]-[33]) as well as heuristics taking into account 
the VOQ sizes or the waiting times of the cells [23]. Below we outline simple scheduling 
algorithms for the (i) separate schedulers and (ii) single scheduler versions of the WS
architecture outlined in Section 2 based on the scheduling algorithms mentioned above. 

Simple Scheduling algorithm for single scheduler version: 
Execute maximum matching algorithm for N×N request matrix: generate 

matrix whose entry (i,j) is the number of matchings achieved in the 
block located in position (i,j) of the n×n matrix 

Execute maximum matching algorithm on n×n matrix: determine SPs 
(set 0 in all entries of the unused m×m WPs,i,j submatrices of 

Simple Scheduling algorithm for separate schedulers version: 
SS scheduler: execute maximum matching algorithm for n×n request matrix: generate 
WS schedulers: execute maximum matching algorithm for m×m request matrix: generate 

permutation matrices  
is constructed based on SPs and WPs,i,j  generated in previous steps  

The algorithms were described assuming that an (optimal) maximum matching algorithm, 
], will be used in the individual steps outlined above. Any (suboptimal) maximal 

matching algorithm could also be used instead. 

Lower Bound for the Required Scheduling Steps using a WS-mSS switch

12 

=4 (the PhoxTrot case). 

switch scheduler must perform, for every scheduling cycle, a matching 
between the input and the output ports of the switching fabric, based on the request matrix, in 

the switch to be configured appropriately. A request matrix is an N×N matrix 
wants to communicate with port j for scheduling 

for a single scheduling step can be 
maximal matching is usually 

since it is simpler to implement and has a faster running time. There exist several 
heuristics taking into account 

]. Below we outline simple scheduling 
algorithms for the (i) separate schedulers and (ii) single scheduler versions of the WS-mSS 

the scheduling algorithms mentioned above.  

request matrix: generate Ps 
) is the number of matchings achieved in the 

submatrices of Ps) 

request matrix: generate SPs 
request matrix: generate 

The algorithms were described assuming that an (optimal) maximum matching algorithm, 
(suboptimal) maximal 

mSS switch 
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 First, we describe known results regarding a lower bound on the number of 
scheduling steps, assuming N×N non-blocking switches. Based on these results we will derive 
similar results for N×N WS-mSS switches. We will use the notion of traffic matrices. The 
analysis that we follow is based on matrix decomposition [20]. A traffic matrix D = [dij] is an 
N×N matrix, where entry dij is the total number of cells that need to be transmitted from 
switch port i to port j. In order to isolate the impact of the additional constraints of the WS-
mSS switch architecture on scheduling performance from other factors, we will make the 
ideal assumption that all VOQs are infinite in all cases below (both for WS-mSS and simple 
non-blocking switches), thus no cells are lost due to link overloads. Let ,! = ∑ .!""  and 
/" = ∑ .!"!  be the i-th row sum and j-th column sum, respectively, of the traffic matrix D. Let 
us define as ℎ = max!,"(,! , /") the critical sum of the traffic matrix D. A row or column of 
sum of all its entries equal to h is called a critical line. According to a well-known theorem 
(shown in [34], p. 57): 
 
Theorem 1: An N×N traffic matrix D can be written as a sum of h permutation matrices.  
 
Thus, Tmin=h where Tmin is the minimum number of scheduling steps assuming an optimal, 
with respect to required steps, algorithm (such as the maximum matching algorithm in [30]). 
The theorem presented above holds for N×N switches with fully non-blocking functionality 
and full throughput, i.e., switches exhibiting only constraints C1 and C2 described in Section 
3.1 and no additional constraints, due to HOL for instance.  
 Let Tˈmin denote the minimum number of scheduling steps assuming a WS-mSS 
switch (and optimal scheduling algorithms). For an N×N WS-mSS switch the N×N traffic 
matrix D can be viewed as an n×n matrix, where each “entry”-block of the latter is an m×m 
traffic matrix. The entries in an m×m matrix contain the traffic requirements between input 
ports located and multiplexed in the same input interface of the n×n SS, and the output ports 
ocated and demultiplexed from the same output interface of the SS. Let ,!,34 = ∑ .!""  and 
/",34 = ∑ .!"!  be the i-th row sum and j-th column sum of the m×m block/submatrix of traffic 
matrix D, located in row r and column c of the n×n matrix, where �	 ∈ [	1	 +	(6	 − 	1) ∙�,… ,�	 +	(6	 − 	1) ∙ 	�] and �	 ∈ [1	 +	(8	 − 	1) ∙ 	�,… ,�	 +	(8	 − 	1) ∙ 	9]. Let ℎ34 =max!,"(,!,34 , /",34) be the critical sum of the m×m submatrix located in row r and column c of 
the n×n matrix. Let us define an n×n matrix Dˈ = [dˈrc] where entry dˈrc in row r and column c 
is the critical sum ℎ34 of the respective m×m block in the original traffic matrix D. Let ,3 = ∑ .′34 = ∑ ℎ3444  and /4 = ∑ .′34 =3 ∑ ℎ343  be the r-th row sum and c-th column sum 
of this nxn matrix and ℎ′ = max3,4(,3, /4) be its critical sum. Then: 
 
Theorem 2: An N×N traffic matrix D can be written as a sum of hˈ permutation matrices 
assuming an N×N WS-mSS switch composed of n m×m wavelength selection (WS) elements 
and 1 n×n space switch (SS), with N = n·m. 
 
Proof. Every m×m block of traffic matrix D is itself a traffic matrix. By applying theorem 1, 
we obtain that scheduling the traffic in the m×m block of traffic matrix D, located in row r 
and column c of the n×n matrix needs hrc steps. Traffic matrix Dˈ can itself be viewed as an 
n×n traffic matrix where every entry dˈrc requires hrc steps. Dˈ will be scheduled by the n×n 
space switch exhibiting constraints C3 and C4. By applying theorem 1 again, this time for 
traffic matrix Dˈ, we obtain that the scheduling of Dˈ requires at least hˈ steps.       □ 
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 Note that hˈ is equal to or larger than h, due to constraints C3, C4 which reduce the 
switch functionality. The relation between hˈ and h for various traffic cases is examined in 
more detail in the following section. 
 In what follows we will make a distinction between S and S(D). S is the speedup of a 
switch architecture as described in Section 2.1, while S(D) is the minimum speedup a WS-
mSS architecture requires in order to schedule traffic matrix D. We will also denote as Θ(D) 
the maximum throughput that a WS-mSS with S=1 can achieve for traffic matrix D. Note that 
Θ(D) is the inverse of S(D). As mentioned in Section 2.1, S>1 can be provided only by CIOQ 
or OQ approaches. Thus, from the two WS-mSS switch architectures presented in Section 2.2 
only the CIOQ WS-mSS switch implementation of Fig. 1b can provide S>1. Nevertheless, 
S(D) is also an indicator of the performance of a WS-mSS switch compared against a full 
throughput switch for the same traffic matrix D. 
 Theorem 2 holds for WS-mSS switches with constraints C1, C2, C3 and C4 and no 
additional constraints, due to HOL for instance (which is eliminated by using VOQ concept 
appropriately adjusted, see Section 2.2.1). The only difference between h and hˈ is due to 
additional constraints C3 and C4 mentioned in Section 3.1. Since h is the minimum number of 
scheduling steps that can be achieved by a fully non-blocking switch with 100% throughput 
(without constraints C3 and C4), the minimum speedup S(D) required for scheduling traffic 
matrix D and the maximum throughput Θ(D) can be obtained by: 

 

�(:) = ;′<!=;<!= =
ℎ′
ℎ 					and	>(:) =

;<!=;′<!= =
ℎ
ℎ′ 									(1) 

4. WS-mSS Switch Performance 

 In this section we examine the performance of a single WS-mSS switch in terms of 
throughput and required speedup for the best and worst cases (Section 4.1), an average case 
assuming i.i.d. (independent and identically distributed) and uniformly distributed number of 
cells for every input/output port communication (Section 4.2) and for various synthetic traffic 
patterns (Section 4.3). 

 
4.1. Best and Worst Case Performance 

 
 The performance of an N×N WS-mSS switch in terms of scheduling steps for the best 
and worst case is given by the following theorem: 

 
Theorem 3: The number of scheduling steps Tˈmin = hˈ that an N×N WS-mSS switch requires 
to schedule any traffic matrix, is bound from below and above as: h ≤ hˈ ≤ min(n,m)·h, 
assuming optimal scheduling in terms of required steps. 

 
Proof.  The proof is based on Theorem 2 and the construction of the worst case and best case 
traffic matrices.  
We first prove the upper bound. In order to find the worst case performance for an N×N WS-
mSS switch we will construct a traffic matrix in such a way that a) it takes exactly 1 
scheduling step for an N×N non-blocking switch without the constraints C3 and C4 (thus 
h=1), and b) it takes the maximum number of steps for the N×N WS-mSS switch due to these 
constraints. In order to achieve the maximum value for hˈ we will focus on a single line in the 
n×n traffic matrix Dˈ (see Section 3.3) and we strategically place cells to get the maximum 
possible critical sum hˈ. Without loss of generality we focus on a single row r of traffic matrix 
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Dˈ. In this case the worst case traffic for Dˈ is when a single input port of n×n SS has to 
connect to as many as possible output ports of the SS (potentially with all of them), 
maintaining at the same time critical sum equal to h=1. This can be achieved by placing 1 cell 
in entry (i,i) of the m×m block located in position (r,i) of the n×n SS,  for all 1≤ i ≤ min(n,m). 
Thus, the critical sums ℎ3! for the respective m×m block located in row r and columns i, 1≤ i 
≤ min(n,m) will be at most 1. This can be shown by taking all cases regarding n and m sizes: 
- n≤m. In this case the size of the WS element is greater than the size of the SS and we 

have critical sum hˈ=n (and h=1). An example for the aforementioned traffic pattern is 
shown in Fig. 5a for the PhoxTrot case (n=4, m=12) creating a critical line in the first row 
of Dˈ (r=1).  

- n>m. In this case the size of the WS element is smaller than the size of the SS and we 
have critical sum hˈ=m. An example is shown in Fig. 5b for n=4 and m=2.  

 

Fig. 5 a Worst case traffic matrix for n=4, m=12, and r=1. hˈ=n=4 (and h=1). b Worst case traffic matrix for n=4 
and m=2 (r=1). hˈ=m=2 (and h=1). 

 
From the discussion above we conclude that the worst case traffic pattern needs 
hˈ=min(n,m)=min(n,m)·h steps using an N×N switch composed of n m×m WSES and 1 n×n 
SS. Now we remove the assumption that a single port has to send at most 1 cell. Assuming 
that there are ai cells (instead of 1) in entry (i,i) of the m×m block located in position (r,i) of 
the n×n SS,  for all 1<i< min(n,m), then ℎ = max?@!@ABC	(=,<) D!  and 

 

ℎE = F D!
ABC	(=,<)

!G?
≤ F max?@!@ABC	(=,<)D!
ABC	(=,<)

!G?
= F ℎ
ABC	(=,<)

!G?
= ℎ ∙ min	(�,�) 

 
The upper bound is reached when D? = DI = ⋯ = D. Note that this is also the case for the 
initial scenario where a=1. 
 Now we prove the lower bound. The best performance for an N×N WS-mSS switch is 
achieved for a traffic pattern that simply does not require additional steps due to constraints 
C3 and C4. An example of best case traffic is uniform traffic with exactly a cells in all entries. 
In this case ℎ = 9 · D for all rows and columns and ℎ34 = � · D for all r,c and ℎE = � · ℎ34 =� · � · D = 9 · D = ℎ.             □ 
 
Corollary 3.1: S(D) and Θ(D) for a WS-mSS and a traffic matrix D are bound from below 
and above by 1 ≤ S(D) ≤ min(n,m) and 1/ min(n,m) ≤ Θ(D) ≤ 1 respectively. 
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We can conclude that for the special case of n=4 and m=12 (the PhoxTrot case) h ≤ h' ≤ 4h 
and 1 ≤ S(D) ≤ 4, 0.25 ≤ Θ(D) ≤ 1. Thus, this architecture needs S=n=4 in order to ensure 
100% throughput for the worst case. Based on these results we can also estimate the tradeoff 
between increased connectivity and worst case throughput for WS-mSS switches: the best 
throughput is achieved for the trivial cases when n=1, N=m or m=1, N=n, in which switching 
is performed entirely through wavelength selection or spatially. Increasing either n or m 
increases the switch connectivity, limiting however the worst case throughput to 1/min(n,m).  

 
4.2. Performance on Average 

 
 In order to estimate the required scheduling steps on average, we assume that the 
number of cells in traffic matrix’s entries are independent and identically distributed (i.i.d.) 
variables obtained from the Uniform Distribution. We followed a Monte-Carlo approach, 
generating 1 million of random traffic matrices whose entries were randomly selected integer 
numbers from a to b and we estimated speedup and throughput. In the following, we present 
the results obtained via Monte-Carlo as well as the results obtained using theoretical 
approximations for speedup and throughput, which are described in detail in Appendix A. 
Finally, we give the asymptotic values for S(D) and Θ(D) for large values of b (and a=1), 
derived using the aforementioned theoretical approximations (the details can be found in 
Appendix B). 
 Figure 6 depicts the obtained PDFs for Tmin and Tˈmin for a 48×48 non-blocking 
crossbar switch and the PhoxTrot switch (WS-mSS with n=4 and m=12) for 3 different cases 
for a and b obtained via Monte-Carlo estimation, as well as the respective PDFs obtained with 
the theoretical approximation (denoted as i.i.d. approx.) of Eq. (2)-(10) (Appendix A). In 
Table 2 we present the values of E(Tˈmin), E(Tmin), the S(D) and Θ(D) for 5 various cases of a 
and b for both the Monte-Carlo approach and the theoretical approximation of Eq. (2)-(10). 
The S(D) and Θ(D) columns of Table 2 for the theoretical estimation were calculated using 
Eq. (10). The respective columns for the Monte-Carlo approach were estimated as 
E(Tˈmin/Tmin) and E(Tmin/Tˈmin). Note that E(Tˈmin/Tmin)≈E(Tˈmin)/E(Tmin) and E(Tmin/Tˈmin)≈ 
E(Tmin)/E(Tˈmin), indicating that Tˈmin and Tmin can be treated as i.i.d. 

 

Fig. 6 PDFs for Tmin and Tˈmin for a 48×48 non-blocking crossbar switch and a 48×48 WS-mSS switch with n=4 
and m=12 (PhoxTrot case) for both theoretical approximation of Eq. (2)-(9) assuming i.i.d. variables and Monte-
Carlo estimation. a a=1, b=9. b a=1, b=50. c a=1, b=500. 

Table 2 : E(T'min), E(Tmin), S(D) and Θ(D) for all-to-all traffic and a=1, estimated by 
Eq.(2)-(10) as well as Monte-Carlo estimation. 

 b E(Tˈmin) E(Tmin) S(D) Θ(D) 
 2 87.2 80.51 1.083 0.92 
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 9 319.92 284.18 1.126 0.89 
Monte Carlo 25 847.28 747.42 1.134 0.88 
 50 1670.9 1470.9 1.136 0.88 
 500 16494.2 14493.7 1.138 0.88 
 2 86.07 80.16 1.074 0.93 
 9 320.33 284 1.128 0.89 
i.i.d. approx.  25 851.41 747.65 1.139 0.88 
 50 1680.76 1471.85 1.142 0.88 
 500 16607.33 14506.6 1.145 0.87 

 
The results presented above indicate that the PhoxTrot architecture achieves maximum 
throughput around 88% for the tested values of a and b. If a=b, then the all-to-all traffic 
pattern degenerates in the best case uniform traffic pattern, where both S(D) and Θ(D) are 
equal to 1. Assuming a=1 and b→∞, we show in Appendix B that 1.79≤S(D)≤2.01 and 
0.5≤Θ(D)≤0.56. We expect however that S(D) and Θ(D) converge very slowly to the 
asymptotic values as b increases. For instance, using the i.i.d. approximation (Appendix A), 
we found that for b=103, 104, 5·104, the respective speedup values are 1.14497, 1.14512 and 
1.14513.  
 

4.3. Monte-Carlo Estimation for Various Traffic Patterns  
 

 In this Section we present results we obtained for various traffic patterns following a 
Monte-Carlo approach. We generated a large number (1 million) of random traffic matrices 
whose (specific and according to the traffic pattern) entries were randomly selected integer 
numbers from a to b. In every iteration, we calculated critical sums h and hˈ. Thus, we were 
able to estimate E(Tˈmin) and E(Tmin) for the respective traffic matrices. The results are 
depicted in Fig.7. 
 In Figure 7a we depict the results for all-to-all traffic (the same case as in Section 4.2) 
keeping m constant while varying the SS size n. Speaking in terms of traffic matrices, the size 
of traffic matrix Dˈ increases while the size of the m×m blocks stays the same. As shown in 
Fig. 7a, as n increases S increases slowly. For instance, for m=4 and n=4 yields an N=16 
switch with speedup requirements around 1.16. For n=16 we get a 64-port switch with 
speedup requirements of around 1.3 indicating good scalability of the WS-mSS architecture. 
In Figure 7b we present the results for all-to-all traffic, for a constant value of n, varying the 
number of wavelengths m. In terms of traffic matrices, the size of traffic matrix Dˈ is kept 
constant while the size of m×m blocks increases. As m increases, S decreases towards the 
lower bound (=1). The results of Fig. 7b are similar to the results of Fig. 3c (expressed there 
in terms of throughput). Since large n and large m are not both feasible at the same time due 
to both losses and crosstalk (see design options and scalability studies in [12]), from the 
discussion above follows that for large N, many wavelengths multiplexed in a single 
input/output port and small space switches (large m and small n) are preferable to high radix 
space switches with few wavelengths per port (large n and small m) for lower speedup 
requirements on average. 
 In Figures 7c and d we present the respective results for various synthetic traffic 
patterns [23]. Several of these patterns are based on communication patterns exhibited by 
particular HPC applications such as fluid dynamics simulations, sorting applications, FFT. 
The worst case traffic pattern is constructed as described in Section 4.1. The traffic patterns 
used in Fig. 7d are bit permutations requiring the port number N to be a power of 2. The 
implied topology is a simple star network where N HPC compute nodes are interconnected 
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using a single N×N WS-mSS. Bit reverse and transpose are pathological (worst case) traffic 
patterns while bit complement is a best case traffic. Bit rotation, shuffle, tornado and neighbor 
traffic require S(D) at most 2 in all examined cases.  

 

Fig. 7 Required speedup for various traffic patterns a All-to-all traffic (a=1, b=500) for various WS-mSS switch 
sizes while n increases and m is constant (PhoxTrot case marked with red). b All-to-all traffic (a=1, b=500), while 
m increases and n is constant. c Tornado, Neighbor, Worst Case traffic for various WS-mSS switch sizes with n=4 
(PhoxTrot case marked with red). d Bit permutation traffic patterns for various WS-mSS switch sizes with n=4. 
 
 In order to mitigate performance degradation in such cases (or in larger networks 
based on WS-mSS swithes) while keeping S=1, appropriate mapping algorithms must be 
developed for the assignment of application tasks to nodes connected to WS-mSS ports that 
do not stress scheduling constraints C3 and C4. Task-to-processor assignment algorithms are 
already used in HPC systems based on low degree topologies, such as mesh/torus, in order to 
reduce the hops traveled by messages [35]. In cases like the one depicted in Fig. 1c, if Valiant 
routing [23] is used, no performance degradation is exhibited in the former (assuming S=1) 
compared to respective non-blocking architectures. In Valiant routing, for every packet 
(alternatively for every flow), a top-layer switch in a fat tree topology is randomly chosen as 
an intermediate destination. In this way every traffic pattern is transformed into uniform 
traffic, achieving load-balancing while avoiding bottlenecks, at the cost of increasing average 
distance in terms of hops in cases where communication locality exists. Therefore, the WS-
mSS switches in the highest layer will have to handle uniform traffic, which can do equally 
well as non-blocking switches. Similar performance results to non-blocking switches are also 
obtained assuming Valiant routing and direct network topologies, such as mesh/torus, using 
WS-mSS switches (in these topologies, in order to achieve load-balancing, any other node in 
the network can be chosen randomly as an intermediate node). 

5. Multiple WS-mSS Switches 
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 In this section we examine the performance of the multiple WS-mSS switching 
elements architecture version presented in Fig. 1c. We assume that N VOQs are present in 
every input port (see discussion in 2.3.1). In sub-Sections 5.1, 5.2, 5.3 we examine the switch 
permutations, the lower bounds for scheduling and the architecture performance for various 
cases, respectively.  

 
5.1. Permutation Matrices 
 

 An N×N permutation matrix Ps for the multiple WS-mSS version is divided in n2 
blocks of size k×k each, where in the case of a single WS-mSS the permutation matrices were 
divided in n2 blocks of size m×m. Ps is also divided in n sub-matrices ��!, � ∈ [1,2,… , �]. ��! 
corresponds to the state of WS-mSS switch i for scheduling step s. Each ��! is an N×k 
permutation matrix that has the same form as the permutation matrices of a single WS-mSS as 
described in Section 3.1, with the only difference being its size (the latter’s size is N×N). ��! 
contains columns [1 + � ∙ (� − 1) + L ∙ (� − 1),… , � ∙ � + L ∙ (� − 1)], � ∈ [1,2, … , �] of 
permutation matrix Ps. A single ‘1’ in a row (column) of ���! (the permutation matrix that 
describes the state of the SS part of the WS-mSS switch i) prohibits another ‘1’ only in the 
respective rows and columns of ���!. An example for the form of a permutation matrix Ps is 
shown in Fig. 8 for the architecture of Fig. 1c where N=192, k=48, m=12, n=4        

 

Fig. 8 a Permutation Matrix of an N×N switch, N=k·n composed of n (=4) WS-mSS switching elements 
interconnecting n k×k electronic switches with k = n · m, where m wavelengths are multiplexed in a WDM signal. 
b S(D) for All-to-all traffic, with traffic matrix entries uniformly distributed for a=1 to b for a single WS-mSS 
switch with n=4, m=12 (architectures of Fig. 1a, 1b) and for 4 WS-mSS switches with n=4, m=12 interconnecting 
4 48×48 electronic switches (architecture of Fig. 1c). 

 
5.2. Lower Bound for Scheduling Steps 
 

 In the case of multiple WS-mSS switches, traffic matrix D is divided in n sub-
matrices :!, � ∈ [1,2, … , �]. D is divided in sub-matrices :! similar to the way permutation 
matrix Ps is divided in sub-matrices ��!, and as so it has the same size as ��!. If we view N×k 
matrices :! as n×n matrices :′! whose entries are the critical sums of the respective k×m 
blocks of :!’s and denote the critical sums of :′! as ℎ′!, then the following theorem gives the 
lower bound for the required scheduling steps for the multiple WS-mSS switch architecture: 
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Theorem 4: An N×N traffic matrix D can be written as a sum of ;′<!= = max(ℎ, ℎE?, ℎEI, … , ℎE=) permutation matrices assuming an N×N switch with n WS-
mSS switching elements interconnecting n k×k electronic switches with k = n·m. 
 
Proof. h found in the bound, above follows from the fact that D is a traffic matrix that should 
satisfy constraints C1 and C2. ℎE?, ℎEI, … , ℎE= arise as the n WS-mSS switches serve the 
portions of traffic found in matrices :! in parallel. Thus, for serving traffic matrix D at least h 
steps are required, unless one or more WS-mSS swiches i with ℎE! = max(ℎE?, ℎEI, … , ℎE=) 
responsible for scheduling the portion of traffic contained in :! requires ℎE! > ℎ steps due to 
constraints C3 and C4 for :!. An example where the first term dominates is for a traffic 
pattern where a single input port needs to send a cells in each output. In this case h=N·a and 
h'i=k·a.                   □ 
 

5.3. Performance Estimation 
 

 The performance of an N×N WS-mSS switch in terms of scheduling steps for the best 
and worst case is given by the following theorem: 
 
Theorem 5: The number of steps Tˈmin required by an N×N switch with n WS-mSS switches 
interconnecting n k×k electronic switches is bound from below and above by: h ≤ ;′<!= ≤ 
min(n,m)·h assuming optimal  in terms of steps  scheduling. 

 
Proof.  The proof follows the same line of argument found in the proof of theorem 3. The 
worst case performance is exhibited when the worst case traffic described in the proof of 
theorem 3 occurs for at least one sub-matrix :!, giving Tˈmin=min(n,m)·h. A best case example 
is again uniform traffic with a cells in all D entries.            □ 
 
Corollary 5.1: S(D) and Θ(D) for an N×N switch composed of n WS-mSS switches 
interconnecting n k×k electronic are bound from below and above by 1 ≤ S(D) ≤ min(n,m) and 
1/ min(n,m) ≤ Θ(D) ≤ 1, respectively. 
 
The best and worst case performance bounds of the multiple WS-mSS switches architecture 
are the same to the bounds for a single WS-mSS switch of this architecture. Figure 8b depicts 
the S values for all-to-all traffic with traffic matrix entries uniformly distributed from a to b 
(a=1 in all cases) for the 192×192 architecture of Fig. 1c (N=192, k=48, m=12, n=4) against a 
single WS-mSS switch with m=12 and n=4 (Fig. 1a, 1b). As expected the multiple WS-mSS 
architecture is closer to the lower bound for speedup than the single WS-mSS architecture 
(maximum throughput 95% and 88% respectively for b=1000), since as discussed in Section 
5.1, in the former case a single ‘1’ in a row (column) of ���! prohibits another ‘1’ only in the 
respective rows and columns of ���! while the entries contained in ���", ∀� ≠ � are unaffected. 
For all the other cases the obtained speedup value is equal for both architectures (we also 
examined bit permutation traffic patterns with n=4, m=16 and k=64 giving N=256). 

6. Alternative Switch Architectures 

 In this section we present two architecture alternatives to the single WS-mSS 
architecture outlined in Section 2 without the additional scheduling constraints C3, C4 and we 
discuss the trade-offs between performance and additional hardware requirements. 
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Fig. 9 a Alternative architecture for the 48×48 WS-mSS where the 4×4 SS has been replaced by point-to-point 
optical links. b Load Balanced Birkhoff–von Neumann switch architecture requiring 2 switching stages. 
 
 The first architecture variation is based on the observation that WS-mSS switches can 
handle uniform traffic as well as simple non-blocking crossbars without the additional 
scheduling constraints C3 and C4 and relies on the Load Balanced Birkhoff–von Neumann 
(LBBN) switch architecture [36]. The basic LBBN switch architecture is depicted in Fig. 9b. 
The switch consists of 2 identical switching stages and a single buffering stage between these 
stages where every buffer is partitioned in N Virtual Output Queues (VoQ). All the switch 
external lines are assumed to be synchronized [37]. Both switching stages follow a fixed 
sequence of periodic configurations such as simple Round-Robin scheduling (where input i 
connects to output port [i + s -1] mod N +1 in scheduling step s). The first switch uniformly 
balances the input traffic over all the VoQs of the intermediate stage, thus transforms any 
traffic in a pseudo-uniform traffic pattern. The second stage is an input-queued crossbar 
switch in which each VOQ is served at a fixed rate over the load-balanced input traffic. The 
main advantage of the LBBN switch architecture is that it trivializes scheduling while 
achieving 100% throughput for a large class of traffic patterns. The same architecture can be 
realized using 2 successive WS-mSS switches without throughput degradation due to the 
additional scheduling constraints, while using S=1. The first WS-mSS switch does not 
maintain VOQs (the cells that arrive in an input port are immediately forwarded to its output 
port that happens to be connected in this scheduling cycle), and the second switch uses VOQs 
as described in Section 2.2.1. The WS-mSS switches should execute a modified version of 
round-robin scheduling that we will refer to “2-level round-robin” since a simple round-robin 
cannot ensure that all N inputs are connected with N outputs (full switch configuration) in 
every scheduling cycle for a WS-mSS switch due to the additional scheduling constraints. In 
the 2-level round robin a round-robin algorithm is performed for the SS element. The SS 
remains in every configuration for m scheduling cycles. For every SS configuration, the 
“selected” m×m switching elements (represented by the m×m blocks of the permutation 
matrix for which SPs=1) will concurrently perform a round-robin algorithm. Thus, the 
configurations of all “selected” m×m switching elements will be the same in every cycle s. 
The 2-level round-robin ensures full switch configurations in every cycle s for WS-mSS 
switches. A disadvantage of the LBBN architecture described above is that it requires more 
opto-electronic and electro-optic conversions due to the presence of 2 switching steps. In 
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principle the first switching stage could be a simple n×n SS executing a simple round-robin 
algorithm, staying in a single switch configuration for m scheduling cycles, omitting the first 
opto-electronic and electro-optic conversion - assuming that this is feasible with respect to 
insertion losses for the given power budget (alternatively, amplification is needed). Thus, all 
the electronic components for this architecture variation are placed between the two optical 
n×n space switches. The load-balancing n×n SS can dissolve the worst case traffic pattern 
mentioned in Section 4.1, if such pattern occurs, so that the WS-mSS switch in the second 
stage can handle the (now) uniform traffic (as was also shown in Section 4.1). In this case 
using only two n×n SS elements can guarantee full throughput for a large number of traffic 
scenarios. It should be mentioned however that LBBN switches do not guarantee the correct 
cell sequencing in the output, while there are some pathological traffic patterns that reduce 
throughput. Dealing with these issues requires additional buffering in the input as well as the 
outputs stages or more complex buffer structures and policies between the 2 switches [38]-
[40]. 
 The second variation of the WS-mSS switch architecture described in Section 2 can 
be obtained by replacing the n×n SS with n2 fixed optical links and the m×m electronic 
switches with m×(n·m) electronic switches. In every input, after the m×(n·m) switching 
element, n (identical) sets of m WDM VCSEL arrays are required, instead of a single set of 1 
such set of m=12 VCSELs as in the original architecture. The n groups of m multiplexed 
signals are connected to all n outputs. In every output, an n×1 combiner is used to combine 
the signals of the n groups of m multiplexed signals in a single signal which is then 
demultiplexed in m signals (collisions should be avoided by the scheduling algorithm). This 
architecture provides S=n (≥min(m,n)) in the space domain: more than or equal to the required 
speedup for the worst case. An example for this alternative with parameters n=4 and m=12 
(PhoxTrot case) is depicted in Fig. 8a. Its disadvantage is that it requires n times more 
VCSEL sets (m·n2 VCSELs in total) and multiplexers (n2 in total) than the original, as well as 
n n×1 (passive) combiners. 
 
7. Conclusion 

 Some of the most prominent devices for DC and HPC application are MZI- and 
MRR-based, small radix Si-Pho space switches that exhibit fast reconfiguration times, and are 
capable of supporting multiple optical signals multiplexed through WDM. In this work we 
examined scalable electro-optic switch architectures which combine small port number 
(radix) MZI or MRR space switching of multiplexed WDM signals, to achieve large port 
numbers and good throughput on average using few optical switching stages and low total 
insertion losses, which is the main scalability limitation for silicon photonic switching 
elements. The price paid for multiplexing multiple signals using WDM and then switching 
that multiplexed signal in the space domain using SS matrices, is two additional constraints 
which restrict the feasible permutation matrices of the switching fabric in every scheduling 
cycle. Therefore more scheduling steps are required in order to schedule incoming traffic. We 
showed that these constraints reduce the maximum throughput to 1/min(n,m) in the worst 
case, or alternatively speedup requirements equal to min(n,m) (assuming the architecture 
version were optics reside in the internal of the switch) in order to ensure 100% throughput in 
all cases. Assuming S=1, throughput more than 80% can be achieved for all average traffic 
cases examined. Based on our analysis we also proposed alternative switch architectures for 
HPC and DC countering the performance degradation in the worst case traffic patterns in the 
initial approach and we discussed the trade-offs between performance and additional 
hardware requirements. 
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Appendix 

A. Theoretical Approximations for Throughput and Speedup (D with i.i.d. entries) 
 
 Let us define N2 i.i.d. discrete random variables: Xi,j ∼ U[a, b], �, � ∈ [1,2, . . . , 9], 
representing the entries located in row i and column j of traffic matrix D (with mean 
µ=(a+b)/2 and variance σ2=[(b – a + 1)2-1]/12). Let Y1,Y2,…,Y2N be random variables, with 
variables Y1,Y2,..,YN representing the sums of rows and variables YN+1,YN+2,..,Y2N representing 
the sum of columns of traffic matrix D. Then, the critical sum of traffic matrix D (non-
blocking switch case) is  

;<!= = R<ST = max(R?, RI. . . , RIU)																	(2) 
If we denote the CDF (cumulative distribution function) of a specific Yi as FY(y) = P(Yi ≤ y)= 
P(Y ≤ y), then the CDF of Tmin is: 

VWXYZ([) = �(R<ST ≤ [) = �(R? ≤ [, RI ≤ [,… , RIU ≤ [) ≤ 

≤ �(R? ≤ [, RI ≤ [,… , RU ≤ [) ∙ �(RU\? ≤ [, RU\I ≤ [,… , RIU ≤ [) = 

= �(R? ≤ [)�(RI ≤ [)…�(RIU ≤ [) = V]([)IU 											(3) 
The equality would hold if Y1,Y2,…,Y2N were mutually i.i.d. The row sums Y1,Y2,..,YN are 
mutually i.i.d as well as the column sums YN+1,YN+2,..,Y2N, but variables belonging to one set 
are not independent from variables of the other set. The covariance between the sum of a 
single row Yr, 6 ∈ [1,2, . . . , 9] and the sum of a single column Yc, 8 ∈ [9 + 1,9 + 2, . . . ,29] 
is 8�_(R3, R4) = `(R3R4) − `(R3)`(R4) = `ab3,4cUI d − `(b3,4cU)I = eI = [(f − D + 1)I −
1]/12. The respective correlation coefficient is g]h,]i = 4jk(]h,]i)lmh ∙lmi =

ln
√U∙ln∙√U∙ln = ?U. It is well 

known that the probability distribution of the sum of N i.i.d uniform variables can be 
approximated by a normal distribution Ɲ(9 ∙ q, 9 ∙ eI) where µ and σ2 are the mean and 
variance of the uniform variables. Already for N = 4 the difference between the normal 
approximation and the exact distribution is often negligible [41]. Thus, Y1,Y2,…,Y2N, for N≥4 
can be viewed as normally distributed variables. According to an important result [41], the 
condition 

lim=→∞g=ln� = 0															(4) 
for stationary standard normal random variables Y1,Y2,…,Yn with ρn=cov(Y0, Yn) and 
Ymax=max(Y1,Y2,…,Yn), implies that the asymptotic distribution of Ymax behaves as if Yi, � ∈ [1, . . . , �] were i.i.d. random variables. In our case 

limIU→∞
1
9 ln29 = limU→∞

2ln9
9 = 0 

Thus, in principle, for large N we can treat Y1,Y2,…,Y2N as mutually i.i.d. with FY(y) = P(Yi ≤ 
y)= P(Y ≤ y), � ∈ [1, . . . ,29] where  

R = b? + bI+	. . . +bU														(5) 
and Xj∼ U[a, b], � ∈ [1, . . . , 9] are i.i.d. and we can also take the equality in (3), hence VWXYZ([) = V]([)IU. Then, the PDF (Probability Density Function) of Tmin is vWXYZ([) =29 ∙ v]([) ∙ V]([)IUc?. Then, by definition, 

`(;<!=) = 29w [ ∙ v]([) ∙ V]([)IUc?.[∞

c∞ . 
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Following the same reasoning we can estimate the critical sum Tˈmin of traffic matrix Dˈ (WS-
mSS switch), assuming i.i.d. variables in every step. Consider random variable Y̍  defined as: 

RE = b? + bI+	. . . +b<														(6) 
where X1, X2, …, Xm are i.i.d. variables obtained from the Uniform Distribution as before 
(U[a,b]). Then we define random variable Xˈ as: 

b′ = R′<ST = max	(R′?, R′I. . . , R′I<)														(7) 
(where Y̍ , Y̍ 1,…,Y̍ 2m are all i.i.d.) representing the critical sum of a single mxm element. 
Then, in a similar way we define: 

REE = bE? + bEI…+		bE=											(8) 
and finally 

;′<!= = R′′<ST = max	(R′′?, R′′I. . . , R′′I=)														(9) 
 In order to estimate scheduling performance we would like to estimate the expected 
values of T'min and Tmin in order to obtain required speedup and maximum throughput: 

�(:) = `(;′<!=)/`(;<!=)		and	>(:) = `(;ABC	)/`(;′<!=)													(10) 
The probability distribution of the sum of i.i.d. random variables [Eq. (5), (6), (8)] can be 
obtained by convoluting the probability distributions in pairs [43]. The probability 
distributions of Eq. (2), (7), (9) can be calculated using order statistics (the largest order 
statistic) [44]. We developed a script using Matlab performing all necessary convolutions, the 
largest order statistics calculations for Eq. (2), (3) and (5)-(10) and the calculation of the 
expected values of Tˈmin and Tmin. Figure 6 and Table 2 (Section 4.2) present the obtained 
results for Tmin and Tˈmin for a 48×48 non-blocking switch and the PhoxTrot switch for various 
cases for a and b, obtained via both Monte-Carlo estimation, as well as the theoretical 
approximation of Eq. (2)-(10). Note that the estimation of Tˈmin using Eq. (9) leads to a 
slightly bigger error for E(Tˈmin) compared to the estimation for E(Tmin). This is due to the fact 
that N=n·m and m and n are small in the examined case. For example, since n=4, by using Eq. 
(9) where we treat Y̍ ˈ1,…,Y̍ ˈ2n as i.i.d. we tend to overestimate E(Tˈmin). 
 

B. Closed Form Approximations for Throughput and Speedup (D with i.i.d. entries) 
 
 In this section we give closed form approximations for E(Tmin), E(Tˈmin) and thus for 
Eq. (10), treating the sums of traffic matrices’s lines as i.i.d variables in every step as in the 
theoretical approximation of the previous section. We also present the obtained values for the 
same cases examined in Section 4.2 using Eq. (10). Based on these closed form 
approximations we estimate the asymptotic values for S(D) and Θ(D) for large values of b 
(and a=1). 
 The probability distribution of the sum of N i.i.d uniform variables can be 
approximated by a normal distribution as mentioned in Appendix A. A handy and exact 
closed form formula for the maximum of normal variables cannot be easily obtained. The 
largest order statistic of N normal random variables has a probability distribution also known 
as power normal distribution [45] (presented there for standard normal variables). The 
expected value for power normal distribution is calculated there recursively using function: 

|I=\?(}) = F (−1)!\? ~2� + 1� � 12!
I=\?

!G?
|I=\?c!(}) 
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where 

|=(}) = � [�(}�)]=∞

c∞
�(�).� 

 Below we give two approximations for the expected value of Zmax=max(Z1,Z2,…,Zn) 
where Zi, � ∈ [1,2,… , �] are i.i.d. standard normal variables,  and one approximation for the 
variance and then we apply them to derive closed form formulas for E(Tmin) and E(Tˈmin). 
Given the closed form formulas for the expected value and variance of standard normal 
variables Zi, the respective formulas for normally distributed variables Xi ~	Ɲ(q, eI), where 
Xi=σ·Zi+µ can be easily obtained. Naturally, Xmax=σ·Zmax+µ. From basic properties of expected 
value and variance we can obtain E(Xmax)=E(σ·Zmax+µ)=σ·E(Zmax)+µ and 
Var(Xmax)=Var(σ·Zmax+µ)= σ2

·Var(Zmax). 
 
EVT approximation 
 
An easy to use approximation for expected value and variance for the maximum of i.i.d. 
standard normal variables can be obtained by Extreme Value Theory (EVT). It is known that 
standard normal distribution is in the max-domain of attraction of the Gumbel distribution. If 
Zmax=max(Z1,Z2,…,Zn) where Zi, � ∈ [1,2, … , �] are i.i.d. standard normal variables, then an 
approximation (underestimation) for expected value can be obtained by [46]: 

`(�<ST) = √2 ∙ ln� ∙ �(�)								(11) 
where: 

�(�) = �1 − ln(4π ∙ ln�)4 ∙ ln� � 
An approximation for variance with accuracy within 5% for n>10 is [46]: 

�D6(�<ST) = e�X��I = �I ∙ �
12 ∙ ln�									(12) 

Eq. (11) gives for E(Tmin): 

`(;<!=) = e√29 ∙ ln29 ∙ �(2�) + � ∙ q					(13) 
since variables Y1,Y2,…,Y2N can be approximated as normally distributed with  R!~Ɲ(9 ∙ q, 9 ∙ eI), � ∈ [1,2,… ,29] where µ=(a+b)/2 and σ2=[(b – a + 1)2-1]/12. Similarly, 
E(X’) can be obtained by  

`ab′d = e√2� ∙ ln2� ∙ �(2�) +� ∙ q							(14) 
since R′!~Ɲ(� ∙ q,� ∙ eI). Variance of X ' can be approximated by Eq. (12): 

e�′I = �
I ∙ � ∙ eI
12 ∙ ln2� 							(15) 

As discussed above, X ' [Eq. (7)], as well as Tmin, are power normal variables. Power normal 
distribution is actually a skewed normal distribution [45]. We approximate X ' with a normal 
distribution of mean ̀ ab′d and variance e�′I . Thus, Y'' which is a sum of n such random 
variables can be approximated by a normal distribution, R′′~Ɲ(� ∙ `(b′), � ∙ e�′I ). Hence, 
using Eq. (11) again we get: 
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`(;′<!=) = e�′ ∙ √2� ∙ ln2� ∙ �(2�) + � ∙ `ab′d							(16) 
where ̀ ab′d and e�′I  are given by Eq. (14), (15). 
 
Jensen’s upper bound 
 
An upper bound for E(Zmax) can be also obtained by Jensen’s inequality [47] (p. 40), which 
states that for f convex: 

`(v(�)) ≥ v(`(�)) 
Jensen’s equality for ��∙�X��  gives: 

��∙�(�X��) ≤ `(��∙�X��) = ` �max! ��∙�Y� ≤F`(��∙�Y)
=

!G?
= � ∙ ��nI  

where ̀ (��∙�Y) is the moment generating function of Zi. By taking natural logarithms we get: 

�(�<ST) ≤ ln�t +
�
2 

The minimum t for which this inequality holds is � = √2 ∙ ln�. Subtituting above, gives: 

`(�<ST) ≤ √2 ∙ ln�										(17) 
Using the same reasoning as before, E(Tmin) and E(T 'min) can be approximated combining the 
upper bound from Jensen’s equation [Eq. (13)] and Eq. (12). Eq. (17) gives for E(Tmin): 

`(;<!=) ≤ e√29 ∙ ln29 + � ∙ q									(18) 
For E(T 'min) we have: 

`(;′<!=) ≤ e�′ ∙ √2� ∙ ln2� + � ∙ `ab′d									(19) 
where e�′I  is given by Eq. (16) and E(X') is given by: 

`ab′d ≤ e√2� ∙ ln2� +� ∙ q				(20) 
 In Table 3 we present the values for E(Tˈmin), E(Tmin), S(D) and Θ(D) obtained using 
Eq. (13), (16) (EVT approximation) and Eq. (18), (19) (Jensen’s upper bound) for the same 
cases of Table 2. 
 

Table 3 : E(T'min), E(Tmin), S(D) and Θ(D) for all-to-all traffic and a=1, estimated by 
Eq. (14), (17) (EVT) as well as Eq. (18), (19) (Jensen). 

 b E(Tˈmin) E(Tmin) S(D) Θ(D) 
 2 86.58 80.15 1.08 0.93 
 9 315.13 282.06 1.117 0.90 
EVT Approx. 25 833.81 741.47 1.125 0.89 
 50 1643.9 1459.1 1.127 0.89 
 500 16224 14375 1.129 0.89 
 2 93 82.47 1.128 0.89 
 9 348.44 294 1.185 0.84 
Jensen 25 926.9 774.95 1.196 0.84 
 50 1830.1 1526.1 1.199 0.83 
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 500 18086 15045 1.202 0.83 
 
Asymptotic values for S(D) and Θ(D) 
 
Using the above approximations we can estimate the asymptotic values for S(D) and Θ(D) for 
large values of b (and a=1). Using Eq. (10), (13), (16), and substituting a=1 we get: 

�(:) = lim�→∞
`(;′<!=)`(;<!=) =

��I ∙ 9 ∙ ln2�6 ∙ ln2� ∙ �(2�) + � ∙ √2� ∙ ln2� ∙ �(2�)
√29 ∙ ln29 ∙ �(29) 			(21) 

For the PhoxTrot numbers (m=12, n=4 and N=48), Eq. (21) yields S(D)≈1.79 and Θ(D)≈0.56. 
Using Eq. (10), (18), (19), and substituting a=1 we get: 

�(:) = lim�→∞
`(;′<!=)`(;<!=) =

��I ∙ 9 ∙ ln2�6 ∙ ln2� + � ∙ √2� ∙ ln2�
√29 ∙ ln29 									(22) 

For m=12, n=4 and N=48, Eq. (22) yields S(D)≈2.01 and Θ(D)≈0.50. Therefore, 
1.79≤S(D)≤2.01 and 0.5≤Θ(D)≤0.56. Note that the approximations we presented in this and 
the previous section are the same (if not more accurate) if variables Xi,j were normally 
distributed in the first place. 
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