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Abstract: We dynamically optimize the transponders launch powers with iterative closed control 

loops. We close the loop after an adaptable number of algorithm’s intermediate calculations, to 

monitor and retrain the QoT estimator with the real world. © 2021 The Author(s) 

 

1. Introduction 

A physical layer model (PLM) or a Quality of Transmission (QoT) estimator is required for almost every optimization 

task in an optical network. The accuracy of the PLM affects how close to the real optimum we can reach. Typically, 

there are safety mechanisms in place: margins are used to cover the PLM uncertainties and the variability of the 

physical layer conditions [1], but also the network changes are typically performed during maintenance windows and 

checked before returning to operation. Monitoring and machine learning (ML) techniques have recently been proposed 

to account for the actual network conditions and improve the accuracy of the PLM [1], [2]. Nevertheless, the PLM 

accuracy becomes more critical when the PLM is used for dynamic optimization, since to justify dynamic optimization 

we should target higher network efficiency. The advantage is that the network operates and so we can use its feedback 

to achieve an efficient network optimization.  

 Optimization problems involving the optical physical layer are multidimensional and combinatorial, that is, a 

change in one variable affects several others [3]-[5]. For example, an establishment of a new connection or a change 

in a single transponder launch power results in the QoT variations of all the interfered connections [5]. The effect of a 

few reconfigurations is relatively easy to predict with the PLM. However, if the optimization algorithm at intermediate 

calculations has assumed several reconfigurations it can project the network into states where the PLM does not attain 

good accuracy. Since these are intermediate calculations, the network will be configured at the end, the deterioration 

of the accuracy of the PLM is not appreciated, which could mislead the calculations and result in poor optimization.  

 In this paper we study the dynamic launch power optimization problem, where we have a set of established 

connections and the aim is to optimize their transponders (TPs) launch powers while the network operates. In this 

context, several works have appeared aiming the minimization of intra and inter-channel non-linear impairments (NLI) 

by optimizing TPs launch powers [3], [5]-[6]. In particular, authors in [5], formulated the launch power optimization 

to maximize the sum or the worst case margin, using the Gaussian noise (GN) model [4] as PLM, as a convex 

optimization problem. However, all above works used a PLM with fixed parameters, but due to the interdependencies 

in the physical layer, the PLM needs either margins or parameter realignment when the algorithm uses it for 

intermediate calculations that project the network into substantially different states. Similar PLM accuracy issues arise 

in other multivariable dynamic optimization problems such as dynamic resource allocation, automatic network 

reconfiguration, defragmentation, virtual network reconfiguration etc. [7], [8]. To avoid PLM inaccuracies, [5] 

extended [6] and proposed to probe (change the launch power) and monitor to calculate the partial derivatives needed 

by the optimization algorithm’s intermediate calculations. However, [6] assumes perfect NLI monitoring and interacts 

extensively with the network for probing and monitoring.  

 In light of the above herein, we propose to use iterative and adaptive closed control loops to dynamically 

optimize the launch powers. After an adaptable number of internal optimization algorithm calculations, we close the 

loop, configure the network and realign/retrain the PLM (via monitoring and ML). Leveraging these adaptive retraining 

cycles, the PLM represents the real system with enough accuracy to support the dynamic optimization at hand. 

2.  Methodology and Proposed Solution 

In  an  SDN controlled network, the PLM would interact with algorithms to carry out the optimization tasks [7]. Many 

of these algorithms would solve multivariable dynamic optimization problems such as the optimization of TPs launch 

powers in the operating network. This problem is known to be convex and polynomial. The convex optimization 

algorithms, such as (sub)gradient methods, interior point, etc., are iterative; at each iteration they calculate partial 

derivatives for the objective and constraint functions [9].  If a PLM is used without closed form equations for partial 

derivatives, a way to calculate them is to use a finite differences method [10].  

We assume an operating network with N established connections. The Gaussian Noise (GN) model is a well-accepted 

PLM [4] and was used in this work [9]. The GN PLM takes as input several parameters and calculates the generalized 

SNR values of the connections. Let r denote the set of GN model fitted input parameters: i) fiber attenuation coefficient, 
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Fig. 1. Optimization with (a) One-time trained PLM, (b) Monitoring probes, (c) Proposed PLM retraining adaptive and iterative control loop  
 

ii) fiber non-linear coefficient, iii) fiber dispersion coefficients, iv) a wavelength dependent penalty term, implemented 

as a 4th order polynomial, to cover transponder loss mismatches, amplifiers ripple etc., and v) a bias. Also let 𝒑 =
[𝒑𝟏, 𝒑𝟏, … . , 𝒑𝑵] be the launch power vector of the N connections, which are the variables to be optimized, and let 𝒛 

represents the unchanged input parameters for our optimization, such as routes, used wavelengths, span lengths etc. 

We denote by 𝑸𝑵(𝒑, 𝒓, 𝒛) the calculated SNR vector for all the N connections. The PLM SNR calculation function is 

non-linear in its parameters 𝒓 (and also 𝒑). Finally, let 𝒀𝑵(𝒑) denote the monitored SNR vector. We assume that this 

is done at the coherent receivers. To align the PLM we identify the parameters 𝒓 that minimize the squared error. To 

do this, we adopted ML based on Levenberg- Marquardt (LM) algorithm to solve the nonlinear least squares fitting 

problems [11]. Assuming launch powers 𝒑𝟎, the LM algorithm would find 𝒓𝟎 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑟(𝑸𝑵(𝒑𝟎, 𝒓, 𝒛)  − 𝒀𝑵(𝒑𝟎))
𝟐.  

 When such PLM alignment is performed once before the optimization task, the PLM reflects with good 

accuracy the starting state of the network. Assuming that we start with launch powers 𝒑𝟎, we align the PLM, denoted 

by 𝑸𝑵(𝒑𝟎, 𝒓𝟎, 𝒛), and use that for the intermediate algorithm’s calculations, involving calculations for SNR values and 

partial derivates using the finite difference subroutine. Fig. 1(a) depicts the schematic for the traditional launch power 

optimization with one-time trained PLM approach. An alternative is to probe the real network, interface the algorithm 

and, in particular, the derivative identification subroutine with the network, bypassing the PLM. In this case, the 

derivative identification process configures the launch powers of the TPs via the SDN control plane, and monitors the 

outcomes (SNR values, 𝒀𝑵(𝒑)) to calculate the derivatives. This is repeated several times at each algorithm’s iteration. 

We refer to this as optimization with monitoring probes and show it in Fig. 1(b). Optimizing with monitoring probes 

is very accurate but slow as the algorithm continuously probes and monitors the network for derivative calculations. 

On the other hand, in the traditional one-time trained PLM approach, the derivative calculations with the PLM are fast. 

However, since the PLM was trained before the optimization, if the algorithm at its intermediate calculations projects 

the network into states (i.e. power levels) where the PLM has low accuracy, the optimization can be misled.  

To overcome this, we propose to use an adaptive and iterative closed control loop process to solve the dynamic 

multivariable launch power optimization problem. At certain (adaptable) number of intermediate iterations of the 

algorithm we close the loop, configure the network and monitor to retrain the PLM (with ML) to follow the projected 

network states, as shown in Fig. 1(c). In this way, the PLM becomes a Digital Twin (DT): a parametric model that 

works in evolving network conditions and has a method to adapt to follow these conditions. Let us be on k-1 PLM 

retraining cycle, have configured the power vector 𝒑𝒌−𝟏 and monitored SNR values 𝒀𝑵(𝒑𝒌−𝟏). These are used to train 

the PLM 𝑸𝑵(𝒑𝒌−𝟏, 𝒓𝒌−𝟏, 𝒛). Then in this k-1 PLM retraining cycle, the algorithm performs intermediate iterations. At 

each iteration it calculates new powers using that PLM without configuring them to the network. After 𝐿𝑘−1iterations 

(we discuss how to find this for the next cycle), it finds the powers 𝒑𝒌 and configures them to the network. We then 

monitor and obtain 𝒀𝑵(𝒑𝒌). We calculate the PLM alignment error 𝒆𝒌=‖𝒀𝑵(𝒑𝒌) − 𝑸𝑵(𝒑𝒌, 𝒓𝒌−𝟏, 𝒛)‖
2, using the PLM 

trained at the start of the previous k-1 cycle. We then start cycle k, use 𝒀𝑵(𝒑𝒌) to train the PLM, which is in turn used 

to perform 𝐿𝑘 optimization intermediate iterations. In our previous work [9] the number of iterations was fixed for all 

cycles, so 𝐿𝑘−1 = 𝐿𝑘 = 𝐿𝑓𝑖𝑥𝑒𝑑, for all k. In this paper we devised an adaptive scheme. We adapt the number of 

iterations 𝐿𝑘 at cycle k using a function f of the PLM alignment errors of previous k-1 and current k cycle: Lk=f (𝑒𝑘, 

𝑒𝑘−1, 𝐿𝑘−1). The idea is to track the evolution of the alignment of the PLM and reduce/increase the realignment period 

accordingly. In particular, in the following results we implemented a simple adaptive function f where we 

increased/decreased L by 5 if we observed a decrease/increase of the alignment error. 
 

3.  Results & Discussion 

To quantify the benefits of the devised PLM/QoT estimator retraining based launch power optimization process, we 

performed simulations, using VPI [12] as the real world/ground truth and the GN model as the PLM. Note that VPI is 

more detailed and complex and closer to a real system than GN. This choice was made to capture the mismatch between 

the real network and the PLM used in the optimization process, and is considerably more realistic than most prior 

studies [2], [5], where the same PLM was used for both the real network and proposed solution. We simulated a 4 

nodes topology (assumed to be a part of a bigger network) with 15 reused wavelengths and 21 connections in VPI, see 
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Fig. 2(a). We assumed different attenuation (0.19-0.21dB/km), dispersion (16.5-17ps/(nm.km)) and fiber non-linearity 

coefficients (1.3-1.38W-1.km-1) for the 3 links, introducing uncertainties which need to be modeled in ML using per 

link parameters r. We used EDFAs with gain ripple 0.4dB peak-to-peak, and 32GBaud 16-QAM mod. format per 

connection. We implemented in MATLAB the GN model and the launch power optimization algorithm to maximize: 

(obj#1) the sum of SNR margins, or (obj#2) the lowest margin, where margin is the difference between the real SNR 

(measured in the network/VPI) and the SNR threshold [9]. Since the optimization problem is convex [5], we 

implemented in MATLAB an interior-point algorithm to solve it, which was run with optimality tolerance 10-6.  
 

 
Fig. 2. (a) VPI setup, (b) Obj#1, (c) Obj#2 values as a function of proposed adaptive, iterative PLM retraining based launch optimization approach 

for EDFAs with min-max peak to peak gain ripple values of ±0.1 to ±0.3dBs, and (d) Corresponding reduction in the number of monitoring calls 
 

When optimizing with the one-time trained PLM we monitor the initial SNR values in VPI, pass them to 

MATLAB, use them to train the PLM, which is then used for all algorithm intermediate iterations. The final powers 

are passed to VPI where we find the resulted real margin. When optimizing with monitoring probes, the derivatives 

calculation subroutine probes, gives new launch powers, to VPI, which calculates the SNR values and passes them 

back. This process is performed several times until the algorithm calculates the partial derivatives and the next launch 

powers, and is repeated for each algorithm iteration. In our proposed approach, VPI takes the launch powers from the 

algorithm and calculates the SNR values. These are passed back to MATLAB, used to find the alignment error and the 

next period Lk, and train the PLM. This PLM is then used for the next Lk algorithm intermediate iterations.  

Fig. 2(b) shows the optimization objective values (evaluated in VPI) as a function of the retraining cycle (k) 

of our proposed scheme. Compared to one-time trained PLM approach, we noticed ~4.6dB improvement in obj#1 (Fig. 

2(b)) and ~0.6dB in obj#2 (Fig. 2(c)). Fig. 2(b) and 2(c) shows that with fixed retraining period 𝐿𝑓𝑖𝑥𝑒𝑑= 5, the solution 

reaches the optimum, however it took more iterations. With the adaptive loop (Lk=f (𝑒𝑘, 𝑒𝑘−1, 𝐿𝑘−1)) we obtained ~54-

60% reduction in retraining cycles without compromising the performance. In general, the monitoring probes approach 

achieves the optimum since it continually tracks the network state. However, the extensive interactions with the 

network are prohibitive. In Fig. 2(d) we see that optimizing with monitoring probes required from ~1500 to ~4000 

monitoring calls, for obj#1 and obj#2 with rippled EDFA gain profiles. This makes the overall approach very slow. 

Our approach substantially reduces the calls. With respect to [9] where we used a fixed period (𝐿𝑓𝑖𝑥𝑒𝑑) and links 

without uncertainties, the devised adaptive period method reduced the calls by ~59%. Ultimately, we reduce by ~90 

to 94% the monitoring calls with respect to optimizing with monitoring probes, which will reflect to a similar reduction 

in the total optimization time. 
 

4.  Conclusion 

We proposed to use an adaptive and iterative closed control loop process to solve the multivariable dynamic TPs launch 

power optimization problem. We showed an improvement of ~4.6dB and ~0.6dB in sum of margins and lowest margin, 

respectively, over optimization with a one-time trained PLM. We achieved near to optimum solutions as found by 

optimizing and continuously probing and monitoring the network, but with ~94% fewer monitoring probe calls.  
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