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Abstract We propose physical layer model extensions that capture the performance variations of multi-
vendor transponders and use those with appropriate algorithms to optimize connections’ launch powers. 
We estimated potential SNR improvements upto ~35% for 4 different vendors in a network of 27 nodes. 

Introduction 
The concept of disaggregation of optical transport 
systems is considered by several operators as a 
means of higher flexibility and cost reduction. 
Different levels of disaggregation are being 
discussed, from partial to full disaggregation with 
trade-off between data/control plane complexity 
and cost [1], [2]. Partial disaggregation, where the 
line system is open (open line system OLS) to 
multiple vendor transponders (TPs) has gained the 
most attention due to the ease in the related 
control plane implementation [1], [3], [4].   
In traditional optical transport networks, the line 
system and the TPs are integrated and under the 
control of a single vendor (proprietary controller). 
For such networks, TPs launch power is generally 
set to a fix value (by the vendor) that is optimized 
to achieve the best Signal to Noise Ratio (SNR) for 
the central channel under high load conditions. 
While optimizing that, several factors need to be 
accounted, including statistical variations of 
components of the TPs, even if they come from the 
same vendor [5]. Used margins, which account for 
impairment calculation uncertainties and ageing, 
generally cover such TP performance variations. 
For multi-vendor TPs in an OLS, apart from the 
aforementioned TP statistical variances, vendor 
dependent factors play a significant role in quality 
of transmission (QoT)/SNR estimations [4]-[6]. In 
such a network, performance variations arise from 
the different TP components and DSP used by the 
different vendors. So, if we use a typical (single 
vendor) physical layer model (PLM) [2], [3] we 
might observe huge deviations in the estimated 
and measured QoT. Such estimation errors would 
affect among other operations, the optimization of 
the launch power levels. In light of the above, 
herein we propose a scheme to accurately model 
the physical layer in multi-vendor TP environment 
that accounts for vendor dependent performance 
factors. Using this model with appropriate 
algorithms, we optimize the launch power of 
connections with the aim to maximize (i). the sum 
of SNR margins or (ii). the lowest margin for overall 
network capacity improvement.

Related Work  
Several works study variations of power 
optimization [7]- [13] with the goal of minimizing 
intra- and inter-channel non-linear (Kerr) effects 
since this is the main limiting factor of the 
transmitted signals power in dispersion-
uncompensated systems. Previous works 
proposed heuristics to optimize either the 
individual [7], [8], [12] [13] or all channel launch 
power [9]-[11]. Authors in [7], [8] presented several 
approaches to optimize the launch power (along 
with the constellation and channel allocations) of 
each channel to maximize the network efficiency, 
taking into account nonlinear interference (NLI) as 
well as amplified spontaneous emission (ASE) 
noise. The local optimization leads to global 
optimization (LOGO) model [9] targets on 
maximizing SNR at the Rx. by maximizing each 
span’s SNR (or minimizing each span’s non-linear 
noise). The main benefit of this model is its 
flexibility to optimize the power of each span 
irrespectively of the span lengths (homo or 
heterogeneous). However, the LOGO assumes full 
load and the same power levels for all channels (at 
each span) and thus does not consider the 
connection distance. Authors in [12] formulated via 
a convex-based optimization, the problem of 
individual channel launch powers with the 
objective of maximizing the minimum SNR margin 
using a gaussian noise (GN) model. Extensions to 
take advantage of connections monitoring was 
presented in [13]. 
In brief, to the best of our knowledge, the launch 
power optimization problem in case of partial 
disaggregation (multi-vendor TPs) has not been 
investigated. For such networks, a proper PLM is 
needed to account for vendor dependent TP 
performance factors. Keeping this in mind, we first 
propose a PLM to capture the performance of 
multi-vendor TPs. We then develop methods for 
optimizing the launch power of each connection 
based on convex optimization principles. Utilizing 
our PLM as ground truth, we verify the benefits of 
our proposed algorithm in maximizing the SNR 
margins in a multi-vendor TPs environment.  
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Multi-Vendor Physical Layer Model 
In single-vendor optical networks, all WDM 
channels are typically controlled to have uniform 
launch and span power (by the proprietary 
controller). The used launch power is typically 
found to be the optimum with central channel for 
full load on a multi-span link (Fig. 1(a)). Note that 
such power optimization results in low efficiency/ 
excess margins for side channels or diverse 
network paths. Moreover, the chosen power is 
typically even more conservative to be on the safe 
side and ensure the operation of the network in the 
linear regime. Setting a conservative launch power 
is definitely a good strategy for networks with 
limited knowledge about the used elements such 
as the disaggregated scenario [2].  
The GN model [9] is a well-accepted PLM for 
single- and multi-vendor networks [3],[14]. 
According to the GN model (with rectangular signal 
shape), the impact of transmission effects on the 
generalized SNR are given by  

𝑆𝑁𝑅 = 
𝐺𝑂

𝐺𝐴𝑆𝐸+ 𝐺𝑁𝐿𝐼
                     (1) 

where 𝐺𝑂 is the optical signal average power 

spectral density (PSD), 𝐺𝐴𝑆𝐸 is the ASE noise PSD, 
and 𝐺𝑁𝐿𝐼 is the NLI noise PSD contribution. 
 

 
Fig. 1: (a) Traditional WDM transport system: line system and 
TPs with proprietary controller, (b) SNR (dB) for 80 channels at 
32Gbaud in single link with Ns=6 identical spans 
 

Fig. 1(b) shows the estimated SNR for 80x 
32Gbaud pol-mux 16QAM channels, using the 
traditional PLM of Eq. (1) for a multi-span link (no. 
of spans, Ns=6) and 0dBm of flat/uniform launch 
power. We see that the minimum SNR is obtained 
at the central channel, as expected. We call this as 

single vendor PLM, and denote it by 𝑃𝐿𝑀𝑆𝑉. 
However, the GN model covers impairments, 
assuming perfect dispersion compensation at the 
Rx., and does not consider the characteristics of 
the TPs. In reality {𝐺𝑂, 𝐺𝑁𝐿𝐼} terms are affected by 
TP characteristics such as the DSP 
implementation, performance variations of TP 
components (e.g., laser linewidth, photodiode’s 
responsivity, etc.), whereas the linear noise term, 
𝐺𝐴𝑆𝐸, is determined by the optical amplifiers. Based 
on this, we extended the GN model to capture the 
TP characteristics in a generic way with the goal to 
model multi-vendor/ disaggregated scenarios. 
In particular, we introduce three performance 
factors, {α, β, γ}, where α covers vendor specific 
TP components; β covers amplifier characteristics; 
and γ covers vendor specific DSP implementation 
variations [5], [6]. In multi-vendor TPs scenarios, 

the performance terms {α, β, γ} would be different 
for the heterogeneous TPs. These should be 
accounted for in the 𝑃𝐿𝑀𝑆𝑉 to achieve accurate 
SNR estimation. Though this model is also 
applicable for single vendor TPs [6], its importance 
is more relevant in multi-vendor networks. We 
consider a scenario, where TPs from M vendors 
are deployed. For any vendor i out of the M, with 
{𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖} performance factors, we calculate its 
SNR with Eq.(2), instead of Eq. (1): 

 𝑆𝑁𝑅𝑖 = 
𝛼𝑖.𝐺𝑂

𝛽𝑖.𝐺𝐴𝑆𝐸 + 𝛾𝑖.𝐺𝑁𝐿𝐼
  = 

(
𝛼𝑖

𝛽𝑖
⁄ ).𝐺𝑂

𝐺𝐴𝑆𝐸 + (
𝛾𝑖

𝛽𝑖
⁄ ).𝐺𝑁𝐿𝐼 

               (2) 

 

 
Fig. 2: (a) Estimated -1.5dBm (red line) of flat launch power for 
scenario presented in Fig. 1(a). (b) Optimized flat launch power 

of central/worst SNR channel for M=4 TP vendors with {𝛼, 𝛾}𝛽=1 

= [{1.0,1.0},{0.9,0.8},{0.8,0.7}, {1.0,0.9}] at fixed β=1. 
 

Eq. (2) accounts for vendor specific performance 
factors. We call it as multi-vendor PLM and denote 

it by 𝑃𝐿𝑀𝑀𝑉. Note that in past, a bias term was 
added in the accumulation of linear/ASE noise to 
account for TP implementations [15]. However, our 
model is quite generic and captures these 
implementation factors to a great extent, while 
such a bias term affects the performance, away 
from our optimization point (in the next section). In 
the future, such extensions will be considered to 
further improve the model. Fig.2(a) and 2(b) show 
the optimized flat launch power for a proprietary 
network (α, β, γ =1) and partial disaggregated 
networks with TPs from M=4 different vendors 
(Fig. 3). In 𝑃𝐿𝑀𝑀𝑉, we assumed β = 1 since it 
corresponds to the amplifier performance which 
even in OLS is under the control of a single vendor. 
In comparison to Fig. 2(a), we see in Fig. 2(b) a 
~1dB variation (-1.5dB for TP1, TP4 to -0.5dB for 
TP2, TP3) of optimal flat launch power for different 
TPs (resulting in ~0.4dB SNR variation, Fig. 3(b)).  
 

 
Fig. 3: (a) OLS of multi-vendor TPs with open transport 
controller, (b) SNR (dB) for 80 channels established with (M=4) 

TP vendors with {𝛼, 𝛾}𝛽=1 similar to Fig. 2(b)   

To improve the accuracy of QoT/SNR estimation, 
we propose to characterize the TPs and identify 
the vendor specific parameters, or learn them 
while the network operates [14]. These would be 
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used in the 𝑃𝐿𝑀𝑀𝑉 which in turn would be used in 
planning or dynamic optimization operations. We 
now focus on launch power optimization in multi-
vendor TP disaggregated networks. 
 

Launch Power Optimization and Results 
We consider a network with N established 
connections and two optimization objectives: 
i. sum of channel margins: 

max. ∑ (𝑙𝑜𝑔 𝑆𝑁𝑅𝑛(𝑝) − 𝑙𝑜𝑔 𝑆𝑁𝑅𝑡ℎ,𝑛) 
𝑁
𝑛=1  

ii. minimum margin: 
max. 𝑚  𝑛∊[1,𝑁](𝑙𝑜𝑔 𝑆𝑁𝑅𝑛(𝑝) − 𝑙𝑜𝑔 𝑆𝑁𝑅𝑡ℎ,𝑛)  

subject to: 

𝑙𝑜𝑔 𝑆𝑁𝑅𝑛(𝑝) − 𝑙𝑜𝑔 𝑆𝑁𝑅𝑡ℎ,𝑛  ≤ 0, ∀ ∊ [1, 𝑁]  
            𝑝𝑚𝑖𝑛  ≤ 𝒑 ≤  𝑝𝑚𝑎𝑥 
where 𝒑 = [𝑝1, 𝑝 , … 𝑝𝑛] is the launch power vector 
of the N connections; 𝑝𝑚𝑖𝑛 and 𝑝𝑚𝑎𝑥 are the lower 

and upper power bounds; 𝑆𝑁𝑅𝑛(𝑝) is the SNR of 
connection n at corresponding power vector 𝑝; and 

𝑆𝑁𝑅𝑡ℎ,𝑛 is the SNR threshold required for the 

selected modulation format of n [9].  
To solve this problem, we firstly implemented a 
heuristic algorithm. Each connection request 
consists of a source destination node pair, 
path/wavelength, mod. format and assigned TP. 
The heuristic starts from a uniform launch power of 

0dBm and uses 𝑃𝐿𝑀𝑀𝑉 to estimate SNR value of 
each connection. It categorizes connections into 
“low margin” which need better performance, and 
“high margin” which have sufficient margin w.r.t. 
the threshold. The heuristic iterates, and in each 
iteration increases/decreases power of low/high 
margin connections by a chosen step size Δ. 
The optimization of channels’ launch powers with 
the above objectives is known to be convex [12], 
[13] and of polynomial complexity. Hence, we 
implemented an interior-point algorithm to solve it. 
Such algorithm converges faster with a good 
starting solution. Hence, we used the launch power 
vector returned by the heuristic as its starting point.  
Finally, we also applied an adaptive weight neural 
network (NN) inspired from [16]. The single layer 
NN (neurons size = no. of connections) operates 
with a randomly generated initial population. The 
best obtained solution at each epoch is set as the 
target and NN weights are updated accordingly. 
The NN adapts its weights by moving other 
predicted solutions towards the target solution, so 
that the objective improves with iterations.    
We considered an Italian backbone topology with 
27 nodes and 43 bidirectional links whose lengths 
range from 8 to 480 km [11]. We assumed SSMF 
spans of 80km, a traffic load of 500 connections 
with uniformly chosen source-destination nodes, 
fixed 32GBaud symbol rate, served in 3 spectrum 
slots (37.5 GHz). Each demand was modulated at 
32Gbaud with PM-{QPSK, 8-QAM, 16-QAM} 
leading to {100, 150, 200} Gbps of data rate. We 
considered M=4 TP vendor classes with {α, γ} 
performance factors [{1.0, 1.0}, {0.9, 0.8}, {0.8, 
0.7}, {1.0, 0.9}] and fixed β=1 (Fig. 3). We uniformly  

Tab. 1: computation time(sec) for implemented algorithms 
Algorithm 

computation time (sec) 

Obj.#1 Obj.#2 

𝑷𝑳𝑴𝑺𝑽 𝑷𝑳𝑴𝑴𝑽 𝑷𝑳𝑴𝑺𝑽 𝑷𝑳𝑴𝑴𝑽 

heuristic, Δ=±1dBm 56.5 68.8 69.5 72.4 

heuristic, Δ=±0.5dBm 95.1 99.3 104.2 107.9 

heuristic, Δ=±0.25dBm 120.2 131.6 134.8 147.2 

convex+ heuristic 247.9 242.5 241.9 257.8 

NN 421.7 400.4 483.6 493.9 
 

assigned one TP/modulation to each demand. 
Finally, we averaged the results over 20 iterations.  
Tab. 1 shows the computation time of the 
examined algorithms (heuristic, convex, NN) and 

PLMs (𝑃𝐿𝑀𝑆𝑉, 𝑃𝐿𝑀𝑀𝑉), while Fig. 4 the objectives 
performance. We observe a trade-off between 
computation time and objectives. The performance 
of the heuristic varies for the chosen step size Δ, 
the objective is better for smaller Δ, while its 
computation time increases almost linearly with Δ.  
 

 
Fig. 4: (a) obj.#1 (b) obj.#2 values and related savings when 

using 𝑃𝐿𝑀𝑀𝑉 instead of 𝑃𝐿𝑀𝑆𝑉 for the multi-vendor scenario 
 

The NN algorithm achieved good performance 
(better than the heuristic) but with the highest 
execution time (even higher than the convex). NN 
performance is generally quite good for finding 
non-linear mapping functions. However, for the 
multi-vendor launch power optimization problem at 
hand, convex optimization performed much better 
(Fig. 4). The convex (interior point) algorithm 
achieved the best performance in reasonable/low 
time. We observed ~10dB of obj.#1 improvement 
and ~0.6dB (34.9%) improvement of obj.#2 when 
using 𝑃𝐿𝑀𝑀𝑉 instead of  𝑃𝐿𝑀𝑆𝑉 for the convex 
algorithm in the studied multi-vendor scenario. 
This improvement comes from the inaccuracy of 

the 𝑃𝐿𝑀𝑆𝑉. Note that the minimum margin (obj.#2) 
reflects connections’ infeasibility. Hence the use of 

proposed 𝑃𝐿𝑀𝑀𝑉 reduces substantially the 
infeasibility probability of connections in a multi-
vendor network. Varying improvements, 
depending on algorithm’s performance and PLM 
inaccuracy were observed for the other examined 
algorithms (Fig. 4). 

Conclusion 
We proposed a TP vendor dependent physical 
layer model for more accurate SNR estimation. 
Using this multi-vendor PLM with convex 
algorithms, we observed ~0.6dB higher SNR 
estimation accuracy and ~35% min. margin 
savings compared to a traditional PLM model. 
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