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ABSTRACT

In this paper, J. M. Rassias introduces the general Euler - Lagrange type functional equation
of the form

flmz +y) + f(mz —y) = 2f(z +y) + 2f(z — y) + 2(m* = 2)f(2) = 2f(y)  (¥)

for any arbitrary but fixed real constant m with m # 0;m # +1;m # £v/2 . We investigate
the Ulam stability for the orthogonally general Euler - Lagrange type functional equation (*)
controlled by the mixed type product-sum function

(ey) = e[lla Wl + (12 132 + 11w 1)
introduced by the third author of this paper, and by a non-negative function with x 1 y.
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1 Introduction

In 1940, S. M. Ulam [27] raised the question concerning the stability of group homomor-
phisms:

Let G1 be a group and let G, be a metric group with the metric p(.,.). Given ¢ >
0, does there exists a 6 > 0 such that if a function h : Gy — G4 satisfies the inequality
p(h(zy), h(z)h(y)) < 0 for all z,y € G, then there exists a homomorphism H : G; — G2 with
p(h(z),H(z)) < eforallz € G;?
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D. H. Hyers [6] answered this problem under the assumption that the groups are Banach
spaces. Th. M. Rassias [24] generalized the theorem of Hyers for approximately linear map-
pings. The stability phenomenon that was proved by Th. M. Rassias [24] is called the Hyers -
Ulam - Rassias Stability.

J. M. Rassias [11-23] solved the Ulam problem for different mappings and for many Euler-
Lagrange type quadratic mappings. In 2005, J. M. Rassias [23] solved Euler- Lagrange type
guadratic functional equation of the form

Q(mia1z1 + maasrs) + mimaQ (a1 — agas) = (myad + mead)(miQ(z1) + meQ(x2))

and discussed its Ulam stability problem.
The orthogonal Cauchy functional equation

fle+y)=f@)+fly)z Ly (1.1)

in which L is an abstract orthogonality symbol, was investigated by S. Gudder and D. Strawther
[5]. R. Ger and J. Sikorska discussed the orthogonal stability of the equation (1.1) in [4].

We now introduce the concepts of orthogonality vector space, orthogonality space and
orthogonality normed space and then proceed to prove our main results.
Definition 1.1. A vector space X is called an orthogonality vector space if there is a relation
x 1 yon X such that
(i) L0, 0 Lzforallze X,
(i) ifx L yand z,y # 0, then z, y are linearly independent;
(iii) © Ly, ax L by forall a,b € R;
(iv) if P is a two-dimensional subspace of X ; then

(a) for every x € P there exists 0 # y € P suchthatz 1 y;

(b) there exists vectors 2,y # 0suchthatz L yandz+y L = —y.
Any vector space can be made into an orthogonality vector space if we define z 1 0,0 L x for
all z and for non zero vector z, y define z L y iff z, y are linearly independent. The relation
L is called symmetric if x L y implies that y L « for all z, y € X. The pair (z, L) is called an
orthogonality space. It becomes orthogonality normed space when the orthogonality space is
equipped with a norm.
Definition 1.2. Let X be an orthogonality space and Y be a real Banach space. A mapping
f X — Y is called orthogonally quadratic if it satisfies the so called orthogonally Euler-
Lagrange (or Jordan - von Neumann) quadratic functional equation

fla+y)+ fl@—y) = 2f(2) +2/(y) 12

forall z,y € X with xz L y, (see [15]).

The orthogonality Hilbert space for the orthogonally quadratic functional equation (1.2)
was first investigated by F. Vajzovic [28] . Recently Ulam - Gavruta - Rassias stability for the
orthogonally Euler - Lagrange type functional equation of the form

fRz+y)+ 2z —y) =2f(z+y) +2f(z —y) + 4f(z) — 2 (y) (1.3)
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was investigated by Ravi and Arunkumar [26].
In this paper, we investigate the Ulam stability for the orthogonally general Euler - La-
grange type functional equation

flmz +y) + f(mz —y) = 2f(x +y) + 2f(x —y) + 2(m* = 2) f(z) = 2f(y) ~ (1.4)
for all z,y € X with L y, controlled by the mixed type product-sum function
@y) = e{lx Wyl + (I I+ 1y I2)}

a concept introduced by the third author of this paper, and by a general non-negative function.
Note that the general Euler - Lagrange type functional equation (1.4) is equivalent to the stan-
dard Euler - Lagrange equation (1.2).

A mapping f : X — Y is called orthogonally quadratic if it satisfies the quadratic functional
equation (1.4) for all z,y € X with x L y where X be an orthogonality space and Y be a real
Banach space.

2 Stability of the Functional Equation (1.4)

In this section, let (E, L) denote an orthogonality normed space with norm || - ||z and (F,|| - ||»)
is a Banach space.

Theorem 2.1. Let f : E — F be a mapping which satisfying the inequality

| f(ma +y) + f(mz —y) = 2f(z +y) = 2f(x —y) — 2(m* = 2) f(x) +2f(y) |IF
<e{la iyl + (I +120)} 2.1)
for all z,y € E with x L y, where e and p are constants with e,p > 0 and either
m>lip<lorm<lip>lwithm#0;m#=+l;m#+vV2 and—1%# |m|P~' < 1.
Then the limit

Q) = Tim f(m™z)

n—oo 2N

2.2)

exists for all x € F and Q : E — F is the unique orthogonally Euler - Lagrange quadratic

mapping such that
€
_ < - -
| 1@) = Q@) lIrs 5

W”? (2.3)

forall x € E.

Proof. Replacing (,y) with (0,0) in (2.1), we obtain 2|2—m?| || £(0) ||= 0 or £(0) = 0if m? # 2.
Again substituting (z,y) by («,0) in (2.1), we get

|ma) —m2 (@) < gellal
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1 e

fma) <
= 2m

m?2

(ie). H an

— |7 (m #0)

(2.4)
for all z € E. Now replacing = by maz and dividing by m? in (2.4) and then adding the resulting
inequality with (2.4), we obtain

|12 s

for all x € E. Using induction on n we obtain that

| He2 el (26)

m?2n

e >H

for all z € E. In order to prove the convergence of the sequence {f(m™z)/m?"} replace = by

mlz and divide by m? in (2.6), for any n,l > 0, we obtain

fntts)  flda)| L)
m2(l+n) m2 ||, m2l on .
1 € 1 e m2pk 2
S SramEnT 2 e llE 2.7)

Since m2(1-?) < 1, the RH.S of (2.7) tends to 0 as | — oo for all z € E. Thus {f(m"z)/m?"}

is a Cauchy sequence. Since F is complete, there exists a mapping @ : E — F such that

n
fm's) e e b,
mn

Qx) = hm

By letting n — oo in (2.6), we arrive the formula (2.3) for all z € E. To prove @ satisfies (1.4),

replace (x, y) by (m"z, m™y) in (2.1) and divide by m?" then it follows that

| f(m™(max +y)) + f(m" (ma —y)) = 2f(m"(z +y)) — 2f(m"(z — y))

? 2 2
5 Ll Il mey 1+ (I me e 13+ oty 1)}

m2n

= 2(m® = 2)f(m"x) + 2f (m"y) || p<

Taking limit as n — oo in the above inequality, we get
| Qma +y) + Q(mz — y) — 2Q(z +y) — 2Q(x — y) — 2(m* — 2)Q(x) +2Q(y) |[r< 0.
which gives

Qma +y) + Q(ma —y) = 2Q(w +1) +2Q(x — y) + 2Am® ~ 2)Q(x) — 2Q(1)
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for all x,y € E with | y. Therefore @ : E — F is an orthogonally Euler - Lagrange quadratic
mapping which satisfies (1.4). To prove the uniqueness of Q, let Q' be another orthogonally

Euler - Lagrange quadratic mapping satisfying (1.4) and the inequality (2.3). We have

Q) - Q') = an {le(m"z) = f(m"2)||p + [|f(m"z) — Q' (m")| - }

126
= ZWHIH

—0 as n— oo
for all z € E. Therefore ( is unique. This completes the proof of the theorem. O
Theorem 2.2. Let f : E — F be a mapping which satisfying the inequality
| f(max +y) + f(mz —y) —2f(x +y) = 2f(x — y) — 2(m* = 2) f(z) + 2f () ||r
{laitlyls+ (=1 +121%)} (2.8)
for all z,y € E with x L y, where e and p are constants with e,p > 0 and either
m>1Lip>lorm<l;p<lwithm#0;m#+l;m#+V2 and—1%#|m|'™P < 1.

Then the limit
= i g (L
Qz) = lim m™f (mn) (2.9)
exists for all € F and Q : E — F is the unique orthogonally Euler - Lagrange quadratic
mapping such that
2

forall x € E.

Proof. Replacing = by = (m # 0) in (2.4), we get

[r@) =27 (D), < 5o Il G £ 0) (2.11)

for all z € E. Now replacing z by ;> and multiply by m? in (2.11) and summing the resultant

inequality with (2.11), we arrive

1= o0ts (23, < i (1 ) Vel @12
for all z € E. Using induction on n we obtain that
n-1 ok )
1= ()], < 3t 3 e Vel @19
k=0

2k
< S a2
2 m?2p m?pk: E
k=0
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for all x € E. In order to prove the convergence of the sequence {mz”f( )} replace = by

- and multiply by m? in (2.13), for any n,! > 0,we obtain

Hm2(n+l)f (mlT‘*'") 21f<ml>H Hm (m;'”) (ml)HF

oo

€ 1
AT D ClelE. @)
k:

<

DO | =

Since m*P~1 < 1, the RH.S of (2.14) tends to 0 as | — oo for all z € E. Thus {m?"f (%)} is

a Cauchy sequence. Since F' is complete, there exists a mapping @ : E — F such that
Qz) = nlgrolC m="f (m") Vreck.

By letting n — oo in (2.13), we arrive the formula (2.10) for all z € E. To show that @ is unique

and it satisfies (1.4), the proof is similar to that of Theorem 2.1 O

Theorem 2.3. Let E be a real orthogonality normed linear space and F' be a real complete
normed linear space. Assume in addition that f : E — F is an approximately quadratic

mappings for which there exists a constant 0 > 0 such that f satisfies

I f(ma +y) + f(mz —y) = 2f (@ +y) = 2f(x —y) — 2(m* = 2)f () + 2/ (y) |F

<OH(z,y), Ly (2.15)

for all (z,y) € E,x L y and H : E?> — R* U {0} is a non negative real valued function, such

that
2 H(mlz, O)
= — (< 00)(m #0) (2.16)
Jj=

is a non negative function on x, with m # 0;m # +1; m # £+/2 and the condition

H(mFz, mFy)

lim
m2k

Jim =0 (2.17)
holds. Then there exists a unique orthogonally Euler - Lagrange quadratic mappings Q : E —

F such that

1 /@) -Q@) e < 5 5R()+ '||f ( jlllF‘

forall x € E . In addition f : E — F is a mapping such that the transformation t — f(tz) is

(2.18)

continuous in real t for each fixed x € E, then Q) is R— linear mapping.

Proof. Letting y = 0in (2.15), we get

L 9
Hf(Lf)ff(Fc)JrJ;(l—Q o= QmQH(x,O) (m #0)
f(mz) 0 1/ O]l
Hf m2 'F < TmQH(LO) + m2 (m #0) (2.19)
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for all z € E . Now replacing = by mz divide by m? in (2.19), we obtain

Hf(m;c) _ f(m®z) 4 L Ol

- 7 H(mz,0) + i

F_2m
Using (2.19) and the above inequality, we arrive

f(m*z) 4 H(mz,0)]  [I£(0)]|r 1
_ < i
Hf(x) wi ||, S 22 H(z,0)+ 2 T 1+ = (2.20)
for all z € E. Using the induction on n we obtain that
f(mmz) = H(mlz,0) |0l — 1
- 20 < g Nt RS s e

J=0

(m"x)
m2n

for all x € E. In order to prove the convergence of the sequence {f } replace 2 by m'x

and divided by m? in (2.21), for any n,! > 0, we obtain

f(m fnm )| | o f(m )
H le et T om2 flm') = m2
< H(m/*z,0) G )IIF 1
m2 Z m206+) m2 Z m2(+1)

7=0

—0 as [ — o0

forall z € E . Thus {f;fm’")} is a Cauchy sequence. Since F' is complete, there exists a

mapping @ : E — F such that

Q(z) = lim f(m%f), Ve € E.

n—oo

Letting n — oo in (2.21) and using the definition of Q(z) and (2.16), we arrive at the formula

(2.18). Indeed

1 (x) — Q(T)HF < 2m2 Z m]x 0) ||f£22||F Z %

j=0
0 0 2

< gl ”f;l”F =]

< LR £ (0)]|F

2m? (@) |m2 — 1|
for all z € E . To prove @ satisfies (1.4), replace (z, y) by (m"z, m™y) in (2.15) and divide by

m?™ then it follows that

m2n | f(m™(mz +y)) + f(m"(mz —y)) = 2f(m"(z +y)) — 2f (m"(z —y))
—2m? — 2) (") + 2 (") < (", m"y)
Taking limit as n — oo in the above inequality, we get

| Q(mz +y) + Q(mz — y) = 2Q(x +y) — 2Q(z — y) — 2(m* = 2)Q(x) +2Q(y) [[F< 0.
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which gives
Q(mz +y) + Q(mz —y) = 2Q(z +y) +2Q(z — y) + 2(m* - 2)Q(x) — 2Q(y)

for all x,y € E with z L y. Therefore @ : E — F is an orthogonally Euler - Lagrange quadratic
mapping which satisfies (1.4). To prove the uniqueness of Q, let Q' be another orthogonally

Euler - Lagrange quadratic mapping satisfying (1.4) and the inequality (2.18). We have

1
[Qz) - Q' (2)]| . = o {lQ(m"z) — f(m"x)|lp + [|f(m"z) — Q'(m")|| .}
1 [0 2[[£(0)llr
T {WR(I) mE
—0 as n— o0
for all x € E. Therefore @ is unique. This completes the proof of the theorem. O

Theorem 2.4. Let E be a real orthogonality normed linear space and F' be a real complete
normed linear space. Assume in addition that f : E — F is an approximately quadratic

mappings for which there exists a constant § > 0 such that f satisfies

I f(ma +y) + f(mz —y) = 2f(x +y) = 2f(x —y) —2(m* = 2)f () + 2/ (y) |F

<0H(z,y), zly (2.22)

for all (z,y) € E,x L y and H : E*> — R* U {0} is a non negative real valued function, such
that

oo o T
R(z) = ZOmZJH (m].+1 7 o) (< 00)(m # 0) (2.23)
=
is a non negative function on x, with m # 0;m # +1;m # ++/2 and the condition
; 2k roy
lgl;om H (W’W) =0 (2.24)

holds. Then there exists a unique orthogonally Euler - Lagrange quadratic mappings @Q : £ —

F such that

| F@) = Q) < & Ri) + |||1f£027|1|2F|

(2.25)

forall x € E . In addition f : E — F is a mapping such that the transformation t — f(tx) is

continuous in real t for each fixed x € E, then Q is R— linear mapping.

Proof. Replacing « by ;- in (2.19) and using the proof of Theorem 2.3, we arrive at the desired

result. O
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The following two analogous Theorems 2.5 and 2.6 can be obtained as two special cases:

either m = 1 or m = —1. In these two cases the pertinent functional equations are obviously
equivalent to the classical quadratic equation:
fle+y)+ flz—y) =2f(z) +2f(y) (2.26)

forall z,y € E withx L y.
Theorem 2.5. Let f : E — F be a mapping satisfying the inequality
| 49+ S —y) =20 @) = 2f@) e <e[lelplyly+ (1= % +121%)] @21

forall z,y € E with z L y, where e and p are constants with e > 0 and p < 1. Then the limit

Q@) = Tim 122 (2.28)

n—oo 4"

existsforall x € E and Q) : E — F is the unique Euler - Lagrange quadratic mapping such that

3€

| () = Q@) < 5 ol (2.29)
forall z € E.
Proof. Letting y = z in (2.27), we get
2 . 3
| 782 - s < 3o (2:30)
F

for all z € E. Now Replacing x by 2z and dividing by 4 in (2.30) and summing the resultant

inequality with (2.30), we arrive

f(22x) 3¢ 22p 2
—f@)| <1+ )l=llF (2.31)
42 po 4 4 B
for all z € E. Using induction on n, we obtain that
(2 _3ex L 92k
1782~ )| <% X 5 a2 (2:32)
F k 0
3 € 2p
<3 = ol
k=0

for all = € E. In order to prove the convergence of the sequence {f(2"z)/4"}, replace z by 2'x

and divide by 4! in (2.32), for n,1 > 0,we obtain

f 2n+l f(zlw) — = f(2n+l‘z') _ f(QZI)
4l+n gl = Al qn =
< 1 3 € 22Pk H H
Je 221"(
< =X omr U g
k=0
3e > 1 2p
S Z 22(1—p)(k+l ”IH (233)

k=0
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Asp < 1,the RH.S of (2.33) tends to 0 as I — oo. Thus {f(2"x)/4"} is a Cauchy sequence.
Since F is complete, there exists a mapping @ : £ — F and define

-1’3_~)

Ve e B,

Q(z) = lim
n— o0

Letting n — oo in (2.32), we arrive the formula (2.29) for all x € E. To prove (@ satisfies (1.4)

and it is unique the proof is similar to that of Theorem 2.1. Hence the proof is complete. O

Theorem 2.6. et f : E — F be a mapping satisfying the inequality
| St u)+ F@—v) =2/ @) =20 @)l <e[lo &l vl + (1 1F+ 12 1F)] @34
forall x,y e E with x L y, where € and p are constants with € > 0 and p > 1. Then the limit
o nef 2 )
Q) = lim 41 (55 (2.35)
exists for all x € E and () : E — F is the unique orthogonally Euler - Lagrange quadratic
mapping such that

. 3e 2
I f(x) - Q@) Ir= 53— 2| (2.36)

forallr € E.

Proof. Replacing = by = in (2.30) and using the proof of Theorem 2.5, we arrive at the desired

result. A
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