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ABSTRACT

In this paper, J. M. Rassias introduces the general Euler - Lagrange type functional equation
of the form

f(mx + y) + f(mx− y) = 2f(x + y) + 2f(x− y) + 2(m2 − 2)f(x)− 2f(y) (∗)

for any arbitrary but fixed real constant m with m �= 0;m �= ±1;m �= ±√2 . We investigate
the Ulam stability for the orthogonally general Euler - Lagrange type functional equation (*)
controlled by the mixed type product-sum function

(x, y) → ε
[
‖ x ‖p

E‖ y ‖p
E +

(
‖ x ‖2p

E + ‖ y ‖2p
E

)]

introduced by the third author of this paper, and by a non-negative function with x ⊥ y.

Keywords: Hyers - Ulam - Rassias stability , Ulam - Gavurta - Rassias stability, Orthogo-
nally Euler -Lagrange functional equation, Orthogonality space, Quadratic mapping.

2000 Mathematics Subject Classification: 39B55, 39B52, 39B82,46H25.

1 Introduction

In 1940, S. M. Ulam [27] raised the question concerning the stability of group homomor-
phisms:

Let G1 be a group and let G2 be a metric group with the metric ρ(., .). Given ε >

0, does there exists a δ > 0 such that if a function h : G1 → G2 satisfies the inequality
ρ(h(xy), h(x)h(y)) < δ for all x, y ∈ G1, then there exists a homomorphism H : G1 → G2 with
ρ(h(x),H(x)) < ε for all x ∈ G1?
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D. H. Hyers [6] answered this problem under the assumption that the groups are Banach
spaces. Th. M. Rassias [24] generalized the theorem of Hyers for approximately linear map-
pings. The stability phenomenon that was proved by Th. M. Rassias [24] is called the Hyers -
Ulam - Rassias Stability.

J. M. Rassias [11-23] solved the Ulam problem for different mappings and for many Euler-
Lagrange type quadratic mappings. In 2005, J. M. Rassias [23] solved Euler- Lagrange type
quadratic functional equation of the form

Q(m1a1x1 + m2a2x2) + m1m2Q(a1x1 − a2x2) = (m1a
2
1 + m2a

2
2)(m1Q(x1) + m2Q(x2))

and discussed its Ulam stability problem.
The orthogonal Cauchy functional equation

f(x + y) = f(x) + f(y), x ⊥ y (1.1)

in which⊥ is an abstract orthogonality symbol, was investigated by S. Gudder and D. Strawther
[5]. R. Ger and J. Sikorska discussed the orthogonal stability of the equation (1.1) in [4].

We now introduce the concepts of orthogonality vector space, orthogonality space and
orthogonality normed space and then proceed to prove our main results.
Definition 1.1. A vector space X is called an orthogonality vector space if there is a relation
x ⊥ y on X such that
(i) x ⊥ 0, 0 ⊥ x for all x ∈ X;
(ii) if x ⊥ y and x, y �= 0 , then x, y are linearly independent;
(iii) x ⊥ y, ax ⊥ by for all a, b ∈ R;
(iv) if P is a two-dimensional subspace of X ; then

(a) for every x ∈ P there exists 0 �= y ∈ P such that x ⊥ y ;
(b) there exists vectors x, y �= 0 such that x ⊥ y and x + y ⊥ x− y.

Any vector space can be made into an orthogonality vector space if we define x ⊥ 0, 0 ⊥ x for
all x and for non zero vector x, y define x ⊥ y iff x, y are linearly independent. The relation
⊥ is called symmetric if x ⊥ y implies that y ⊥ x for all x, y ∈ X. The pair (x,⊥) is called an
orthogonality space. It becomes orthogonality normed space when the orthogonality space is
equipped with a norm.
Definition 1.2. Let X be an orthogonality space and Y be a real Banach space. A mapping
f : X → Y is called orthogonally quadratic if it satisfies the so called orthogonally Euler-
Lagrange (or Jordan - von Neumann) quadratic functional equation

f(x + y) + f(x− y) = 2f(x) + 2f(y) (1.2)

for all x, y ∈ X with x ⊥ y, (see [15]).
The orthogonality Hilbert space for the orthogonally quadratic functional equation (1.2)

was first investigated by F. Vajzovic [28] . Recently Ulam - Gavruta - Rassias stability for the
orthogonally Euler - Lagrange type functional equation of the form

f(2x + y) + f(2x− y) = 2f(x + y) + 2f(x− y) + 4f(x)− 2f(y) (1.3)
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was investigated by Ravi and Arunkumar [26].
In this paper, we investigate the Ulam stability for the orthogonally general Euler - La-

grange type functional equation

f(mx + y) + f(mx− y) = 2f(x + y) + 2f(x− y) + 2(m2 − 2)f(x)− 2f(y) (1.4)

for all x, y ∈ X with x ⊥ y, controlled by the mixed type product-sum function

(x, y) → ε
{
‖ x ‖p

E‖ y ‖p
E +

(
‖ x ‖2p

E + ‖ y ‖2p
E

)}
,

a concept introduced by the third author of this paper, and by a general non-negative function.
Note that the general Euler - Lagrange type functional equation (1.4) is equivalent to the stan-
dard Euler - Lagrange equation (1.2).

A mapping f : X → Y is called orthogonally quadratic if it satisfies the quadratic functional
equation (1.4) for all x, y ∈ X with x ⊥ y where X be an orthogonality space and Y be a real
Banach space.

2 Stability of the Functional Equation (1.4)

In this section, let (E,⊥) denote an orthogonality normed space with norm ‖ · ‖E and (F, ‖ · ‖F )
is a Banach space.

Theorem 2.1. Let f : E → F be a mapping which satisfying the inequality

‖ f(mx + y) + f(mx− y)− 2f(x + y)− 2f(x− y)− 2(m2 − 2)f(x) + 2f(y) ‖F

≤ ε
{
‖ x ‖p

E‖ y ‖p
E +

(
‖ x ‖2p

E + ‖ x ‖2p
E

)}
(2.1)

for all x, y ∈ E with x ⊥ y, where ε and p are constants with ε, p > 0 and either

m > 1; p < 1 or m < 1; p > 1 with m �= 0;m �= ±1; m �= ±
√

2 and− 1 �= |m|p−1 < 1.

Then the limit

Q(x) = lim
n→∞

f(mnx)
m2n

(2.2)

exists for all x ∈ E and Q : E → F is the unique orthogonally Euler - Lagrange quadratic

mapping such that

‖ f(x)−Q(x) ‖F≤ ε

2|m2 −m2p| ‖x‖
2p
E (2.3)

for all x ∈ E.

Proof. Replacing (x, y) with (0, 0) in (2.1), we obtain 2|2−m2| ‖ f(0) ‖= 0 or f(0) = 0 ifm2 �= 2.

Again substituting (x, y) by (x, 0) in (2.1), we get

∥∥f(mx)−m2f(x)
∥∥

F
≤ 1

2
ε ‖x‖2p

E
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(i.e).,
∥∥∥∥f(mx)

m2
− f(x)

∥∥∥∥
F

≤ 1
2

ε

m2
‖x‖2p

E (m �= 0)

(2.4)

for all x ∈ E. Now replacing x by mx and dividing by m2 in (2.4) and then adding the resulting

inequality with (2.4), we obtain
∥∥∥∥f(m2x)

m4
− f(x)

∥∥∥∥
F

≤ 1
2

ε

m2

(
1 +

m2p

m2

)
‖x‖2p

E (2.5)

for all x ∈ E. Using induction on n we obtain that

∥∥∥∥f(mnx)
m2n

− f(x)
∥∥∥∥

F

≤ 1
2

ε

m2

n−1∑
k=0

m2pk

m2k
‖x‖2p

E (2.6)

≤ 1
2

ε

m2

∞∑
k=0

m2pk

m2k
‖x‖2p

E

for all x ∈ E. In order to prove the convergence of the sequence {f(mnx)/m2n} replace x by

mlx and divide by m2l in (2.6), for any n, l > 0, we obtain
∥∥∥∥f(mn+lx)

m2(l+n)
− f(mlx)

m2l

∥∥∥∥
F

=
1

m2l

∥∥∥∥f(mn+lx)
m2n

− f(mlx)
∥∥∥∥

F

≤ 1
2

ε

m2

1
m2l(1−p)

∞∑
k=0

m2pk

m2k
‖x‖2p

E . (2.7)

Since m2(1−p) < 1, the R.H.S of (2.7) tends to 0 as l → ∞ for all x ∈ E. Thus {f(mnx)/m2n}
is a Cauchy sequence. Since F is complete, there exists a mapping Q : E → F such that

Q(x) = lim
n→∞

f(mnx)
m2n

∀x ∈ E.

By letting n → ∞ in (2.6), we arrive the formula (2.3) for all x ∈ E. To prove Q satisfies (1.4),

replace (x, y) by (mnx, mny) in (2.1) and divide by m2n then it follows that

1
m2n

‖ f(mn(mx + y)) + f(mn(mx− y))− 2f(mn(x + y))− 2f(mn(x− y))

− 2(m2 − 2)f(mnx) + 2f(mny) ‖F≤ ε

m2n

{
‖ mnx ‖p

E‖ mny ‖p
E +

(
‖ mnx ‖2p

E + ‖ mny ‖2p
E

)}
.

Taking limit as n →∞ in the above inequality, we get

‖ Q(mx + y) + Q(mx− y)− 2Q(x + y)− 2Q(x− y)− 2(m2 − 2)Q(x) + 2Q(y) ‖F≤ 0.

which gives

Q(mx + y) + Q(mx− y) = 2Q(x + y) + 2Q(x− y) + 2(m2 − 2)Q(x)− 2Q(y)
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for all x, y ∈ E with x ⊥ y. Therefore Q : E → F is an orthogonally Euler - Lagrange quadratic

mapping which satisfies (1.4). To prove the uniqueness of Q, let Q′ be another orthogonally

Euler - Lagrange quadratic mapping satisfying (1.4) and the inequality (2.3). We have

∥∥Q(x)−Q′(x)
∥∥

F
=

1
m2n

{‖Q(mnx)− f(mnx)‖F +
∥∥f(mnx)−Q′(mnx)

∥∥
F

}

≤ 1
2

2 ε

m2

∞∑
j=0

1
m2(k+n)(1−p)

‖x‖2p
E

→ 0 as n →∞

for all x ∈ E. Therefore Q is unique. This completes the proof of the theorem.

Theorem 2.2. Let f : E → F be a mapping which satisfying the inequality

‖ f(mx + y) + f(mx− y)− 2f(x + y)− 2f(x− y)− 2(m2 − 2)f(x) + 2f(y) ‖F

≤ ε
{
‖ x ‖p

E‖ y ‖p
E +

(
‖ x ‖2p

E + ‖ x ‖2p
E

)}
(2.8)

for all x, y ∈ E with x ⊥ y, where ε and p are constants with ε, p > 0 and either

m > 1; p > 1 or m < 1; p < 1 with m �= 0;m �= ±1; m �= ±
√

2 and− 1 �= |m|1−p < 1.

Then the limit

Q(x) = lim
n→∞m2nf

( x

mn

)
(2.9)

exists for all x ∈ E and Q : E → F is the unique orthogonally Euler - Lagrange quadratic

mapping such that

‖ f(x)−Q(x) ‖F≤ ε

2|m2p −m2| ‖x‖
2p
E (2.10)

for all x ∈ E.

Proof. Replacing x by x
m(m �= 0) in (2.4), we get
∥∥∥f(x)−m2f

( x

m

)∥∥∥
F
≤ 1

2
ε

m2p
‖x‖2p

E (m �= 0) (2.11)

for all x ∈ E. Now replacing x by x
m and multiply by m2 in (2.11) and summing the resultant

inequality with (2.11), we arrive
∥∥∥f(x)−m4f

( x

m2

)∥∥∥
F
≤ 1

2
ε

m2p

(
1 +

m2

m2p

)
‖x‖2p

E (2.12)

for all x ∈ E. Using induction on n we obtain that

∥∥∥f(x)−m2nf
( x

mn

)∥∥∥
F
≤ 1

2
ε

m2p

n−1∑
k=0

m2k

m2pk
‖x‖2p

E (2.13)

≤ 1
2

ε

m2p

∞∑
k=0

m2k

m2pk
‖x‖2p

E
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for all x ∈ E. In order to prove the convergence of the sequence {m2nf
(

x
mn

)}, replace x by
x

ml and multiply by m2l in (2.13), for any n, l > 0,we obtain
∥∥∥m2(n+l)f

( x

ml+n

)
−m2lf

( x

ml

)∥∥∥
F

= m2l
∥∥∥m2nf

( x

ml+n

)
− f

( x

ml

)∥∥∥
F

≤ 1
2

ε

m2p

1
m2l(p−1)

∞∑
k=0

m2k

m2pk
‖x‖2p

E . (2.14)

Since m2(p−1) < 1, the R.H.S of (2.14) tends to 0 as l →∞ for all x ∈ E. Thus {m2nf
(

x
mn

)} is
a Cauchy sequence. Since F is complete, there exists a mapping Q : E → F such that

Q(x) = lim
n→∞m2nf

( x

mn

)
∀ x ∈ E.

By letting n →∞ in (2.13), we arrive the formula (2.10) for all x ∈ E. To show that Q is unique

and it satisfies (1.4), the proof is similar to that of Theorem 2.1

Theorem 2.3. Let E be a real orthogonality normed linear space and F be a real complete

normed linear space. Assume in addition that f : E → F is an approximately quadratic

mappings for which there exists a constant θ > 0 such that f satisfies

‖ f(mx + y) + f(mx− y)− 2f(x + y)− 2f(x− y)− 2(m2 − 2)f(x) + 2f(y) ‖F

≤ θH(x, y), x ⊥ y (2.15)

for all (x, y) ∈ E2, x ⊥ y and H : E2 → R
+ ∪ {0} is a non negative real valued function, such

that

R(x) =
∞∑

j=0

H(mjx, 0)
m2j

(<∞)(m �= 0) (2.16)

is a non negative function on x, with m �= 0;m �= ±1; m �= ±√2 and the condition

lim
k→∞

H(mkx,mky)
m2k

= 0 (2.17)

holds. Then there exists a unique orthogonally Euler - Lagrange quadratic mappings Q : E →
F such that

‖ f(x)−Q(x) ‖F ≤ θ

2m2
R(x) +

||f(0)||F
|m2 − 1| (2.18)

for all x ∈ E . In addition f : E → F is a mapping such that the transformation t → f(tx) is

continuous in real t for each fixed x ∈ E, then Q is R− linear mapping.

Proof. Letting y = 0 in (2.15), we get
∥∥∥∥f(mx)

m2
− f(x) +

f(0)
m2

∥∥∥∥
F

≤ θ

2 m2
H(x, 0) (m �= 0)

∥∥∥∥f(x)− f(mx)
m2

∥∥∥∥
F

≤ θ

2 m2
H(x, 0) +

||f(0)||F
m2

(m �= 0) (2.19)
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for all x ∈ E . Now replacing x by mx divide by m2 in (2.19), we obtain∥∥∥∥f(mx)
m2

− f(m2x)
m4

∥∥∥∥
F

≤ θ

2 m4
H(mx, 0) +

||f(0)||F
m4

.

Using (2.19) and the above inequality, we arrive∥∥∥∥f(x)− f(m2x)
m4

∥∥∥∥
F

≤ θ

2m2

[
H(x, 0) +

H(mx, 0)
m2

]
+
||f(0)||F

m2

[
1 +

1
m2

]
(2.20)

for all x ∈ E. Using the induction on n we obtain that
∥∥∥∥f(x)− f(mnx)

m2n

∥∥∥∥
F

≤ θ

2m2

n−1∑
j=0

H(mjx, 0)
m2j

+
||f(0)||F

m2

n−1∑
j=0

1
m2j

(2.21)

for all x ∈ E. In order to prove the convergence of the sequence {f(mnx)
m2n } replace x by mlx

and divided by m2l in (2.21), for any n, l > 0, we obtain∥∥∥∥f(mlx)
m2l

− f(mn+lx)
m2(n+l)

∥∥∥∥
F

=
1

m2l

∥∥∥∥f(mlx)− f(mn+lx)
m2n

−
∥∥∥∥

F

≤ θ

2m2

n−1∑
j=0

H(mj+lx, 0)
m2(j+l)

+
||f(0)||F

m2

n−1∑
j=0

1
m2(j+l)

→ 0 as l →∞

for all x ∈ E . Thus {f(mnx)
m2n } is a Cauchy sequence. Since F is complete, there exists a

mapping Q : E → F such that

Q(x) = lim
n→∞

f(mnx)
m2n

, ∀x ∈ E.

Letting n → ∞ in (2.21) and using the definition of Q(x) and (2.16), we arrive at the formula

(2.18). Indeed

‖f(x)−Q(x)‖F ≤
θ

2m2

∞∑
j=0

H(mjx, 0)
m2j

+
||f(0)||F

m2

∞∑
j=0

1
m2j

≤ θ

2m2
R(x) +

||f(0)||F
m2

[
m2

m2 − 1

]

≤ θ

2m2
R(x) +

||f(0)||F
|m2 − 1|

for all x ∈ E . To prove Q satisfies (1.4), replace (x, y) by (mnx, mny) in (2.15) and divide by

m2n then it follows that

1
m2n

‖ f(mn(mx + y)) + f(mn(mx− y))− 2f(mn(x + y))− 2f(mn(x− y))

− 2(m2 − 2)f(mnx) + 2f(mny) ‖F≤ θ

m2n
H(mnx,mny)

Taking limit as n →∞ in the above inequality, we get

‖ Q(mx + y) + Q(mx− y)− 2Q(x + y)− 2Q(x− y)− 2(m2 − 2)Q(x) + 2Q(y) ‖F≤ 0.
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which gives

Q(mx + y) + Q(mx− y) = 2Q(x + y) + 2Q(x− y) + 2(m2 − 2)Q(x)− 2Q(y)

for all x, y ∈ E with x ⊥ y. Therefore Q : E → F is an orthogonally Euler - Lagrange quadratic

mapping which satisfies (1.4). To prove the uniqueness of Q, let Q′ be another orthogonally

Euler - Lagrange quadratic mapping satisfying (1.4) and the inequality (2.18). We have

∥∥Q(x)−Q′(x)
∥∥

F
=

1
m2n

{‖Q(mnx)− f(mnx)‖F +
∥∥f(mnx)−Q′(mnx)

∥∥
F

}

≤ 1
m2n

{
θ

m2
R(x) +

2||f(0)||F
|m2 − 1|

}

→ 0 as n →∞

for all x ∈ E. Therefore Q is unique. This completes the proof of the theorem.

Theorem 2.4. Let E be a real orthogonality normed linear space and F be a real complete

normed linear space. Assume in addition that f : E → F is an approximately quadratic

mappings for which there exists a constant θ > 0 such that f satisfies

‖ f(mx + y) + f(mx− y)− 2f(x + y)− 2f(x− y)− 2(m2 − 2)f(x) + 2f(y) ‖F

≤ θH(x, y), x ⊥ y (2.22)

for all (x, y) ∈ E2, x ⊥ y and H : E2 → R
+ ∪ {0} is a non negative real valued function, such

that

R(x) =
∞∑

j=0

m2jH
( x

mj+1
, 0

)
(<∞)(m �= 0) (2.23)

is a non negative function on x, with m �= 0;m �= ±1; m �= ±√2 and the condition

lim
k→∞

m2kH
( x

mk
,

y

mk

)
= 0 (2.24)

holds. Then there exists a unique orthogonally Euler - Lagrange quadratic mappings Q : E →
F such that

‖ f(x)−Q(x) ‖F≤ θ

2
R(x) +

||f(0)||F
|1−m2| (2.25)

for all x ∈ E . In addition f : E → F is a mapping such that the transformation t → f(tx) is

continuous in real t for each fixed x ∈ E, then Q is R− linear mapping.

Proof. Replacing x by x
m in (2.19) and using the proof of Theorem 2.3, we arrive at the desired

result.

ISSN 0973-8347, Volume 3, Number A08, Autumn 2008 43



The following two analogous Theorems 2.5 and 2.6 can be obtained as two special cases:
either m = 1 or m = −1. In these two cases the pertinent functional equations are obviously
equivalent to the classical quadratic equation:

f(x + y) + f(x− y) = 2f(x) + 2f(y) (2.26)

for all x, y ∈ E with x ⊥ y.

Theorem 2.5. Let f : E → F be a mapping satisfying the inequality

‖ f(x + y) + f(x− y)− 2f(x)− 2f(y) ‖F ≤ ε
[
‖ x ‖p

E‖ y ‖p
E +

(
‖ x ‖2p

E + ‖ x ‖2p
E

)]
(2.27)

for all x, y ∈ E with x ⊥ y, where ε and p are constants with ε > 0 and p < 1 . Then the limit

Q(x) = lim
n→∞

f(2nx)
4n

(2.28)

exists for all x ∈ E and Q : E → F is the unique Euler - Lagrange quadratic mapping such that

‖ f(x)−Q(x) ‖F≤ 3 ε

4− 22p
‖x‖2p

E (2.29)

for all x ∈ E.

Proof. Letting y = x in (2.27), we get∥∥∥∥f(2x)
4

− f(x)
∥∥∥∥

F

≤ 3 ε

4
‖x‖2p

E (2.30)

for all x ∈ E. Now Replacing x by 2x and dividing by 4 in (2.30) and summing the resultant

inequality with (2.30), we arrive∥∥∥∥f(22x)
42

− f(x)
∥∥∥∥

F

≤ 3 ε

4

(
1 +

22p

4

)
‖x‖2p

E (2.31)

for all x ∈ E. Using induction on n, we obtain that
∥∥∥∥f(2nx)

4n
− f(x)

∥∥∥∥
F

≤ 3 ε

4

n−1∑
k=0

22pk

4k
‖x‖2p

E (2.32)

≤ 3 ε

4

∞∑
k=0

22pk

4k
‖x‖2p

E

for all x ∈ E. In order to prove the convergence of the sequence {f(2nx)/4n}, replace x by 2lx

and divide by 4l in (2.32), for n, l > 0,we obtain∥∥∥∥f(2n+lx)
4l+n

− f(2lx)
4l

∥∥∥∥
F

=
1
4l

∥∥∥∥f(2n+lx)
4n

− f(2lx)
∥∥∥∥

F

≤ 1
4l

3 ε

4

n−1∑
k=0

22pk

4k

∥∥∥2lx
∥∥∥2p

E

≤ 3 ε

4

∞∑
k=0

22p(k+l)

4(k+l)
‖x‖2p

E

≤ 3 ε

4

∞∑
k=0

1
22(1−p)(k+l)

‖x‖2p
E . (2.33)
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