Research Article

Stability of General Newton Functional Equations for Logarithmic Spirals

Soon-Mo Jung¹ and John Michael Rassias²

¹Mathematics Section, College of Science and Technology, Hong-Ik University, 339-701 Chochiwon, South Korea
²Mathematics Section, Pedagogical Department EE, National and Capodistrian University of Athens, 4 Agamemnonos Street, Aghia Paraskevi, Athens, 15342 Attikis, Greece

Correspondence should be addressed to Soon-Mo Jung, smjung@hongik.ac.kr

Received 16 October 2007; Revised 8 January 2008; Accepted 25 January 2008

We investigate the generalized Hyers-Ulam stability of Newton functional equations for logarithmic spirals.

Copyright © 2008 S.-M. Jung and J. M. Rassias. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The starting point of studying the stability of functional equations seems to be the famous talk of Ulam [1] in 1940, in which he discussed a number of important unsolved problems. Among those was the question concerning the stability of group homomorphisms.

Let G_1 be a group and let G_2 be a metric group with a metric $d(\cdot, \cdot)$. Given $\varepsilon > 0$, does there exist a $\delta > 0$ such that if a mapping $h : G_1 \to G_2$ satisfies the inequality $d(h(xy), h(x)h(y)) < \delta$ for all $x, y \in G_1$, then there exists a homomorphism $H : G_1 \to G_2$ with $d(h(x), H(x)) < \varepsilon$ for all $x \in G_1$?

The case of approximately additive mappings was solved by Hyers [2] under the assumption that G_1 and G_2 are Banach spaces. Later, the result of Hyers was significantly generalized for additive mappings by Aoki [3] and for linear mappings by Rassias [4]. It should be remarked that we can find in the books [5–7] a lot of references concerning the stability of functional equations.

Recently, Jung and Sahoo [8] proved the generalized Hyers-Ulam stability of the functional equation $f(\sqrt{r^2 + 1}) = f(r) + \arctan \left(1/r\right)$ which is closely related to the square root spiral, for the case that $f(1) = 0$ and $f(r)$ is monotone increasing for $r > 0$ (see [9, 10]).
By \mathcal{F} we denote the set of all functions $f : (0, \infty) \rightarrow \mathbb{R}$. Let Δ be the difference operator defined by
\[
(\Delta f)(r) = f(r + 1) - f(r) \quad (r > 0)
\] (1.1)
for any $f \in \mathcal{F}$. Throughout this paper, let n be a fixed positive integer, and we define an operator $\Delta^n : \mathcal{F} \rightarrow \mathcal{F}$ by
\[
(\Delta^n f)(r) = \Delta (\Delta^{n-1} f)(r) \quad (r > 0)
\] (1.2)
for all $f \in \mathcal{F}$, where we set $\Delta^0 f = f$. For instance, we see that
\[
(\Delta^2 f)(r) = f(r + 2) - 2f(r + 1) + f(r),
\]
\[
(\Delta^3 f)(r) = f(r + 3) - 3f(r + 2) + 3f(r + 1) - f(r).
\] (1.3)

In this paper, we will investigate the generalized Hyers-Ulam stability of the Newton difference (operator) equations
\[
\Delta^n f(r) = A \ln R_n(r)
\] (1.4)
for all $r > 0$ and some fixed integer $n > 0$, where $A > 0$ is a constant and
\[
R_1(r) = \frac{r + 1}{r}, \quad R_k(r) = \frac{R_{k-1}(r + 1)}{R_{k-1}(r)}
\] (1.5)
for $k \in \{2, 3, \ldots, n\}$.
We will say that (1.4) has the generalized Hyers-Ulam stability whenever a (given) function $f : (0, \infty) \rightarrow \mathbb{R}$ satisfies the inequality
\[
|\Delta^n f(r) - A \ln R_n(r)| \leq \varphi_n(r)
\] (1.6)
for all $r > 0$, where $\varphi_n : (0, \infty) \rightarrow [0, \infty)$ is a given nonnegative function, there exists a solution of (1.4) which is not far from f.

2. Newton n-ary difference equation

The difference equation in (1.4) is called the Newton n-ary difference (operator) equation. In the following theorem, we give a partial solution to the generalized Hyers-Ulam stability problem of (1.4).

Theorem 2.1. If a function $f : (0, \infty) \rightarrow \mathbb{R}$ satisfies the inequality (1.6) for all $r > 0$ and some integer $n > 0$, where $\varphi_n : (0, \infty) \rightarrow [0, \infty)$ is a function which satisfies
\[
\Phi_n(r) = \sum_{k=0}^{\infty} \varphi_n(r + k) < \infty
\] (2.1)
for any $r > 0$, then there exists a unique function $F_n : (0, \infty) \rightarrow \mathbb{R}$ such that $\Delta F_n(r) = A \ln R_n(r)$ and
\[
|F_n(r) - \Delta^{n-1} f(r)| \leq \Phi_n(r)
\] (2.2)
for each $r > 0$.

Proof. It follows from (1.6) that
\[
|\Delta^n f(r) - A \ln R_n(r)| \leq \varphi_n(r),
\]
\[
|\Delta^n f(r + 1) - A \ln R_n(r + 1)| \leq \varphi_n(r + 1),
\]
\[
\vdots
\]
\[
|\Delta^n f(r + m - 1) - A \ln R_n(r + m - 1)| \leq \varphi_n(r + m - 1)
\]
for any \(r > 0 \) and \(m \in \mathbb{N} \). In view of triangular inequality, the above inequalities yield
\[
\left| \sum_{k=0}^{m-1} \Delta^n f(r + k) - \sum_{k=0}^{m-1} A \ln R_n(r + k) \right| \leq \sum_{k=0}^{m-1} \varphi_n(r + k). \tag{2.4}
\]
Substitute \(r + \ell \) for \(r \) in (2.4) and then substitute \(k \) for \(k + \ell \) in the resulting inequality to obtain
\[
\left| \sum_{k=\ell}^{\ell+m-1} \Delta^n f(r + k) - \sum_{k=\ell}^{\ell+m-1} A \ln R_n(r + k) \right| \leq \sum_{k=\ell}^{\ell+m-1} \varphi_n(r + k). \tag{2.5}
\]
for all \(r > 0 \) and \(\ell, m \in \mathbb{N} \).

By some manipulation, we further have
\[
\left| \sum_{k=0}^{\ell+m-1} \Delta^n f(r + k) - \sum_{k=0}^{\ell+m-1} A \ln R_n(r + k) + \Delta^{n-1} f(r) \right.
\]
\[
- \sum_{k=0}^{\ell-1} \Delta^n f(r + k) + \sum_{k=0}^{\ell-1} A \ln R_n(r + k) - \Delta^{n-1} f(r) \right| \leq \sum_{k=0}^{\ell+m-1} \varphi_n(r + k) \tag{2.6}
\]
for every \(r > 0 \) and \(\ell, m \in \mathbb{N} \). Thus, considering (2.1), we see that the sequence
\[
\left\{ \sum_{k=0}^{m-1} \left[\Delta^n f(r + k) - A \ln R_n(r + k) \right] + \Delta^{n-1} f(r) \right\}_{n=1,2,3,...} \tag{2.7}
\]
is a Cauchy sequence for any \(r > 0 \). Hence, we can define a function \(F_n : (0, \infty) \rightarrow \mathbb{R} \) by
\[
F_n(r) = \sum_{k=0}^{\infty} \left[\Delta^n f(r + k) - A \ln R_n(r + k) \right] + \Delta^{n-1} f(r). \tag{2.8}
\]
By (2.8), we get
\[
\Delta F_n(r) = F_n(r + 1) - F_n(r)
\]
\[
= \sum_{k=1}^{\infty} \left[\Delta^n f(r + k) - A \ln R_n(r + k) \right] + \Delta^{n-1} f(r + 1)
\]
\[
- \sum_{k=0}^{\infty} \left[\Delta^n f(r + k) - A \ln R_n(r + k) \right] - \Delta^{n-1} f(r)
\]
\[
= A \ln R_n(r) \tag{2.9}
\]
for all \(r > 0 \). In view of (2.1) and (2.8), if we let \(m \) go to infinity in (2.4), then we obtain (2.2).
Let us define \(f \). If we set \(r > 0 \), we have
\[
H(r + m) - H(r) = \sum_{k=0}^{m-1} A \ln R_n(r + k)
\] (2.10)
for all \(r > 0 \) and \(m \in \mathbb{N} \). Now, assume that \(G_n : (0, \infty) \to \mathbb{R} \) satisfies \(\Delta G_n(r) = A \ln R_n(r) \) and the inequality (2.2) in place of \(F_n \). By (2.1), (2.2), and (2.10), we obtain
\[
|F_n(r) - G_n(r)| = |F_n(r + m) - G_n(r + m)| \leq 2\Phi_n(r + m) \to 0 \quad \text{as} \quad m \to \infty,
\] (2.11)
for any \(r > 0 \), which proves the uniqueness of \(F_n \).

3. Application to logarithmic spirals

For given \(a > 1 \) and \(c > 0 \), the equation
\[
r = ce^{\theta/\sqrt{a^2 - 1}}
\] (3.1)
represents a logarithmic spiral in the polar coordinates \((r, \theta)\). We know that this formula is equivalent to
\[
\theta = \sqrt{a^2 - 1}(\ln r - \ln c).
\] (3.2)
Let us define \(f(r) = \sqrt{a^2 - 1}(\ln r - \ln c) \) so that we can write the above expression in a simpler form, \(\theta = f(r) \). Then \(f \) is a solution of (3.4) for \(n = 1 \) and \(A = \sqrt{a^2 - 1} \), that is, \(f \) is a solution of the equation
\[
\Delta f(r) = \sqrt{a^2 - 1} \ln \frac{r + 1}{r},
\] (3.3)
which may be called the equation for logarithmic spirals.

We will now solve (3.3) by using [9, Theorem 1].

Theorem 3.1. If a function \(f : (0, \infty) \to \mathbb{R} \) satisfies (3.3), then there exists a periodic function \(\sigma : \mathbb{R} \to \mathbb{R} \) of period 1 such that
\[
f(r) = \sigma(r) + \sqrt{a^2 - 1} \ln r
\] (3.4)
for all \(r > 0 \).

Proof. If we set
\[
\varphi(r) = \sqrt{a^2 - 1} \ln \frac{r + 1}{r}
\] (3.5)
for all \(r > 0 \), then we have
\[
\varphi(r + s) - \varphi(r) = \sqrt{a^2 - 1} \ln \frac{r^2 + (s + 1)r}{r^2 + (s + 1)r + s} < 0
\] (3.6)
for any \(r, s > 0 \), which implies that \(\psi \) is monotonically decreasing. Moreover, we also see that
\[
\lim_{r \to \infty} \psi(r) = \sqrt{a^2 - 1} \lim_{r \to \infty} \ln \frac{r + 1}{r} = 0. \tag{3.7}
\]

According to [9, Theorem 1], the general solution of (3.3) is given by
\[
f(r) = \sigma(r) + \sum_{k=0}^{\infty} [\psi(k + 1) - \psi(r + k)] = \sigma(r) + \sqrt{a^2 - 1} \ln r, \tag{3.8}
\]
where \(\sigma \) is an arbitrary periodic function of period 1.

If we set \(n = 1 \) in Theorem 2.1 and apply Theorem 3.1, then we get the following corollary concerning the generalized Hyers-Ulam stability of (3.3).

Corollary 3.2. If a given function \(f : (0, \infty) \to \mathbb{R} \) satisfies the inequality
\[
\left| \Delta f(r) - \sqrt{a^2 - 1} \ln \frac{r + 1}{r} \right| \leq \psi(r) \tag{3.9}
\]
for all \(r > 0 \) and some \(\alpha > 1 \), where \(\psi : (0, \infty) \to [0, \infty) \) is a function which satisfies the condition
\[
\Phi(r) = \sum_{k=0}^{\infty} \psi(r + k) < \infty \tag{3.10}
\]
for any \(r > 0 \), then there exists a unique periodic function \(\sigma : \mathbb{R} \to \mathbb{R} \) of period 1 such that
\[
|f(r) - \sigma(r) - \sqrt{a^2 - 1} \ln r| \leq \Phi(r) \tag{3.11}
\]
for all \(r > 0 \).

References

Mathematical Problems in Engineering

Special Issue on
Short Range Phenomena: Modeling, Computational Aspects, and Applications

Call for Papers

In recent years, the mathematical formalism of impulsive systems (based on impulsive differential equations) has tried to join together the rigorous aspects from continuous systems formalism and the wide range of applications of discrete systems formalism. They were introduced to handle many evolution processes which are subject to singular short-term perturbations. Abrupt changes must be approached with mathematical and technical aspects dealing with the final evolution of such impulsive sources, whose effects are entirely transferred to the new state of the systems like transitions in quantum mechanics. Modern aspects in physics (quantum theory) and mathematics (wavelets, fractal theory) should be expedient in modeling short range phenomena and describing dynamics of perturbations and transitions in natural systems (advanced materials science) and advanced systems (optic, electronic, and quantum devices).

Thus, a special issue on all theoretical, computational, and practical aspects of modeling short range phenomena would be an opportunity of extending the research field of wavelets analysis, fractal theory, and applied mathematics (signal processing, control theory) for presenting new fundamental aspects in science and engineering. We are soliciting original high-quality research papers on topics of interest connected with modeling short range phenomena that include but are not limited to the following main topics:

- Mathematical aspects of pulse generation
- Dynamical and computational aspects of pulse measurement
- Wavelets analysis of localized space-time phenomena
- Stochastic aspects of pulses, sequences of pulses and time series

Authors should follow the Mathematical Problems in Engineering manuscript format described at the journal site http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal’s Manuscript Tracking System at http://mts.hindawi.com/, according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>June 1, 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>September 1, 2008</td>
</tr>
<tr>
<td>Publication Date</td>
<td>December 1, 2008</td>
</tr>
</tbody>
</table>

Guest Editors

Carlo Cattani, DiFarma, University of Salerno, Via Ponte Don Melillo, 84084 Fisciano (SA), Italy; ccattani@unisa.it

Ming Li, Department of Electronic Science & Technology, School of Information Science & Technology, East China Normal University, 3663 Zhongshan Bei Road, Shanghai 200062, China; mli@ee.ecnu.edu.cn

Cristian Toma, Faculty of Applied Sciences, Politehnica University, Hagi-Ghita 81, Bucharest Street 060032, Romania; cgtoma@physics.pub.ro

Hindawi Publishing Corporation
http://www.hindawi.com