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1. Introduction

The starting point of studying the stability of functional equations seems to be the famous talk
of Ulam [1] in 1940, in which he discussed a number of important unsolved problems. Among
those was the question concerning the stability of group homomorphisms.

Let Gy be a group and let G, be a metric group with a metric d(-,-). Given € > 0, does there exist
a 6 > 0 such that if a mapping h : Gi—G, satisfies the inequality d(h(xy), h(x)h(y)) < 6 for
all x,y € Gy, then there exists a homomorphism H : G1—G, with d(h(x), H(x)) < € for all
x e Gy?

The case of approximately additive mappings was solved by Hyers [2] under the as-
sumption that G; and G, are Banach spaces. Later, the result of Hyers was significantly gen-
eralized for additive mappings by Aoki [3] and for linear mappings by Rassias [4]. It should
be remarked that we can find in the books [5-7] a lot of references concerning the stability of
functional equations.

Recently, Jung and Sahoo [8] proved the generalized Hyers-Ulam stability of the func-
tional equation f(vr>+1) = f(r) + arctan (1/r) which is closely related to the square root
spiral, for the case that f(1) = 0 and f(r) is monotone increasing for r > 0 (see [9, 10]).
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By ¥ we denote the set of all functions f : (0, 0)—R. Let A be the difference operator
defined by

(Af)r)=flr+1) = f(r) (r>0) (1.1)

for any f € . Throughout this paper, let n be a fixed positive integer, and we define an opera-
tor A" : =¥ by

(A"f)(r) = A(A™ f)(r) (r>0) (1.2)
for all f € ¥, where we set A’f = f. For instance, we see that

(A2f)(r) = f(r+2) =2f(r+1) + f(r),
(A3F)(r) = f(r+3) =3f(r+2) +3f(r+1) - f(r).

In this paper, we will investigate the generalized Hyers-Ulam stability of the Newton
difference (operator) equations

(1.3)

A"f(r) = AInR,(r) (1.4)
for all r > 0 and some fixed integer n > 0, where A > 0 is a constant and

_r+1 ~ Ria(r+1)
Ry(r) = pa Rk(r)_Rk_—1(r)

(1.5)

fork € {2,3,...,n}.
We will say that (1.4) has the generalized Hyers-Ulam stability whenever a (given) func-
tion f : (0, oo)—R satisfies the inequality

|A"f(r) = AInR,(r)| < @, (1) (1.6)

for all r > 0, where ¢, : (0, 0)—[0, %) is a given nonnegative function, there exists a solution
of (1.4) which is not far from f.

2. Newton n-ary difference equation

The difference equation in (1.4) is called the Newton n-ary difference (operator) equation.
In the following theorem, we give a partial solution to the generalized Hyers-Ulam stability
problem of (1.4).

Theorem 2.1. If a function f : (0, co)—R satisfies the inequality (1.6) for all r > 0 and some integer
n >0, where ¢, : (0,00)—[0, 00) is a function which satisfies

D, (r) = i ¢, (r+k) <o (2.1)
k=0

forany r > 0, then there exists a unique function F, : (0, 00)—R such that AF,(r) = Aln R, (r) and
|Fu(r) = A" f(r)] < Dn(r) (2.2)

foreachr > 0.
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Proof. It follows from (1.6) that
|A"£(r) - AlnR,(r)] < 9,,(r),
|A"f(r+1) - AInR,(r+1)| <, (r+1),

(2.3)
|A"f(r+m—-1)- AInR,(r+m—1)| < ¢, (r+m-1)
for any r > 0 and m € N. In view of triangular inequality, the above inequalities yield
m—1 m—1 m—1
M A"f(r+k) =D AInRy(r+k)| < D ¢, (r+k). (2.4)
k=0 k=0 k=0

Substitute r + ¢ for r in (2.4) and then substitute k for k + ¢ in the resulting inequality to
obtain

Z+m-1 Z+m-1 Z+m-1
S Afr+k) - > AlR,(r+k)|< > ¢, (r+k) (2.5)
k=¢ k=¢ k=¢

forallr >0and ¢,m € N.
By some manipulation, we further have

Z+m-1 Z+m-1

Z A"f(r+k) - Z AInR,(r +k) + A" f(r)
k=0 k=0

-1 -1 e+m-1 (26)
—ZA"f(r+k)+ZAlan(r+k)—A"’1f(r) < ¢, (r+k)
k=0 k=0 k=¢
for every r > 0 and ¢, m € N. Thus, considering (2.1), we see that the sequence
m-1
{Z [A"f(r+k) - AInR,(r + k)] + A"‘lf(r)} (2.7)
k=0 n=123,..
is a Cauchy sequence for any r > 0. Hence, we can define a function F, : (0, 0)—R by
Fu(r) = > [A"f(r+k) - AInR,(r + k)] + A" f(r). (2.8)
k=0
By (2.8), we get
AF,(r) = Fu(r +1) — Fy(r)
= > [A"f(r+k) - AInR,(r + k)] + A" f(r+1)
. (29)
- Z [A"f(r+ k) - AInR,(r + k)] - A" f(r)
k=0
=AInR,(r)

for all r > 0. In view of (2.1) and (2.8), if we let m go to infinity in (2.4), then we obtain (2.2).
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It only remains to prove the uniqueness of the function F,. If a function H : (0, 0)—R
satisfies AH (r) = AIn R, (r) for each r > 0, then we can easily show that
m-1
H(r+m) - H(r) = ), AInR,(r + k) (2.10)
k=0

for all r > 0 and m € N. Now, assume that G, : (0, c0)—R satisfies AG,(r) = AIn R,,(r) and the
inequality (2.2) in place of F,. By (2.1), (2.2), and (2.10), we obtain

|Fn(r) = Gu(r)| = |Fu(r + m) = Gu(r + m)| <2®,(r + m) — 0 as m — oo, (2.11)

for any r > 0, which proves the uniqueness of F,. O

3. Application to logarithmic spirals
For given a > 1 and ¢ > 0, the equation

r=ce?/ Vel (3.1)

represents a logarithmic spiral in the polar coordinates (r,0). We know that this formula is
equivalent to

0=Va2-1(Inr-Inc). (3.2)

Let us define f(r) = vVa? —1(Inr — Inc) so that we can write the above expression in a simpler
form, 6 = f(r). Then f is a solution of (1.4) for n =1 and A = Va? — 1, that s, f is a solution of
the equation

Af(r) = Va -1 L (3.3)

r

which may be called the equation for logarithmic spirals.
We will now solve (3.3) by using [9, Theorem 1].

Theorem 3.1. Ifa function f : (0, c0)—R satisfies (3.3), then there exists a periodic function o : R—R
of period 1 such that

f(r)y=o0(r)+Va?-1Inr (3.4)
forallr > 0.
Proof. If we set
p(r)=Va?-1In ! : ! (3.5)

for all r > 0, then we have

g(r+s) - g(r)=Va2-1ln Al GRS (3.6)

r’+(s+1)r+s
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for any r, s > 0, which implies that ¢ is monotonically decreasing. Moreover, we also see that

+1

=0. (3.7)

lim ¢s(r) =

r—o0

According to [9, Theorem 1], the general solution of (3.3) is given by

f(r)=o0o(r)+ Z gk +1)—¢(r+k)] =o(r)+Va?-1lnr, (3.8)
k=0
where ¢ is an arbitrary periodic function of period 1. O

If we set n = 1in Theorem 2.1 and apply Theorem 3.1, then we get the following corollary
concerning the generalized Hyers-Ulam stability of (3.3).

Corollary 3.2. If a given function f : (0, 00)—R satisfies the inequality

|70 Va <90 9)
forall v > 0 and some a > 1, where ¢ : (0, 00)—[0, 00) is a function which satisfies the condition
D(r) = > ¢p(r+k) < oo (3.10)
k=0

forany r > 0, then there exists a unique periodic function o : R—R of period 1 such that
|f(r)—o(r) - Va?—1Inr| < D(r) (3.11)

forallr > 0.
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