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1. Introduction

In 1940, Ulam [1] proposed, at the University of Wisconsin, the following problem: “give
conditions in order for a linear mapping near an approximately linear mapping to exist.”
In 1968, Ulam proposed the general Ulam stability problem: “when is it true that by
changing a little the hypotheses of a theorem one can still assert that the thesis of the
theorem remains true or approximately true?” The concept of stability for a functional
equation arises when we replace the functional equation by an inequality which acts as a
perturbation of the equation. Thus the stability question of functional equations is “how
do the solutions of the inequality differ from those of the given functional equation?” If
the answer is affirmative, we would say that the equation is stable. In 1978, Gruber [2]
remarked that Ulam problem is of particular interest in probability theory and in the
case of functional equations of different types. We wish to note that stability properties
of different functional equations can have applications to unrelated fields. For instance,
Zhou [3] used a stability property of the functional equation f (x− y) + f (x+ y)= 2 f (x)
to prove a conjecture of Z. Ditzian about the relationship between the smoothness of a
mapping and the degree of its approximation by the associated Bernstein polynomials.

Above all, Ulam problem for ε-additive mappings f : E1→E2 between Banach spaces,
that is, ‖ f (x + y)− f (x)− f (y)‖ ≤ ε for all x, y ∈ E1, was solved by Hyers [4] and then
generalized by Th. M. Rassias [5] and Găvruţa [6] who permitted the Cauchy difference
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to become unbounded. The stability problems of several functional equations have been
extensively investigated by a number of authors and there are many interesting results
concerning this problem. A large list of references can be found, for example, in [7–9]
and references therein.

We note that J. M. Rassias introduced the Euler-Lagrange quadratic mappings, moti-
vated from the following pertinent algebraic equation
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Thus the second author of this paper introduced and investigated the stability problem
of Ulam for the relative Euler-Lagrange functional equation

f
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)
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(
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)= (a2
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)[
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)
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(
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(1.2)

in the publications [10–12]. Analogous quadratic mappings were introduced and inves-
tigated through J. M. Rassias publications [13–15]. Therefore, these mappings could be
named Euler-Lagrange mappings and the corresponding Euler-Lagrange equations might
be called Euler-Lagrange equations. Before 1992, these mappings and equations were not
known at all in functional equations and inequalities. However, a completely different
kind of Euler-Lagrange partial differential equations is known in calculus of variations.
Already, some mathematicians have employed these Euler-Lagrange mappings [16–22].

In addition, J. M. Rassias [23] generalized the above functional equation (1.2) as fol-
lows. Let X and Y be real linear spaces. Then a mapping Q : X→Y is called quadratic with
respect to a if the functional equation

Q
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∑
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(1.3)

holds for all vector (x1, . . . ,xn)∈ Xn, where a := (a1, . . . ,an)∈Rn of nonzero reals, and n≥
2 is arbitrary, but fixed, such that 0 <m :=∑n

i=1a
2
i �= [1 + (n2 )]/n. In this case, a mapping

Q
a

: Xn→Y defined by

Q
a(
x1, . . . ,xn
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(

aixi
)
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i=1a

2
i

(1.4)

is called the square of the quadratic weighted mean of Q with respect to a.
For every x ∈ R, set Q(x) = x2. Then the mapping Q

a
: Rn→R is quadratic such that

Q
a
(x, . . . ,x)= x2. Denoting by

√

x2
w the quadratic weighted mean, we note that the above-

mentioned mapping Q
a

is an analogous case to the square of the quadratic weighted
mean employed in mathematical statistics: x2

w =
∑n

i=1wix
2
i /
∑n

i=1wi with weights wi = a2
i ,

data xi, and Q(aixi)= (aixi)
2 for i= 1, . . . ,n, where n≥ 2 is arbitrary, but fixed.

In this paper, using the iterative methods and ideas inspired by [6, 23], we are going
to investigate the generalized Hyers-Ulam stability problem for the quadratic functional
equation of Euler-Lagrange (1.3).
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2. Stability of (1.3) in quasi-Banach spaces

We will investigate under what conditions it is then possible to find a true quadratic
mapping of Euler-Lagrange near an approximate Euler-Lagrange quadratic mapping with
small error.

We recall some basic facts concerning quasi-Banach spaces and some preliminary re-
sults.

Definition 2.1 (see [24, 25]). Let X be a linear space. A quasinorm ‖·‖ is a real-valued
function on X satisfying the following:

(1) ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0;
(2) ‖λx‖ = |λ|·‖x‖ for all λ∈R and all x ∈ X ;
(3) there is a constant K such that ‖x+ y‖ ≤ K(‖x‖+‖y‖) for all x, y ∈ X .

The smallest possible K is called the modulus of concavity of ‖·‖. The pair (X ,‖·‖) is
called a quasinormed space if ‖·‖ is a quasinorm on X . A quasi-Banach space is a complete
quasinormed space.

A quasinorm ‖·‖ is called a p-norm (0 < p ≤ 1) if

‖x+ y‖p ≤ ‖x‖p +‖y‖p (2.1)

for all x, y ∈ X . In this case, a quasi-Banach space is called a p-Banach space.
Clearly, p-norms are continuous, and in fact, if ‖·‖ is a p-norm on X , then the for-

mula d(x, y) := ‖x− y‖p defines a translation invariant metric for X , and ‖·‖p is a p-
homogeneous F-norm. The Aoki-Rolewicz theorem [24, 25] guarantees that each quasi-
norm is equivalent to some p-norm for some 0 < p ≤ 1. In this section, we are going to
prove the generalized Ulam stability of mappings satisfying approximately (1.3) in quasi-
Banach spaces, and in p-Banach spaces, respectively. Let X be a quasinormed space and
Y a quasi-Banach space with the modulus of concavity K ≥ 1 of ‖·‖.

Given a mapping f : X→Y , we define a difference operatorDa f : Xn→Y for notational
convenience as

Da f
(

x1, . . . ,xn
)

:= f

( n
∑

i=1
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)

+
∑

1≤i< j≤n
f
(
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( n
∑

i=1

a2
i

) n
∑

i=1

f
(

xi
)

, (2.2)

which is called the approximate remainder of the functional equation (1.3) and acts as a
perturbation of the equation, where a := (a1, . . . ,an) ∈ Rn of nonzero reals, and n ≥ 2 is
arbitrary, but fixed, such that 0 <m :=∑n

i=1a
2
i �∈ {[1 + (n2 )]/n ,

√
K}.

Lemma 2.2 [23]. Let Q : X→Y be a Euler-Lagrange quadratic mapping satisfying (1.3).
Then Q satisfies the equation

Q
(

mpx
)=m2pQ(x) (2.3)

for all x ∈ X and p ∈N, where 0 <m :=∑n
i=1a

2
i �= [1 + (n2 )]/n (≥ 1).
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Theorem 2.3. Assume that there exists a mapping ϕ : Xn→[0,∞) for which a mapping
f : X→Y satisfies

∥
∥Da f

(

x1, . . . ,xn
)∥
∥≤ ϕ(x1, . . . ,xn

)

(2.4)

and the series

Φ
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Kiϕ
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mix1, . . . ,mixn
)

m2i
<∞ (2.5)

for all x1, . . . ,xn ∈ X . Then there exists a unique Euler-Lagrange quadratic mapping Q :
X→Y such that Q satisfies (1.3), that is,

DaQ
(

x1, . . . ,xn
)= 0 (2.6)

for all x1, . . . ,xn ∈ X , and the inequality
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∥
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∥
∥

2
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(2.7)

holds for all x ∈ X , where

f (0)= 0, if m<
√
K ,

∥
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∥
∥≤ ϕ(0, . . . ,0)

∣
∣mn− [1 + (n2 )]

∣
∣

, if m>
√
K. (2.8)

The mapping Q is given by

Q(x)= lim
k→∞

f
(

mkx
)

m2k
(2.9)

for all x ∈ X.
Proof. Substitution of xi = 0 (i= 1, . . . ,n) in the functional inequality (2.4) yields that
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∥≤ ϕ(0, . . . ,0). (2.10)

Thus we note that if m <
√
K , then ϕ(0, . . . ,0)= 0 by the convergence of Φ(0, . . . ,0), and

so f (0)= 0. Substituting x1 = x, xj = 0 ( j = 2, . . . ,n) in the functional inequality (2.4), we
obtain
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[

1
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m
(2.12)
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for all x ∈ X. In addition, replacing xi by aix in (2.4), one gets the inequality
∥
∥
∥
∥
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f (mx) +
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∥
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(2.14)

for all x ∈ X. From this inequality and (2.12) as well as the triangle inequality, we get the
basic inequality

∥
∥
∥
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[
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]
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)
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(2.15)
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∥
∥
∥
∥

f (mx)
m2

− f (x)
∥
∥
∥
∥

≤ ε(x) := mϕ(x,0, . . . ,0) +ϕ
(

a1x, . . . ,anx
)

m2
+

(n− 1)(m+ 1)|n− 2m|∥∥ f (0)
∥
∥

2m2

(2.16)

for all x ∈ X.
By induction on l ∈N, we prove the general functional inequality

∥
∥
∥
∥

f
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∥
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ml−1x
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m2(l−1)
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∑
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(

mix
)

m2i
(2.17)

for all x ∈ X and all nonnegative integer l. In fact, we calculate the inequality
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)
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)
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)
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+K
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i=0

Kiε
(
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)
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for all x ∈ X .
It follows from (2.5) and (2.17) that a sequence { fl(x)} of mappings fl(x) := f (mlx)/

m2l is Cauchy in the quasi-Banach space Y , and it thus converges. Therefore, we see that
a mapping Q : X→Y defined by

Q(x) := lim
l→∞

f
(

mlx
)

m2l
(2.19)
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exists for all x ∈ X. Taking the limit l→∞ in (2.17), we find that

∥
∥ f (x)−Q(x)

∥
∥≤ K

∞
∑

i=0

Kiε
(

mix
)

m2i

= K

m
Φ(x,0, . . . ,0) +

K

m2
Φ
(

a1x, . . . ,anx
)

+
K(n− 1)(m+ 1)|n− 2m|∥∥ f (0)

∥
∥

2
(

m2−K)

(2.20)

for all x ∈ X . Therefore, the mapping Q near the approximate mapping f : X→Y of (1.3)
satisfies the inequality (2.7). In addition, it is clear from (2.4) that the following inequality

1
m2l

∥
∥Da f

(

mlx1, . . . ,mlxn
)∥
∥≤ 1

m2l
ϕ
(

mlx1, . . . ,mlxn
)

(2.21)

holds for all x1, . . . ,xn ∈ X and all l ∈N. Taking the limit l→∞, we see that the mapping Q
satisfies the equationDaQ(x1, . . . ,xn)= 0, and so Q is Euler-Lagrange quadratic mapping.

Let Q̌ : X→Y be another Euler-Lagrange quadratic mapping satisfying the equation

DaQ̌
(

x1, . . . ,xn
)= 0 (2.22)

and the inequality (2.7). To prove the before-mentioned uniqueness, we employ (2.4) so
that

Q(x)=m−2lQ
(

mlx
)

, Q̌(x)=m−2lQ̌
(

mlx
)

(2.23)

hold for all x ∈ X and l ∈N. Thus from the last equality and inequality (2.7), one proves
that

∥
∥Q(x)− Q̌(x)

∥
∥= 1

m2l

∥
∥Q
(

mlx
)− Q̌(mlx

)∥
∥

≤ K

m2l

(∥
∥Q
(

mlx
)− f

(

mlx
)∥
∥+

∥
∥ f
(

mlx
)− Q̌(mlx

)∥
∥
)

≤ 2K2

m2Kl

∞
∑

i=0

mKi+lϕ
(

mi+lx,0, . . . ,0
)

+Ki+lϕ
(

a1mi+lx, . . . ,anmi+lx
)

m2(i+l)

+
K2(n− 1)(m+ 1)|n− 2m|∥∥ f (0)

∥
∥

(

m2−K)m2l

(2.24)

for all x ∈ X and all l ∈N. Therefore, from l→∞, one establishes

Q(x)− Q̌(x)= 0 (2.25)

for all x ∈ X , completing the proof of uniqueness. �

Theorem 2.4. Assume that there exists a mapping ϕ : Xn→[0,∞) for which a mapping
f : X→Y satisfies

∥
∥Da f

(

x1, . . . ,xn
)∥
∥≤ ψ(x1, . . . ,xn

)

(2.26)
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and the series

Ψ
(

x1, . . . ,xn
)

:=
∞
∑

i=1

Kim2iψ
(
x1

mi
, . . . ,

xn
mi

)

<∞ (2.27)

for all x1, . . . ,xn ∈ X . Then there exists a unique Euler-Lagrange quadratic mapping Q :
X→Y such that Q satisfies (1.3), that is,

DaQ
(

x1, . . . ,xn
)= 0 (2.28)

for all x1, . . . ,xn ∈ X , and the inequality

∥
∥ f (x)−Q(x)

∥
∥≤ 1

m
Ψ(x,0, . . . ,0) +

1
m2

Ψ
(

a1x, . . . ,anx
)

+
K(n− 1)(m+ 1)|n− 2m|∥∥ f (0)

∥
∥

2
(

1−Km2
)

(2.29)

holds for all x ∈ X , where

f (0)= 0, if m>
1√
K

,
∥
∥ f (0)

∥
∥≤ ϕ(0, . . . ,0)

∣
∣mn− [1 + (n2 )]

∣
∣

, if m<
1√
K
. (2.30)

The mapping Q is given by

Q(x)= lim
k→∞

m2k f
(
x

mk

)

(2.31)

for all x ∈ X.
Proof. We note that if m > 1/

√
K , then ψ(0, . . . ,0) = 0 by the convergence of Ψ(0, . . . ,0),

and so f (0)= 0. Using the same arguments as those of (2.12)–(2.17), we prove the general
functional inequality

∥
∥
∥
∥ f (x)−m2l f

(
x

ml

)∥
∥
∥
∥≤

l−1
∑

i=1

Kim2iε
(
x

mi

)

+Kl−1m2lε
(
x

ml

)

(2.32)

for all x ∈ X and all nonnegative integer l > 1, where

ε(x) := mψ(x,0, . . . ,0) +ψ
(

a1x, . . . ,anx
)

m2
+

(n− 1)(m+ 1)|n− 2m|∥∥ f (0)
∥
∥

2m2
. (2.33)

The rest of the proof goes through by the same way as that of Theorem 2.3. �

Corollary 2.5. Let � be a normed space and � a Banach space, and let θ, p be positive
real numbers with p �= 2. Assume that a mapping f : �→� satisfies

∥
∥Da f

(

x1, . . . ,xn
)∥
∥≤ θ(∥∥x1

∥
∥
p

+ ··· +
∥
∥xn

∥
∥
p)

(2.34)



8 Journal of Inequalities and Applications

for all x1, . . . ,xn ∈ �. Then there exists a unique Euler-Lagrange quadratic mapping Q :
�→� such that

DaQ
(

x1, . . . ,xn
)= 0 (2.35)

for all x1, . . . ,xn ∈�, and

∥
∥ f (x)−Q(x)

∥
∥≤

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ‖x‖p
(

m+
∑n

i=1

∣
∣ai
∣
∣
p
)

m2−mp if m> 1, 0 < p < 2,

orm< 1, p > 2,

θ‖x‖p
(

m+
∑n

i=1

∣
∣ai
∣
∣
p
)

mp−m2
if m< 1, 0 < p < 2,

orm> 1, p > 2

(2.36)

for all x ∈�.

Remark 2.6. We remark that in Corollary 2.5 the case p = 2 is not discussed. The Euler-
Lagrange type quadratic functional equation (1.3) is not stable as we will see in the follow-
ing example with n= 2. This counterexample is a modification of the example contained
in [26, 27].

Let us define a mapping f :R→R by

f (x)=
∞
∑

n=0

ϕ
(

2
n
x
)

4n
, (2.37)

where the mapping ϕ :R→R is given by

ϕ(x)=
⎧

⎨

⎩

1 if |x| ≥ 1;

x2 if |x| < 1.
(2.38)

Then the mapping f satisfies the inequality
∣
∣ f
(

a1x1 + a2x2
)

+ f
(

a2x1− a1x2
)− (a2

1 + a2
2

)[

f
(

x1
)

+ f
(

x2
)]∣
∣

≤ 32
3

(

1 + a2
1 + a2

2

)2(
x2 + y2)

(2.39)

for all x, y ∈ R, but there exist no Euler-Lagrange quadratic mapping Q : R→R, and a
constant b > 0 such that

∣
∣ f (x)−Q(x)

∣
∣≤ bx2 (2.40)

for all x ∈R.
In fact, for x = y = 0 or for x, y ∈R such that x2 + y2 ≥ 1/4(1 + a2

1 + a2
2), it is clear that

∣
∣ f
(

a1x1 + a2x2
)

+ f
(

a2x1− a1x2
)− (a2

1 + a2
2

)[

f
(

x1
)

+ f
(

x2
)]∣
∣

≤ 8
3

(

1 + a2
1 + a2

2

)≤ 32
3

(

1 + a2
1 + a2

2

)2(
x2 + y2)

(2.41)
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because | f (x)| ≤ 4/3 for all x ∈ R. Now, we consider the case 0 < x2 + y2 < 1/4(1 + a2
1 +

a2
2). Choose a positive integer k ∈N such that

1
4k+1

(

1 + a2
1 + a2

2

) ≤ x2 + y2 <
1

4k
(

1 + a2
1 + a2

2

) . (2.42)

Then one has 4k−1x2 < 1/4|ai|2, 4k−1y2 < 1/4|ai|2, and so

2k−1x,2k−1y,2k−1(a1x+ a2y
)

,2
k−1(

a2x− a1y
)∈ (−1, 1). (2.43)

Therefore, we have

2nx,2ny,2n
(

a1x+ a2y
)

,2
n(
a2x− a1y

)∈ (−1, 1), (2.44)

and hence

ϕ
(

a1x1 + a2x2
)

+ϕ
(

a2x1− a1x2
)− (a2

1 + a2
2

)[

ϕ
(

x1
)

+ϕ
(

x2
)]= 0 (2.45)

for each n= 0,1, . . . ,k− 1. Thus we obtain, using (2.42) and (2.45),
∣
∣ f
(

a1x1 + a2x2
)

+ f
(

a2x1− a1x2
)− (a2

1 + a2
2

)[

f
(

x1
)

+ f
(

x2
)]∣
∣

≤
∞
∑

n=0

1
4n
∣
∣ϕ
(

2
n(
a1x1 + a2x2

))

+ϕ
(

2
n(
a2x1− a1x2

))− (a2
1 + a2

2

)[

ϕ
(

2
n
x1
)

+ϕ
(

2
n
x2
)]∣
∣

≤
∞
∑

n=k

1
4n
∣
∣ϕ
(

2
n(
a1x1 + a2x2

))

+ϕ
(

2
n(
a2x1− a1x2

))− (a2
1 + a2

2

)[

ϕ
(

2
n
x1
)

+ϕ
(

2
n
x2
)]∣
∣

≤
∞
∑

n=k

2
(

1 + a2
1 + a2

2

)

4n
= 32

(

1 + a2
1 + a2

2

)

3·4k+1
≤ 32

(

1 + a2
1 + a2

2

)2

3

(

x2 + y2),

(2.46)

which yields the inequality (2.39).
Now, assume that there exist an Euler-Lagrange quadratic mapping Q : R→R and a

constant b > 0 such that
∣
∣ f (x)−Q(x)

∣
∣≤ bx2 (2.47)

for all x ∈R. Since |Q(x)| ≤ | f (x)|+ bx2 ≤ 4/3 + bx2 is locally bounded, the mapping Q
is of the form Q(x)= cx2, x ∈R for some constant c [28]. Hence one obtains

∣
∣ f (x)

∣
∣≤ (b+ |c|)x2 (2.48)

for all x ∈R. On the other hand, for m∈N with m> b+ |c| and x ∈ (0,1/2m−1), we have
2nx ∈ (0,1) for all n≤m− 1, and so

f (x)=
∞
∑

n=0

ϕ
(

2
n
x
)

4n
≥

m−1
∑

n=0

(

2
n
x
)2

4n
=mx2 >

(

b+ |c|)x2, (2.49)

which is a contradiction.
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Corollary 2.7. Let � be a normed space, � a Banach space, and θ, pi positive real num-
bers such that p :=∑n

i=1pi �= 2. Assume that a mapping f : �→� satisfies

∥
∥Da f

(

x1, . . . ,xn
)∥
∥≤ θ

n
∏

i=1

∥
∥xi
∥
∥
pi (2.50)

for all x1, . . . ,xn ∈ �. Then there exists a unique Euler-Lagrange quadratic mapping Q :
�→� such that

DaQ
(

x1, . . . ,xn
)= 0 (2.51)

for all x1, . . . ,xn ∈� and

∥
∥ f (x)−Q(x)

∥
∥≤

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ‖x‖p∏n
i=1

∣
∣ai
∣
∣
pi

m2−mp if m> 1, 0 < p < 2,

orm< 1, p > 2,

θ‖x‖p∏n
i=1

∣
∣ai
∣
∣
pi

mp−m2
if m< 1, 0 < p < 2,

orm> 1, p > 2

(2.52)

for all x ∈�.

In case n= 2, we have the Hyers-Ulam stability result as a special case of Theorems 2.3
and 2.4 for the Euler-Lagrange type quadratic functional equation (1.2).

Corollary 2.8. Let � be a linear space, � a Banach space, and 0 ≤ θ a real number.
Assume that a mapping f : �→� satisfies

∥
∥Da f

(

x1, . . . ,xn
)∥
∥≤ θ (2.53)

for all x1, . . . ,xn ∈ �. Then there exists a unique Euler-Lagrange quadratic mapping Q :
�→� such that

DaQ
(

x1, . . . ,xn
)= 0 (2.54)

for all x1, . . . ,xn ∈�, and the inequality

∥
∥ f (x)−Q(x)

∥
∥≤ θ

|m− 1| +
θ(n− 1)|n− 2m|∥∥ f (0)

∥
∥

2|m− 1| (2.55)

for all x ∈�.

3. Stability of (1.3) in Banach modules

In the last part of this paper, let B be a unital Banach algebra with norm |·|, and let BM1

and BM2 be left Banach B-modules with norms ‖·‖ and ‖·‖, respectively.
As an application of the main Theorem 2.3, we are going to prove the generalized

Hyers-Ulam stability problem of the functional equation (1.3) in Banach B-modules with
the modulus of concavity K = 1 over a unital Banach algebra.
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Theorem 3.1. Assume that there exists a mapping ϕ :BM2
1→[0,∞) for which a mapping

f : BM1→BM2 satisfies
∥
∥Da,u f

(

x1, . . . ,xn
)∥
∥

:=
∥
∥
∥
∥
∥
f

( n
∑

i=1

aiuxi

)

+
∑

1≤i< j≤n
f
(

ajuxi− aiuxj
)−

( n
∑

i=1

a2
i

)

u2
n
∑

i=1

f
(

xi
)

∥
∥
∥
∥
∥
≤ ϕ(x1, . . . ,xn

)

(3.1)

for all x1, . . . ,xn ∈ BM1 and all u∈ B(1) := {u∈ B | |u| = 1}, and the series (2.5) withK = 1
converges for all x1, . . . ,xn ∈ BM1. If f is measurable, or for each fixed x∈ BM1, the map-
pingR
 t→ f (tx)∈ BM2 is continuous, then there exists a unique Euler-Lagrange quadratic
mapping Q :BM1→BM2 such that the following equations

DaQ
(

x1, . . . ,xn
)= 0, Q(bx)= b2Q(x) (3.2)

and the inequality (2.7) with K = 1 hold for all x,x1, . . . ,xn ∈ BM1 and all b ∈ B.

Proof. From (3.1) with u= 1, it follows by Theorem 2.3 that there exists a unique Euler-
Lagrange quadratic mapping Q :BM1→BM2 such that

DaQ
(

x1, . . . ,xn
)= 0 (3.3)

for all x1, . . . ,xn ∈ BM1 and the inequality (2.7) with K = 1 for all x∈ BM1.
The mapping Q is given by

Q(x)= lim
k→∞

f
(

mkx
)

m2k
(3.4)

for all x∈ BM1.
Furthermore, suppose that f is measurable, or for each fixed x∈ BM1, the mapping

f (tx) is continuous with respect to t ∈ R. Then for any continuous linear functional L
defined on BM2, let Φ :R→R be given by

Φ(t) := L[Q(tx)
]

(3.5)

for t ∈R, where x is fixed. Then Φ is a quadratic mapping and, moreover, is also measur-
able since it is the pointwise limit of the sequence

Φk(t) :=m−2kL
[

f
(

mktx
)]

. (3.6)

Hence it has the form Φ(t)= t2Φ(1) for all t ∈R [7]. Therefore, one obtains that for each
fixed x∈ BM1 and all t ∈R,

L
[

Q(tx)
]=Φ(t)= t2Φ(1)= t2L[Q(x)

]= L[t2Q(x)
]

, (3.7)

which implies the condition

Q(tx)= t2Q(x), ∀x∈ BM1, ∀t ∈R. (3.8)
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That is, Q is R-quadratic. Replacing x1, . . . ,xn by mkx1, . . . ,mkxn in (3.1), respectively, and
dividing it by m2k, we figure out

∥
∥Da,u f

(

mkx1, . . . ,mkxn
)∥
∥

m2k
≤ ϕ

(

mkx1, . . . ,mkxn
)

m2k
(3.9)

for all u∈ B(1) and for all x1, . . . ,xn ∈ BM1. Taking the limit k→∞, one obtains by condi-
tion (2.5) that

Da,uQ
(

x1, . . . ,xn
)= 0 (3.10)

for all x1, . . . ,xn ∈ BM1 and all u ∈ B(1). Substituting x1 = x, xj = 0 ( j = 2, . . . ,n) in the
functional inequality (3.3), we obtain

n
∑

i=1

Q
(

aix
)−mQ(x)= 0, (3.11)

for all x∈ BM1. In addition, replacing xi by aix in (3.10), one gets the inequality

Q(mux)−mu2
n
∑

i=1

Q
(

aix
)= 0 (3.12)

or

mQ(ux)−u2
n
∑

i=1

Q
(

aix
)= 0 (3.13)

for all x∈ BM1 and all u∈ B(1). Associating the last two equations, we have

Q(ux)−u2Q(x)= 0 (3.14)

for all x∈ BM1 and all u ∈ B(1). The last equality is also true for u = 0 vacuously. Now,
for each element b ∈ B (b �= 0), we figure out

Q(bx)=Q
(

|b|· b|b|x
)

= |b|2·Q
(
b

|b|x
)

= |b|2· b
2

|b|2 ·Q(x)= b2Q(x)
(3.15)

for all b ∈ B (b �= 0) and all x∈ BM1. Thus the mapping Q satisfies

Q(bx)= b2Q(x) (3.16)

for all b ∈ B and for all x∈ BM1, as desired. This completes the proof of the theorem. �

Alternatively, as an application of the main Theorem 2.4, we obtain the following the-
orem.
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Theorem 3.2. Assume that a mapping f :BM1→BM2 satisfies
∥
∥Da,u f

(

x1, . . . ,xn
)∥
∥≤ ϕ(x1, . . . ,xn

)

(3.17)

for all x1, . . . ,xn ∈ BM1 and all u ∈ B(1), and the series (2.27) with K = 1 converges for all
x1, . . . ,xn ∈ BM1. If f is measurable, or for each fixed x∈ BM1, the mappingR
 t→ f (tx)∈
BM2 is continuous, then there exists a unique Euler-Lagrange quadratic mapping Q :BM1→
BM2 such that the following equations

DaQ
(

x1, . . . ,xn
)= 0, Q(bx)= b2Q(x) (3.18)

and the inequality (2.29) with K = 1 hold for all x,x1, . . . ,xn ∈ BM1 and all b ∈ B.

Since C is a Banach algebra, the Banach spaces M1 and M2 are considered as Banach
modules over C. Thus we have the following corollary.

Corollary 3.3. Let ϕ be a mapping defined as in Theorem 3.1. Let M1 and M2 be Banach
spaces over the complex field C. Suppose that a mapping f :M1→M2 satisfies

∥
∥Da,u f

(

x1, . . . ,xn
)∥
∥≤ ϕ(x1, . . . ,xn

)

(3.19)

for all u∈ C(1) and all x1, . . . ,xn ∈M1. If f is measurable or the mapping R
 t→ f (tx)∈
M2 is continuous for each fixed x ∈M1, then there exists a unique Euler-Lagrange quadratic
mapping Q :M1→M2 such that the following equations

DaQ
(

x1, . . . ,xn
)= 0, Q(cx)= c2Q(x) (3.20)

hold for all x1, . . . ,xn ∈M1 and all c ∈ C, and the inequality (2.7) with K = 1 holds for all
x ∈M1.

Theorem 3.4. Assume that there exists a mapping ϕ :BM2
1→[0,∞) for which a mapping

f :BM1→BM2 satisfies
∥
∥
∥
∥
∥
u2 f

( n
∑

i=1

aixi

)

+
∑

1≤i< j≤n
u2 f

(

ajxi− aixj
)−

( n
∑

i=1

a2
i

) n
∑

i=1

f
(

uxi
)

∥
∥
∥
∥
∥
≤ ϕ(x1, . . . ,xn

)

(3.21)

for all x1, . . . ,xn ∈ BM1 and all u ∈ B(1), and the series (2.5) with K = 1 converges for
all x1, . . . ,xn ∈ BM1. If f is measurable or the mapping R 
 t→ f (tx)∈ BM2 is continu-
ous for each fixed x∈ BM1, then there exists a unique Euler-Lagrange quadratic mapping
Q :BM1→BM2 such that the following equations

DaQ
(

x1, . . . ,xn
)= 0, Q(bx)= b2Q(x) (3.22)

and the inequality (2.7) with K = 1 hold for all x,x1, . . . ,xn ∈ BM1 and all b ∈ B.

Proof. The proof of this theorem is similar to that of Theorem 3.1. �
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