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THE ULAM PROBLEM FOR
3-DIMENSIONAL QUADRATIC MAPPINGS

JOHN MICHAEL RaAssias — MATINA JOHN RASSIAS

ABSTRACT. In 1940 and in 1964 S. M. Ulam proposed the general problem:
When is it true that by changing a little the hypotheses of a theorem one can
still assert that the thesis of the theorem remains true or approximately true?
In this paper we investigate the 3-dimensional quadratic mappings @: X — Y,
satisfying the functional equation

Q) + 2y +23) + Qr; — 2y +23) + Q2 + 2y —23) + Q2 — 2y —73)
=4[Q(z) + Q(zy) + Q(z3)]

and then solve the corresponding Ulam stability problem.

1. Two-dimensional mappings

S. M. Ulam ([10]) proposed the general problem: “When is it true that by
changing a little the hypotheses of a theorem one can still assert that the thesis
of the theorem remains true or approximately true?” In this paper we investi-
gate the Ulam stability problem for 3-dimensional mappings. In this section we
consider the Ulam stability problem for 2-dimensional mappings.

THEOREM 1.1. ([4]-{6]) Let X be a normed linear space and let Y be a real
complete normed linear space. Assume in addition that f: X — Y is a mapping
for which there exists a constant ¢ > 0 (independent of z,, x,) such that the
quadratic functional inequality

Hf(l'l +a,) + flzy —a,) _Q[f(xl) ‘|'f(x2)] H Se
holds for all (z,,z,) € X?. Then the limit Q(z) = lim 272" f(2"x) exists for
n—>00
all v € X andalln e N={1,2,...} and Q: X — Y is the unique quadratic
mapping satisfying the functional equation

Q(z, +2,) + Q(; —x,) =2[Q(z) + Q(x,)]
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for all (z,,z,) € X?*, such that

[f(2) = Q=)]| <

C,

N —

holds for all x € X.

2. Three-dimensional mappings

In this section we establish the Ulam stability for 3-dimensional quadratic
mappings.

DEFINITION 2.1. Let X be a normed linear space and let Y be a real com-
plete normed linear space. Then a mapping ): X — Y is called 3-dimensional
quadratic if the functional equation

Q(r) +ay +a5) + Q) —ay +25) + Q) + 7y —25) + Q) — 7y — 73)
= 4[Q($1) + Q(zy) + Q(%)] (2.1)

holds for all (z,,2,,2;) € X*. Note that mapping @ is called quadratic, because
the functional equation

Q(2"z) = (2")*Q(x), (2.2)
holds for all # € X, and all n € N ([4]-[6], [8], [9])-
In fact, substitution of #, = z, = z; = 0 in equation (2.1) yields that

Q(0) = 0.
Substituting r; =, =, x; = 0 one gets that the functional equation
2Q(27) +2Q(0) = 4[2Q(x) + Q(0)], or Q(2x) = (2)°Q(x),

holds for all = € X.
Then induction on n € N with 2 — 2" !z yields equation (2.2).

THEOREM 2.1. Let X be a normed linear space and let Y be a real complete
normed linear space. Assume in addition that f: X — Y is a 3-dimensional
mapping for which there exists a constant ¢ (independent of x ,z,,2,) > 0
such that the quadratic functional inequality
Hf(xl + oy +ag) + flog — 2y + ) + o) + 2, — 25)
+ f(l'l — Xy = 51/'3) - 4[f($1) + f(l'z) + f(%)} H <ce (23)
holds for all (x,,v,,v,) € X*. Then the limit

Q(z) = lim 272" f(2"x), (2.4)

n— 00
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exists for all * € X and all n € N and Q: X — Y is the unique 3-dimensional
quadratic mapping satistying the functional equation (2.1), such that

5
— < —c. 2.
£() - Q)] < e (25)
holds for all + € X . Moreover, functional identity
Qz) =272"Q(2"x),
holds for all + € X, and all n € N.
Proof. Substitution of ;, =z, = r; = 0 in inequality (2.3) yields that

lfo <5

Moreover substituting v, = z, = r, x; = 0 in inequality (2.3) and employing
(2 6) and the triangle mequahty one concludes H2f (22) + 2f(0) — 4[2f(:1;) +

H ¢, or Hf?:z; ) — 4f(x H 5, Or Hf?:z; ) — 4f(x H Hf?:z; —
4f H—I—Hf H,or Hf 2:1; H sts= —c or thus one gets that

the baszc functional imequality

[ f(z) =272 f(22)]| < 5c—cl<1—2 7). (2.7)

holds for all z € X, where ¢, = (5/24)c. Replacing now ¢ with 2z in (2.7) one
concludes that Hf(?:z;) — 272 f(2% H < (1—272), or

272 f(22) — 274 f(2%2)|| < e (272 —27%) (2.7a)
holds for all + € X. Functional inequalities (2.7)—(2.7a) and the triangle in-
equality yield

() — 274 (220 | < || () — 272 £(20)]| 4 [[ 272 F(2) — 27 (20
o[1-277)+ (277 —27)],

(2.6)

or that the functional inequality

[F(z) =27 f(2%2)|| < ¢, (1—271),
holds for all z € X.

Similarly by induction on n € N with z — 2" 7!z in the basic inequality
(2.7) claim that the general functional inequality

| f(z) —=272" f(2"2)|| < ¢, (1—277"), (2.8)

holds for all « € X and all n € N. In fact, the basic inequality (2.7) with » —
27"~ 12 yield the functional inequality Hf(?"‘lx) — 2_2f(2":1;)H < (1 —272),
or the inequality

272D f2 T ) = 27 f2") | < e 27TV 27 (280)
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holds for all x € X . Moreover, by induction hypothesis with n — n — 1 in the
general inequality (2.8) one gets that

[ f(z) =272 7D fan || < ey (1 — 272007 (2.8b)
holds for all « € X . Thus functional inequalities (2.8a)—(2.8b) and the triangle
inequality imply

[ (@) =272 f(2"a)|| < || F(e) =272 F2" )|
_I_ H 2—2(n—1)f(2n—1x) _ 2—2nf‘(2nx)H
or
Hf‘(x) o 2—2nf‘(2nx)H < ¢, [(1 o 2—2(11—1)) + (2—2(n—1) o 2—271)] =c <1 o 2—2n> 7
completing the proof of the required general functional inequality (2.8).
Claim now that the sequence {Q_Z"f(Z":L')} converges. Note that from the

general inequality (2.8) and the completeness of Y, one proves that the above
sequence is a Cauchy sequence In fact, if ¢« > 5 > 0, then

[272f(272) — 27 f(27a)|| = 272 || 27207 ’)f(2’ ) — f2e)]],
holds for all # € X, and all 4, € N. Setting h = 2/z in the above relation and
employing the general inequality (2.8) one concludes that

[27% F(2') — 272 f(27a)|| = 2727|2720 £(2777R) — f(h)|
<27, (1—272079))

Y

or
|27 7(2%) = 272 f@ )| < ey (27 = 27%) <27
or
lim H2 23 21 ) 2]f21 H_()
J—o0

completing the proof that the sequence {2_2"f(2":1;)} converges. Hence () =
Q(z) is a well-defined mapping via the formula (2.4). This means that the limit
(2.4) exists for all @ € X . In addition claim that mapping @ satisfies the func-
tional equation (2.1) for all (z,,,,2,) € X?. In fact, it is clear from the func-
tional inequality (2.3) and the limit (2.4) that the following inequality
27| F(2 w4+ 2"y + 2% y) + f(2"w, — 2", + 2"2y) + f(2" @, + 2", — 2"y)
+ f(2"2, — 22, — 2"a,) —4[f(2",) + F(2"x,) + F(27x,)] || < 277"

holds for all (z,,%,,z,;) € X?, and all n € N. Therefore one gets

lim 2_2"f[2"(:1; +az,+ )] + lim 2_2"f[2"(:1; —z, + :1;3)]

n—>00
+ lim 27 f[2" 2y + @y —w )} + lim 27 f[2"(2y — w, —wg)]
: —2n n : —2n n : —2n
— 4] fim 272" o Jim 27 A(2) + Jim 27 2|

< lim (2 2") =

n— 00
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or mapping @ satisfies the equation (2.1) for all (z,,x,,2,) € X?.

Thus @Q is a 3-dimensional quadratic mapping. It is clear now from the general

functional inequality (2.8), n — oo, and the formula (2.4) that inequality (2.5)
holds in X, completing the existence proof of this Theorem 2.1.

The proof of uniqueness is omitted as obvious (see: [1-9]) and thus the sta-

bility of this Theorem 2.1 is complete. O
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