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INEPIAHYH
To 1940 o didonpog MabBnpatikoég S. M. Ulam zwpotetve yuo Ao 10 oNUIGUEVO TPOPAN O

€V0TAOELNG TTOV PEPEL TO OVOLA TOV. Xt cuvexew 0 1941 o yvwotdg Mobnpatcég D. H.
Hyers élvoe 10 mapondve tpdfinpa tov Ulam yua mpocheticég anewovicelg , vmd tov 6po
ot Ba woyveL n yvoot cuvOnkn tov Hyers , yio mpoceyyiotikd mpooheticés ametkovicels.

2 autnv Vv gpyocia yevikeDovpe To ev Ady® amotédecspa tov Hyers yio evoAAaKTIKEG
anmelovioelg Tomov Jensen , v7td Tov 6po 0Tt B oyvel pio acbevéstepn cuvOnKn amd TV
yvoot cuvOnkn Tov Hyers, o¢ tpog ywvopeva duvapeny optopéveov norm. Avth
Swdkacio (process) odnyet ot Pertioon (refinement) tng yvowotig tpocéyyiong tov Hyers .
Emumdéov etodyovpie, ota Mabnpatikd yio Tpdtn Qopd, TiG EVOAAAKTIKG TpocheTiKég
OTEIKOVICELG TPMTNG KO SEVTEPTG LOPPNG KL EPEVVOVLLE AMOTEAECLLOTA EVOTADELNG GYETIKA
pe to mpdfAnua tov Ulam. [apopola epevvovpe Euler - Lagrange tetpaymvikég angtkoviceig
KOl TPOGEYYIOTIKG TPOocHEeTIKES ametcovioelg mov ekpLAlovtat oe yviolo Tpochetikég
anewcovicels. Ta amoteAéopato ovTd LTopovV Vo EPAPLOGTOVV T GTOYACTIKY OVAALGT, 0T

OLKOVOULIKG KOl 00QOUAMOTIKG pafnpotikd, Kodmg eniong Kot 6T yoyoAoyio Kot KOvmvioAoyid.
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ABSTRACT
In 1940 S. M. Ulam proposed the famous Ulam stability problem. In 1941 D. H. Hyers solved

this problem for Cauchy additive mappings subject to the Hyers condition on approximately
additive mappings. In this paper we generalize the Hyers result for the Ulam stability problem
for alternative Jensen type mappings, by considering approximately alternative Jensen type
mappings satisfying conditions weaker than the Hyers condition, in terms of products of
powers of norms. This process leads to a refinement of the well-known Hyers approximation
for the Ulam stability problem. Besides we introduce alternative additive mappings of the first
and second form and investigate pertinent stability results. Similarly we investigate Euler-
Lagrange quadratic mappings and approximately additive mappings degenerating to genuine
additive mappings. These stability results can be applied in stochastic analysis, financial and

actuarial mathematics, as well as in psychology and sociology.

ABSTRAIT

En 1940 S.M. Ulam proposés le probléme célébre de stabilité d' Ulam. En 1941 D.H. Hyers a résolu ce
probléme pour les tracés additifs de Cauchy sujet a la condition de Hyers sur les tracés
approximativement additifs. Dans cet article nous généralisons le résultat de Hyers pour le probleme de
stabilit¢ d' Ulam pour le type alternatif tracés de Jensen, en considérant le type approximativement
alternatif tracés de Jensen satisfaisant des conditions plus faible que la condition de Hyers, en termes
des produits des puissances des normes. Ce processus meéne a une amélioration de 1'approximation bien
connue de Hyers pour le probléme de stabilité d' Ulam. Sans compter que nous présentons les tracés
additifs alternatifs de la premiére et deuxiéme forme et étudions des résultats convenables de stabilité
pour ces résultats de stabilité. De méme nous étudions des tracés quadratique d' Euler-Lagrange et
tracés approximativement additifs se dégénérant aux tracés additifs véritables. Ces résultats de stabilité
peuvent étre appliqués dans l'analyse stochastique, mathématiques financiéres et actuarielles, aussi bien
qu'en la psychologie et la sociologie.

Key words and phrases: Ulam stability problem, Hyers condition, Cauchy sum,

Jensen mapping, Euler-Lagrange mapping, genuine additive mapping.
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1. Introduction

In 1940 and in 1964 S. M. Ulam [18] proposed the famous Ulam stability problem:

"When is it true that by slightly changing the hypotheses of a theorem one can

still assert that the thesis of the theorem remains true or approximately true ?"



In 1941 D. H. Hyers [4] solved this stability problem for Cauchy additive mappings

subject to the following Hyers condition
1f (v +x,)= £ (x)-f(x) | <6 (HC)
on approximately Cauchy additive mappings f:X — Y ,fora fixed 6 >0, and all x,,

X, € X, where X is a real normed space and Y a real Banach space.

In 1951 D. G. Bourgin [1] was the second author to treat the Ulam problem for additive
mappings. In 1978, according to P.M. Gruber [3], this kind of stability problems is of
particular interest in probability theory and in the case of functional equations of
different types. In 1982-2005 J. M. Rassias ([7-11],[14-17]) and in 2003 and 2005 M.
J. Rassias and the first author ([13], [16]) solved the above Ulam problem for different
mappings . In 1999 P. Gavruta [2] answered a question of ours [9] concerning the
stability of the Cauchy equation. In 1998 S.- M. Jung [5] and in 2002-2003 M. J.
Rassias and the first author ([12-13], [16]) investigated the Ulam stability for additive
and quadratic mappings on restricted domains. In this paper we generalize the Hyers result
for the Ulam stability problem for alternative Jensen type mappings, by considering
approximately alternative Jensen and Jensen type mappings satisfying conditions weaker than
the Hyers condition, in terms of products of powers of norms. Also we introduce alternative
additive mappings of the first and the second form and investigate pertinent stability results.
These results can be applied in stochastic analysis, financial and actuarial mathematics, as well

as in psychology and sociology. In 1997, P. Malliavin [6] published an interesting reference

book for stochastic analysis.

Throughout this paper, let X be a real normed space and Y be a real Banach space in the
case of functional inequalities, as well as let X and Y be real linear spaces for functional

equations. Besides let us denote with N ={1,2,3,...} the set of natural numbers,R the set
of real numbers, and for some fixed
a,feR,p=a+p#1.
If P=(x,,x,) € X, then we introduce the following alternative sums:
So(P) = f(=(x +x,)) + [ (x) + f(x,)
the alternative Cauchy sum,
S\(P)=f(x,+x,)+ f(x,—x,)+2f(=x)

the alternative sum of first form ,



S,(P)= f(x,+x,) f (% ~x,) +2f(~x,)
the alternative sum of second form,
S,(P)=2f (-T2 4 f(x)+ ()
the alternative Jensen sum, and
Sy (P)=2f (-F 52+ f ()~ /()

the alternative Jensen type sum.

If
M(Ja =282 -2 o .62 0, p 21,

we consider the formula

27" f(2"x), if —o<p<l]

A(x) =1 *
D=y @, irps ©
Also we consider inequality
| ()= 4] < Ml (%)
forall xe X .
If Q=(|x,|,|x.[) € R, then we denote
H(Q)zé‘”xl”a ||x2|ﬁ ,020,p=a+pF#1.
Definition 1.0. A mapping 4 : X— Y is called alternative Cauchy if A satisfies
A(=(x, + x,)) = A(x) + A(x,)] ©

for all x1, x, € X.

Definition 1.1. A mapping 4 : X— Y is called alternative additive of the first form if 4
satisfies the functional equation

A(x) +x2) + A(xy - x2) = -2A(-x1) (1)
for all x1, x> € X.

We note that (1) is equivalent to the alternative Jensen equation

A(- 2=t a0)]. o




forx=x;+x, y=x1-x2 . Amapping 4 : X— Yis called alternative Jensen mapping if A

satisfies the functional equation (J).

Definition 1.2. A mapping 4 : X— Y is called alternative additive of the second form if
A satisfies the functional equation

A(xy +x2) - A(xy - x2) = -2A4(-x2) (2)
for all x1, x, € X.

We note that (2) is equivalent to the alternative Jensen type equation
x— 1
A[— 2y]:_E[A(x)_A(y)], am)

for x =x; + x2, ¥ = x1 - x2. A mapping 4 : X— Y is called alternative Jensen type mapping if

A satisfies the functional equation (JT).

Our main stability result is the following:

Theorem 1.3. 1fa mapping f: X— Y satisfies the approximately alternative Jensen
type inequality
[8.(P) | <11(0) , 3)
forall Pe X* ,0 eR?, then there exists a unique alternative Jensen type mapping

A : X— Y, which satisfies the formula (*) and the inequality (**) for all x € X.

If, moreover, f'is measurable or f(tx) is continuous in t for each fixed x € X,
A(tx) = tA(x)
forallx e Xandt e R.

2. Jensen Mappings and Outline of the Proof

(1) We note that the Hyers condition (HC) on approximately alternative Jensen type
mappings is the corresponding inequality (3) ,when « = £ =0 ;thus

Q) =6.

(2) If we replace S, (P),with S,(P) (i =0,1,2,3) in the above inequality (3),then we
easily establish stability results for the remaining four kinds of mappings
corresponding to the alternative sums S,(P) (i =0,1,2,3).



In these four cases we prove that M (||x||) of the inequality (**) has to be substituted
by M(||x||)/2.

(3) To prove Theorem 1.3,we argue, as follows:

In fact, replacing x, = x, =0 in (3),one gets f(0) =0.Setting x, =2x,x, =0 in (3),

we get f(2x)=-2f(—x).
Besides substituting x, = x,x, =—x in (3), ¢ obtain

PACEIRNAC) B

Therefore,
[f @0 -2/ @) =2]1 0+ 1 @) <26]x",
o
| -2 r@x)| < | vo=1.
Hence,

| -27r@ || reo-27" @)+ 27| F@ - 27 F(274

P
s

<[1-2""]2-27)"25 |«

forVneN.

Assume —o < p<1.

If one replaces x with 27" x in the above general inequality, then he finds

P
5

H fx)=2" 2" x)H <[1-2""71(27 - p) 26 |x
forVneN.

Assume p >1
From the above two general inequalities, we prove that the sequence {f, (x)} with

f=g, 120 e ns
2 fQ27%),  ifp>1
is a Cauchy sequence.
From (*),(3) and the completeness of Y, one proves that a well-defined mapping
A: X —Y exists, such that the mapping 4 : X— Y satisfies the alternative Jensen
type equation (JT).
It is easy to prove that



27" A2 x),if —wo<p<l]

A= 2 if pol

The rest of the proof for the existence and uniqueness of 4: X — Y is omitted as
similar to our detailed proofs in references ([8]-[10]).

The proof of the last assertion in the above Theorem 1.3 is obvious according to our
work [7],in 1982.

The singular case p =1 is open.

We refer the reader to P. Gavruta [2] and ([7]-[10]) for analogous singular cases.

3. Euler-Lagrange Quadratic Mappings

The following theorem 3.1 is well-known for 2-dimensional Euler-Lagrange

quadratic mappings.
Theorem 3.1 ([11], [17]). Let X be a normed linear space and let Y be a real

complete normed linear space. Assume in addition that f : X—>Y is a mapping for which
there exists a constant c (independent of x;, x3) = 0 such that the Euler-Lagrange

quadratic functional inequality

|Gyt )2 F )+ £ )] | <
holds for all (x;, x;) € X
Then the limit

O(x)= lim 27" /(2" x)

exists for all x € X and all n e N and Q : XY is the unique Euler-Lagrange

quadratic mapping satisfying the functional equation
O(x1+x2+0(x1=32)=2] Q(x))+0(x, )]
for all (x1,x2) € X*, such that inequality
1
UORIO B

holds for all x € X.

In this section we establish the Ulam stability for 3-dimensional quadratic mappings.



Definition 3.1. Let X be a normed linear space and let Y be a real complete normed
linear space. Then a mapping Q : X—Y, is called 3-dimensional Euler-Lagrange
quadratic if the functional equation

O(xy+x3+x3) + Q(x;—x3+x3) + O(x +x3—x3) + O(x]—x;—x3)

= 4{00r)+0(x,)+0(x3)] )
holds for all (x;, x2, x3) € X° Note that mapping O is called quadratic, because the

functional equation

02"x) =" 0), (5)
holds forallx € X,and alln e N.

In fact, substitution of x;=x; =x3=01in equation (4) yields that Q(0)=0 .

Substituting x; = x = x , x3 = 0 one gets that the functional equation
20(2x) + 20(0) = 4[20(x)+0(0)] or 0(2x) = (2)°0() ,
holds for all x € X.

Then induction on n € N with x — 2"'x yields equation (5).

Theorem 3.2. Let X be a normed linear space and let Y be a real complete normed

linear space. Assume in addition that f: X—Y is a 3-dimensional mapping for which
there exists a constant c¢ (independent of xi, x,, x3) = 0 such that the Euler-Lagrange

quadratic functional inequality

Hf(x1+x2+x3) + (X1 =xp+x3) + (X1 +x,—x3) + f (X1 —x—X3)

— A f e )+ ()] |5 € (6)
holds for all (x1, x2, x3) € X . Then the limit
O(x)= lim 272" £(2"x), (7)

exists for all x € X and all n € N and Q : XY is the unique 3-dimensional Euler-

Lagrange quadratic mapping satisfying the functional equation (4), such that inequality
5
x)-0x)|£— ¢ , 8
-0t <7 ®)
holds for all x € X. Moreover, functional identity

0 =2"0@2"x),
holds for allx € X ,and alln € N .



Proof. Substitution of x;= x,= x3= 0 in inequality (6) yields that

c
lrofsy - ©)
Moreover substituting x; = x, = x, x3 = 0 in inequality (6) and employing (9) and the

triangle inequality one concludes

Rrex 2@ - 427 +r@)<c or [1@0)- 470 -1 @[5 3 or

lf@x) - 41| < |£@x) - 47 -£0) | +] 10

5
||f(2x) -4f(x)||£ §+§:§

,or

c,or
thus one gets that the basic functional inequality

| - 272 f20)| < % c=¢ (1-272) . (10)

holds for all x € X, where ¢; = (5/24)c. Replacing now x with 2x in (10) one concludes
that | £(2x) - 272 7 2%x)| < ¢, (1-272) , or

272 r@2x) - 274 220 < ¢ 22274 (10a)
holds for all x € X .Functional inequalities (10) - (10a) and the triangle inequality yield
lro-27 r@ 0 <1 -27 r x|+ 27 rex-27 r2°x)
<q [0-27)+@227)] |
or that the functional inequality
[f@-2r@n|<q 427,
holds forall x € X.
Similarly by induction on n € N with x — 2"'x in the basic inequality (10) claim
that the general functional inequality
lre-272 r@m0)| <o (-272), (11)
holds for all x € X and all n € N .In fact , the basic inequality (7) with x — 2"'x yield
the functional inequality H AR (2"x)” <e¢ (1-272) jor

the inequality

H2—2(l’l—1)f(2n—l x) _ 2—2}1 f(zl’lx)H S Cl (2-2(}1—1) _2—2}1) , (lla)

holds for all x € X .Moreover, by induction hypothesis with n — n-1 in the general

inequality (11) one gets that
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lr@)-2720D pam )| < e (1- 27200 (11b)

holds for all x € X .Thus functional inequalities (11a) - (11b) and the triangle inequality
imply

Hf(x)_2—2nf(2nx)u < Hf(x)_2—2(n—l)f(2n—1x)H + H2—2(n—1)f(2n—1x)_2—2n f(znx)‘

[rm=27" @ 0| < o [02720 D)@ 27| = o 277

completing the proof of the required general functional inequality (11).

, Or

Claim now that the sequence {2_2" f@2" X)} converges. Note that from the general
inequality (11) and the completeness of Y , one proves that the above sequence is a
Cauchy sequence. In fact,if i>;> 0, then

2 r2'x)-27 f 27 )| = 27 272 £ 2T x)- (27 x)|
holds for all x € X, and all i, j € N .Setting & = 2'x in the above relation and employing

9

the general inequality (11) one concludes that

R r@x)-2 27 x)| = 27722 T h)—f ()| <27 ¢ (1-2720D) or
R re'x-27 r@ix|<e @ -27%) < 2% or

lim 27 72027 f@ 0= 0,
completing the proof that the sequence {272” " x)} converges.
Hence O = Q(x) is a well-defined mapping via the formula (7).This means that the limit
(7) exists for all x € X.
In addition claim that mapping Q satisfies the functional equation (4) for all (x;, xa,
x3) € X° .In fact, it is clear from the functional inequality (6) and the limit (7) that the
following inequality

2—2}’1

f(2nxl+2an+2nX3) +f(2nxl—2nX2+2nX3) +f(2nxl+2nX2—2nX3)

FFQ 2" 02" xy) — A QT Q)2 )] <27 e

holds for all (x; , x2, x3) € X , and all n € N .Therefore one gets

lim 272" f[2”(x1+x2 +x3)] + lim 272" f[Z”(xl —X, +x3)]+ lim2~%" f[2”(x1+x2 —X3 )]
n—»c0 n—»0 n—»

+ 1im 27 f[2" (v —xy—x3)) —4{ lim272" £ x )+ lim 272 2" x,)+ lim 22" f(2"x3)}
n—o0 n—oo n—»

n—»o0

< lim(272™)e=0

n—>®©
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or mapping Q satisfies the equation (4) for all (x; , x2, x3) € X . Thus O is a 3-
dimensional quadratic mapping. It is clear now from the general functional inequality
(11), n > oo, and the formula (7) that inequality (8) holds in X, completing the existence
proof of this Theorem 3.2.

The proof of uniqueness is omitted as obvious and thus the stability of this Theorem

3.2 is complete.

4. Genuine Additive Mappings

In this section we investigate approximate additive mappings degenerating to genuine

additive mappings.

Definition 4.1. Let X and Y be real linear spaces.
Let a = (a1, a2, . . . ,ap)eR? -{(0, 0, . . .,0)}. Then a mapping 4 : X — Y is called

additive , if the additive functional equation
p P
A Zaix,- = ZaiA(xl-) (12)
i=1 i=1

holds foreveryx; e X (i=1,2,...,p),where

p
p 1s arbitrary but fixed and equals to 2, 3, . . . and any fixed a (#0) : 0 < m = Zai #1.
i=1
Definition 4.2. Let X and Y be real normed linear spaces.
Let a = (a1, 02,....0p)€ R’ -{(0, 0, . . .,0)}.Then a mapping /' : X — Y is called

approximately additive, if the approximately additive functional inequality

P p
f[Zaixi]—Zaif(xi) SCKVQ|x1 B 02y e ), (13)
i=1 i=1
holds for every (x1, x2, . . ., X,) € X” ,where p is arbitrary but fixed and equals to 2, 3,
..., with a real constant ¢ > 0 (independent of xi, x», . . . , x, € X), any fixed

p
a(#0):0<m= Zai # 1 and any fixed real (1#)r>0:
i=1
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P P r
p"l(lexill’]— pIEA RSN
K, = K, (6o, |)= Gy g "
(St (St i 0=r1
i=l i=l

holds for every (xi, x2, ..., x,) € X”.

Lemma 4.1. If K, is given via (14), then K, > 0 for any fixed real 0 <r # 1.
Proof. In fact, take a function F = F(f) = ¢ (t 2 0 and » € R ).It is clear that

F"(t)=r(r—1)">0forr € R:r>1. Thus F is convex for r > 1.Therefore

F(%ﬁ;ti} S%(i}F(ti)J, or

G5 (5

forreR:r>1,and #2>0(Gi=1,2,...,p),where p is arbitrary but fixed and equals

to2,3,... .Taking ¢ :||x,.||20forx,-eX(i=1,2,...,p)andreR:er,weget

.
, or

v (Sl | (S|

(1 $| ||Jr l(in
- 1l <= .
P iz ¥ P\ix i

forr>1. Butitis clear that

p
fo
i=1

B

for » > 0 .Therefore we have that

P
k=Sl -

for 7> 1 .Similarly F"(¢)=r(r —1)""> <0 for 0 < r< 1. Thus F is concave for

7

P
le- >0

i=1

r € R : 0<r<]1. Therefore
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Taking ¢; = ||xl|| >0

(i=1,2,...,p), we get

p g (L
&= Shel) (S

for 0 <r< 1, completing the proof of Lemma 4.1.

’Jzo

Let us denote
L={(r,m)eR*:0<r<l,m>landr>1,0<m<1},
and
L={(r,m)eR*:0<r<1,0<m<land r>1,m>1},

such that m"™"' < 1 for any (r, m) € I, and m'” < 1 for any (r, m) € I, Note that
approximately additive mappings are not additive in case K, = 1 and m > 0 . In this

case Y is assumed to be complete. Also Ky = 0 and the singular case

p p
K= 2 =
i=1 i=1

(20).

Theorem 4.1. Let X and Y be normed linear spaces.

P

Let o= (a1, 0, . . . ,0)€R’ -{(0,0,...0)}:0< m= Zai #1, where p is arbitrary
i=1

but fixed and equals to 2,3, . . . Assume in addition that f: X — Y is an approximately

additive mapping satisfying (13) with 1#r 2 0. Define

m”" f(m"x) if (r,m)el

m"f(m™"x) ,if (r,m)el,

forallx e X andn e N,=1{0,1,2,...}, where

-]

L={(r,m)eR*:0<r<l,m>landr>1,0<m<1},
and
L={(r,m)eR*:0<r<1,0<m<land r>1,m>1}.

Then the formula

A(x) = f,(x) (15)
exists forallx € X andn € N, and A : X —> Y is the unique additive mapping satisfying
Sx) = A(x) (15a)

forall x € X.



14

Proof. 1t is useful for the following investigation to observe that, from (13) with x;= 0

(i=12...,p)and0<m=1,weget |m—1||f(0)]<0,or

A0)=0. (16)
Now claim forn € Ny= {0, 1, 2, ... } that
Sx) = fulx) (16a)
holds for all x € X. For n = 0 it is trivial. From (14) withx; =x (i € N, = {1, 2, .. ., p}),
we obtain
P Tp=p =0, i )1
= | or
p =p 7 p=0, if 0<r(l
K, = K, (x| [x-. ) = (17)
for every x € X and any fixedreal » € R: 0 <r= 1 with p=2, 3, .. .Similarly from
(14) withx;=m'x (i N,), we get
L PPt =00
= |
pr=pp=0, if 0<r(1
or
=K, (m_lnx”,m_l”x” ..... m_1||x||): |x "m-0=0 , (18)

for every x € X and any fixedreal r e R: 0<r=1with p=2,3, ...
From (13) and (17), withx; =x (i € N,), we get

||f(mx)— mf(xm < cKrQ ,

fx)=m™ f(mx), (19)
which is (16a) for n = 1, if /; holds. Similarly, from (13) and (1g), with x; = m’'x (m=0)

..... ||x||) =0, or

(i € N,), we obtain
£ G)=mplon~'x) | < &, oy~ oo™ o) = 0 ox
S()=mf '), (20)
which is (16a) for n =1, if I, holds.
Assume (16a) is true and from (19), with m"x on place of x, we get:

£m™'x) = mf (m"x) = mm” £ (x) = m" £ (x). @1)
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Similarly, from (20) with m"x on place of x, we obtain:

f(mf("H)x): m fm™"x)y=m ' m ™" f(x) = m_('”l)f(x). (22)
These formulas (21) and (22) by induction, prove formula (16a). It is obvious from
(16a) that 4 defines a mapping 4 : X — Y, given by (15).Finally, claim from (13) and
(16a) we can get that 4 : X — Yis additive.
In fact, it is clear from the functional inequality (13), the Lemma 4.1 and the formula

(16a) that the following functional inequality

p p
—n n n —n n n n
m f(Zaim xiJ—Zaif(m xl-) <m cKr( m xIH,Hm x2H ..... Hm po)
i=1 i=1

holds for all (x1, xa, . . ., x,) € X”, and all n € No, with £, (x)=m ™" f{m"x): I holds.

Therefore

< m" Ve, (x| [y, ] ) or

fn(zaixiJ_zaifn (xi)
i=1 i=1

< mn(ril)CK —oo>0 ,

r n—>

p p
A(Z az’xiJ - zaiA(xi)
i=1 i=1
because m"" < 1 for any (r, m) € I, , or

ALii al-x,-] = inl]a,-A(xi) :

yielding that mapping 4 : X — Y satisfies the additive functional equation (7).

Similarly, from (]3), the Lemma 4.1 and (16a) we get that

P P
f(z aim"xiJ— Zaif(m*”xi)
i=1 i=1

holds for all (x1, x2, . . ., x,) € X?, and all n € Ny, with f, (x): m"f(m_”x): b, holds.

n n —n —n —n
m <m cKr( m leHm xzuum po)

Therefore

fn(iaixiJ_iaifn(xi)
i=1 i=1

<m"eK, ——50

r n—o

A[g a,.x,} S aA(x,)

i=1
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because m'” < 1 for (r, m) € I, , implying that 4 : X — Y satisfies (12), completing the

proof that 4 can be an additive mapping in X. This completes the existence proof of the

above Theorem 4.1.

The Uniqueness proof of Theorem 4.1 is clear, because if 4 : X —> Yand 4" : X — Y are

two additive mappings satisfying (15a) then 4 and 4" satisfy
Ax)—A'(x)=fix)—f(x)=0,0or A(x)=A4'(x) forallx € X.

References

[1] D. G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc.,
57 (1951),223-237.

[2] P. Gavruta, An answer to a question of John M. Rassias concerning the stability of Cauchy
equation. In: Advances in Equations and Inequalities, Hadronic Math. Series, U.S.A., 1999, 67-71.

[3] P. M. Gruber, Stability of Isometries, Trans. Amer. Math. Soc., U.S.A., 245 (1978), 263-277.

[4] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. 27 (1941),
222-24: The stability of homomorphisms and related topics, "Global Analysis-Analysis on
Manifolds", Teubner - Texte zur Mathematik, 57 (1983), 140-153.

[5] S.-M. Jung, On the Hyers-Ulam stability of the Functional Equations that have the Quadratic
Property, J. Math. Anal. & Appl., 222 (1998), 126-137.

[6] P. Malliavin, Stochastic Analysis, Springer,Berlin,1997.

[7]J. M. Rassias, On Approximation of Approximately Linear Mappings by Linear Mappings,
J. Funct. Anal. 46 (1982), 126-130.

[8] J. M. Rassias, On Approximation of Approximately Linear Mappings by Linear Mappings,
Bull. Sc. Math. 108 (1984), 445-446.

[9]J. M. Rassias, Solution of a Problem of Ulam, J. Approx. Th. 57 (1989), 268-273.

[10]J. M. Rassias, Complete solution of the multi-dimensional Problem of Ulam,
Discuss. Mathem. 14(1994),101-107.

[11]J. M. Rassias, Solution of the Ulam Stability Problem for Euler-Lagrange quadratic mappings,
J. Math. Anal. Appl. 220 (1998), 613-639.

[12] J. M. Rassias,On the Ulam stability of mixed type mappings on restricted
domains, J. Math. Anal. Appl. 276(2002), 747-762.

[13] J. M. Rassias and M. J. Rassias ,On the Ulam stability of Jensen and Jensen type mappings on
restricted domains, J. Math. Anal. Appl. 281(2003), 516-524.

[14] J. M. Rassias, Asymptotic behavior of mixed type functional equations,
Austral. J .Math. Anal. Applications, 1(2004),Issue 1, 1-21.

[15] J. M. Rassias, The Ulam stability problem in approximation of approximately quadratic mappings
by quadratic mappings, J. Inequ. Pure and Appl. Math.,5(2004),Issue 3, 1-9.

[16] J. M. Rassias and M. J. Rassias, Asymptotic behaviour of alternative Jensen and Jensen type functional
equations, Bull. Sci. Math. 129 (2005), Issue 7, 545-558.

[17] J. M. Rassias, On the general quadratic functional equation, Bol. Soc. Mat. Mexicana (3), 11(2005), 259-268.

[18] S. M. Ulam, "Problems in Modern Mathematics”, Wiley - Interscience, New York, 1964, Ch. VI.



17



	John  Michael  Rassias and  Matina (Stamatiki) John Rassias
	Let us denote
	I1 = { (r, m) ( R 2 : 0 ( r( 1, m ( 1 and r ( 1, 0( m ( 1 } ,
	and

	Then the formula
	(15)
	References


