International Journal of Pure & Applied Mathematical Sciences
ISSN 0972-9828 Vol.2 N0.1(2005), pp. 92-101

© GBS Publishers & Distributors (India)
http://www.gbspublisher.com/ijpams.htm

On the Cauchy-Ulam Stability of the Jensen Equation
in C*-Algebras

John Michael Rassias

Pedagogical Department E.E.
National and Capodistrian University of Athens
4, Agamemnonos Str., Aghia Paraskevi
Attikis 15342, Greece.

E-mail: jrassias@primedu.uoa.gr

Abstract

In 1964, Ulam raised the general problem: “When is it true that by
changing a little the hypotheses of a theorem one can still assert that the
thesis of the theorem remains true or approximately true?” In this article,
we consider almost unital approximately linear mappings h- A, in

unital C*-algebras. Besides, we give conditions in order for h to be a
homomorphism and establish results faterivations. Furthermore, we
investigate the Cauchy-Ulam stability of the Jensen equation in unital
C*-algebras. Finally we establish the Cauchy-Ulam stability and
«~-homomorphisms, as well aglerivations.
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1. Introduction

In 1940 S. M. Ulam [12] proposed at the University of Wisconsin the probi@ive
conditions in order for a linear mapping near an approximately linear mapping to
exist." In 1964 he proposed the more general probleri/hen is it true that by
changing a little the hypotheses of a theorem one can still assert that the thesis of the
theorem remains true or approximately true?” In 1978 P. M. Gruber [2] proposed the
analogous problem: "Suppose a mathematical object satisfies a certain property
approximately. Is it then possible to approximate this object by objects, satisfying the
property exactly?" According to P.M. Gruber this kind of stability problems is of
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particular interest in probability theory and in the case of functional equations of
different types.

Theorem 1. Let X be a real normed linear space and let Y be a real complete
normed linear space. Assume in addition thaX — Y is a mapping for which there
exist constantd> 0 and pJR — {1} such that

1 G+ 2)=Lrcer+ reoll <ol )
for all x, y[O X . Then there exists a unique additive mappingXL- Y satisfying

-2}l = bl

for all x O X . If in addition f: X - Y is a mapping such that the transformation
t » f(tx) is continuous infR for each fixed X X, then L isR -linear mapping.

Remark. The above Ulam stability theorem was obtained by D.H. Hyers [3] for the
casep = 0, and by the author ( [6]-[10] ) for the cgsél (—co, 1) O (1, «).In
particular, P. Gavruta [1] gave a counter-example for the gwas#. Besides, T. Trif

[11] established an analogous stability of the Jensen type functional equation deriving
from an inequality of T.Popoviciu[5] for convex functions. However, T. Trif [11]
generalized the Popoviciu equation

BB e 100 1023 B B B

Let us consider two real linear spageandY and the Jensen functional equation

2fBX—H— (x)+ /(v (1)

forf: X - Yand allx, yI X , and the additive Cauchy functional equation
f+y)=r()+ () 2)

for all x, y O X .Therefore we establish below an interesting theorem and a
proposition connecting the Jensen equation (1) with the Cauchy equation (2).

Theorem 2.Let X be a real normed linear space and let Y be a real complete normed
linear space. Assume in addition thiat X - Y with f(0) = 0 is a mapping for which
there exists a constafit 0 such that

2f§*;—y§r [fx)+£v)]| <0 *)

for all x, y[O X . Then there exists a unique Jensen mappinX 3 Y satisfying the
functional equatiorf1l) and the functional inequality
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lFG)-7(x)] <0 (=)

forallxOX.
Proof. Substituting x = 0 andy = 2x in the above inequalityx] and employing

conditionf(0) = 0, we get

240 10)+ 6] 0,01 | r6)-2" 120
for all x0 X . Thus, in general, one establish|b§(x)—2‘”f(2"x)|| <ofl-27)- 0
as n - o for all x 0 X . Thus taking the limiting form J(x):,{l;"i 2‘”f(2”x) ,

0 . .
5—9(1 27),

and employing classical techniques on these concepts, we prove the inegugality (

for a unique mapping : X - Y of the above limiting form. The rest of the proof is
omitted as analogous to the proofs of our old theorems ([6]-[10]).

Note If we had replaced = 0 andy =xin (*), then

lr()-270"x)|< 0
and, in general”f(x)—2"f(2‘"x)|| <ofl+2+..+27")=0 -2

1_

—~ 0 ,asn — o,

Thus the inequality«¢ ) does not hold.

Proposition 1. A functionf : X - Y between two real linear spaces X and Y satisfies
the Jensen equatigil) for all x, y[O X if and only if there exists an additive Cauchy
mapping C. X - Y satisfyind2) and such that

f(x)=c(x)+ £ (0) (3)
for all x O X

Proof. Necessityll ). Let us assume that a mappingX — Y satisfies the Jensen

equation (1). We considé€® : X - Y andg: X - Y two functions given by the
formulas

()= ()= (2] and gx)=[r(x)+ 1)~ £(0), @
respectively, for alk (1 X. Therefore

f(x)=Clx)+glx)+ £(0), (5)

for all x O X. Claim thatC satisfies the additive Cauchy equation (2) anddbat= 0
in X. In fact,

2CE";—yEz c(x)+c(y) (6)

and
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2g§)(;—y§= gx)+g(v) (7)

for all x, y O X, becausd satisfies (1) for alk, yd X and (4)-(5) hold. By virtue of
(4) we find the relations

C(-x)=-C(x) and g(-x)=g(x) (8)
for all x 00 X. Settingx = 0 in the former form of (4) ang= 0 in (6), we ge€(0) =0
and 20(7x)=c(x) 9)

for all x 0 X. From (6) and (9), one obtains

Clx+7)=Cx)-C(y) = 2¢(7 (x + »)) - () - ()
=[cl)+c()]-clx)-c(v)=00r
Clr+y)=clx)+c(y) (10)
for all x, yOX. Therefore, C is an additive Cauchy mapping.

On the other hand, substitutirgr O in the latter form of (4) angd= 0 in (7), we find
g(0) =0 and

2627 x)=g(x) (11)
for all x 0 X. Taking into account (7) and (11), we get
glx+y)=glx)+elv) (12)

for all x, yOX. Placingy = - in (12) yields g(0)= g(x)+ g(- x).From the eveness of

0, by the latter form of (8) angl0) = 0, one establishesg(x) = 0 for allx O X.
Sufficiency (). The converse is omitted as clear, completing the proof of the
Proposition 1.

Corollary 1. Let X be a real normed linear space and let Y be a real normed linear
space. A mapping f : X Y with f(0) = O satisfies the Jensen functional equafign

if and only if the mapping f : X, Y satisfies the additive Cauchy functional equation
2.

Corollary 2. A continuous function f R - R satisfies Jensen equatiofl)
(or(7)) for all x, y[J R if and only if it has the form  f(x) &x + £ ,witha andp
arbitrary real constants.

Let us introduce below some basic terminology, ffanctional analysis.

An algebra Ris a linear space ovél together with a multiplication such that

x(yz) = (xy)z , x(y + Z) =xy+xz, (x + y)z =xz+yz,and l(xy) = (/bc)y = x(iy)

for x,y, zO R and1 O C. A Banach spacR is called éBanach algebrgor normed
ring) if | xy | <|x]|[y| is satisfied for allx, yO R .When a Banach algebra contains a
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unity element with respect to the multiplication we callubital and we can suppose
| e]|=1.An involution in a Banach algebr® is an operationx — x* from R into
itself that satisfies the propertief + yfr=x*+y*; (xf=7Ix* ; (xy )= y*x*;
(x*}=x for x, y,0 R andi O C. A Banach algebra with an involution such that
|x*| =]x| is called eBanach«-algebra A mappingh : A — B between two Banach
«-algebrasA andB is a homomorphism if A(xy)=h(x)a(y) for all x, yO A A x-
homomorphism h: A - B between two Banach-algebrasA and B is a
homomorphism which preserves involutions, ihéx *) = i(x)*. A Banach«-algebra

R satisfying|x * x| = x| for allx O R is called aC*-algebra A C-linear mapping

0. A - Ain aC*-algebra A is called a@erivationin A if its domainD(o) is a dense
subalgebra oA and 5(xy) = x6(y) + 6(x)y for all x, yd D(5). If, moreoverx O D(9)
impliesx* 0 D(6) and (x *) = 6(x)*, thend is a =-derivation Finally a mappindy :
A - Bisan almost unital mapping an element/im 2”h(2'” e) in B is invertible.

n—o

J.-R. Lee and D.-Y. Shin [4] achieved the Cauchy-Ulam stability of the Trif
functional equation irC*-algebras.In this paper we apply our Theorem 1 to almost
unital mapping$ : A - B between unitaC*-algebrasA andB and give conditions in
order forh to be ax-homomorphism. We also investigate the Cauchy-Ulam stability

of the Jensen equatidlhgﬁzr—ygz h(x)+h(y) in C*-algebras. Finally we establish

the Cauchy-Ulam stability andhomomorphism, as well as;derivations.

We assume throughout this paper, thandB are unitalC*-algebras with unie.
Besides we denote withU(A) the set of all unitary elements. We note that

U(4) ={u OA u*u=uu*=1 } is the unitary group iA.

2. The Jensen Equation and Almost Unital Mappings

Let us denoted, i(x,y)= Zh%(x +y)@— uln(x)+ n(y)] for given mappingh: A -

B,anyudL ={ ADOC:|A| :J} , and for all allx, yO A.
Theorem 3Let h: A - B be an almost unital mapping such that h(0)=0, and
(2" xu)= h(x)n(2"u) for all x O A, all ud U(A), and all sufficiently large integers
n.If the condition

| 4,4(x, )| <6, 6=0, (13)
holds for all xOL' and allx, y O A then h is a homomorphisi, in addition, the
condition
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| nlrux)-nru)d <o (14)
holds for allu O U(A),and all sufficiently large integers n, then h is*a
homomorphism.

Proof. Settingu =1 in (13) and employing Theorem 1 wjgth= 0 and Proposition 1
with f(0)=0 one proves that there exists a unique additive mappidg— B defined
by

L(x)= lim 2_"h(2" x)

for all x 0 A ([6] — [10]).Placingy = x in (13), we find the inequality
|4,(e.0)]| =2 o)~ () <0

forall xOL' and allx O A. Substitutingk in this inequality with 2, one gets
27 2" x)- wh@"x)| 27600 or tim 27| h(u2"x)- uh2" )| = 0,01

n—oo

lim2™ h(u2" x) =ulim2™ h(2" x)

n—o n—o

forall xOL' and allx O A.
Therefore L(ux) = lim 27 h(2" ux) = wlim 27" h(2" x) = uL(x), for all xOL' and allx

n— oo

00 A. But it is well-known thaif an additive mapping L : A- B satisfies Lyx) =
uL(x) for all xOL', then L is aC -linear mapping([5], [6], [8]). ThusL is C-linear.

We now claim thatL is a homomorphism. In fact, from the hypothesis that
h(2” xu)= h(x)h(2”u) we get

L(xu)= ’{moao 2™ h(2” xu): h(x)'{inoao 2™ h(2"u) = h(x)L(u).

Thus fromC -linearity ofLL, one finds L (xu) =2 L(2n xu) =2" P‘(Z” L) (Y.
Therefore
lim L(xu) = [lim 2_"h(2" x)]L(u)1 or L(xu) =L(JL(u)

n-oo n—oo

for allx 0 A and allu 00 U(A).
But any element in &*-algebra is a finite linear combination of unitary elementa in

and so any [ A is of the formy = injvj for n; O C andy; O U(A).
J:
m m |:|
Hencel. ()= ni (xv,) = L(9 L 55 ny = L) ()
]: J:

for all x,y 0 A, yielding that L isa homomorphismBesidesh(x)L(e) = L(xe) = L(X)
L(e) for all x 0 A, because is a unitary element .
Therefore the identity
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L(X) = h(x) (15)

holds for allx [ A, becauseL(e) = lim 2‘”h(2” e) is invertible ash is almost unital.

n-o

Henceh is a homomorphisnfrom (14) we find

tim 27| W2 u*)-nQ u)d < 6l 1im 2 )= 0, or
lim 27 b u*)= tim 2 A u)* | or
Lu*)=L(u)*
for all u O U(A). But, in addition, theC -linear mapL is a homomorphism. We now

k
claim thatlL is ax-homomorphism. In fact, anyd A is of the formx = Zf,.u,. for &
i=1

0 C and u; 0 U(A). ThusL(x*)= Lglngiui ﬁ%zifil_ (ui*)zifl 1A

— EL (ui)ﬁ =L(x) (16)

forallxOA, & 0O C and u; O U(A), yieldingL is ax-homomorphism. Therefore from
(15) — (16), one gets(x *) = a(x)* for all x 0 A and thus is alsoa »-
homomorphismgompleting the proof of the Theorem 3.

3. The Cauchy-Ulam Stability andx-Homomorphisms
Let us denote /(x,y,z,w) = 2h% (x+ )+ %w@— afn () + RO - A (w)

for anyu O L' and for allx, y, z w O A, and for a given mappirly: A — B from a
unital C*-algebraA to a unitalC*-algebraB.
Theorem 4 Leth : A - B be a mapping such tha®) = 0.If two conditions

| H,h(x,y,z,w)| <0, 620, (17)
| al2rux)-nlmu)| <0 (18)

hold for allz O L*,all u 0 U(A) and all x y, z, w O A, all sufficiently large integers n,
then there exists a uniggehomomorphism LA - B satisfying

|n(x)-L(x)|<0, (19)
for all x O A.

Proof. Settingu = 1 andz=w = 0 in (17) and employing ideas from the proof of the
above Theorems 1-3, one gets that there exists a ufiiglireear mappingd- : A - B
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satisfying (19) and is given by(x)= lim 2‘"h( ”x) for all x O A. Therefore from

(18) one finds L(x*)=L(x)* for all x O A. We claim thatL : A ~ B is a
homomorphism. In fact, putting=y = 0 andh(0) = 0 in (17), we obtain

2;@%”@— hEnw)| <o

H h(00,z,w)| <0, or
L

for all z, w O A. Thus placing % and 2w onz andw, respectively, and multiplying by
22" we get

2 m@zz" %@—2‘%(2"2)2‘%(2" w)

<279 forallz wA.

Therefore

lim 27 thzz" ZWH— lim 212" 2)lim 2" 12" w) forallzwO A

n—o n—o

But L(x)= lim2" h( "x)— lim 2 2”h(22"x) for all x A. Thus

n—o

L(z H: 2lim 2‘2n I|m ZZ”EQPE?“

n- oo nA.OO

= [zz'mz‘”h b2 [ sim 2 ner w)] = L(Z)L(W) forallz,w O A
Hencel is a unique--homomorphism satisfying the identity (15),completing the
proof of the Theorem 4.

4. The Cauchy-Ulam Stability andx-Derivations

Let us denote
Dﬂh(x y,zw ZhHL—l x+y H—,u[h +h ] Zh() h(z)w

for anyu O L* and for allx, y, zz w O A, and for a given mapping: A - A from a
unital C*-algebraA to itself.
Theorem 5.Leth : A - A be a mapping such thatd) = 0.If conditions

|D,A(x,y,zw)|[ <0, 620, (20)

and (18)) hold for allx O L*and all x y, z, w O A, then there exists a
unique -derivationos : A - A satisfying

|n(x)-o(x)| <0, (21)
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for all x O A.

Proof. Settingu = 1 andz=w = 0 in (21) and employing ideas from the proof of the
above Theorems 1-3, one gets that there exists a ufiigugar mapping : A - A
satisfying (21) and is given bﬁ(x): lim 2‘”h( "x), for all x O A. Therefore

d(x*)=d(x)* for allx 0 A. We claim that : A — Alis a derivation. In fact, puttirng
=y =0 andh(0) =0 in (20), we obtain
”D h\0,0,z,w ||<9 or ||h(zw) [Zh( )+h(z)w] || <6

for all z w O A. Thus placing %Z and 2w onz andw, respectively and multiplying by
22" we get

” 2_2”h(22” zw)— [2_” Zh( " w)+ h( " 2)2_” w] ”
= H g2 m@zz" %EL Gl w)+ @l 2]
for all z w O A. Therefore

tim 2 2 T e timl QG w))+ e )]

n—o n— o

<279

_Z[zlmz n(2 ] [lzm2 n(r 2 )]

n—o n— o

forallz wO A But o(x)= lim 2‘"h( "x)= lim 2‘2"h(22”x) for all xO A. Thus

5@@:25@%"@: 2lim 272" DZth2 2 imz DzhHZ“

n-o n- o

—Z[llm2 h2" ] [llm2 h2" ]w —25 )+5()

for all z w O A. Hence,d is a uniquex-derivation satisfying the identity (21),
completing the proof of the Theorem 5.
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