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ABSTRACT. In 1940 (and 1968) S. M. Ulam proposed the well-known Ulam stability problem.

In 1941 D. H. Hyers solved the Hyers-Ulam problem for linear mappings. In 1951 D. G. Bourgin
has been the second author treating the Ulam problem for additive mappings. In 1978 according
to P. M. Gruber this kind of stability problems is of particular interest in probability theory and in
the case of functional equations of different types. In 1982-2004 we established the Hyers-Ulam
stability for the Ulam problem for different mappings. In this article we solve the Hyers-Ulam
problem for quadratic type functional equations in several variables. These stability results can
be applied in stochastic analysis, financial and actuarial mathematics, as well as in psychology
and sociology.
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2 JOHN MICHAEL RASSIAS

1. INTRODUCTION

In 1940 (and 1968) S. M. Ulam [24] proposed thkam stability problem

"When is it true that by slightly changing the hypotheses of a theorem one can still assert that
the thesis of the theorem remains true or approximately true ?"

In 1941 D. H. Hyers[[13] solved this problem for linear mappings. In 1951 D. G. Bourgin [3]
was the second author to treat the Ulam problem for additive mappings. In 1978, according to
P. M. Gruberl[[12], this kind of stability problems is of particular interest in probability theory
and in the case of functional equations of different types. In 1980 and in 1987, I. Fenyo [7,
8] established the stability of the Ulam problem for quadratic and other mappings. In 1987
Z. Gajda and R. Ger [10] showed that one can get analogous stability results for subadditive
multifunctions. Other interesting stability results have been achieved also by the following
authors : J. Aczél]1], C. Borelliand G. L. Fortil[2, 9], P. W. Cholewa [4], St. Czerwik [5], and
H. Drljevic [6], and PI. Kannappan [15]. In 1982-2004 J. M. Rassias ([16, 17, 18, 109, 20, 21,
23]) and in 2003 M. J. Rassias and the author [22] solved the above Ulam problem for different
mappings. In 1999 P. Gavruta [11] answered a question of lours [18] concerning the stability of
the Cauchy equation. In 1998 S.-M. Juhgl[14] and in 2002-2003 M. J. Rassias and the author
[21,[22] investigated the Hyers-Ulam stability for additive and quadratic mappings on restricted
domains.

In this article we solve the Hyers-Ulam stability problem for quadratic type functional equa-
tions in several variables.

Throughout this paper, let be a real normed space aridbe a real Banach space in the case
of functional inequalities, as well as l&t andY be real linear spaces for functional equations.

In this paper we introduce the following quadratic type functional equation in several variables
T1, T, ..., Tp € X

(11) Z Q (;El -+ €jl’j> = 2p71 ZQ(ZUz)

E]'G{—l,l}
for p arbitrary but fixed and equal & 3, 4, . . ., with mappings) : X — Y.

Definition 1.1. A mapping@ : X — Y is calledquadratic type if the above-mentioned
quadratic type functional equatidn ([L.1) holds for eyedimensional vectofz:, z, . . ., z,) €
XP with an arbitrary but fixegp = 2, 3,4, . ...

We consider the approximately quadratic type functional inequality

(12) Z f (ZEl +Z€jl‘j> —2p_12f<§(]i) S CKT (ZL’hl’Q,...,ZEp)
j=2 =1

€je{_171}

with approximately quadratic type mappingis X — Y, where

p
[I)1+ E Ej.Ij
j=2

and a constant > 0 (independent ok, zo,...,z, € X), r € R — {2}. If we denoteQ),, =
Qr(z1,22,...,2,) fork=0,1,2,3,...,p—2,p— 1 with an arbitrary but fixe¢h = 2,3, 4, ...,
p
E,=x+ ) €jz;, where forj = 2,3,...,p, such that
j=2
Qo= Q(x1 +x2+---+,) : withall of thee; = 1in £,

O =Qr —zat+as+-4x,)+ Qe +x2—x3+ -+ x,) + -+ Qo1 + 22+ 23 +

r

K, (z1,29,...,2,) = Z

g;e{-1,1}

)
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=2y +2,) + Qe +xo+ 23+ -+ + 1,01 — xp): With any one of the; = —1 and the
rest of thes; = 1in £,

Qr=Q(x1 —x9—a3+ - Fxp)+ - +Qxr1 —T2+ a3+ —xp_1 +2,) +Q(x1 — 22+
Tg+- o+ Ty —Tp) F Q@1+ —a3—2s+- - Fa,)+ -+ Q1 F s — T3+ s+ F
Tpg —xp) + -+ Qx1 + 22+ -+ 2,9 —xp_1 — x,) : With any two of thes; = —1 and

the rest of the; = 1in E,,
Qg:Q(l'l—1‘2—ZE3—ZE4+"'+IP_1+.Tp)+"'+Q<.T1—IQ—I3+"'+$I,_1—(L’Z,)+
o+ Qar + o+ F a3 —xp_0 — xp_1 — Tp) : With any three of the; = —1 and the rest
ofthee; =1inE,, ...,

Qp_z = Q(l’l—(L'Q—$3—$4—"'—ZL’p_1+ZL‘p)+Q($1—$2—1’3—$4—"'—l’p_2—|—l‘p_1—
Tp)+ Q1 — X+ a3 —Tyg— - —Tp1 —Xp)+ - F Q1 F T2 — T3 — Ty — - — Ty —Tp)
with anyp — 2 of thee; = —1 and the rest of the; = 1in £,

Qp-1=Q(x1 —xy —--- —x,): with all of thee; = —1in E,,

then the functional equatiop (1.1) is equivalent to the following functional equation

p—1 p
(1.3) D Qulwywa, . ap) =277 Q)
k=0 =1

p—1

k
terms of the formf (z; +eoxo +ess+- - +e,2,) 15 € {—1,1} (j =2,3,...,p), inthe same
way as the afore-mentioneg, = Qy(z1, 22, ..., z,) interms ofQ(x1 + eaxy + €323+ - - +
£,%,), then the functional inequalit.2) is equivalent to the following functional inequality

Alsoif f; = fi(x1,29,...,2,) (k=0,1,2,3,...,p—2,p—1) is given as a sum

p—1

Z fe(z1, 20, .. ., 2,) — 2071 Z f(z)

k=0 =1

(1.4)

< cK, (z1,22,...,7p).

p—1
Note thatK, = K,(x1,29,...,2,) = > Rig(x1,22,...,2,), Where Ry(xq, xq,...,x,) are
k=0

equal to the above-mentionél.(k = 0,1,2,...,p — 1) with Q replaced byj|-||". Thus
R(): ||$1+$2+"'+$p”r,
Ri=|lz1—xa4as+ -+ +|ler+xe —z3+ -+, + ...
Fller+as+as - +r =z, Ry = [lo —xp— - — 1,
fo=flei+aa+ -+ 1),

fi = fler—xotas+- -4y + f(r1+xe—a3+- - Fap)+ -+ fer+zotas - - +2p 1 —2,),
...,fp,1:f(l'l—xg—"‘—l'p).

It is useful for the following, to observe that, from (IL.3) with=0(i = 1,2,3,...,p — 2,p —
1,p), we get

(1.5) Q1(0,0,...,0) = (p;l )Q(O).

" and

p—1 _
Fork=0,1,2,3,...,p—1withp=2,3.4,... and[z (pk 1 ) —pZP_I} Q(O) =0, or

k=0

(1—-p)2°71Q(0) =0, becauscgi1 ( p; L ) = (141" =21 or
k=0

(1.6) Q(0) = 0.

Now claim that forn € Ny = {0} N ={0,1,2,...}

(L.7) Q(2"z) = (2")° Q(x) (n € No)
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Forn = 0, itis trivial. From [1.3), withay = 25 = 2, 2; = 0(j = 3,4,...,p), we obtain

(1.8) Qk(x,x,o,...,()):<Zj)@(0)+(p;2)¢2(2@

fork=0,1,2,...,p— 1 with

p=2\_(pr—2)_
(1.9 ("57)=(271) -0
forp =2, 3,4, ... Therefore from[(1J3)[(1]6)] (1.8) ar{d (IL.9), we get

p—1

2 ( Z:? )Q(0)+ZZ_: ( p;2 > Q(22) = 21 120(x) + (p — 2)Q(0)],

or2r2Q(2x) = 2P~ [2Q(x)], or

(1.10) Q(2x) = 2°Q(x)
which is (1.T) forn = 1. Assume|[(1.7) is true. From (1]10), wiztiz on place ofr, we get
Q (2'r) = 2°Q(2"z) = 2 (')’ Q(z) = (2")" Q(a).
This by induction, proves the formula (1.7). Similarly from (1.8), (1.5) (1.6), with
T =y =2 =0(=3.4,....p), we getQy (2,2,0,....0) = (pf )Q(m)
k= 0,1,2,...p—1) and:i:) < P2 ) Q) = 27120 (2°')] = 2°Q (2-'), or
Q(27'x) =272Q(z).

By induction one gets that
(1.11) Q(27") = (27")°Q(x) (neNy).
In fact,Q (2-"z) = 272Q (27"2) = 272 (27)* Q(z) = (2-")* Q(x).

2. HYERS-ULAM QUADRATIC TYPE STABILITY

Theorem 2.1.Let X andY be normed linear spaces. Assume tiais complete. Assume in
addition thatf : X — Y is a mapping for which there exists a constant 0 (independent of
x1, %9, ...,x, € X)andr € R — {2}, such that the above-mentioned quadratic type functional
inequality ) holds for every p-dimensional vector, z», ..., z,) € X? with an arbitrary

but fixedp = 2,3,4, . ... Denote

@) F@) ={ Sfian) 155 e,

Then the limitQ (x) = lim F, (z) exists for everyy € X and@ : X — Y is the unique
guadratic type mapping, such that the inequality

(2.2) 1f(z) = Q)| < e [l

e ifr<?
holds for ever X ,wherec, = —&— =< 227717 .
w e PEI T o, ifr>2
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Proof. It is useful for the following, to observe that, with =0 (i = 1,2, ..., p), we get

-1
3 R00.0 = (71 ) o)
From (1.4) fork = 0,1,2,3,...,p — 1 with an arbitrary but fixep = 2,3,4,..., we get
p—1 —
{Z ( " ) ‘pr_l] f“”” < cK, (0,0,...,0) = 0, 0r (p — 12" | £(0)]| < 0, or

k=0

(2.4) f(0) =
From (1.9), withey = 25 = 2,2, =0 (j = 3,4, .. , we obtain
—2 —2
(2.5) fr(x,z,0,..., ( 1 ) ( )f(Qx)
and Ry (z,z,0,...,0) = pk 122" = < )2’“|\x|| for k = 0,1,2,...,p— 1.

Therefore from[(1.4)[(1]9)} (3.4) and (. 5) we etthat

K, = K, (2,2,0,...,0) = ZRk (z,2,0,...,0) = 22772 ||z|",

and
p—1 p—1
> ( - ) r0+3 ( P2 ) f(22) =277 2£ () + (p — 2)/(0)] ‘
< ¢K,(z,z,0,...,0),
or
p—1
|22 f (22) — 27 f (a { ( )} |22]" = 227 ||z
k=0
or
(2.6) [f(z) =272f2x)|| < 22 [laf" = e (1 = 2772) |l||",
wherec, = 5=t—,r < 2. Claim that inequality
(2.7) [f(z) =272 f(2"2)|| < e (1 =207 Hxll

holds for everyr € X,n € Nowithp =2,3,4,5,..., ande, = ={—,r<2.
Forn = 0, it is trivial. Note that[(2.6) yields[@?) fon — 1. Assume [(2.]7) is true and from
(2.6), with2"~'z on place ofr, we get

[ f(z) = 272" f(2"2)||
Hf(x) . 2—2(n—1)f(2n—1x)H + H2—2(n—1)f<2n—1 ) . 2—2n 2n H
S c, {(1 . 2(1“72)(7171)) + 272(1171) (1 or— 2) 2r(n 1) } HxH =c, (1 . 2(7‘ 2)n ) HxH
Similarly from (1.9

), Withz) =25 = 5, 2; =0(j = 3,4,...,p), we get

z Zz —2 _2 T -2 r
fe (3,%,0) = Z_l )f(O) + pk f(z), andRy, (£,2,0) = pk |2||” for

k=0,1,2,...,p— 1. Therefore from these and (1.4), (1.9), and](2.4) we obtain that

K, = K, (5.5.0....0) = ZRk( 0,0,0) =272
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and

p—1 p—1

(223) s+ (757 ) s -2 ret 4 o 2)f(0))H
k=0 k=0
< ¢k,
or
2072 f () — 2P f(27 1) || < 2272 |Jaf|"

or
(2.8) Hf(x) - 22f(2_13:)|| <clz|" =c (1=2%7) 2|,
wherec, = —5=, r > 2. Claim that inequality
(2.9) £ (@) = 22" f(27"2)|| < e (1 = 2270 ",

holds for everyr € X,n € Nowithp =2,3,4,5,..., andc, = —5=, 7>2.
Forn = 0, it is trivial. Note that|(2.B) yieldg (2]9) for = 1. Assume[(2.)9) is true and from
(2.8), with2=("~Dz on place ofr, we obtain :
[ f(x) =2 f(27 ) |
S Hf(x) _ 22(n—1)f(2—(n—1)x)H + ||22(n—1)f(2—(n—1)x> _ 22nf(2—nx)H
< ¢ {(1 . 2(27r)(n71)) + 22(n71) (1 . 2277“) 277‘(71,71)} HxHr
= ¢ (1- 2(2_T)") |lz||”, r > 2.
Claim now that the sequendé, (z)} : F, (z) = 272" f(2"z), converges ifr<2. To do this
it suffices to prove thafF;, (z)} is a Cauchy sequence. Inequality {2.7) is involved. In fact, if
i>j>0andh; := 2/x, we have
IF; () = Fy ()|l = ||27% f(2'2) — 272 f(2) | = 27 ||2720D £(27 ) — f(a)
< 27 % (1 _ Q(i*j)(r*Q)) b =2 Y, (1 — 9li=5)(r= 2)) 27 ||z
2j(7‘—2) (1 . 2i(r—2)) ||fL‘||T
< 2077 |z||” — 0,as] — o0, r<2.

Similarly claim that the sequenéé’, (z)} : F, () = 22" f(27"z) converges if->2. To do this
it suffices to prove thafF;, (z)} is a Cauchy sequence. Inequality {2.9) is involved. In fact, if
i>7>0 andh, := 277z, we get
I (2) — Fj (2)]| = |22 f(27"2) — 2% f(2 ) || = 2% ||2209 f (2709 hy) — f(ho)]|
2%¢, (1 - 2@ DEY | by ||" = 2% ¢, (1 — 207D@=) 2777 |1z |"
27C=e, (1 =217 ||z||"
< 2@ z||” — 0.
J—0

IN

Also claim that formula[(2]1), with-<2, yields a quadratic type mapping : X — Y.
Note that from ),1) withr<2 and the fact thatlim 272" f,,(2"zy, 2"2,, . . ., 2"x,) =

p—1
Qk(z1,22,...,1,), as well asK, (2"x1,2"xs,...,2"x,) = > Ry (2"11,2"x9,...,2"x,) =
k=0
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2K, (21,29, ..., x,) We get
p—1 4
D lim 277 fi(20, 20, ., 2 ) — 2071 ) lim 277 f(20)
p—1 P
= Qr(x1, 29, ... 1,) —2P71 Z Q(z:)|| < clim 272"K, (2"x1,2" 2o, . .., 2"1,)
k=0 i=1 e
= (hm 2"(7“_2)> cK, (1, 29,...,2,) =0,

which is (1.3). Similarly claim that the formula (2.1), with-2, yields a quadratic type mapping
@ : X — Y. Note that from[(T.4)[(2]1) with>2 and the fact that

lim 22" f1.(27 "y, 2 2o, . .., 27 "2p) = Q(71, 72, ..., Tp)
as well as
p—1
K, (2*”331, 27 "wg, .., 2*”%) = Ry, (27"331, 27 "wy, L, 2*”%)
k=0
= 277“‘[(7« (Ih To, ... ,l'p>
we obtain
p—1 p
> lim 27 fi(27"w, 2 ", 2 ) — 207 Y Tim 277 (27" )
p—1 p
= Z Qr(1, 29, ... 1) — 2071 Z Qx| < c lim 2" K, (2_"x1, 27wy, .., 2_"$p)
k=0 i=1

= (hm 277,(2—7‘)> CKT (Il,x27...,xp) — 07

n—oo

which is [1.3). It is now clear fron{ (2.7) and (2.9) with— oo, and the formula[ (2]1) that
inequality [2.2) holds inX. This completeshe existence proodf our Theorem 2]1. It remains
to provethe uniquenesfr this TheoremLet ()’ : X — Y be another quadratic type mapping
satisfying [(2.2). Then we have to prove tiigit= Q. In fact, remember that botfy and @’
satisfy [1.7) forr<2. Then from the triangle inequality and (R.2) witk:2 one gets that

1Q(x) — Q'(2)]| = [|27*"Q (2"2) — 27"Q" (2")

27 {llQ2"e) — f(2"2) || + 11Q" (2"%) — f (2"2)|I}

<
< 27m2.9me x| =220 e 2] — 0,

for everyr € X andn € N,. Thus

(2.10) Q(z) = Q'(2)

for everyz € X andr<2. Similarly both@ and @)’ satisfy [1.11), as well. Then from the
triangle inequality and (2} 2) with>2 one obtains that

Q@) - Q@) = [|2Q (27"z) — 27Q" (27"a) |
2 {lle@ ™) — fe )| + Q" (272) — f (27 |[}

<
< 2. 2.97e x| =227 e |z||T — 0,
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for everyz € X andn € Ny. Thus [2.1D) holds for every € X andr>2. This completes the
proof of the uniquenessf our theorem and thus die stabilityfor the quadratic type equation
(L.1) in several variables,, z, ..., 7, € X. 1

Corollary 2.2. Let X andY be normed linear spaces. Assume thiais complete. Assume in
addition thatf : X — Y is a mapping for which there exists a constant 0 (independent of
x1, 22 € X)andr € R — {2}, such that

1f (z1 +22) + f (21— 22) = 2(f (1) + f (@22))]| < c(llzr + 22" + |21 — 22]]").

Then the limit of the formula (2.1) exists a@dt X — Y is the unique quadratic type mapping,
such that[(Z.R) holds.
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