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Abstract

In 1941 D.H. Hyers solved the well-known Ulam stability problem for linear mappings. In 1951
D.G. Bourgin was the second author to treat the Ulam problem for additive mappings. In 1982-2005
we established the Hyers—Ulam stability for the Ulam problem of linear and nonlinear mappings. In
1998 S.-M. Jung and in 2002—-2005 the authors of this paper investigated the Hyers—Ulam stability
of additive and quadratic mappings on restricted domains. In this paper we improve our bounds and
thus our results obtained, in 2003 for Jensen type mappings and establish new theorems about the
Ulam stability of additive mappings of the second form on restricted domains. Besides we intro-
duce alternative Jensen type functional equations and investigate pertinent stability results for these
alternative equations. Finally, we apply our recent research results to the asymptotic behavior of
functional equations of these alternative types. These stability results can be applied in stochastic
analysis, financial and actuarial mathematics, as well as in psychology and sociology.
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Résumeé

En 1941 D.H. Hyers a résolu le probleme bien connu de stabilité d’Ulam pour les tracés linéaires.
En 1951 D.G. Bourgin était le deuxieme auteur pour traiter le probleme d’Ulam pour les tracés ad-
ditifs. En 1982—-2005 nous avons établi la stabilité de Hyers—Ulam pour le probléme d’Ulam des
tracés linéaires et non-linéaires. En 1998 S.-M. Jung et en 2002—-2005 les auteurs de cet article ont
étudié la stabilité de Hyers—Ulam des tracés additifs et quadratiques sur des domaines restreints.
Dans cet article nous améliorons nos limites et ainsi nos résultats obtenus, en 2003 pour le type
tracés de Jensen et établissons de nouveaux théoremes au sujet de la stabilité d’Ulam des tracés
additifs de la deuxiéme forme sur des domaines restreints. Sans compter que nous présentons le
type alternatif équations fonctionnelles de Jensen et étudions des résultats convenables de stabilité
pour ces équations alternatives. En conclusion, nous appliquons nos résultats de la recherche récents
au comportement asymptotique des équations fonctionnelles de ces types alternatifs. Ces résultats
de stabilité peuvent étre appliqués dans I'analyse stochastique, mathématiques financiéres et actua-
rielles,aussi bien qu’en la psychologie et la sociologie.
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1. Introduction
In 1940 and in 1964 S.M. Ulam [26] proposed theneral Ulam stability problem

“When is it true that by slightly changing the hypotheses of a theorem one can still
assert that the thesis of the theorem remains true or approximately true?”

In 1941 D.H. Hyers [13] solved this problem for linear mappings. In 1951 D.G. Bour-

gin [3] was the second author to treat the Ulam problem for additive mappings. In 1978,
according to P.M. Gruber [12], this kind of stability problems is of particular interest

in probability theory and in the case of functional equations of different types. In 1980
and in 1987, I. Feny¢ [7,8] established the stability of the Ulam problem for quadratic
and other mappings. In 1987 Z. Gajda and R. Ger [10] showed that one can get analo-
gous stability results for subadditive multifunctions. Other interesting stability results have
been achieved also by the following authors J. Aczél [1], C. Borelli and G.L. Forti [2,9],
P.W. Cholewa [4], St. Czerwik [5], and H. Drljevic [6]. In 1982—2005 J.M. Rassias [16—
21,23,24] and in 2003 and 2005 the authors [22,25] solved the above Ulam problem for
Jensen and Euler-Lagrange type mappings. In 1999 P. Gavruta [11] answered a question
of ours [18] concerning the stability of the Cauchy equation. In 1998 S.-M. Jung [14]
and in 2002-2003 the authors [21,22] investigated the Hyers—Ulam stability for additive
and quadratic mappings on restricted domains. In this paper we improve our bounds and
thus our results obtained, in 2003 for Jensen and Jensen type mappings and establish new
theorems about the Ulam stability of additive mappings of the second form on restricted
domains. Besides we introduce alternative Jensen and Jensen type functional equations and
investigate pertinent stability results for these alternative functional equations. Finally, we
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apply our recent research results to the asymptotic behavior of functional equations of these
alternative types. These stability results can be applied in stochastic analysis, financial and
actuarial mathematics, as well as in psychology and sociology. In 1997, P. Malliavin [15]
published an interesting reference book for stochastic analysis.

Throughout this paper, léf be a real normed space aFide a real Banach space in the
case of functional inequalities, as well as }¢tandY be real linear spaces for functional
equations.

Definition 1.1. A mappingA: X — Y is calledalternative additive of the first fornfi A
satisfies the functional equation

A(x1+x2) + A(xy — x2) = —2A(—x1) (1.1)
for all x1, x2 € X. We note that equation (1.1) is equivalenthe alternative Jensen equa-
tion

x4+ 1

A(-252) = -5l + 4] (L1a)

or
x+y
2A<— > ) =—[A) +AD)] (1.1b)

for x =x1 + x2, y = x1 — x2. AmappingA : X — Y is calledalternative Jensen mapping
if A satisfies the functional equation (1.1a) (or (1.1b)).

Definition 1.2. A mappingA : X — Y is calledalternative additive of the second foiifn
A satisfies the functional equation

A(xy+x2) — A(x1 — x2) = —2A(—x2) (1.2)

for all x1, x2 € X. We note that (1.2) is equivalent the alternative Jensen type equation

— 1
A(—x 2y> = —3[aw - am)]. (1.2a)

or

ZA(—x;y) = —[A(x) — A()] (1.2b)

for x = x1 + x2,y = x1 — x2. A mappingA:X — Y is calledalternative Jensen type
mappingif A satisfies the functional equation (1.2a) (or (1.2b)).

Definition 1.3. A mapping f : X — Y is calledapproximately oddf f satisfies the func-
tional inequality

lfe)+ f(=x0) <@ (1.3)

for some fixed > 0 and for allx € X.
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2. Stability of the alternative additive equation (1.1) of the first form on unrestricted
and restricted domains

We establish the following new stability Theorems 2.1-2.2 for alternative additive map-
pings of the first form on unrestricted and restricted domains, respectively.

Theorem 2.1.1f a mappingf : X — Y satisfies the inequalities

| f 14 x2) + fx1 = x2) +2f (—x0) | <3, (2.18)

|f(=x)+ f0)]| <8/2, (2.1b)
for some fixed > 0 and all x1, x> € X andx € X, then there exists a unique alternative
additive mappingA : X — Y of the first form, which satisfie$(x) = lim, - 27" f(2"x),
neN={1,2,...}, and the inequality

| fx) =A@ | <25+ fO (<98/4) (2.1c)

for all x € X. If, moreover, f is measurable orf (¢x) is continuous ir¢ for each fixed
x € XthenA(tx) =tA(x) forall x € X andr € R.

Proof. Settingx; = x2 = 0 in inequality (2.1a), ox = 0 in inequality (2.1b), one gets
that| f(0)|| < §/4. Besides replacing; = x2 = x in inequality (2.1a), we find f (2x) +
f@O) +2f(—x)| <6, for all x € X. Thus from this inequality, inequalities (2.1a)—(2.1b)
and the triangle inequality, we get

| f@) —2f0)| <[ f@0)+ O +2f (0] +2[-[f (=0 + fF@]|

)
l-lroll <2+ ro] (<2+5=%)

Thus by (orwithou?) induction, one establishes the general inequality
| fe) =27 @] < (284 [ £O])@—2,

forall x e X and alln e N= {1, 2,...}. The rest of the proof is omitted as similar to the
proofs of our corresponding theorems [16,251

Theorem 2.2.Letd > 0 andé > 0 be fixed. If a mapping : X — Y satisfies inequalities
(2.1a)—(2.1b¥or all x1, x> € X andx € X, with restricted domaing|x1| + ||x2|| > d, and
x|l > d, respectively, then there exists a unique alternative additive mappidg— Y
of the first form, which satisfie$(x) =1lim,, 27" f(2"x),n e N={1,2, ...}, and

[ f(x)— A@)| <85+ | £(0)] (<335/4) 2.1)
for all x € X. If, moreover, f is measurable orf (tx) is continuous ir¢ for each fixed
x € X,thenA(tx) =tA(x) forall x € X andr € R.

Proof. Assumelx1| + ||x2]| <d and|x]|| <d. If x1 =x2 =0 andx =0, then we choose
ar € X with ||¢|| = d. Otherwise, let us choose

d . d .
t= <1+ ))Cl, if flxall > llxzll; 1= <1+ —>X2, if flxell < flxzll-
[lx] llx2]]
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Clearly, we see

oz — ¢l + llxz 4+ 20 = 202l — (lxall + llx2ll) > d,  llxy —x2ll + 12 >,
s+ el + I—x2+ £l = 22l — (lxall + lIx2ll) = d,  llxall + 2]l > d,
It £ x1ll = N1zl = llxall = (lxall +d) — llx1ll =d,
becauséir|| = |lx1]l +d if x| > llx2];
It xall = el = llxall = (lx2ll + d) — llx1ll >4,
becausejt|| = ||lx2ll +d if [|lx1]l < [lx2l|. (2.2)

These inequalities (2.2) come from the corresponding substitutions attached between the
right-hand sided parentheses of the following functional identity.
Therefore from (2.2), the triangle inequality, and fhactional identity

2[f(x14x2) + f(x1— x2) + 2f (—x1)]
=[f1+x2)+ fr—x2—20) + 2f (—(x1 —1))]
(with x1 — ¢t onx1, andxz + ¢ 0N xy)
—[fO1—x2=20) + flx1 —x2+20) + 2 (—(x1 — x2)) ]
(with x; — x2 onx1, and 2 onxy)
+[fr—x24+20) + fx1+x2) +2f (—(x1+1))]
(with x1 + ¢ onxy, and—xz + ¢ ONxp)
+2[fx14+0)+ f(x1— 1)+ 2f(—x1)] (with x; onx1, andz onxy)
+2[fr1—x2) + f(~(1—x2)] = 2[ f (=1 + 1) + f(xa+1)]
—2[f(t —x1) + f(=(t —x0)].
we get

| £+ x2) + f(x1— x2) — 2f (xp)|| < 4. (2.3)

Applying now Theorem 2.1 and the above inequality (2.3), one gets that there exists a
unique alternative additive mapping X — Y of the first form that satisfies the alternative
additive equation (1.1) and the inequality (2.1), such that) = lim,_, .. 27" f (2"x). Our
last assertion is trivial according to Theorem 2.21

We note that, if we defing; = {x € X: |lx|| < d} and S2 = {(x1, x2) € X2 ||xi| <
d,i=12},d>0,then{x € X: |lx| > 2d} C X\ S1 and{(x1, x2) € X% [lx1| + [lx2]| >
2d} C X2\ S,.

Corollary 2.1. If we assume that a mappinf): X — Y satisfies inequalitie€.1a)—(2.1b)
for some fixed and for allx € X \ 1 and (x1, x2) € X2\ S», then there exists a unigue
alternative additive mapping : X — Y of the first form, satisfyin¢2.1)for all x € X. If,
moreover,f is measurable oif (1x) is continuous irr for each fixede € X, thenA(rx) =
tA(x) forall x € X and allt € R.
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Corollary 2.2. A mappingf : X — Y is alternative additive of the first form, if and only
if the asymptotic condition§ f(—x) + f(x)|| — 0 and || f(x1 + x2) + f(x1 — x2) —
2f(x1)| = 0, as|lx|| = oo and||x1]| + [lx2]| = oo hold, respectively.

3. Stability of the alternative additive equation (1.2) of the second form

We establish the following new stability Theorem 3.1 for alternative additive mappings
of the second form.

Theorem 3.1.1f a mappingf : X — Y satisfies the inequality
| f 1+ x2) = fr1— x2) +2f (—x2)| <8 3.1

for somes > 0 and for all x1, x2 € X, then there exists a unique alternative additive
mapping A: X — Y of the second form, which satisfieggx) = lim, - 27" f(2"x),
neN={1,2,...}, and the inequality

8§ 7
1) —A@)| <38+ £ O] << B+ = §5> (3.2)

for all x € X. If, moreover, f is measurable orf (tx) is continuous ir¢ for each fixed
x € X,thenA(tx) =tA(x) forall x € X andr € R.

Proof. Replacingx; =x2 =01in (3.1), we find

| rOf <s/2. 3.3)
Thus, substituting1 = x2 = x in (3.1), one gets

| f20 - FO+2f (0] <8, (3.33)
for all x € X. Besides, replacing; =0, x2 = x in (3.1), one gets

|f(=x)+ )] <8, (3.3b)
for all x € X. Therefore from (3.3)—(3.3a)—(3.3b) and the triangle inequality, we obtain

| f@)-2fw|

< f@0) = fO+2f (0| +2|-[f0)+ fO]| + | O

s 78
<354 | O <<35+§=?),

for all x € X, or the inequality

| r@—27 o] <3+ | rO])a-27h, (34)
for somes > 0, and allx € X. Therefore from (3.4) and the triangle inequality, we obtain
lf)—27"f")| <35+ | fO])@a-2), (3.5)

for somes > 0, anyn € N, and allx € X.
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We prove as in [22] that
Ax)=2""A2") (3.6)

holds for anyz € N, and allx € X.
By (3.5), forn > m > 0, we have

[27"f@x) -2 f2"x)| < (384 f(Of)- 27" -0, asm—o0.  (3.7)

Therefore we may apply a direct method to the definitior p$uch that the formula

Ax) = lim 27" f(2"x) (3.8)
n—od

holds for allx € X [16-19]. From this formula (3.8) and inequality (3.1), it follows that
A: X — Y is an alternative additive mapping of the second form. According to the above
inequality (3.5) and formula (3.8), one gets that inequality (3.2) holds.

Assume now that there is another alternative additive mapping — Y of the second
form which satisfies Eq. (1.2), formula (3.6) and inequality (3.2). Therefore, as in [22], one
gets

Ax) = A'(x) (3.9)

for all x € X, completing the proof of the first part of our Theorem 3.1.
The proof of the last assertion in our Theorem 3.1 is obvious according to the work of
the first author [16], in 1982. O

4. Stability of the alternative additive equation (1.2) of the second form on a
restricted domain

We establish the following new stability Theorem 4.1 for alternative additive mappings
of the second form on a restricted domain.

Theorem 4.1.Letd > 0 and$ > 0, be fixed. If an approximately odd mappifigX — Y
satisfies inequality3.1) for all x1, x2 € X with ||x1| + ||x2|| = d, and inequality3.3b)for
all x € X with ||x|| > d, then there exists a unique alternative additive mappin — Y
of the second form such that

[f)—A@ | <2B+ | FO] (<438/2) (4.1)
for all x € X. If, moreover,f is measurable orf(zx) is continuous irv for each fixed
x € X,thenA(tx) =tA(x) forall x € X andr € R.

Proof. Assumejx1| + ||x2]l <d and|x]| <d. If x1 =x2 =0 andx =0, then we choose
at € X with ||z = d. Otherwise, let us choose

d . d .
t= <1+ >X1, if flxall > llxall; 1= <1+ —>X2, if flxell < flxzll-
llx llx2]]

We note that:
el = llxall +d >d, if |lx1ll > [lx2l; el = llx2ll +d > d, if |lxa]l < [|lx2fl.
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Clearly, we see

ler =2l + llxz + 21l = 2012l = (lxall + llx2ll) > d,

llxr =t + llx2 — 21l = 2012l — (Ilxall + llx2ll) > d,

e — 2e)l + llx2ll = 212)| — (lxell + lIx2ll) = d. izl + llx2 >d and

llt — x2ll = ll7]l — llx2ll = (llx2ll + d) — l|lx2 =d. because

2l = llx2ll +d,if [lxall < llxz2ll;

e = x2ll > llz]l — llx2ll = (lxall +d) — lIx2ll >d, because

el = llxall + d, 0f flxall = [lx2]l. (4.2)
Therefore from (3.3b), (3.1), (4.2), and the followifugnctional identity

fa+x2) — flxr—x2) +2f(—x2)
=[fGa+x2) = fxr—x2—20 +2f(~(x2+1))]
(with x; — ¢t onxg, andxz + ¢t onxy)
+[frdx2—20) — flxr—x2) +2f (—(x2 — 1)) ]
(with xg — # onx1, andxz — t oNxp)
—[fGa+x2—21) — flx1—x2—21) + 2f (—x2)]
(with x1 — 2r onx1, andx2 onxy)
+2[f(t+x2) — f(t —x2) +2f(—x2)] (with 7 onx1, andxz onxz)
—2[ft+x2)+ f(—(t+x2)] (withr —xz0nx),

VoV

>
>

we get

| £ 14 x2) — fx1 — x2) + 2f (—x2) | < 76. (4.3)

Therefore there exists a unique alternative additive mapging — Y of the second
form that satisfies Eq. (1.2) and inequality (4.1), completing the proof of this theorem.

We note that if we defingy = {x € X: ||x|| <d} and So = {(x1,x2) € X% |xi|l <
d,i =1, 2} for some fixedd > 0, then

(xeX:|x|>2d} X\ S and {(r1.x2) € X2 |xall + a2l > 24} € X2\ 2.

Corollary 4.1. If we assume that a mapping: X — Y satisfies inequality4.1) for some
fixeds > 0 and for all (x1, x2) € X2\ S» and (3.3b)for all x € X \ S1, then there exists a
unique alternative additive mapping: X — Y of the second form, satisfyir{g.1)for all

x € X. If, moreover,f is measurable off (zx) is continuous irt for each fixedr € X, then
A@x)=tA(x) forall x € X andr e R.

Corollary 4.2. A mappingf : X — Y is alternative additive of the second form, if and only
if the asymptotic conditionf (—x) + f(x)|| — O and

| f 1+ x2) — f(x1 — x2) = 2f (x2) | = O,
as||x|| — oo and||x1|| + ||x2]] = oo hold, respectively.
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5. Stability of the alternative Jensen equation (1.1b)
We establish the following new stability Theorem 5.1 for Jensen mappings.

Theorem 5.1.1f a mapping f : X — Y satisfies the approximately alternative Jensen in-
equality

HZf (—m) + () + flxa)| <8, (5.1)

2

for some fixeds > 0, and all x1, x2 € X, then there exists a unique alternative Jensen
mappingA : X — Y, satisfyingA(x) =lim,_, o 27" f(2"x) and the inequality

|f) —A@| <28+ | fO] (<98/4 (5.2)

for all x € X. If, moreover, f is measurable orf (¢x) is continuous ir¢ for each fixed
x € XthenA(rx) =trA(x) forall x € X andr e R.

Proof. Settingx1 = x2 = 0 in inequality (5.1), we obtain

| FOf <s/4. (5.3a)
Placingx; = x2 = x in (5.1), one finds

| f=0)+ f] <5/2, (5.3b)
for all x € X. Substitutingr; = 2x andxz =0 in (5.1), one gets

|2f (=) + f20+ FO <3, (5.3¢)

forall x € X.
Thus from inequalities (5.3a)—(5.3b)—(5.3c) and the triangle inequality, we establish

| f@o-2f@| <[2f0+ fo+ O
+ =2l o+ r@]| +|=[rOl]
5§ 9
<254 | O (< 28+ = Zs), (5.3d)
or

[fe) -2t f@o| < (28+ | FOf)@a-27h, (5.3)

for somes > 0, and allx € X. Therefore from (5.3) and the triangle inequality, we obtain
[ fo—27"r@ 0| < (28+ | FO])@-27, (5.4)

for somes > 0, anyn € N, and allx € X. The rest of the proof is omitted as similar to the
proof of Theorem 3.1. O



554 J.M. Rassias, M.J. Rassias / Bull. Sci. math. 129 (2005) 545-558

6. Stability of the alternative Jensen equation (1.1b) on a restricted domain

We establish the following new stability Theorem 6.1 for alternative Jensen mappings
on a restricted domain.

Theorem 6.1.Letd > 0 and§ > 0 be fixed. If a mapping : X — Y satisfies the approx-
imately alternative Jensen inequalif§.1) for all x1, x2 € X, with ||x1|| + ||x2|| > d, and
the additional inequalities

|f(=x)+ fo)]| <8/2, (from(5.3b)) (6.1a)
lf@x)—2f@)| <28+ | fO (from(5.3d)) (6.1b)
for all x € X with ||x|| > d, then there exists a unique alternative Jensen mapping —
Y, such that the inequality
87

7
|£x) —A@)| <208+ 7| £ O (g 208+Z6=Z8> (6.1)

holds for allx € X. If, moreover, is measurable off (¢x) is continuous in for each fixed
x € X,thenA(tx) =tA(x) forall x € X andr € R.

Proof. Itis clear that the &pproximate odtlinequality (6.1a) holds, if we replacg = x,
x2 = x in (5.1). Also we get (6.1b) from (5.3d). From (1.1b), the triangle inequality, and
thefunctional identity

2f (—“;”) 4 fD) + f(x2)

2
(with x; — # onxy andxz + ¢ onxy)

+ %[Zf(—(xz + 1))+ f(2x2) + f(21)] (with 2x2 onxy and 2 onxy)

= 2f<—x1 ”2) +fi—0)+ fOat1)

1
+ E[zf(_(xl — 1)+ f(2x1) + f(=21)] (with 2x; onx1 and—2¢ on.xp)

- %[f(Zn) —2f(x)] - %[f(sz) —2f(x2)] - %[.f(—Zt) + f(2n)]
—[f(=1=0)+ fa1—0] = [f(=(x2+ D) + fx2+1)],
we get
l2s (<252 4 row + s
<354+3(28+ || £O]) +2(6/2) =105 + 3| £(0)]|. (6.2)

Applying now Theorem 5.1 and the above inequality (6.2), one gets that there exists a
unique alternative Jensen mappifigX — Y that satisfies the alternative Jensen equation
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(1.1b) and inequality (6.1), such thatx) = lim,_ o 27" f(2"x) with A(—x) = —A(x)
(from (6.1a)). O

We note that, if we defing; = {x € X: ||x|| < d} and So> = {(x1, x2) € X% ||lxi| <
d,i =1,2} forsomed > 0, then{x € X: |lx|| > 2d} C X \ S1 and{(x1, x2) € X2 |lx1|| +
lxall > 2d} € X2\ S2.

Corollary 6.1. If we assume that a mapping: X — Y satisfies inequality5.1) for some
fixeds > 0 and for all (x1, x2) € X2\ S» and (6.1a)—(6.1bYor all x € X \ St, then there
exists a unique alternative Jensen mappigX — Y, satisfying(6.1) for all x € X. If,
moreover,f is measurable orf (x) is continuous irr for each fixedr € X, thenA(tx) =
tA(x) forall x e X and allr € R.

Corollary 6.2. A mappingf : X — Y is an alternative Jensen mapping, if and only if the
asymptotic conditiong f (—x) + f(x)|| — Oand || f(2x) — 2f(x)|| — O, as ||x|| = oo
and |2/ (—(x1+x2)/2) + f(x1) + f(x2)| = 0, as|lx1]l + [lx2]l — oo hold, respectively.

7. Stability of the alternative Jensen type equation (1.2b)

We establish the following new stability Theorem 7.1 for alternative Jensen type map-
pings.

Theorem 7.1.1f a mappingf : X — Y satisfies the approximately alternative Jensen type
inequality

<6, 7.1
. (7.0)

for some fixed > 0, and allx1, x2 € X, then there exists a unigue alternative Jensen type
mappingA : X — Y, satisfyingA (x) =1lim,_. ., 27" f(2"x) and the inequality

’21‘(—36l _xz) + (1) — f(x2)

7
[ f) =AM <385+ FO (< 58) (7.2)

for all x € X. If, moreover,f is measurable orf(zx) is continuous irv for each fixed
x € XthenA(rx) =rA(x) forall x € X andr e R.
Proof. Settingx1 = x2 = 0 in inequality (7.1), we obtain

| rO] <s/2. (7.32)
Placingx1 = x, x2 = —x in (7.1), one finds

| f(=x)+ f0) <8, (7.3b)
for all x € X. Substitutingry = 2x andx2 =0 in (7.1), one gets

[2f(=x) + f(2x) = f(O)] <8, (7.3c)
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for all x € X. Thus from inequalities (7.3a)—(7.3b)—(7.3c) and the triangle inequality, we
establish
| f2o-2f@| <[2f(0+ f@2) - O

+-2f o+ r]l+ 0]
&

8
<8+20) + | fO =38+ | £ <<3<s+5 =5 ) (7.3d)

or
| o) —27 f @0 < (38 + | £O])@—-27h,

for somes$ > 0, and allx € X. The rest of the proof is omitted as similar to the proof of
Theorems 3.1 and 5.1.0

8. Stability of the alternative Jensen type equation (1.2b) on a restricted domain

We establish the following new stability Theorem 8.1 for alternative Jensen type map-
pings on a restricted domain.

Theorem 8.1.Letd > 0 and§ > 0 be fixed. If a mapping : X — Y satisfies the approx-
imately alternative Jensen type inequali@1) for all x1, x2 € X, with ||x1|| + |lx2]| > d,
and| f(0)]| < é/2, as well as the additional inequalities

| f=0)+ f@ <3, (8.1)

| f20)—2f0)| <38+ | O] (8.1b)
for all x € X with | x| > d, then there exists a unique alternative Jensen type mapping
A: X — Y, such that the inequality

| £ —A@) | <248+ 4| £(O)| (<248 + 4(5/2) = 265) (8.1)

holds for allx € X. If, moreover,f is measurable oy (tx) is continuous inr for each fixed
x € X,thenA(tx) =tA(x) forall x € X andr € R.

Proof. It is clear that the &pproximate oddinequality (8.1a) holds for alk € X, if we
replacex; = —x, x2 = x in (7.1). From (7.3) (or (7.3d)) we get (8.1b). From (1.2b), the
triangle inequality, and thiinctional identity

2f (—“ > x2> + f(x1) — f(x2)

= 2f<—x1;x2> +fi—0) = flz—1)

(with xq — £ onx; andxz —t Onxp)

1
+5[2f (= (=x2+ D) + f(=2x2) = f(=20)]
(with —2x2 onx; and—2r on xy)
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+ %[Zf(—(xl — 1)+ f(2x1) — f(20)] (with 2x; onxy and 2 onxy)
1 1 1
—5[f @) =2f )]+ 5[f@v2) = 2f ()| + 5[ f (=20 + f (2]

1
—[f(=G1=0)+ fx1—D)] - E[f(—sz) + f(2x2)]

we get

H2f (—“ ; xz) + f(x1) — f(x2)

<38+ 2[%(35 + || £ ©) ||)} +2(8)

=85+ f(0)]. (8.2)

Applying now Theorem 7.1 and the above inequality (8.2), one gets that there exists a
unique alternative Jensen type mappigX — Y that satisfies the alternative Jensen type
equation (1.2b) and inequality (8.1), such tAak) = lim, o, 27" f (2" x) with A(—x) =

—A(x) (from (8.1a)). O

We note that, if we defing; = {x € X: |lx|| < d} and S> = {(x1, x2) € X% ||lxi| <
d,i=1,2)forsomed >0, then{x € X: |lx|| >2d} C X \ S1 and{(x1, x2) € X% ||lx1]| +
lx2ll > 2d} € X2\ Sa.

Corollary 8.1. If we assume that a mapping: X — Y satisfies inequality7.1) for some
fixeds > 0 and for all (x1, x2) € X2\ $» and (8.1a)—(8.1b¥or all x € X \ S1, then there
exists a unique alternative Jensen type mapping — Y, satisfying(8.1) for all x €

X. If, moreover,f is measurable orf (zx) is continuous iry for each fixedr € X, then
A(tx) =tA(x) forall x € X and allt € R.

Corollary 8.2. A mappingf : X — Y is an alternative Jensen type mapping, if and only if
the asymptotic conditionsf (—x) + f(x)|| = 0and| f (2x) — 2f (x)|| — 0, as||x|| = oo
and |2/ (—*5%2) + f(x1) — f(x2)|l = 0, as|lx1]| + l|lx2]l = oo, hold, respectively.
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