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ABSTRACT. In 1927, W. Heisenberg demonstrated the impossibility of specifying simultane-
ously the position and the momentum of an electron within an atom.The well-kseaond
moment Heisenberg-Weyl inequaliiates: Assume thgt: R — C is a complex valued func-
tion of a random real variable such thatf € L?(R). Then the product of the second moment

A2
of the random reat for | f|* and the second moment of the random reébr ‘f’ is at least

Emz/47r, where f is the Fourier transform of, such thatf (¢) = Jpe 2™ f (x) do and

f(z) = [pe*™f(€)d¢, i = v=T1andE;> = [,|f ()|*dz. In 2004, the author general-

ized the afore-mentioned result tioe higher order absolute moments f functionsf with

orders of moments in the set of natural numbers . In this paper, a new generalization proof is
established with orders of absolute moments in the set of non-negative real numbers. After-
wards, an application is provided by means of the well-known Euler gamma function and the
Gaussian function and an open problem is proposed on some pertinent extremum principle. This
inequality can be applied in harmonic analysis and quantum mechanics.

Key words and phrasedteisenberg-Weyl Inequality, Uncertainty Principle, Absolute Moment, Gaussian, Extremum Princi-
ple.
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1. INTRODUCTION

The serious question of certainty in science was high-lighted by Heisenberg (1901-1976), in
1927, via his “uncertainty principle’ [7]. He demonstrated, for instance, the impossibility of
specifying simultaneously the position and the speed (or the momentum) of an electron within
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2 JOHN MICHAEL RASSIAS

an atom. In 1933, according to Wiener (1894-1964) [A@air of transforms cannot both be
very small

This uncertainty principle was stated in 1925 by Wiener, according to Wiener's autobiogra-
phy [11, p. 105-107], in a lecture in Géttingen. In 1997, according to Folland and Sitaram [5]
the uncertainty principle in harmonic analysis safsnonzero function and its Fourier trans-
form cannot both be sharply localize@he following result of theHeisenberg-Weyl Inequality
is credited to Pauli (1900 — 1958) according to Weyl [9, p. 77, p. 393-394]. In 1928, ac-

~12
cording to Pauli[[9]the less the uncertainty ify|*, the greater the uncertainty ibf’ , and

conversely This result does not actually appear in Heisenberg's seminal paper [7] (in 1927). In
1997 Battlel[1] proved a number of excellent uncertainty results for wavelet states. Coifman et
al. [3] established important results in signal processing and compression with wavelet packets.
For fundamental accounts of the construction of orthonormal wavelets we refer the reader to
Daubechies [4]. In 1998, Burke Hubbard [2] wrote a remarkable book on wavelets. According
to her, most people first learn the Heisenberg uncertainty principle in connection with quantum
mechanics, but it is also a central statement of information processing. According to Folland
and Sitaram[[5] (in 1997), Heisenberg gave an incisive analysis of the physics of the uncer-
tainty principle but contains little mathematical precision. The following second order moment
Heisenberg-Weyl inequality provides a precise quantitative formulation of the above-mentioned
uncertainty principle according to W. Pauli.

1.1. Second Moment Heisenberg-Weyl Inequality[2] — [5]). Forany f € L*(R), f : R —
C, such that|| f||; = [, |f (x)|* dz = E|;, any fixed but arbitrary constants,,, &, € R, and
for the second order moments (variances)

(el = o = [ (o= )1 @) da

and
2

dg,

~

f (&)

(/~L2)|f‘2 = U|2f|2 = /R (& — ém)2

the second order moment Heisenberg-Weyl inequality

(Hl) 2 2 > Hf”;L

T

holds. Equality holds iffff;)) if and only if the generalized Gaussians

f(z) = coexp (2mizéy,) exp (—c (z — $m)2)

hold for some constantg € C andc¢ > 0.
The Heisenberg-Weyl inequaliiy mathematical statistics and Fourier analysis asserts that:

~ 2
The product of the variances of the probability measufgs:)|* dz and ‘f (5)‘ d¢ is larger

than an absolute constant. Parts of harmonic analysis on euclidean spaces can naturally be

expressed in terms ef Gaussian measurdhat is, a measure of the formge <" dz, where

dx is the Lebesgue measure and, (> 0) constants. Among these are: Logarithmic Sobolev
inequalities, and Hermite expansions. In 1999, according to Gasquet and Witomski [6] the
Heisenberg-Weyl inequality ispectral analysisays that the product of the effective duration
Az and the effective bandwidth¢ of a signal cannot be less than the valyér =Heisenberg

lower bound, where\z? = U\Qf|2/E|f|2 and A¢? (: ‘7|2f|2/E\ny> = O—Tf‘Q/Emz with f :
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R — C, f : R — C defined as in), and
(PPR) Elfz_/|f \dx_/‘f d€ = B

according to the Plancherel-Parseval-Rayleigh identity [6].

1.2. Fourth Moment Heisenberg -Weyl Inequality ([8, p. 26). Foranyf € L*(R), f : R —
C, such that|| f||2 = Jo|f (@ ) de = Ej;p2, any fixed but arbitrary constants,,, &, € R, and
for the fourth order moments

(o = [ =)' | @) da
and L
Gy = [ (€= en'|F @ e
the fourth order moment Heisenberg - Weyl inequality
(Ha) (M4)\f|2 ) (M4)|f‘2 > 641?]33’]0’
holds, where

Bay =2 [ (=45 €a}) @) = 21 @) = dn6p? I (o) )| d

with zs = x — x,,, & = € — &, Im(+) is the imaginary part of-), and|E» | < oc.
The “inequality” holds, unlesg (z) =
We note that if the ordinary differential equation of second order

11

(ODE) folw) = =2c007 fu(x)

holds, witha = —27&,,,i, fa(x) = €** f(x), and a constant, = $k5 > 0,k € R and k, # 0,
then “equality” in seems to occur. However, the solution of this differential equation
)B), given by the function

; 1 1
f(x) = /Jas|e*m oo {CzoJ—1/4 (5 | o l’?) +endi (5 | o x?)} :

in terms of the Bessel functionk,; ,, of the first kind of orderst1/4, leads to a contradiction,
because thig ¢ L*(R). Furthermore, a limiting argument is required for this problem. For the
proof of this inequality seé [8]. In 2004, we [8] generalized the Heisenberg-Weyl inequality with
orders of moments in the set of natural numbers. In this paper we establish a new generalization
proof with orders of absolute moments in the set of non-negative real numbersogers

to investigate cases, where the integrand on the right-hand side of integrals; ofill be
nonnegative. For instance, fo, = &, = 0, this integrand is= | f(z)[* — 2| f'(z)|* (> 0).

2. HEISENBERG-WEYL |INEQUALITY
If fol|f (x \ dx = E|;, then we state and prove the following new theorem.
Theorem 2.1.1f f € L?*(R) andp > 2, then the Heisenberg-Weyl inequality

AN
@D ()it ()57 = Byt am.

holds for any fixed but arbitrary real constants,, &,,, and the higher order absolute moments

(1) 51 :/R’$6|p|f(l’)|2dff
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with x5 =  — z,,, and

)y = [l ]F @

with & = & — &,. The “inequality” (2.1) holds, unlesg(z) = 0. Equality in [2.1) holds
for p = 2 and all the Gaussian mappings of the forfiiz) = cyexp (—cz?), wherecy, ¢
are constants and, € C, ¢ > 0, or for p > 2 and all mappingsf € L*(R), such that

5] = |&s] = /1/4.

Proof. Applying the inequality{Z;)), the Holder inequalityndthe Plancherel-Parseval-Rayleigh
identityone gets

(Mp):c|2 Elf\2 (/ jzs|” | f ()] dI) (/\f )2 d:c) K
- [ (st )™ dxH/ (1r Py ]
> [ [(1r @) (1f @FCH)] aa

= [ w1f @ de = ot

or

1/ (1-2)/2
(2.2) (,up)mp > 0|42 /(E|f2> .
Equalityin (2.2) holds if and only if

|75]" B g2 = (NZ)H.@-
Similarly, we prove from[(2]2) andl (PPR) that

1—2
2/p g 2
E > 072,
e (Bp) 2oty

1/p 1_7
(23) |f|2 > O'|f| / E|f\2

or

Equalityin (2.3) holds if and only if
’fé’pEm? = (M;)’ff-

Multiplying (2.2)) and [(2.B) one finds

* 1/p 1_%
(2.4) My = (1) 4 (Np)| 2 = Ol "|f|2/ (Bie) "
It is now clear, from[(2.4) and the classical Heisenberg-Weyl inequalfy),(the complete
proof of the above theorem. O
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2.1. Euler gamma function and Gaussian function. Assumethe Gaussian functioof the
form

(2.5) f(x) =coexp (—cxz) ,

wherec,, ¢ are constants ang) € C, ¢ > 0. Besides consider that,, &,,, aremeansof « for

|f|2 and of¢ for ‘fr respectively. Ifl" is the Euler gamma functioandp = 2,3.4, ..., then
= [pz|f(z )|* dz = 0 .We claim thathe Fourier transformf : R — C is of the form

(2.6) .f@>=<h(§)%em>(—§;8),

by applying a direct computation using a differential equatioh ([6, p. 159-161]).

In fact, differentiating the Gaussian functign: R — C of the form f (z) = coe=**" with
respect tar, one gets the ordinary differential equatipinz) = —2cz f (x). Thus the Fourier
transform off’ is

Ff(€) =FIf (@)](€) = [f @)]" (€) = [-2caf ()] (€),
or

2im¢f (§) = —— [(~2im) f ()] " (€),

by standard formulas on differentiation. Th2isré f(g) = Z (f (§)>/, or —2m¢ f(g) =
o ©).0r (F(©)) = F' () = —2 (x6) f (©)

Solving thisfirst order differential equatiotry the method of the separation of variables we
get the general solution

2
™ 2
¢

@7 flO=K@©e ",
such thatf (0) = K (0). Differentiating the above formula with respectttone finds

~

o=t e+ r© (-]

Therefore we find) = K’ (¢) e—§52, orK'(§)=0,or

(2.8) K(¢) =K,
which is a constant. But from (2.7) arjd (2.8) one gets
(2.9) f(0)=K(0) =K.

Besides from the definition of the Fourier transform we get

FO = [eroep@an= [ plye=a [ etae = [ ooy,

CJr
or

(2.10) f(0) = co\/é, cp€eC, ¢>0.

From ) 2.9) and[(2.10) one finds = ¢y/Z, co € C, ¢ > 0.
Therefore we complete the proof of the formdla|2.6). Moreover,

G R I S
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Therefore

05 = G- Gy = e (250 (1),

or

* * 4 2 [ P + 1 % 2/p

because? ;2 = lco|? (m/2¢)'?, H,, = =1/((2m 41/9) and

p/2

|x|pexp —2cz?)dx

But we have fop = 2p, p € N that

() -0 m(3)' = ()

where(p — ! =1-3-5-----(p—1) (for p = 2p, p € N). Itis clear that this holds as well
for p =2q + 1, ¢ € N. Thus one gets

* 1 4rm EYr — p2le
My = ((27r) 41/,,> [%(5)} I |f\2/47T
verifying (2.1) for allp = 2,3,4,.... We note that ifp = 2, p = 1 then the equality in[(2]1)
holds for these Gaussian mappings.

Queries. Concerning our Section 8.1 on pp. 26-27&¥, further investigation is needed for the
case of the fundamental “equality” i. As a matter of fact, our functiofiis not in L?(R),
leading the left-hand side to be infinite in that “equality”. A limiting argument is required for
this problem. On the other hand, why doesn't the corresponding “inequali)) @ttain an
extremal inL?(R)?

Here are some of our old results [8] related to the alipueries In particular, if we take into
account these results contained in Section 9 on pp. 46470 [8], where the Gaussian function and
the Euler gamma functiohi are employed, then via Corollary 9.1 on pp. 50451 [8] we conclude
that “equality” in(H,), p € N = {1,2,3,...}, holds only forp = 1. Furthermore, employing
the above Gaussian function, we establlshed the followxtgemum principlévia (9.33) on p.

51 [8)):

1
(R) R(p) > 50 P eN
for the corresponding “inequality(H,,), p € N, where the constarit/27 “on the right-hand
side” is the best lower bound fere N. Therefore “equality” infH,), p € N — {1}, in Section
8.1 on pp. 19-46[[8] cannot occur under the afore-mentioned well-known functions. On the
other hand, there is a lower bound “on the right-hand side” of the corresponding “inequality”
in (H,) on p. 26 and pp. 54-55][8] if we employ the above Gaussian function, which equals to

4 . 2
i B2, = =k - b with ¢, ¢ constants and, € C, ¢ > 0, because?| 2 = |co|” \/Z and
Ez}f — E‘f|2

Analogous pertinent results are investigated via our Corollaries 9.2-9.6 on pp. 53-68 [8].
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Open Problem And Extremum Principle. Employing our Theorem 8.1 on p. 20/[8], the
Gaussian function, the Euler gamma fuctionand other related‘'special functions”, we es-
tablished and explicitly provethe extremum principl¢R): R(p) > 1/2, p € N, where

R(p) = 7 Lot s) ,
5 (s (7)) T
with
(4] AN . .
r, = kzoz <2k) r (k+§)r(2q—2k+§)
120 ) (—1)FHgke (2qk> (;’j) r (k + %) r (j + %) r (Qq —k—j+ %) ,
0<k<j<[4]

0 < [4] is the greatest integet £ for ¢ € NU {0} = N, <Z> = ,(p iforp €N, g € Ng

and0<¢g<pp'=1-2-3----- (p—1)-pand0! =1, as well as

1 1 (2p)
F(p+—):—~—(§>ﬁ, peN

2 22p
and

In addition, we [[8] analytically verified this extremum principle o= 1,2, ...,9 by carry-
ing out all the involved operations. In particular, if we denate= 1/27(= 0.159), then the
first nine exact values ok(p) are, as followsR (1) = L, R(2) = 3L, R(3) = 5L, R(4) = %L,

R(5) = 8L, R(6) = 2L, R(7) = 429L R(8) = 495L R(9) = £22L.

Furthermore, by employlng computer technlques this principle was verifiedsfor, 2, 3, . . .,
32,33, as well. It now remaingpento give an explicit second proof of verification for the ex-
tremum principle[(R) through a much shorter and more elementary method, without applying
our Heisenberg-Pauli-Weyl inequalityi [8].
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