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ABSTRACT. In 1927, W. Heisenberg demonstrated the impossibility of specifying simultane-
ously the position and the momentum of an electron within an atom.The well-knownsecond
moment Heisenberg-Weyl inequalitystates: Assume thatf : R → C is a complex valued func-
tion of a random real variablex such thatf ∈ L2(R). Then the product of the second moment

of the random realx for |f |2 and the second moment of the random realξ for
∣∣∣f̂ ∣∣∣2 is at least

E|f |2
/

4π, wheref̂ is the Fourier transform off , such thatf̂ (ξ) =
∫

R e−2iπξxf (x) dx and

f (x) =
∫

R e2iπξxf̂ (ξ) dξ, i =
√
−1 andE|f |2 =

∫
R |f (x)|2 dx. In 2004, the author general-

ized the afore-mentioned result tothe higher order absolute moments forL2 functionsf with
orders of moments in the set of natural numbers . In this paper, a new generalization proof is
established with orders of absolute moments in the set of non-negative real numbers. After-
wards, an application is provided by means of the well-known Euler gamma function and the
Gaussian function and an open problem is proposed on some pertinent extremum principle. This
inequality can be applied in harmonic analysis and quantum mechanics.

Key words and phrases:Heisenberg-Weyl Inequality, Uncertainty Principle, Absolute Moment, Gaussian, Extremum Princi-
ple.
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1. I NTRODUCTION

The serious question of certainty in science was high-lighted by Heisenberg (1901-1976), in
1927, via his “uncertainty principle” [7]. He demonstrated, for instance, the impossibility of
specifying simultaneously the position and the speed (or the momentum) of an electron within
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an atom. In 1933, according to Wiener (1894-1964) [10]a pair of transforms cannot both be
very small.

This uncertainty principle was stated in 1925 by Wiener, according to Wiener’s autobiogra-
phy [11, p. 105–107], in a lecture in Göttingen. In 1997, according to Folland and Sitaram [5]
the uncertainty principle in harmonic analysis says:A nonzero function and its Fourier trans-
form cannot both be sharply localized.The following result of theHeisenberg-Weyl Inequality
is credited to Pauli (1900 – 1958) according to Weyl [9, p. 77, p. 393–394]. In 1928, ac-

cording to Pauli [9],the less the uncertainty in|f |2, the greater the uncertainty in
∣∣∣f̂ ∣∣∣2, and

conversely. This result does not actually appear in Heisenberg’s seminal paper [7] (in 1927). In
1997 Battle [1] proved a number of excellent uncertainty results for wavelet states. Coifman et
al. [3] established important results in signal processing and compression with wavelet packets.
For fundamental accounts of the construction of orthonormal wavelets we refer the reader to
Daubechies [4]. In 1998, Burke Hubbard [2] wrote a remarkable book on wavelets. According
to her, most people first learn the Heisenberg uncertainty principle in connection with quantum
mechanics, but it is also a central statement of information processing. According to Folland
and Sitaram [5] (in 1997), Heisenberg gave an incisive analysis of the physics of the uncer-
tainty principle but contains little mathematical precision. The following second order moment
Heisenberg-Weyl inequality provides a precise quantitative formulation of the above-mentioned
uncertainty principle according to W. Pauli.

1.1. Second Moment Heisenberg-Weyl Inequality ([2] – [5]). For anyf ∈ L2(R), f : R →
C, such that‖f‖2

2 =
∫

R |f (x)|2 dx = E|f |2, any fixed but arbitrary constantsxm, ξm ∈ R, and
for the second order moments (variances)

(µ2)|f |2 = σ2
|f |2 =

∫
R

(x− xm)2 |f (x)|2 dx

and

(µ2)|f̂|2 = σ2

|f̂|2 =

∫
R

(ξ − ξm)2
∣∣∣f̂ (ξ)

∣∣∣2 dξ,

the second order moment Heisenberg-Weyl inequality

(H1) σ2
|f |2 · σ

2

|f̂|2 ≥
‖f‖4

2

16π2
,

holds. Equality holds in (H1) if and only if the generalized Gaussians

f (x) = c0 exp (2πixξm) exp
(
−c (x− xm)2)

hold for some constantsc0 ∈ C andc > 0.
TheHeisenberg-Weyl inequalityin mathematical statistics and Fourier analysis asserts that:

The product of the variances of the probability measures|f (x)|2 dx and
∣∣∣f̂ (ξ)

∣∣∣2 dξ is larger

than an absolute constant. Parts of harmonic analysis on euclidean spaces can naturally be
expressed in terms ofa Gaussian measure; that is, a measure of the formc0e

−c|x|2dx, where
dx is the Lebesgue measure andc, c0 (> 0) constants. Among these are: Logarithmic Sobolev
inequalities, and Hermite expansions. In 1999, according to Gasquet and Witomski [6] the
Heisenberg-Weyl inequality inspectral analysissays that the product of the effective duration
∆x and the effective bandwidth∆ξ of a signal cannot be less than the value1/4π =Heisenberg

lower bound, where∆x2 = σ2
|f |2

/
E|f |2 and∆ξ2

(
= σ2

|f̂|2
/

E|f̂|2
)

= σ2

|f̂|2
/

E|f |2 with f :
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ON THE HEISENBERG-WEYL INEQUALITY 3

R → C, f̂ : R → C defined as in (H1), and

(PPR) E|f |2 =

∫
R
|f(x)|2dx =

∫
R

∣∣∣f̂ (ξ)
∣∣∣2 dξ = E|f̂|2 ,

according to the Plancherel-Parseval-Rayleigh identity [6].

1.2. Fourth Moment Heisenberg-Weyl Inequality ( [8, p. 26]). For anyf ∈ L2(R), f : R →
C, such that‖f‖2

2 =
∫

R |f (x)|2 dx = E|f |2 , any fixed but arbitrary constantsxm, ξm ∈ R, and
for the fourth order moments

(µ4)|f |2 =

∫
R

(x− xm)4 |f (x)|2 dx

and

(µ4)|f̂|2 =

∫
R

(ξ − ξm)4
∣∣∣f̂ (ξ)

∣∣∣2 dξ,

the fourth order moment Heisenberg - Weyl inequality

(H2) (µ4)|f |2 · (µ4)|f̂|2 ≥
1

64π4
E2

2,f ,

holds, where

E2,f = 2

∫
R

[
(1−4π2ξ2

mx2
δ) |f(x)|2 − x2

δ |f ′(x)|2 − 4πξmx2
δ Im(f(x)f ′(x))

]
dx,

with xδ = x− xm, ξδ = ξ − ξm, Im(·) is the imaginary part of(·), and|E2,f | < ∞.
The “inequality” (H2) holds, unlessf(x) = 0.
We note that if the ordinary differential equation of second order

(ODE) f
′′

α(x) = −2c2x
2
δfα(x)

holds, withα = −2πξmi, fα(x) = eαxf(x), and a constantc2 = 1
2
k2

2 > 0, k2 ∈ R and k2 6= 0,
then “equality” in (H2) seems to occur. However, the solution of this differential equation
(ODE), given by the function

f(x) =
√
|xδ|e2πixξm

[
c20J−1/4

(
1

2
|k2|x2

δ

)
+ c21J1/4

(
1

2
|k2|x2

δ

)]
,

in terms of the Bessel functionsJ±1/4 of the first kind of orders±1/4, leads to a contradiction,
because thisf /∈ L2(R). Furthermore, a limiting argument is required for this problem. For the
proof of this inequality see [8]. In 2004, we [8] generalized the Heisenberg-Weyl inequality with
orders of moments in the set of natural numbers. In this paper we establish a new generalization
proof with orders of absolute moments in the set of non-negative real numbers. It isopen
to investigate cases, where the integrand on the right-hand side of integrals ofE2,f will be
nonnegative. For instance, forxm = ξm = 0, this integrand is:= |f(x)|2 − x2|f ′(x)|2 (≥ 0).

2. HEISENBERG-WEYL I NEQUALITY

If
∫

R |f (x)|2 dx = E|f |2 , then we state and prove the following new theorem.

Theorem 2.1. If f ∈ L2(R) andρ ≥ 2, then the Heisenberg-Weyl inequality

(2.1)
(
µ∗ρ
)1/ρ

|f |2
(
µ∗ρ
)1/ρ

|f̂|2 ≥ E
2/ρ

|f |2

/
4π,

holds for any fixed but arbitrary real constantsxm, ξm and the higher order absolute moments(
µ∗ρ
)
|f |2 =

∫
R
|xδ|ρ |f (x)|2 dx
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with xδ = x− xm and (
µ∗ρ
)
|f̂|2 =

∫
R
|ξδ|ρ

∣∣∣f̂ (ξ)
∣∣∣2 dξ

with ξδ = ξ − ξm. The “inequality” (2.1) holds, unlessf(x) = 0. Equality in (2.1) holds
for ρ = 2 and all the Gaussian mappings of the formf (x) = c0 exp (−cx2), wherec0, c
are constants andc0 ∈ C, c > 0, or for ρ ≥ 2 and all mappingsf ∈ L2(R), such that
|xδ| = |ξδ| =

√
1/4π.

Proof. Applying the inequality (H1), the Hölder inequalityandthe Plancherel-Parseval-Rayleigh
identityone gets

(
µ∗ρ
) 2

ρ

|f |2

(
E|f |2

)1− 2
ρ

=

(∫
R
|xδ|ρ |f (x)|2 dx

) 2
ρ
(∫

R
|f (x)|2 dx

)1− 2
ρ

=

[∫
R

(
|xδ|2 |f (x)|4/ρ

)ρ/2

dx

] 2
ρ
[∫

R

(
|f (x)|2(1− 2

ρ)
)1/(1− 2

ρ)
dx

]1− 2
ρ

≥
∫

R

[(
x2

δ |f (x)|4/ρ
)(

|f (x)|2(1− 2
ρ)
)]

dx

=

∫
R

x2
δ |f (x)|2 dx = σ2

|f |2 ,

or

(2.2)
(
µ∗ρ
)1/ρ

|f |2 ≥ σ|f |2

/(
E|f |2

)(1− 2
ρ)/2

.

Equality in (2.2) holds if and only if

|xδ|ρ E|f |2 = (µ∗ρ)|f |2 .

Similarly, we prove from (2.2) and (PPR) that

(
µ∗ρ
)2/ρ

|f̂|2
(

E|f̂|2
)1− 2

ρ

≥ σ2

|f̂|2 ,

or

(2.3)
(
µ∗ρ
)1/ρ

|f̂|2 ≥ σ|f̂|2
/(

E|f |2
)(1− 2

ρ)/2

.

Equality in (2.3) holds if and only if

|ξδ|ρ E|f |2 = (µ∗ρ)|f̂|2 .

Multiplying (2.2) and (2.3) one finds

(2.4) M∗
ρ =

(
µ∗ρ
)1/ρ

|f |2
(
µ∗ρ
)1/ρ

|f̂|2 ≥ σ|f |2 · σ|f̂|2
/(

E|f |2
)1− 2

ρ
.

It is now clear, from (2.4) and the classical Heisenberg-Weyl inequality (H1), the complete
proof of the above theorem. �
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2.1. Euler gamma function and Gaussian function.Assumethe Gaussian functionof the
form

(2.5) f (x) = c0 exp
(
−cx2

)
,

wherec0, c are constants andc0 ∈ C, c > 0. Besides consider thatxm, ξm, aremeansof x for

|f |2 and ofξ for
∣∣∣f̂ ∣∣∣2, respectively. IfΓ is the Euler gamma functionandρ = 2, 3, 4, . . ., then

xm =
∫

R x |f (x)|2 dx = 0 .We claim thatthe Fourier transformf̂ : R → C is of the form

(2.6) f̂ (ξ) = c0

(π

c

) 1
2
exp

(
−π2

c
ξ2

)
,

by applying a direct computation using a differential equation ([6, p. 159–161]).
In fact, differentiating the Gaussian functionf : R → C of the formf (x) = c0e

−cx 2
with

respect tox, one gets the ordinary differential equationf ′ (x) = −2cxf (x). Thus the Fourier
transform off ′ is

Ff ′ (ξ) = F [f ′ (x)] (ξ) = [f ′ (x)]
∧

(ξ) = [−2cxf (x)]∧ (ξ) ,

or

2iπξf̂ (ξ) =
−2c

−2iπ
[(−2iπx) f (x)] ∧ (ξ) ,

by standard formulas on differentiation. Thus2iπξ f̂ (ξ) = c
iπ

(
f̂ (ξ)

)′
, or −2π2ξ f̂ (ξ) =

cf̂ ′ (ξ), or
(
f̂ (ξ)

)′
= f̂ ′ (ξ) = −2π

c
(πξ) f̂ (ξ).

Solving thisfirst order differential equationby the method of the separation of variables we
get the general solution

(2.7) f̂ (ξ) = K (ξ) e
−π2

c ξ2

,

such thatf̂ (0) = K (0). Differentiating the above formula with respect toξ one finds

f̂ ′ (ξ) = e−
π2

c
ξ2

[
K ′(ξ) + K (ξ)

(
−2π2

c
ξ

)]
.

Therefore we find0 = K ′ (ξ) e−
π2

c
ξ2

, or K ′ (ξ) = 0, or

(2.8) K (ξ) = K,

which is a constant. But from (2.7) and (2.8) one gets

(2.9) f̂ (0) = K (0) = K.

Besides from the definition of the Fourier transform we get

f̂ (0) =

∫
R

e−2iπ·0·xf (x) dx =

∫
R

f (x) dx = c0

∫
R

e−cx 2

dx =
c0√
c

∫
R

e−[
√

cx] 2

d
(√

cx
)
,

or

(2.10) f̂ (0) = c0

√
π

c
, c0 ∈ C, c > 0.

From (2.9) and (2.10) one findsK = c0

√
π
c
, c0 ∈ C, c > 0.

Therefore we complete the proof of the formula (2.6). Moreover,

ξm =

∫
R

ξ
∣∣∣f̂ (ξ)

∣∣∣2 dξ = |c0|2
π

c

∫
R

ξ · e−2π2

c
ξ2

dξ = 0.
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Therefore (
M∗

ρ

)ρ
=
(
µ∗ρ
)
|f |2 ·

(
µ∗ρ
)
|f̂|2 =

(
H∗

ρ/2

)ρ
2Γ2

(
ρ + 1

2

)(
|c0|4

c

)
,

or

M∗
ρ = H∗

ρ/2

[
4

π
Γ2

(
ρ + 1

2

)] 1
ρ

E
2/ρ

|f |2 ,

becauseE|f |2 = |c0|2 (π/2c)1/2, H∗
ρ/2 = 1

/(
(2π) 41/ρ

)
, and∫

R
|x|ρ exp

(
−2cx2

)
dx =

Γ
(

ρ+1
2

)
(2c)

ρ+1
2

, c > 0, ρ ∈ N0.

But we have forρ = 2p, p ∈ N that

Γ

(
ρ + 1

2

)
= (ρ− 1)!!

( π

2ρ

) 1
2 ≥

( π

2ρ

) 1
2
,

where(ρ− 1)!! = 1 · 3 · 5 · · · · · (ρ− 1) (for ρ = 2p, p ∈ N). It is clear that this holds as well
for ρ = 2q + 1, q ∈ N. Thus one gets

M∗
ρ ≥

(
1

(2π) 41/ρ

)[
4

π

( π

2ρ

)] 1
ρ

E
2/ρ

|f |2 = E
2/ρ

|f |2

/
4π,

verifying (2.1) for allρ = 2, 3, 4, . . .. We note that ifρ = 2, p = 1 then the equality in (2.1)
holds for these Gaussian mappings.

Queries.Concerning our Section 8.1 on pp. 26-27 of[8], further investigation is needed for the
case of the fundamental “equality” in (H2). As a matter of fact, our functionf is not inL2(R),
leading the left-hand side to be infinite in that “equality”. A limiting argument is required for
this problem. On the other hand, why doesn’t the corresponding “inequality” (H2) attain an
extremal inL2(R)?

Here are some of our old results [8] related to the aboveQueries. In particular, if we take into
account these results contained in Section 9 on pp. 46-70 [8], where the Gaussian function and
the Euler gamma functionΓ are employed, then via Corollary 9.1 on pp. 50-51 [8] we conclude
that “equality” in(Hp), p ∈ N = {1, 2, 3, . . .}, holds only forp = 1. Furthermore, employing
the above Gaussian function, we established the followingextremum principle(via (9.33) on p.
51 [8]):

(R) R(p) ≥ 1

2π
, p ∈ N

for the corresponding “inequality”(Hp), p ∈ N, where the constant1/2π “on the right-hand
side” is the best lower bound forp ∈ N. Therefore “equality” in(Hp), p ∈ N− {1}, in Section
8.1 on pp. 19-46 [8] cannot occur under the afore-mentioned well-known functions. On the
other hand, there is a lower bound “on the right-hand side” of the corresponding “inequality”
in (H2) on p. 26 and pp. 54-55 [8] if we employ the above Gaussian function, which equals to

1
64π4 E

2
2,f = 1

512π3 · |c0|
4

c
, with c0, c constants andc0 ∈ C, c > 0, becauseE|f |2 = |c0|2

√
π
2c

and
E2,f = 1

2
E|f |2.

Analogous pertinent results are investigated via our Corollaries 9.2-9.6 on pp. 53-68 [8].
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Open Problem And Extremum Principle. Employing our Theorem 8.1 on p. 20 [8], the
Gaussian function, the Euler gamma fuctionΓ, and other related“special functions”, we es-
tablished and explicitly provedthe extremum principle(R): R(p) ≥ 1/2π, p ∈ N, where

R(p) =
Γ
(
p + 1

2

)∣∣∣∣∣∣
[ p
2 ]∑

q=o

(−1)p−q p
p−q

· p!
(2q)!

(
p−q

q

)
Γq

∣∣∣∣∣∣
,

with

Γq =

[ q
2 ]∑

k=0

22k
( q

2k

)2

Γ2

(
k +

1

2

)
Γ

(
2q − 2k +

1

2

)
+ 2

∑
0≤k≤j≤[ q

2 ]

(−1)k+j2k+j
( q

2k

)( q

2j

)
Γ

(
k +

1

2

)
Γ

(
j +

1

2

)
Γ

(
2q − k − j +

1

2

)
,

0 ≤
[

q
2

]
is the greatest integer≤ q

2
for q ∈ N ∪ {0} = N0,

(
p
q

)
= p!

q!(p−q)!
for p ∈ N, q ∈ N0

and0 ≤ q ≤ p, p! = 1 · 2 · 3 · · · · ·(p− 1) · p and0! = 1, as well as

Γ

(
p +

1

2

)
=

1

22p
· (2p)!

p!

√
π, p ∈ N

and

Γ

(
1

2

)
=
√

π.

In addition, we [8] analytically verified this extremum principle forp = 1, 2, . . ., 9 by carry-
ing out all the involved operations. In particular, if we denoteL = 1/2π(∼= 0.159), then the
first nine exact values ofR(p) are, as follows:R(1) = L, R(2) = 3L, R(3) = 5L, R(4) = 35

13
L,

R(5) = 63
17

L, R(6) = 231
19

L, R(7) = 429
23

L, R(8) = 495
47

L, R(9) = 12155
827

L.
Furthermore, by employing computer techniques, this principle was verified forp = 1, 2, 3, . . . ,

32, 33, as well. It now remainsopento give an explicit second proof of verification for the ex-
tremum principle (R) through a much shorter and more elementary method, without applying
our Heisenberg-Pauli-Weyl inequality [8].
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