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ABSTRACT. In 1927, W. Heisenberg demonstrated the impossibility of specifying simultane-
ously the position and the momentum of an electron within an atom.The following result named,
Heisenberg inequalityis not actually due to Heisenberg. In 1928, according to H. Weyl this re-
sultis due to W. Pauli.The said inequality states, as follows: Assumg that— C is a complex
valued function of a random real variablesuch thatf € L?(RR). Then the product of the second

A2
moment of the random real for \f|2 and the second moment of the random geédr ‘f‘ is
at leastl) ;2 /4, wheref is the Fourier transform of , such thatf (¢) = [, =2 f (z) dz

and f (z) = [, e¥ ™7 f(€)dE, i = v/~1 andE| ;2 = [ |f (@) dz. In this paper we gen-
eralize the afore-mentioned resultttee higher moments fak? functionsf and establish the
Heisenberg-Pauli-Wey! inequality
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1. INTRODUCTION

In 1927, W. Heisenberd [9] demonstrated the impossibility of specifying simultaneously the
position and the momentum of an electron within an atom. In 1933, according to N. Wiener
[22] a pair of transforms cannot both be very smallhis uncertainty principle was stated
in 1925 by Wiener, according to Wiener’s autobiography [23, p. 105-107], in a lecture in
Gottingen. In 1992, J.A. Wolf [24] and in 1997, G. Battlé [1] established uncertainty principles
for Gelfand pairs and wavelet states, respectively. In 1997, according to Folland et al. [6],
and in 2001, according to Shimerio [14] the uncertainty principle in harmonic analysis says:
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2 JOHN MICHAEL RASSIAS

A nonzero function and its Fourier transform cannot both be sharply localizd.following
result of theHeisenberg Inequalitys credited to W. Pauli according to H. Weyl |20, p.77,
p. 393-394]. In 1928, according to Pauli [20], the followipgpositionholds:the less the

2

uncertainty in|f|2, the greater the uncertainty ify’| is , and converselyThis result does not

actually appear in Heisenberg’s seminal paper [9] (in 1927). According to G.B. Folland et al. [6]

(in 1997) Heisenberg [9] gave an incisive analysis of the physics of the uncertainty principle but

contains little mathematical precision. The following Heisenberg inequality provides a precise

quantitative formulation of the above-mentioned uncertainty principle according to Pauli [20].
In what follows we will use the following notation to denote the Fourier transforrfi(af) :

F(f(x) = [f(2)]" ()

1.1. Second Order Moment Heisenberg Inequality [3,6]). Foranyf € L*(R), f : R — C,
such that

113 = [ 1 @F de = B

any fixed but arbitrary constanis,, &, € R, and for the second order moments (variances)

(el = o = [ (o= )1 @) da
and

2
_ 2 e 2| F

ey = oty = [ (€= |F (O] e

the second order moment Heisenberg inequality
E2

(H) (o) g - (12) o 2 T
holds, where

FO= [ s )i
and

fa) = [ @i i-vl
R
Equalityholds in iff (if and only if) the Gaussians

. _ _ 2 2 . 2
f(l’) _ 60627rm:§m€ c(z—zm) = cpe cx?42(cxm+iném)r—cay,

hold for some constantgy € C andc¢ > 0. We note that ifz,, # 0 and¢,, = 0, then
f(x) = coe==2m)" ¢y € C andc > 0.

Proof. Let z,, = §, = 0, and that the integrals in the inequalifff{) be finite. Besides
we consider both the ordinary derivati\g;g|f|2 = 2Re (ff’) and the Fourier differentiation
formula

Ff&) =[f(x)]" (&) =2micf (€).

Then we get that the finiteness of the integral
2 B 1 , 9
[leif e (= [1r@ra)
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ON THE HEISENBERGPAULI-WEYL INEQUALITY 3

implies f' € L?. Integration by parts yields

at

2 [ore (50 F@) do= [ e @ de = |f (0]

oy a—
_/ \f(m)]de, —o0 < a_ < ay < o0.
a—

Sincef, zf, f' € L?, the integrals in this equality are finite @s — —oo or a, — oo and thus
both limitsL_ = lim a_|f (a_)]> andL, = lim a. |f (ay)|? are finite. These two limits

L, are equal to zero, for otherwisg (x)|> would behave ag for big 2 meaning thay ¢ L?,
leading to contradiction. Therefore for the variances about the origin

(m2) 42 = sfﬂz = /Rx2 |f (2)) dx
and

(m) e = st = [ €]F @ e

Al = ( g )
- <—/R\f(m>|2dx)2
~ o3 | Lo |f<x)|2dx]2
- 1617T2 {Q/RxRe (f @) 7)) d:cr

-1 [1/(asf< VT + TGS ) o]

< 4; [1es 5 @1
< g ([1re ’dx></'f ) = s sf

Equalityin these inequalities holds iffie differential equatiorf’ (x) = —2cz f (x) of first order
holds forc > 0 or if the Gaussiang (z) = c,e=" hold for some constants € C, andc > 0.
Assuming any fixed but arbitrary real constants &,, and employing the transformation

Jamem () = ezmxfmf (x —xpm), Ts=x—x,#0,
we establish the formula
Fomen (€) = e 2momEEm) f (£ g ) = e2mimmén fo o (€).

Therefore the mag — f..,, ¢, preserves alL? (p € N) norms of f and f while shifting the

centers of mass of andf by realz,, ands,,, respectively. Therefore equality holds [if () for
any fixed but arbitrary constants,, &, € R iff the general formula

f (l’) _ 0062ﬂi$§me—c(x—xm)2

one gets

,p
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4 JOHN MICHAEL RASSIAS

holds for some constantg € C, andc > 0. One can observe that this general formula is the
complete (general) solution of the followirggdifferential equatiorf, = —2c¢(x — z,,) fa, by
the method of the separation of variables, where —27¢,,i, f, = ¢** f. We note that

dfs  dfades  df

f‘;:dx_dx(; de  dxs’ To =T e
In fact,
I |fal = —c(z —zm)°,
or
e f (x) = fu (w) = e,
or

f(I) = cpe —az = c(z— xm)2

This is a special case for the equality of the general fornjula (8.3) of our theorem in Section 8,
on the generalized weighted moment Heisenberg uncertainty principle. Therefore the proof of
this fundamental Heisenberg Inequal{#if() is complete. O

~ ~|2
We note that, iff € L*(R) and theL*-norm of f is || f||, = K then|f|* and ‘f‘

are both probability density functions. The Heisenberg inequalimathematical statistics
and Fourier analysisasserts that: The product of the variances of the probability measures

|f (2)|* dz and ‘f (5)‘2 d¢ is larger than an absolute constant. Parts of harmonic analysis on
Euclidean spaces can naturally be expressed in term&aiissian measuyréhat is, a measure

of the formcye—le!’ dz, wheredz is the Lebesgue measure and:, (> 0) constants. Among
these are: Logarithmic Sobolev inequalities, and Hermite expansions. Finally one [14] observes
that:

U|2f\2 |f| = 4 Hf”27
if fe LQ(R),
r —iéx
fO=gz [ere
and

1 ifx [
f@%ﬂzﬁée9ﬂaﬁ,

where theL?-norm|| f|, is defined as ir/i{;) above.
In 1999, according to Gasquet et al| [8] the Heisenberg inequalgpectral analysisays
that the product of the effective duratida: and the effective bandwidth ¢ of a signal cannot

be less than the vaIu?r = H* (=Heisenberg lower bound), whefer? = afﬂZ /Emz and
_ 2 ,
s (=t /e ) =7 /B
with f : R — C, f : R — C defined as in,), and

Em? :/R‘f(f)‘Qdf:Ebsf-

In this paper we generalize the Heisenberg inequalithéchigher moments fak? functionsf
and establish theleisenberg-Pauli-Weyl inequality
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ON THE HEISENBERGPAULI-WEYL INEQUALITY 5

2. PAscAL TYPE COMBINATORIAL IDENTITY

We state and provihe new Pascal type combinatorial identity

Proposition 2.1. If 0 < [%] is the greatest integer £, then

k k—1 k—1/(k—q - kE+1 k—1+1
(©) k—z’( i )+k—z‘(i—1)_k—z’+1< i >
holds for any fixed but arbitrary: € N = {1,2,...},and0 < i < [E] fori € Ny =
{0,1,2,...} such that( *,) = 0.

Note thatthe classical Pascal identitig

()= (150 (71 osesf)

Proof. Itis clear thatc (k —2i + 1)+ (k —1)i = (k —1i) (k+1). Thus

k k—1 +k‘—1 k—1
k—1 [ kE—i \ i—1

ok (B—d)! k-1 (k —i)!
Ck—ddl (k=2 k—i(i—1)(k—2+1)
k—i+1)! k—i+1)!

_ k (kf:%l) k—1 ‘ (lcfiil)
k—i Z‘!—(’Z—_éﬁll)’ k—iZ(k—2i+1)
(k—i+1)! 1

Tl (k=2 ) (k—i)(k—i+1) [k (k—2i+1)+ (k—1)4]

( k—i+1 kE+1
B i k—i+1
completing the proof of this identity. O

Note that all of the three combination$” "), (¥7/), and (*~/*') exist and are positive
numbers ifl <i < [%] fori e N.

3. GENERALIZED DIFFERENTIAL IDENTITY
We state and provéne new differential identity.

Proposition 3.1.If f : R — C is a complex valued function of a real variable0 < [] is the
greatest integeK g () = %f, and () is the conjugate of-), then

- OO PN
O F@ P @)+ 9 @) Fa) = (1) ’“(’“)d 19 (@)

, k—1
=0

[S1ES

holds for any fixed but arbitrary; € N = {1,2,...}, such that) < i < [4] fori € Ny =
{0,1,2,...}.
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Note that fork = 1 we have
d172-0

F@ I @)+ 1@ o) = (0 g (10 g i o

If we denoteG. (f) = ff® + f® f, and

; 9 (k—2i) dk—2i ; 9
(\f()| =l
dk72i dz

dxk—2¢ | drt

2

f

Y

0<i< {g] for ke N={1,2,...}

and: € Ny, then [}) is equivalent to

) G =3 (- ( b ) (150F) "™

=0

Proof. Fork = 1 () is trivial. Assume that[(*}) holds fork and claim that it holds fok + 1.
In fact,

_ ( FOF® 4 g fm> i ( FOHDF ) f®>
FO ) 4 f(mfm) I (ffm+ f<k+1)f>
FOUOED 4 (1) D) + G (1)
Groo1 (f) + Graa (f) 4

I
VRS

or the recursive sequence
(R) Grat (f) = GV (f) = Gier (FV),

fork € N={1,2,...},with Go (f®) = [f®]*, andG (f) = (2"
From the induction hypothesis, the recursive relatign (R), the fact that

J J+1 } '
S A = 3 A (-1 = — (1)
1=0 =1
fori € Ny, and

{k—l} { 5] -1, k=2vforv=1,2,...

[%}(:%)7 :2)\+1f0r)\20’17
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such that 4] < [51] + 1, if k € N, we find
Gk+1 (f)
(5]

- { > s () (f<f)2>(’“*””}

(]

MIE

k

_ {[22;] 1y k/i—lil < k_@'l — i ) (U(Hm)(’“?i)}
{5 (40 rer)

[%]—‘rl ) —1-2(i—1
- { A S (k — 1]{;:1@‘— 1) ( - 1@'__(12_ Y ) (‘f(i)f)(k | ))}

[g] ] k+1—214
- {(ﬁ)““*” P o () (o) ’}

[%]J’_l ) k+1—21
*{ G I () )}
= {(fQ)(kH) +Z(—1)" kliz ( kl_z ) <f(i>|2>(k+12i)}
v { (—1)1'],2:1 ( f__f ) (f(i)2>(k+12i)+5(f)},

(0, if k=2v for v=1,2,...

if k=2 \+1for A=0,1,....
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k—1/(k—1 ; (k+1—23)
S () Uer)T  es o,

where

(0, if k=2vforv=1,2,...

SU)=9 e . h—1-[E1] RTNEN G )
S k=15 ( [klﬁ >if<l‘<;f<[ 2>\]+ i fo>r A=0,1
(0, ifk:2vf0rv:1,2,.7..7

?

\

2\ (k+1-2[*5])

= kt1 k41— [k Bl
) et ()™ ) (B0 ,
2 2
L if k=2 \+1forA=0,1,...,
because
{k"gl}:kgl, if k=2\+1for A=0.1,...

Besides we note that, from the above Pascal type combinatorial idity ((g ancﬂg} —
[E1] )if k=20 forv=1,2,..., one gets

o e () (i B (o)
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ON THE HEISENBERGPAULI-WEYL INEQUALITY 9

if k=2vforv=1,2,.... Fromthese results, one obtains
k+1 Ek+1-0 9\ (k+1-2:0)
(=) (0)
G () = 1 5 (P00 ) (5F)
+,:1(_)k+1—i< i )(‘f ) 5
[45]
. k+1 kE+1—1i 9y (k+1-20)
= —1) : @
;( )k+1—i( i )(‘f }> ’

completing the proof of () fork + 1 and thus by the induction principle dn (**] holds for
anyk € N, O

3.1. Special cases of ().
G ()= ()"

G2 () = (1) =27
e (1) = (7R =3 (1),

2
)

Gy(f) = (’f|2)(4) —4 (‘f(l)f)(z) +2 ‘f(2)}27

G (1) = (1) =5 (1r0)) " +5 (1r2) .

(4 ( 2

Ge (f) = (|f|2)(6) —6 <‘f(1)|2> ) 49 (‘f(2)‘2> 2 _9 ‘f(?»)

G (f) = <‘f|2)(7) 7 (‘f(l)‘z>(5) Y <\f(2)\2)(3) _ (V(s)‘z)(l)’

Go )= () =8 (OF) " w20 (1) 16 (1) ™ 20"

We note that if one takes the above numerical coefficients; 0f) (i = 1,2, . . ., 8) absolutely,
then one establishes the pattern

1

112

113

1 |4|a1=2

1|5 a2=5

116 as= 9 b1: 2
1|7 a=14|b=7
118

as= 20 bg =16 c1—= 2

with

J. Inequal. Pure and Appl. Mathb(1) Art. 4, 2004 http://jipam.vu.edu.au/
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a1:2 b1:a1=2 01:b1:a1=2
a,=2+3=5 by=a1+ax=7
CL3:2+3+4:9 bg—a1+a2+a3 16

a,=2+3+4+5=14
a;=2+3+4+5+6=20

Following this pattern we get
(1)

Go (f) = (I/)” — 0 (‘f(l)f)m ¥ ag (|f(2)‘2>(5) ~ by (|f(3)|2> @, e (|f(4)’2) 7
where

ag = as + 7 =27,
b4:b3+a4:16—|—14:30,
62201+b2:2+7:9.

Similarly, one gets

Guo(9) = (11F) " =10 (|70F) " e |527)
— by (|f(3)|2>(4) + c3 (‘f(4)’2>(2) 4 ‘f@}Q,

where

a7 = ag + 8 = 39,
bs = by + a5 = 30 + 20 = 50,
C3:CQ+b3:9+16:25,

d1201:b1:a1:2.
3.2. Applications of the Recursive Sequencg (R).
Gy (f M) =Gy (fV)
(f O+ ) = (r @ 4 (7))

{ |f| NON 1)‘2)(2)} B {<|f(1)|2>(2) Ly |f(2)|2}

(1) 4 (1) s 2|

and

G5 (f) =GP (f) - Gs (f©)

e Y- {) s )
= (1) =5 (17F) "+ (1)

yielding also the above generalized differential idenfity (**) fo= 3 andk = 4, respectively.

J. Inequal. Pure and Appl. Mathb(1) Art. 4, 2004 http://jipam.vu.edu.au/
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3.3. Generalization of the Identity (**]. We denote

Hy (f) = fOF® 4 0 f@

It is clear that

/

Gt () = FO(FO) D+ (pO) I FT i k>

Hy (f) =1 Go(f®) =2[r0)* if k=1

[ Gig (f®) = f@(f0) 0 L (p0) TR i g <

From these and (}*) we conclude that

—l] ‘
S B A I B AN
D (P ()T e

2

(

—
E
N

™

@
Il
o

—~
—

Hy (f) = )

[\)
~

| —_—
=

—

12]

—1

-k — k= (I—k-2)
(—1>ZW<Z h Z)({f”’f!) 2, if k<l

Il
o

\
For instance, it = 3 > 2 = [, then from this formula one gets
Hsy (f) = G3_p (f(Q))
[45%] |
B i 3—2 3—2—1i (i42)2) G727%)
_Z(_1)3—2—z’< i )(‘f |>

0 g () ()t
_ <‘f(2)‘2>(1).

In fact,

Hy, () = fOFO + fO70 = @ p@)D 4 (D70 = g, (1) = <|f(2)|2> -

Another special case, if = 3 > 1 = [, then one gets

Hz (f) = Gz (f(l))
7] 3-1-2i
<—1f—£§2—(3‘3‘@)<\f@“|>( |

J. Inequal. Pure and Appl. Mathb(1) Art. 4, 2004 http://jipam.vu.edu.au/
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In fact,
Hs3 (f) = f(l)ﬁ + f“”@
2\ (2) 2
= Gy () = <‘f<1>‘ > —2|f@P
4. GENERALIZED PLANCHEREL -PARSEVAL -RAYLEIGH IDENTITY

We state and provihe new Plancherel-Parseval-Rayleigh identity.

Proposition 4.1. If f and f, : R — C are complex valued functions of a real variahte
£, =ewfandfP = d% far Wherea = —27&,,i with i = \/—1 and any fixed but arbitrary

constant,, € R, f the Fourier transform off, such that
¢ _ —2iméx d
FO= [ @)
with ¢ real and
— 2iméx d
(@) /R i () de,
as well asf, £, and (¢ — &,,)" f are in L2( ), then
(4.1) [e-ea”|f o]

holds for any fixed but arbitrary € Ny = {0, 1

)’2dx

Proof. Denote
(4.2) g(z) =e 2 f (2 + xp)

for any fixed but arbitrary constant,, € R.
From [4.2) one gets that

(4.3) (&) = / e g (z) da
R
_ / 6—2i7r§ac (6—27ri£v£mf (ZE + xm)) dx
R
_ 627ri56m@+fm)/eZﬂi(§+£m)xf (l‘) dl‘
R

_ 627rz’zm(£+£m)f (5 + Sm) .

Denote the Fourier transform ofp) either byF () (¢) , or F' [¢¥) (z)] (€) , or also agg®

From this and Gasquet et al/ [8, p. 155-157] we find
1

(4.4) &g (¢) = WFW €).
Also denote
(4.5) hy, (z) = g(p) (z).

From (4.%) and the classical Plancherel-Parseval-Rayleigh identity one gets

[liw@f ac = [ ity @P

J. Inequal. Pure and Appl. Mathb(1) Art. 4, 2004 http://jipam.vu.edu.au/
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ON THE HEISENBERGPAULI-WEYL INEQUALITY 13

or

4.6 Fg® ()2 de = [ |¢® (2)|° da.
(4.6) [ 1Fa? ©f @ = [ 197 @) aa
Finally denote

4.7 2= —e? il d
(4.7) (e = [ (€= |F )] a

~|2
the 2p!" moment of¢ for | f| for any fixed but arbitrary constagt, € R andp € N,.
Substitutingé with £, &, we find from [4.8) —[(4]7) that

(= [ € |Fee ] ae
= [er|ememerafie )| ae

=/f%m&ﬂd€
R

1
P) x)‘de.

From this and[(4]2) we find
1 —2miztm, ) |?
(M2p)|f|2 - (27T)2p /]R ’(6 f<x+xm>)

Placingz — x,,, onz in this identity one gets

1 —2mi(x—Zm )ém (p) 2
(sz)|f|2 = W/R‘(e ( ) f(x)) d

= o |l s @]

Employinge® f (x) = f, (x) in this new identity we find

2
(M2p ’f| (2r 2p/ ’f )‘ dzx,
completing the proof of the required identify (§.1) ([16] =I[24]). O

dx.

5. THE p™-DERIVATIVE OF THE PRODUCT OF TWO FUNCTIONS

We state and outline a proof for the following well-known result onitfederivative of the
product of two functions.

Proposition 5.1.If f; : R — C (i = 1,2) are two complex valued functions of a real variable
z, then thep!"-derivative of the producf, f» is given, in terms of the lower derivativéém),

f3" by
(5.2) (fle)(p) _ i < 72 > 1(m) 2(p—m)

m=0

for any fixed but arbitrary € Ny = {0} UN.

J. Inequal. Pure and Appl. Mathb(1) Art. 4, 2004 http://jipam.vu.edu.au/
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Proof. In fact, forp = 0 the formula |(5.1) is trivial, agf, f2)© = £O £, Whenp = 1 the

formula [5.1) is(f1 /) = £ fo + £ which holds.
Assume that{ (5]1) holds, as well. Differentiating this formula we get

B =3 ( " ) AR+ Z ( . ) R

m=0

p+1
_ Z ( ) flm)f2p+1 m) + Z ( ) m)f2(p+1—m)

=(§)ffp“>fz+2{<mfil>+( )]f R (§>f1f§”“>

m=

+1 +1 m +1
:<£+1) <p+1f+z<p ) fm o+ )+(p )ff2p+1
pH

—E:(p+1)ﬂmh“1m,

as the classical Pascal identity

+1
© ()= (i) = (70)
holds form € N : 1 < m < p. Therefore by induction op the proof of [5.11) is complete. O

Employing the formuld (5]1) witlf, (z) = f(z), fo(z) = €™, wherea = —21&,,i,i = v/—1,
& fixed but arbitrary real, and placing(z) = (f1f2)(xz) = e** f(x), one gets

52) @ =S (2 Yan i @),

m=

0
Similarly from the formulal) withfy (z) = f(x), f2 (z) = f(x), |f]> = ff andp = k,
m = j, we get the following formula

k
(5.3) (|f|2)(k) _ Z ( ];’ ) f(j)f(k—j)’
=0

for the k' derivative of| f|*.
Note that from ) withn, = & one gets the modulus ¢f”to be of the form

i < P ) )]

k=0

(5.4) | fP)] =

becauséc®®| = 1 by theEuler formula: € = cos 6 + isin 0, with § = —27¢,,x (€ R).
Also note that thep'” moment of the reat for | f|*is of the form

(55) e = [ (@ =21 @) do

for any fixed but arbitrary constant,, € R andp € Nj.
Placingz + z,, onz in (5.5) we find

(1) 2 = /RxQP \f (@ + )2 d.
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From this, [(4.2) and
g (@)] = [e72™ f (2 + 2) | = | f (@ + 200
one gets that

5. (e = [ 4 lg ) d,
Besides[(5]5) anf¥f,| = | f| yield
67 () g = [ (o= ) Ifo @)

6. GENERALIZED INTEGRAL |IDENTITIES
We state and outline a proof for the following well-known result on integral identities.

Proposition 6.1.1f f : R — Cis a complex valued function of areal variahleandh : R — R
is a real valued function af, as well asw, w, : R — R are two real valued functions af,
such thatw,(z) = (z — z,,)Pw(x) for any fixed but arbitrary constant,, € R andv = p — 2¢,
0<gq< [&] then

)

(6.1) /wp (z) AV

holds for any fixed but arbitrarp € Ny = {0} UN andv € N, and allr : r =
0,1,2,...,u—1,aswell as

Il
3 e
||M|
e} —
—~
|

) (2) R () 4 (—1)" / W (2) b (z) de

i)
) bW (2) dx = (—1)" W) (x) h (x) dz
(6.2) [ @ @ e = 1) [l @)1 ()
holds if the condition
(6.3) UZ )" lim wr)( YR () =0,

|z|—o0

r=0
holds, and if all these integrals exist.

Proof. The proof is as follows.
i) Forv = 1 the identity [6.1) holds, because by integration by parts one gets

/ (wph(l)) (x)dx = /wp (x)dh (x) = (wph) (x) — / (wél)h) (x) dx.

Assume that[(6]1) holds far. Claim that [[6.]l) holds for + 1, as well. In fact, by
integration by parts and from (6.1) we get

/ (wph(”“)) (x)dx

_ / w, () dh (z)

= (wph(”)) (z) — /wél) (z) B (z) da

J. Inequal. Pure and Appl. Mathb(1) Art. 4, 2004 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

16 JOHN MICHAEL RASSIAS

— (wph(v)) (JZ) _ (Z (_1)r wl(?r-i-l)h(v—r—l)) (ZB) + (_1)1) / (wl()v-i-l)h) (IB) dﬂ?]

= (wyh™) (z) — Z

T

wé”h“““””] () = (1) / (wyVh) () da

(-1
= (wyh) (z) + i (-1)" wé’”)h((“l)’"l)) () + (—1)"* / (wPtVh) (z) do

(v4+1)—1
= ( Z (_1)r w}(or)h((v+1)rl)) ($)+(—1)U+1/<wév+1)h) (QZ) dz,

r=0

which, by induction principle om, completes the proof of the integral identity (6.1).
ii) The proof of [6.2) is clear fron] (6]1) anf (6.3).
O

6.1. Special Cases of (6]2):
i) If h(z)=]|fO (= | andv = p — 2¢, then from ) one gets

(6.4) /pr (z) (\f@ (a:)‘2>(p_2Q) dx:(_l)p—m;/R (0=20) () | O ()| dr,

for0 <i!<gq<[§],
i) If -
h(@) = Re (rusf®) (@) /9 (@)
and if (6.3) holds, then fronj (6.2) we get

(p—29)

(6.5) /pr (x) (Re (qujf(k) (x) FO (x))) dx
= (—1)p_2q /sz(?p_Qq) () (Re (qujf(k) (x) fa (x))) dz,

wherer,,; = (—1)*" 3 for0 < k < j < ¢ < [2], andv = p — 2q.

7. LAGRANGE TYPE DIFFERENTIAL IDENTITY
We state and provine new Lagrange type differential identity.

Proposition 7.1.1f f : R — Cis a complex valued function of a real variableand f, = e** f,
wherea = —fi, withi = y/—1 and 5 = 2x¢§,, for any fixed but arbitrary real constagt,, as
well as if

Apk—( )62” 0<k<p,

By = Spk(i)( )ﬁijk 0<k<j<p,
wheres,, = (—1)"* (0 < k < p), then

and

(7.1) | P \ —ZApk\f \+2 Z BkaRe(rpkjﬂ fU )

0<k<j<p
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holds for any fixed but arbitrary € N, = {0} U N, where(-) is the conjugate of-), and
Tpkj = (—1)”‘% (0 <k < j<p),andRe (-) is the real part of(-).

Note thats,, € {1} andr,; € {£1, £i}.
Proof. In fact, the classical Lagrange identity

2 P P
_ (zw) (zw) S - mal
k=0 k=0

0<k<j<p

p

E TkZk

k=0
with r, z, € C, such thab < k£ < p, takes the new form

(7.2)

0<k<j<p
— > InPlalP] +2 )] Re(niaz)
0<k<j<p 0<k<j<p
p p p p
S [P 3L SR ISR 0 ST ST I
1=0 k#0 1=0 k#1
P p—1
4t (Z — Z \rk|2> 12,7 + 2 Z Re (reFj21Z5),
1=0 k#p 0<k<j<p
or the new identity
P 2 P
(7.3) Zrkzk = Z el |2k]” + 2 Z Re (ri752%5),
k=0 k=0 0<k<j<p
because
(7.4) [Tizi = Taul” = (Tazy — Tyze) (riZj — %)
= [rel* (250" + 175" |2l = (reT207% + Toriznz;)
= |rul* 125 + IrI* 2] — 2Re (nT52075)
as well as
(7.5) oo+ DD Il
0<k<j<p 0<k<j<p
= Y Izl
0<k#j<p
- (ol (S b (S b
k40 k£1 k+£p
Setting

00 (1) (2)emr oo ()

one gets that

2
(7.7) Vﬁ:(£>wwm=%m
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and

(7.8) Ty = ( y ) ( ? ) (=Bi) " (B
— 2=k (_1)p—k ( /]Z ) ( J; ) 3k
= Tpk;jSpk < i ) ( ];- > R

= Dpk;jTpkj

whereA,, B,; € R, ands,, = (—1)" " € {+1} as well as
k45

Tpkj = 107K = (=1)P7 2 € {£1, +i} .
Thus employing[(5]4) and substituting

2 =", Tk=<z>ap_k (0<k<p),

in (7.3), we complete from (7.6) £ (7.8), the proof of the idenfity|(7.1). O

We note that
Spp =1, if p=k(mod?2);

Spp = —1, if p=(k+1)mod2.
Similarly we have
ro; =1, if 2p=(k+ j)(mod4);

Toj =14, If 2p=(k+j+1)(mod4);
roe; = —1, if 2p=(k+j+2)(mod4);

Tok; = —i, it 2p=(k+j+3)(mod4).

Finally (7.2) may be called thieagrange identity of first forrrand [[7.8) the.agrange identity
of second form

7.1. Special cases of (7}1):

(i)
(7.9) O] = e gy
= <A10 I + A |fI’2> + 2B1o1 Re (1101 f f)
= B +1f1° +2(=B) Re (if ')
= U1+ 11" +261m (fF).
because
(7.10) Re(iz) = —Im (z),

wherelm (z) is the imaginary part of € C.
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Also note thatnother wayto find (7.9), is to employ directly only (5.4), as follows:

O =laf + £
= |—iBf + [
= (—iBf + 1) (iBF + F')
=P+ +B(=) (FF = fF)
=B+ £ +28Im (£F).

‘ 2

(i)

(7.11)  [fO] = f)
= A |f* + An |f,|2 + Ago |f//|2 + 2Re (7“201f7 + rooaf " + 7“212f/7)
= B fIP+4B%|f P + "] + 2Re (—2i8° f ' — B*f F7 — 2iBf' )
= BS1P + 487 1f'7 + 1f"]° + 46° Im (£ 1)

—26°Re (ff") +481m (f'f").
Similarly, from (5.4) we get als¢ (7.]11), as follows:
P = |ar +af + 1" = (=02 = i8S + ) (~B°T + 6T + 1)
leading easily to (7.11).

| 2

8. ON THE HEISENBERG-PAULI -WEYL INEQUALITY

We assume thagt : R — C is a complex valued function of a real variableandw : R — R
a real valued weight function aof, as well asz,,, &, any fixed but arbitrary real constants.
Denotef, = e** f, wherea = —27&,,1 with ¢ = \/—1, and f the Fourier transform of, such
that

FO= [ et i
and

Fa)= [ e e
Also we denote

sy = [ 0 @) =) | (0 o

the 2p'" weighted moment of for |f|2 with weight functionw and

() = [ (€= |F )] a

~12
the2p'* moment of¢ for ‘f’ . Besides we denote

(e P (p—a) . p _ i p
Cy = ( 1)p_q( ¢ ),If0§q§[2] (thegreatestlntegec_t2>,

Iy = (—1)p_2q/Rw§)p_2Q) (x) ’f(l) (x)}zdx, if 0<I<¢g< [g} ;
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Ly = (=17 / w2 (@) Re (ryf© (@) 9 (2) ) do,

if0<k<j<q<|].
where
PRES .
ra; = (—1)7 2 € {£1, +i}

and

wp = (z — zy)" w.
We assume that all these integrals exist. Finally we denote

D, = ZAq,Lﬂ +2 > Bukilos,
0<k<j<q

if | Dy < oo holds for0 < ¢ < [£], where

2
Aﬂz(?)BM”
Byii = Sqk ( Z ) ( ;] ) ﬁ2q*j7k’

with 3 = 27, ands,, = (—1)*", and

[p/2]
Epy= Z CoDyg,

q=0

if |E,,¢| < oo holds forp € N.
Besides we assunibe two conditions
p—2q—1
(p—2g—r—1)
8.1 —1)" lim w(r) x O ()| =0,
6. > (1 Jm ) @) (110 @)
for0 <1 <g¢ <[], and
p—2q—1
. = (p—2q—r—1)
62 Y (-1t wf) (@) (Re (ruy /O (@) 19 (1)) 0,
r=0

for0 < k < j < ¢ < [B]. From these preliminaries we establish the following Heisenberg-
Pauli-Weyl inequality .

Theorem 8.1.1f f € L? (R), then

(8.3) %/ (H2p),, 1712 C/ (H2p) 17 </’ Epfl,

holds for any fixed but arbitrary € N.
Equalityholds in [8.3) iff thea-differential equation

fP (@) = =2¢5 (2 — 2)’ fu (@)

of p™ order holds for constants > 0, and any fixed but arbitrany € N.
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In fact, if ¢, = ]“2—72; >0, k, € R — {0}, p € N, then thisa-differential equation holds iff

1 0o op\ Mm~+1
f (.flf) . 627Tzarfm pz aa:] 1 + Z (_1)m+1 (kz%x(;p)
I8 p2rti pipti | p2mAlp] |7
=0 m=0 P 2 P

holds, wherecs = = — z,,, # 0,1 = /-1, z,, &, (€ R) are any fixed but arbitrary constants,
anda; (j =0,1,2,...,p — 1) are arbitrary constants id, as well as

PPt — (2(m+ 1) p+j) 2m+1Dp+ji—1) - (Cm+Dp+j+1),

denotepermutationdor p € N, m € Ny, andj =0,1,2,...,p— 1.
We note that ifz,, is the mean of: for | f|* then

:/Ra:!f(:v)fzdx (: /Ooox(]f(x)|2_\f(_x)‘2) dx).

Thus if f is either odd or even, thq[7i‘|2 is even and:,,, = 0. Similarly, if &, is the mean of
~|2
for ‘f‘ , then

Also ¢, = 0if f is either odd or even.
We also note that the conditiorjs (B.1) — (8.2) may be replacebéogwo conditions

(8.4) lim w ) ( (}f(l | )(p—2q—r—1) 0,

|z|—o00
for0 <i<g<[E]and0 <r<p-—2¢—1,and

= (p—2q—r—1)

(8.5) lim w ( ) <Re (qujf(k) (x) O (93))) =0,

|| =00
for0<k<j<qg<[fland0<r<p-—2¢—1.

Proof of the Theoremin fact, from the generalized Plancherel-Parseval-Rayleigh identity (4.1),
and the fact thafe®| = 1 asa = —2n¢&,,i, one gets

(8.6) M, = (U2p)w,|f|2 ) (M?p)|f’2

~([wr@a-air@ka)- ([ €-ar|iof «)
:ﬁ(/ﬂ{w%x)u—xm)?ﬂn o) ([ 110 @l ar)

From (8.6) andhe Cauchy-Schwarz inequalitye find

(8.7) M, > (%% (/R |wy (2) fo (x) £ (2)] dﬂf)27

wherew, = (z — z,,)Pw, andf, = e** f.
From [8.7) andhe complex inequality

1
(8.8) lab| > =

5 (ab + ab)
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With o = w, (z) f, (z), b= £ (z), we get

69 Moo 5 [ @ (@ P 0+ T @) ]

From (8.9) and the generalized differential identity (*), one finds

2
[p/2] _
1 dp—24
(8-10) MP = 22(p+1) 72p [/R Wp (x) (Z 7 Jrr—24 |f(q ’ ) dx] :

q=0

From [8.10) and the Lagrange type differential idenfity|(7.1), we find
[p/2]

1 dr—2a
1) pmléwp<x>lchdp2q(quzf o

q=0

+2 ) qujRe<qujf(’“)(x)f(j)(x))>]dxr.

0<k<j<q

From the generalized integral identify (6.2), frgine L*(R), the two conditions] (8]1) + (§.2)
(or (8.4) —[8.9)), or from[(6]4) 1 (6.5), and that all the integrals exist, one gets

(8.12) w dp - 1O (@) da = (=12 [ w®2) () | £O ()| da
- R 2 dxp dar=2a B R
= 1ql,
as well as

(8.13) / w, (x ddppgjq Re (7 f® (2) 19 (2))
= 0 [ @) Re (1 @) £ @) = T

From (8.11) and (8.12) + (8.[13) we find the generali2zgd order moment Heisenberg uncer-
tainty inequality (forp € N)

2

[p/2]
gt (S (S T )

q=0 0<k<j<q

]‘ 2
= WEp,f, (Hp),
where
[p/2]
E, ;= CyDy, if |Ep7f| < 00

holds, orthe general moment uncertainty formula
(8.14) XMy = f sl
Equalityholds in .) iffthe a-differential equatlonf(p)( ) = —2¢,2% f, (z) of p' order with

respect tar holds for some constanf, = 1k:2 > 0, k, € R — {0}, and any fixed but arbitrary
p e N. O
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We consider thgenerala-differential equation

dpy

(ap) dap

of p'" order, wherez; = x — x,,, # 0, k, # 0,y = fo (v) = e f (z), a = —27&,i, p € N, and
the equivalend-differential equation

+ k> xfy =0

dP vy

(0) I p + kafy =0,
because

dy _ dydv; _ dyd(z—zm) _ dy

dr  dxs dv  drs dz dxg’
and o .

ay ay
N.
der 2 P

In order to solve equatiofy,{) one may employ the followingower seriesnethod ([18],[21],
[25]) in . In fact, we considethe power series expansion= )~ , a,z} aboutzs, = 0,
converging (absolutely) in

|zs| < p= lim =00, x5#0.
n—00 | (pnt1
Thus
k2$§y _ Z kQCLn n-‘rp’
n=0
and

dpy -
Pn T n p
d:c(; Zp ¢

(with permutations”” = n(n —1) (n —2)--- (n —p + 1))

_ n—+2 n+p
= E By P an 9pTs

n+2p=p
(orn=—p)

(with n 4+ 2p) onn above and

P = (n+2p)(n+2p—1)(n+2p—2)---(n+p+1))

n+ n+
E P pa/n+ px(s + E P pan+2p$5

n=—p n=0
e}
_ Z Paner aanxngrp
n=0
(with @49, = Oforalln € { —p,—(p — 1),...,—1}, or equivalentlya, = a,4; = --- =

A2p—1 = 0)
Therefore from these and equati@j)(one gets the followingecursive relation

n—+2 2 _
Pp pan+2p + k‘pan = 0,

or

k2an,
(Rp) (npy2p = ~ n €Ny, peN.
p
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From the ‘hull conditior?

Qp :O,ap_l = 0,...,a2p_1 =0
and [R,) we get
azp = Q5p = A7p = "':O7a3p+1 = Qsp4+1 = A7p41 = **° =0,...,
and
Q4p—1 = Aep—1 = Agp—1 — = 07

respectively. FronR,) andn = 2pm with m € N, one finds the following sequences

(a2pm+2p) ) (a2pm+2p+1) ) (a2pm+2p+2) ey (a2pm+3p—1) )
with fixedp € N and allm € Ny, such that
2 2 4
UL, . . T
P 2p Y P dp“2p — Sop pdp 0
P; P, PP,
2m—+2
- m+1 ki "
A2pm~+2p = (—1)

2p i 2 2p 40
PpPPpP . Ppm'l'P

are the elements of the first sequefieg,,,2,) in terms ofa,, and

2 2 4
a = ——kp a a = ——kp a = —kp a
2p+1 — p2rtl 1 dp+1 — pirt 2p+1 — p2rtl piptl Iyeees
j2 j2 p P
L2m+2
P

a2 2p+1 = ( 1)m+1 aj
pm+2p+1 — T 2p+1 pdp+1 2pm+2p+1
PP P, S &

are the elements of the second sequéngg, . 2,+1) in terms ofa, ..., and

2
(a )a b a
2p+(p—1) 3p—-1 = P3p—1 p—1>
P
ky ky
<a2p+(3p71) :) Asp—1 = _P5p—1a3p 1= P3p—1P5p—la'p_17 cee
p p p

2m+-2
kp

(a2 3p—1 :)az 3 1:(—1)m+1 ap—1
pm+(3p—1) (2m+3)p— piipit. Pézm+3)p—1 P

are the elements of the last sequeieg,,+s,—1) in terms ofa, ;. Therefore we find the
following p solutions

00 2 9p m—+1
Yo = Yo 275 m+1 (kpxﬁ )

Z 2p pa 2(m+1)p’
e PP P ... Pp( )p

y1 = y1 (v5) = 5

00 k2 2p m+1
L+ (=™ U5z,”) ]
m=0

2p+1 pdp+1 2 1 1
Ppp+ Ppp+ "'Pp(m+ )p+

Yp—1 = Yp-1 (w5) = xg_l

00 ]{}2 2p m—+1
1 + Z (_1)m+1 ( Px(i ) ] ’
m=0

3p—1 pop—1 (2m+3)p—1
Pp Pp ce Pp

or equivalently the

ST AT "
yj = y; (v5) = x5 |1+ C —" 2(m+1)p+g
— Pp2p+3ppp+3 . Pp( +1)p+j
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forall 7 € {0,1,...,p — 1}, of the differential equatior@, in the form of power series
converging (absolutely) by the ratio test.
Thus an arbitrary solution opf) (and of [,)) is of the form

fla)=e™ [Z a;y; (%)] , w70,
=0

with arbitrary constants; (j =0,1,2,...,p —1).

Choosing
CL():l7 CL1:0, CLQZO, ceey CLp_QZO, ap_1:0;
CLOZO, alzl,agzO, ceey ap,QZO, ap,le;
;
and
CLOZO, a1:O, CZQZO, ceey &p,QZO, ap,lzl,

one gets thay; (i € {0,1,2,...,p — 1}) are partial solutions ofd(), satisfyingthe initial
conditions

y(0)=1, )(0)=0,...,u% " (0) =0;

v (0)=0, ¢, (0)=1,...,47(0)=0;

and
Ypo1 (0) =0, 9,1 (0)=0,..., g7V (0) = 1.

IfY, = (Y0, v1,---,Yp—1), thenthe Wronskiaratzs = 0 is

Yo (0) ] (0) T Ype (0) é (1) : 8
wo)=| 0 a0 A O D,
y 0 0) yP) - y®(0) 00 - 1

yielding that these partial solutionsyy, 1, . . ., y,—10f (J,)) arelinearly independentThus the
above formulay = f, () = Z;’;é a;y; gives the general solution of the equati((and also
of (a,)).

We note that both the above-mentioned differential equatjef)sapd are solved com-
pletely via well-knownspecial functiongor p = 1 (with Gaussian functions) and for = 2
(with Bessel functions), and via functions in terms of power series convergiRgaon p > 3.
Therefore the proof of our theorem is complete.

We claim that, ifp = 1, the functionf : R — C given explicitly in our Introduction (with
c=rc =k}/2 >0,k € R — {0}) satisfies the equality o. In fact, the corresponding
a-differential equation

dy
(ay) T + l{:f:r:(;y =0,
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wherezs = x — x,, # 0,y = fo (x) = e f (x), a = —27E,,,1, IS satisfied by

Yo = Yo (33)
2 2)m+1

- m (klxé

-1 - 1 m+1 (Cla’%)m—H
- +ﬂ;(_ R ]

(by the power series method and because
PPt PR — 0 g 2 (m 1) = 27 (m+ 1)),
or

o0 . ng m
m=1+3 (0 E gy (et o) = et
m=1 :

(becausd - (—1)" L =t —1).
Therefore the general solution of the differential equatta is of the formy = agy, (with
arbitrary constant, = ag), or

eaxf (I) = Coe*C(xf:pm)Q’ or f (Z‘) — COGQm‘:zzgm .efc(“*ffm)Q‘

However, one may establish thfsmuch faster, by the direct application of the method of
separation of variables to the differential equatjer) (
Analogously to the proof offf;) in the Introduction we prove the following more general

inequality [H3).

8.1. Fourth Order Moment Heisenberg Inequality. Foranyf € L?(R), f : R — C and any
fixed but arbitrary constants,,, &, € R, the fourth order moment Heisenberg inequality

(1) ) - u0) g 2 s B2,
holds, if

(u)go = [ adlf (@) da
and

(M4)|f’2 :/Rffsl f(f)rdf

with 5 = x — z,,,, and§s = £ — &,,,, are the fourth order moments, and

Flo = [ e~ [ @f@a iVl

as well as
Fay =2 [ [(1=47Gad) | @F = a3 1 (@) ~dnuaiin (£ (@) 7)) o,

if | Es ¢| < oo holds, wherdm (-) denotes the imaginary part 0f).

Equality holds in iff the a-differential equatiory” (z) = —2co2%f, (x) of second order
holds, fora = —27&,i, y = fu (z) = €** f (x) and a constant, = k5 > 0, k2 € R — {0},
rs = — x, 7 0, Or equivalently

d*y
(CLQ) @ + kgx?;y =0
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holds iff

T o 1 1
f (I) — |x6|62m$§m |:020J_1/4 (5 |]{32| Ig) + 621J1/4 (5 ‘k2| {L‘?;):|

holds for some constants,, c;; € C and withJ.,,, the Bessel functions of the firsind of
ordersii, [16]. We note that ifz,, # 0 and¢,, = 0, then

1 1
f (.CE) = \/ ’335‘ |:020J1/4 (5 |k’2| x§> —|—021J1/4 (5 ‘k’g‘ x%)} .

We claim that the above functighin terms of the Bessel functionk, /4 is the general solution

of the saidu-differential equationdy) of second order. In facthe ¢-differential equation
5 d2y k2 2,
(02) d_azg + kyxsy =0

is equivalent to the following@essel equation

v du 1\?
2 2 —
Z@‘FZ%—F Z—<Z>]u—0
. 1 . . . 1 - .
of orderr = ;, with u = T’m andz = 3 |k|x3. But the general solution of this Bessel

equation is

u(2) (Z y/M) = co0J_14 (2) + ca1J1/4 (2)

1 1
= co0J_1/a | = |kl :v§ + co1Jia | 5 |kl x§
2 2

for some constants,), ¢y, € C.
In fact, if we denote

1, xs >0

(8.15) S =sgn(x5) = :
—1, x5 <0

S dy 1 y K|
’3:5‘3/2 dI‘g 2 ‘365’5/2

Pu_ d (du) fdz | 5 &y o S dy 5y | [
dz2 - d$5 dz d$5 - |x6|5/2 dﬂ?g ‘x6|7/2 dl'(s 4|I5‘9/2 2-

Thus we establish

then one gets
du du dz

dz  dr; [ dvs

and

d*u du 1 d? 1
20U a1 320y L
§ dz? + Zdz 4 | da? + 16u'
But
d?y
12 = —k%x%y,
5
or
B

ksxs———
dr? 2 5,/1%\

Therefore the above-mentioned Bessel equation holds.

= —42%.
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However,
dy dydrs dyd(x—mz,) dy
dr dxs dv  dzs dz dxg’

d?y _d (dy\ d dy \ dxs d?y
dz?  dx \dr) dvs \dz;) doz — da?’
Therefore the above two equatiofas)(and [f2) are equivalent. Thus one gets

1 1
Y= fo(r) =e"f(2) = /|24| {CzoJ—1/4 (5 |Ka| 95§) + ca1J1/4 (5 | Ko JU?)] )

and

or
1 1
f(l’) = 4/ \x(;]e—ax |:C20J1/4 (5 |k2‘ l’g) + 021J1/4 (5 ’k2|$§)1 ,

establishing the functioffi in terms of the two Bessel functions.; .

However,
. ( )"
Jia (2 ( ) Z n'F +n—|—1) z > 0.

Thus, ifz = 3 |ko| 23 > 0, then

1 2V/2 2
V25| J1/4 (5 |k2|x§) = 5@3/%2\ {% _ ﬁxg +.. 1 :

o(3) = (3)r(5) =% ()
4 4 4 4 16 4
andS = sgn (x5), s # 0, such thatzs| = Sxs. Similarly,

T =(3) "X o (—<§ )+ P R

because

n=0
Therefore (1)
1 I' (= 1 k2
/ - kol 22 ) = 4 1 2 4
ol ”“(2'2'%) v 4|k2|l AT }
because
1 3 1 1 T
r(-)r(Z)=r(=)r(1-=>)= = V/2
(4) (4) (4) ( 4) sin Ir V2
or

(3= 555 mor()=r (-9 3()- 2%

A direct wayto find the general solution of the abo¥differential equation[{) is by ap-
plying the power series method f¢f,)). In fact, consider two arbitrary constanis = 5, and

a; = ¢91 such thayy = > a,z¥, aboutzs, = 0, converging (absolutely) in
n=0

Qn

|zs| < p= lim = 00, x5 # 0.

Thus
oo
d_x(; Znan 5 1—;(71“‘1)@%155?7
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and
d?y > e
g n=1
— (n+2)(n+1)a,20y
n=0
= Y (n+4) (n+3) anary
n-+2=0or
n=—2
= (2aq + 6azzs) + Z n+4)(n+3) an+4x§+2,
n=0
as well as

k3xsy = k3 E anzit?.
n=0

Therefore from[¢;) one getghe recursive relation
k3a,

(n+4)(n+3)

(Rz) Qptyq = —

with as = asz = 0.
Lettingn = 4m with m € Ny = {0} UN in this recursive relation, we find the following two
solutions of the equatiofd4):

yozyo(iﬁa)
m+1
_1+Z m+1 (k%xﬁ) i
c(Adm+3) (dm +4)
1 kQ 4 k% 8 kS 12+“.
5.4 Ty 78 T3 78 1112 ’
and
ylzyl(x)
k2 4)m+1
_ 1 m+1 (
- +Z (4m +4) (4m + 5)
_ k% 5 kg 9 k6 13
= st 5.8 9% 1.5.8.9.12.13%°

We note that each one of these two power series convergie logitio test.
Thus an arbitrary solution gbf) (and of fz5)) is of the form

Y = Ca0Yo + C21Y1,
or
f(x) = e [caoyo (z5) + carn (w5)]
wherezs = x — x,, # 0,

/Tl Tl L1y (3 el 23)

Yo = F(l) )

Se{+1},
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and

[ST () VTl s (8 Ihal 22)|

Y1 ok, r | )
whereS is defined by[(8.15).
Besides we note that from, = 0, a3 = 0 and the above recursive relatigiy) one gets
ag = ajg = a4 = --- = 0,aswell asi; = a1; = a;5 = --- = 0, respectively.
From this recursive relatioi(j) andn = 4m with m € N, we get the following two
sequence§iy, 14), (aam+s), Such that

k2 k3 ka
a4 = —5——00,08 = =504 = ;5500 - - -
4 3‘407 8 784 3.4-7-8 0 ’
» k§m+2
m = (=" ’
Agmia = (—1) 3.4.....(4m—|—3)(4m+4)a0
and
K2 K ky
s = ———01,09 = =505 = ——(—— =01, ...
T 4.5 77T 8.9° 4.5.8.9 1
" k§m+2
Amss = (—1) 4,5.....(4m—|—4)(4m—|—5)a1

Choosingag = c90 = 1, a1 = c91 = 0; andag = c9 = 0, a; = c91 = 1, one gets thag, andy,
are partial solutions ofg), satisfying the initial conditions
Y (0) =1, y(0)=0; and y (0)=0, y (0)=1.

Thereforethe Wronskiarof g, y; atzs = 0 is

Yo (0) y1 (0) 1 0

W (yo,y1) (0) = = =1#0,

% (0) 11 (0) 0 1
yielding that these = 2 solutionsyg, y; arelinearly independentWe note that, if we divide
the above power series (expansion) solutignandy,, we have

Y1 (25)

w0 (za) 1 (25) (yo (w5)) ™"

2
:xts_i__xg_i_’

which obviously is nonconstant, implying also thatandy, are linearly independent.
Thus the above formula = agy, + a1y; gives the general solution @iy (and also of{gJ)).
Similarly we prove the following inequality/{s).

8.2. Sixth Order Moment Heisenberg Inequality. For anyf € L*(R), f : R — C and any
fixed but arbitrary constants,,, &,, € R, the sixth order moment Heisenberg inequality

1
(Hs) (k6) g2 - (M6)m2 > WE:?,JH

holds, if
(el o = [ adlf (@) da
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and
(ol = [ 8]7 @ ae

with 5 = = — z,,, and&s = £ — &,,,, and
£ _ —2iméx d _ 2iméx £ d
FO = [ e s @nf )= [ e

as well as
Bys=-3 / 2(1—6n€2ad) |f @) =323 | (@) —12n&uad i (£ (2) ()] da,

if |Es | < oo holds, wherdm (-) denotes the imaginary part 0f.

Equality holds in iff the a-differential equationf” () = —2csxf, (x) of third order
holds, fora = —27&,.i, i = V-1, f, = €*f, and a constant; = % > 0, ks € R, or
equivalently iff

2
flx)=emeny agrg
j=0

1+ i (_1)m+1
m=0

(k3e)™"

(44+7)(B+7)(6+7) - (6m+4+7) (6m+5+7) (6m+6+j)

X

holds, wherer; # 0, anda; (5 = 0, 1, 2) are arbitrary constants id.
Consider thex-differential equation

d3y
(as3) g + k‘§x§y =0,

with y = £, (z) and the equivalent-differential equation

d3y
(03) e + ka3y =0,

with x5 = x — z,, andk; € R — {0}, such thatd®y/ dz® = d3y/ dzj.
Employing the power series method @), one considers the power series expangion
>, anxy aboutrs, = 0, converging (absolutely) in

|zs| < p= lim = 00, x5 # 0.

n—oo

Qp41

Thus

o0
2.3 _ 2 nt3
kgxay—E k3anxg™,
n=0
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and
Py & -
d_x§ :Zn(n— 1) (n—2)aay™?
n=3
= Z (n+6)(n+5)(n+4)a, ey
n=-—3

— (6a3 + 24a4xs + 60a5x§) + Z P3n+6an+6x§+3

n=0
)
o n—+6 n+3
= g P ay, 61}
n=0

(with a3 = a4 = as = 0), wherePy™% = (n 4+ 6) (n + 5) (n + 4). Therefore from these and
equation|{) one getshe recursive relation

k2a,
(Rs3) Unt6 = —%, n € Ny
3
From “the null conditiori
3 = U, — U, -
(V3) az =0 as =0 and as =0

and the above recursive relatigRs) we get

ag = ays = ag = --- =0,
a10:a16:a22:---20, and
a11:a17:a23:...:0

respectively.
From andn = 6m with m € Nj one finds the following three sequendes,,.s),
(a6m+7)’ (a6m+8), such that

k3
g = — a
0T 456"
2 k3
a = — g = a
201112 T 4.5.6-10-11- 127"
k,2m+2
m = _1m+1 . ’
agm+6 = (—1) 4.5-6---- (6m+4)(6m+5)(6m+6)a0
and
k3
T e
k2 ks "
A1a = — a7 =
BT 1112. 3" " 5.6-7-11-12- 13"
. k2m+2
a6m+7:(_1) i °

5-6-7- (6m+5)(6m+06)6m+7) "
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as well as
k3

6-7-8°%
k3 ks

- ag = ag,
12-13-14 6-7-8-12-13-14

ey

ag — —

a14 =

apm+s = (—1) G -7 -8 uvns (6m+6)(6m+7)(6m—|—8)a2
Therefore we find the following three solutions
Yo = Yo (5)
00 k? 6\m+1
T Z (_1)m+1 (k3x3)
— 4-5-6----- (6m +4) (6m + 5) (6m + 6)
14 Z (a6m+6) xgm+6
m=0 o
for ag 7é 0,
y1 =y (5)
00 k’2336)m+1
_ 1 1 m+1 ( 3+
& +m2::0( S 56T (6m +5) (6m 1 6) 6m 1 7)

o0
Z Aem+7
:,I‘5+ —m+ xngr?
a1
m=0

for a; # 0, and

Y2 = Y2 (335)
o) m+1
1+ Z (_1)m+1 (k‘gl’g) *
— 6-7-8---- (6m + 6) (6m + 7) (6m + 8)

(oo}
A6m+8
= 2 + omre ) .om+8
5 a 5
m=0 2

for ay # 0, of the differential equatiorg), in the form of power series converging (absolutely)
by the ratio test. Thus an arbitrary solution[6f)((and of [z3)) is of the form

:1‘3

y = e f(x) = agyo + ary1 + azys,
or
f(z) = e " [aoyo (w5) + a1y (w5) + azya (v5)]
xs # 0, with arbitrary constants; (i = 0, 1, 2) in C. Choosing
apg=1, a1 =0, ay=0;
ap=0, a; =1 ay=0; and

CL(]:O, CL1:O, CL2:1,
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one gets thag, (j = 0, 1, 2) are partial solutions o, satisfying the initial conditions
Yo (0) =1, 4, (0) =0, y;(0)=0;
y(0)=0, y(0)=1, #/(0)=0

y2(0) =0, 5(0)=0, 5 (0)=1
Therefore the Wronskian of, (j = 0,1,2) atxs =0is

Yo (0) y1 (0) Y2 (0)

W (yo,y1,92) (0) = | 95(0) 3 (0)  v5(0)

and

=10 1 0|=1+£0,

0 0 1

yielding that these = 3 partial solutionsy; (; = 0,1,2) of are linearly independent.
Thus the above formula = Z?zo a;y; gives the general solution (and also of).
Analogously we establish the following inequalif§f):

8.3. Eighth Order Moment Heisenberg Inequality. Foranyf € L*(R), f : R — C and any
fixed but arbitrary constants,,, &, € R, the eighth order moment Heisenberg inequality

1

2
(Ha) (ks) g2 - (M8)|f|2 > WEM;
holds, if
(s)go = [ adlf (@) da
and

R 2
e A IGIE
withzs =z — z,,, & = € — &, and
FO = [ e @ f @) = [ emef )i
as well as

Eu;=2 /R {[4 (3 — 24722 23 + 1670 23) | f (2))?
~823 (3 - 20¢2a3) | (@) + 3 1" (@)
~8m6af [4(3 - 7%€2a3) I (f (@) /(2]
76} Re (f (2) 7 (2)) = a3l (f (2) 77 (@)) | } d,

if |[E, ¢| < oo holds, whereRe () andIm (--) denote the real part ¢f) and the imaginary part
of (), respectively.
Equalityholds in iff the a-differential equation

fi (@) = —2c4z} fu ()
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of fourth order holds, fon = —27¢&,,i,1 = v—1, f, = ¢**f, and a constant, = % > 0,

ks € R, or equivalently iff

3 [e's]
f (I’) _ 627ria:§m Zajxg 1+ Z (_1)’m+1
=0 m=0

(K™

B0+ BmtT+) BmL8+7)

holds, wherex; # 0, anda; (5 = 0, 1, 2, 3) are arbitrary constants i@.

8.4. First Four Generalized Weighted Moment Inequalities. (i)
(8.16) My = (M?)w,m? (M2)|f’2

~([wr@ - ir@ra) ([ €6

1 2
= 1672 (CoDo)

1
1672 [Co (Agoloo)]?

_ 1 2
16720

- 1617r2 < /R wy (v)|f (90)|2dx)2

1 2
= Tom2 e

~

f ()

2 d§>

because

o == [ (0l |1P%) (a)ds

with wy (z) = w(x)(z — x,,). We note that ifv = 1 then
E1,f = CyDy = Iy

== [ (w?17P) (@)

— [ @l
R
R 2

by the Plancherel-Parseval-Rayleigh identity,Af ;| < oo holds. Thus from[(8.16) one gets
the classical second order moment Heisenberg uncertainty prineipileh says that the product
of the variance(y.) ;2 of x for the probability densityf|> and the variancéus,), .. of ¢ for

/]
~|2 E?
the probability densit%f’ is at Ieastlgﬁr‘j, which is the second order moment Heisenberg

Inequality in our Introduction.The Heisenberg lower bound™ = ﬁ for Ej;2 =1, can

be different if one chooses a different formula for the Fourier transfprafi f. Finally, the
aboveinequality (8.16)generalizegH,) of our Introduction (therev = 1).
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(ii)
(8.17) M, = (M4)w7\f|2 (M4)|f|2

([ e—anir@ra) ([ €-e|ief «)

1
iz (CoDo +CADY)’

1

6474

1

= 61l [[00 -2 (52[10 + I — 251101)]2

B 6417r4 { /R wy? ()| f ()] de

Vv

[Co (Agoloo) + C1 (Arolio + Al + 25’1011.1()1)]2

=2 [ o) [ 117+ 17+ 28T ()] (0) d}

becaus&e (if f') (z) = —Im (ff’) (), and

~—

Ip= | wi (2)|f (x)]” da,

—

Lo = | wa(2)|f (2)]" da,

. / wy (@) |f' (@) de.
and
Lo = /RUJQ () Re (fo/) (x) dx,

with wy () = w(z)(z — 2,,)°.
It is clear that[(8.1]7) is equivalent to

(8.18) M, > 6417T4 [ /R (w;2> _ 25%) (@) |f (2)]? dz

2 [ @)1 @) de =49 [ wa () (77) () d
1

= @Eg,fy
or
(8.19) Y > ——/|Ba g,
212 ’
where
(8.20) Ey; = CoDy + C1D;
=Dy — 2D,

= lopo — 2 (52]10 + I — 251101)

- /R (ws? = 28%w) |£ = 2un | = 4By Im ()] (2) da,
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if [E5f| < oo holds. We note that ifE, ;| = 1 holds, then from9) one getél, >
L (= H*),while if | B, ;| = 1, then

1
v/ M. —V2 (> H).
N 27?\/_ 4T ( )

Thus we observe that the lower bound+gf\7; is greater tharH* if [Es | > 3; the same
with H* if |Es ;| = 5; and smaller tharl/*, if 0 < |E, ¢| < 5. Finally, the abovenequality
@)generahze@ of Sectior{ 8 (therev = 1).

(ii)

(8.21) Mz = (16) 4, 12 (MG)MQ
2 6 2 6|7 2
~([wr@E-a @) ([ €-erliof «)
R R
1 2
2 256 (CoDo + C1Dy)
1
= 3560 [Co (Agoloo) + C1 (Asolio + A iy + 2Bioy o))
1
= 3560 [Too — 3 (8?10 + 11 — 251101)}2
I B U C) 2
= g5 |- [ o @1 @ o
2
#3 [ ol @) [ 117 + 11+ 261 (77)] (|
R
because
o= [wf @I @F e, fo=— [ @)1 @ da,
R R
o= [ uf) @)1 @) da,
R
and

Lo = —/ngl) (z) Re <Zf (z) f’—(x)> dx

— /Rwél) (z) Im (f (x) m> dx

with w3 (z) = w(z)(z — z,,)>.
Itis clear that[(8.2]1) is equivalent to

1

+3/w3 @ de+6 [ wf! (o)1 (17) () do

1

= FE2
25676 >/
or

(8.23) vV Mz > \/ | B3 ]
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where
For = / [(—f? + 3620 ) 11 + 30 | + 65us T (£)] (@) da,
R

if |E5¢| < oo holds. We note that ifE; ;| = 1, then from|(8.2B) we find/M; > L (= H”),

while if |Es ;| = 1, then/M; > ﬁi (> H*). Thus we observe that the lower bound of

VM is greater tharff* if |E; ;| > 1; the same withi/* if |Es ¢| = 1; and smaller tharfl*,
if 0 < |Esy| < 1. Finally, the abovénequality (8.22) generalizegHz) of our sectiol B (there
w = 1).

(iv)
(8.24) My = (us)., sp (M8)|f|2

~ ([wr@-on it P ([ - |fof a)

(CoDo + C1D;y + C2D2)2

= 02478
- ﬁ [Co (Aooloo) + C1 (Arolio + Arilin + 2Bio1f101)

+Cy (AgoIag + Agi Ioy + Agalyy + 2Baoi ooy + 2Bagalagy + 2Baialans)]?
- 102147r8 (oo — 4 (6% 1o + Iy — 28101)

+2 (54[20 + 463° Iy + Ioo + 43° L1 + 26 Ings — 45[212)]2

1
~ 102478 { /R wi? (@) |f (2)]* da

— [ wl? @) [+ 11+ 281 (1) ) d

+2 /Ruu (c) |8 IFF +48° f1F+ 17 + 46" I (£F)
~28°Re (f7) + 481m (£ 77)] (x) da]”
1

To2amE A

because

wi? () |f ()] dr,

S
o
Il

w? ()| f () dr,

~
—
S

|

O (@) |f (@) d,

~
-
o
Il
g

wy (2) |f (x)” da,

wy (z) | f ()] da,

o
N
Il

I wy (2) |f" () da,

o
I
T —r—
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and

n
(e}
=
I
%\
S
Ny
&
=
D
N
4
—
0
%
s
S—
N—
g
)

I
%\
S

Ny
0
—_
=)
N
&.‘
&
=
—~
Nan”
Q.
=

Inio = /Rw4 (r) Re <z’f’ (x) f" (a:)) dr = —/Rw4 () Im <f' (7) f”—(a:)> dx,

with wy(z) = w(z)(z — 2,,)%.
It is clear that[(8.24) is equivalent to

1
8.25 S/ M, > B, £,

where
Bur= [ [(f? = 45%f? + 28%0) 4 4 (<ul? + 2000, 717 + 20|
R

-84 (wf) - ﬁ2w4> Im (ff") — 43%wsRe (ff”) + 86wy Im (f’?)} (x) dz,
if |E4s| < oo holds.We note that ifE, ;| = 1, then from ((8.2p) we find/M, > L (= H"),
while if |Eyf| = 1, theny/M, > ﬁ? (> H*). Thus we observe that the lower bound of

VM, is greater tharff* if |E, ;| > &; the same withi/* if |E, ;| = £; and smaller tharr*,

if 0 < |Ey;| < &. Finally, the abovenequality (8.24) generalizegH,) of our Sectiol B (there
w=1).

8.5. First form of ( ,ifw =1,z, =0and¢,, = 0. We note that = 27¢&,, = 0,
wy(x) = 2P, andwz(,” () =p!(p=1,2,3,4,...). Therefore the above-mentioned four special
cases (i) — (iv) yield the four formulas:

(8.26) Bis == [ 1@ do = =By,

8.2 o £ = 2| — 22 'xzdx,

8.27) Bas=2 [ [If @) =217 @]

8.28 =— 2= 327 |f ()| d

(8.28) Bag =3 [ [217 @) =321 @) ]ds,

and

(8.29) Buy =2 [ [121f (@) - 247 @F +0* |1 (0) ] e

respectively, if £, | < oo holds forp =1, 2,3, 4.
Itis clear that, in general,

2 2
Aql:<g) 3 =1, if =g, and Aql:((ll> B if £,

for0 <[ <gq.
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Thus, if 3 = 0, one gets

1, if =g,

(8.30) Ay = = 0, (=the Kroneckerdelta 0<1<g.
0, if l#q

It is obvious, if 3 = 0, that

(8.31) By = (—1)7 ( ¢ ) ( ‘ ) Prik—0, 0<k<j<q

suchthatj + k < 2¢for0 < k < j < ¢;thatis,32¢7=% £ 30 (= 1) for0 < k < j < q.
Therefore from[(8.30) and (8.31) we obtain

(8.32) Dy = Agqloq = Igg = <_1)p_2q/ N ’f )‘2 dz,
R

if | D,| < oo, holds for0 < ¢ < [£]

We note thatitv = 1 andx,, = 0, and¢,,, = 0or3 = 0, thenw,(z) = 2? (p = 1,2,3,4, ..

and
wd (x) = (@) = p(p—1)--- (p— (p—20) + 1) 2" #79,
or
| l

8.33 w20 () = P o= . 0<g< Pl
(8:39) po ) (»— (p —29))! 2q)" == [2]
From (8.32) and (8.33) we get the formula

|
8.34 D, = (=12 P / 2 ? dr,
(8.34) o= U g L 1 @)

if | Dy| < oo holds for0 < ¢ < [£].
Therefore from([(8.34) one finds that

[p/2]

pf_ZCD

sz (e lordfeere]
or the formula

(8.35) /[pz: b (p_Q)l,Qq‘f(Q) (x)|2dm
' p Q(QQ) q ’

if |E, ¢| < oo holds for0 < ¢ < [2], whenw = 1 andz,, = &,, = 0.
Let

(.36 (map)ye = [ 4215 (@) do
R
be the2p moment ofz for | f|> about the origine,, = 0, and

(8.37) (ma) e = [ €2]7 @
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~|2
the2p' moment of¢ for ’f’ about the origirt,,, = 0. Denote

| _
(8.38) gp,q:(—np—qLL(p q > if peN and0<q< [g]

p—q(29)!\ ¢
Thus from [(8.3b) and (8.38) we find
[p/2] )
(8.39) E,;= / > et [ ()| da,
R =0

if |E, | < oo holds for0 < ¢ < [£].
If w=1andz,, =&, =0, one gets from[(8]3) and (8]35) - (8/38) the following Corollary
B8.2.

Corollary 8.2. Assume thaf : R — C is a complex valued function of a real variable
w=1,z, =¢&,=0,andf is the Fourier transform off, described in Theore@.l. Denote
(mgp)w(or |f|2) ande, , as in (8.36) (or((8.37)) and (8.38), respectively forak N.

If f € L*(R), and all the above assumptions hold, then

[p/2]

1
(8.40) WW%MPWW%WFEmWQPEQ%AmMWW“
o

holds for any fixed but arbitrary € N and0 < ¢ < [%], where

(8.41) (m20) = /R 2|0 (2)] da.

Equality in {8.40) holds iff the differential equatig’) (x) = —2c,2”f (x) of p* order holds
for somec, > 0, and any fixed but arbitrary € N.

If ¢ = 0, then we note thaf (8.41) yields

(m0) 4 = /R f @) dz = By
We also note that if = 5, then[p /2] = 2; ¢ = 0, 1, 2. Thus from|(8.3P) we get

o 5 5 [5-0
(P02 0
#s0=(=1) 5—0@-@!( 0 )

— 120,
e 58 (5o1
fs1= (1) 5—1@4ﬂ( 1 )_SM’
and - ‘)
s | (5-2)
52 = (1) 5—2@-@!( 2 )“ 29
Therefore
©42)  Bup=—5 [ [21£ @) — 6022 |f (@) +50° | (o) o,
R

if |5 r| < oo holds.
Similarly if p = 6, then[2] = 3; ¢ = 0,1,2,3. Thus from (8.3P) one finds

€6,0 = 720, €6,1 = —2160, €62 = 270, and €6,3 = —2.
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Therefore
(8.43) Ey = 2/ 13601/ (@) = 10800 |/ (&) + 1350 1" (@) = 2B " ()" ] do
R

if |Es,r| < oo holds. In the same way one gets

(8.44) E; ;= —T7 / {720 |f (@) — 252022 | f' ()| + 4202 | f" (2)]” — 72% | f" @)F] d,
R

(8.45) Egs; =2 /R [20160 |f (z)” — 8064022 | f ()|* + 168002 | f (z)|°

4482 | " (@) + 2 | 19 (2)*] d,
and
(8.46) Eg ;= —9 /R [40320 |f (2))? — 1814402 | f' ()| + 453602 | f ()|

—16802° | £ (x)* + 92% | F 9 (x)ﬂ dz,

if |E, s| < oo holds forp = 7,8,9. We note that the caséds, ; : p = 1,2, 3,4 are given above

via the four formulas (8.26) + (8.29).

8.6. Second form of [8.8), if¢,, = 0. In general forw,(z) = w(z)z§ with 25 = © — 2,
wherez,, is any fixed and arbitrary real, and: R — R a real valued weight function, as well

as,¢, = 0, we get from[(5.]1) and (8.82) that
Dy =1y = (17 [ w(@)a)) ™ |19 @) da

R

— (—1 / ( P2 > w™ (@) ()" | £ ()] de

-~ ! 2qg—m 2
( p—2q ) w™ (:C) (p — (p _p‘2q — m))'x]g(P ) |f(4) (l’)‘ dz,

or

pP—2q
(8.47) D, = )i 2q/ [Z g+ ( p ;n2q ) w™ (x) xg”] 33(25‘1 ’f(q) (x)fdx,

0

if |Dy| < oo holds for0 < ¢ < [&].
If m = 0, then one finds fronj (8.47) the formu[a (8.34). Therefore from (8.47) one gets that

[p/2] p—g
(8.48) £ f_/z Q< q )

— 7 p—2q m m| 24| pla) (3|2
[Zm( R

if | E, ;| < oo holds for0 < ¢ < [£], whenw : R — R is a real valued weight function,,, any
fixed but arbitrary real constant aggl = 0. If m = 0 andz,, = 0, then we find from|[(8.48)

the formula[(8.3b).
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If we denote
p P—q = ! P—2q (m)
_(_1\p—a _ Y R m m
8.49) &y (@) = (-1)" < . ) LZZO By ] ( o )w () x5] ,
then one gets fron (8.48) that

[p/2] [p/2]

(8.50) EpJ:/ngqw ‘ dx—Z/quw @ (x)‘ZdaZ,

if |E,¢| < oo holds for0 < ¢ < [£].
Itis clear that the formula

/2]
(8.51) B,y =3 (-1 7L ( P )

g P—q

2 ! ) " m| 241 4 2

if | £, ¢| < oo holds for0 < ¢ < [2].
Therefore from[(83) and (8.49) - (8]50) we get the following Corollary 8.3.

Corollary 8.3. Assume thaff : R — C is a complex valued function of a real variabitg
w : R — R areal valued weight functiomn;,,, any fixed but arbitrary real numbeg,, = 0, and
[ is the Fourier transform of, described in our above theorem. Den¢te,),, ;. (mgp)mg

ande, ., (z) as in the preliminaries of the above theorem, (8.37) and {8.49), respectively, for
allp e N.
If f € L*(R), and all the above assumptions hold, then

[p/2]

2
(8.52) {/ H2p)., 22{/ (map) Kk 2 = 27T\/— Z/‘Spqw F@ (x)‘ dx )

holds for any fixed but arbitrary € N and0 < ¢ < [£].
Equality in (8.52) holds iff the differential equation

fP(x) = =2¢,25 f ()
of p'" order holds for some, > 0, and any fixed but arbitrary € N.

We note that fop = 2; ¢ = 0,1 andw, (z) = w (x) 2%, with z5 = x — z,,; &, = 0, we get

from (8.49) that
2.0 (7) = 2w () + 4w (7) 25 + w" (7) 23,
and
€210 (T) = —2w (7).
Therefore from[(8.48) one obtains

[(Qw (2) + 4w’ (2) 25 +w" (2) 25) |f (2)|” — 2w (2) 23 | ()]

if |E27f‘ < 0.

(8.53) Ey, = /

R
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This result[(8.58) can be found also from (8.20), where 27¢,, = 0 and thus
(854 Bar= [ [0 @)1 @) - 202 (@) If” (@) o,
R

if |Es f| < oo holds, with

and
wi? () = 2w (z) + 4w’ (2) 25 + w" () 22.

8.7. Third form of (8.3}, if w = 1. In general with any fixed but arbitrary real numbers,
Emy Ts = T — x,, ANAEs = € — &y, ONeE finds

wy, = T,
r) (ry p' —r
w) = (a5)" = mxg ;
and |
(p-2¢9) _ P 2q
pp q) — (2q),375 .
Therefore the integrals;, /,;; of the above theorem take the form
_ p—2q p! E
(8.55) T = (17 s ) o, 0TS aS 2.
and
(8.56) Ipg = (1P P (), 0< k<)< <[g}
. qkj — (2q)| H2q frj? = J>4q4> 2 )
wheref;; : R — R are real valued functions af such that
(8.57) fii (@) = Re (ras f (@) fO (1)), 0<k<j<qa<|h],
with 7y, = (—1)"_%, and
2
(8.58) (120) o :/x§q|fa> (@)fdz, 0<1<q<[f],
R
is the2¢"” moment ofz for \f(l)|2, and
(8.59) i)y, = [ 8 @), 0<k<j<q<[t],
R

is the2¢'™ moment ofx for f;;.
We note that i) < k = j =1 < ¢ < [%], then

(8.60) fu (@) = sq | FO (@),
and thus
(861) (:U’2q)f” = Sql (M2q>|f(z)|2 ,0< [ < q< [g] )

wheres, = (—1)"".
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We considerd; andB,;,; and3 as in the theorem, ang , as in [8.38). Therefore

] q
(8.62) D, = (_1)P—2q & [Z Ay (M2q>’f(l)‘2 +2 Z Bkj (/Qq)fkj] )

=0 0<k<j<q
if | Dy| < oo holds for0 < ¢ < [£]. From [8.5%) —[(8.62) one gets
/2] [ ¢
(8.63) By = Z Aq (U2q)‘f(z)|2 +2 Z Bk, (U2q>fkj] )
q=0 LI=0 0<k<j<q

if |E, | < oo holds, for any fixed but arbitrany € N.
If w = 1 one gets from[(8]3) anfl (8.565)[- (8]63) the following Corol[ary 8.4.

Corollary 8.4. Assume thayf : R — C is a complex valued function of a real variabitg
w = 1, z,, and &, any fixed but arbitrary real numbers,; = = — z,, and& = £ — &,
wy(z) = 2§ , and f is the Fourier transform of, described in our theorem. Let

(e = [ 11 @)
and

fie)| ae

(sz)\f|2 :/Rf;p

A2
be the2p®* moment ofr for ]f]z, and the2p! moment of¢ for ‘f‘ , respectively. Denote
(uzq)“m‘g, (/J,Qq)fkj (with fi; : R — R as in (8.57)) ,&,, and A,, By, via (8.58), (8.5P),
(8.38) and the preliminaries of the theorem, respectively fop @lIN. Also denote

Up = %/(ﬂﬂphfﬁ ?/2;2515;‘

If f € L*(R), and all the above assumptions hold, then

[p/2] q ’
(8.64) U, > H; Z Ep,q Z Aql (:u24>|f(l)‘2 +2 Z quj (M2q>fkj]
q=0 1=0 0<k<j<q

holds for any fixed but arbitrary € Nand0 < ¢ < [5], whereH* = 1/2n /2 (for p € N) is
the generalized Heisenberg constant.
Equality in (8.64) holds iff the-differential equation

fP (x) = —2c,25 fa () ,a = —2m&ni,
holds for some;,, > 0, and any fixed but arbitrary € N.

We callU, theuncertainty productiue to the Heisenberg uncertainty princigple (8.64).
We note that iff : R — R is a real valued function of a real variable, in the above Corollary

[8.4, then
(8.65) iy = (P F9) Re(rgy), for 0<k <j<q< [g} 7
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wherery,; € {1, +i}, such that

1, if 2¢=(k+j)(mod4)
Takj = ; and
-1, if 2¢g=(k+j+2)(mod4)

i, if 2¢=(k+j+1)(mod4)

Takj =
—i, if 2¢=(k+j+ 3)(mod4).
Thus
1, if 2¢=(k+j)(mod4)
(8.66) frj = (fOFDY L —1, if 2¢ = (k+ j+2) (mod4) :

0, if2g=(k+j+1)(or(k+j+3)) (mod4)
foro <k <j<qg<I[5]

Therefore
1, if 2¢=(k+j)(mod4)
(8.67) (/qu)fkj = (fi2g) s ;i § —1, 1f 2¢ = (k+j+2) (mod4) ,
0, if 2¢g=(k+j+1)(or(k+j+3)) (mod4)
where

(IUQQ)f(k)f(j) = /ngq (f(k)f(j)> (z) dz,

for0 <k <j<qg</[5].

Similarly if f®) 0 : R — R, for0 < k < j < ¢ < [2], are real valued functions of a real
variablex, we get analogous results.

9. GAUSSIAN FUNCTION

Considerw = 1, z,, and¢,, means andhe Gaussian functiorf : R — C, such that
f(x) = coe™, wherec, ¢ are constants angy € C, ¢ > 0. It is easy to provehe integral
formula

T 1
(9.1) / 2?Pe 2 dy = (p—~|—21)’ c>0,
R (2¢)P"2

for all p € N andp = 0, wherel is the Euler gamma functioj21], such that

F(p+1) :1.3....2;(2]9_1)\/%

2
forp € NandT (1) = /7 for p = 0. Note that the mean,, of = for | f|*is given by

J— 2 —
xm—/Rx\f(xﬂ dx = 0.

Also from Gasquet et al [8, p. 159-161], by applying differential equations [25], one gets that
the Fourier transfornf : R — C is of the form

(9.2) f&) = co\/ge_ﬂfg, co€eC, ¢>0.
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A2
In this case the meaf, of ¢ for ‘f‘ is given by

2
d¢ = 0.

&= [ €lf©

Therefore from[(8.36) H (8.87) with means, = 0, &,, = 0 and from [9.1) —[(9]2) one finds
that the2p'™ power of the left-hand side of the inequali.40) of the Corollary 8.2 is

(93) (mgp)mQ . (mgp)|f|2

= (/Rx?ﬂf(g:)Fda:) </R§2p f(é)‘zdf)
- |CO|4% </R I2p€_2m2dfﬁ) </R §2p6_2c*52d§> (Wherec* = 7%2)

‘T(p+3T(p+3 1 !
_ W’CO‘ (v p—i—%) (» p+21) _ (H;)Zp or? (p+ 5) @’
ot ey

for all fixed but arbitrary € N, ¢y € C, andc > 0 (whereH; =1 ) We note that

_ZWW
(9.4) Ep = / |f (2)) dx
R
= |co|2 / e 267" 4y
R
_ ol <1>
V2e \2
s 1
= |c0|2~/%, wherel! (5) =/
If we denote
2p—N=1-3-5-----(2p—1),0l = (=) =1,
for p € Nandp = 0, respectively, then
— 1
(9.5) F(p—i—%):%ﬁ for p e N, andr(%):ﬁforpzo.
We considethe Legendre duplication formula far ([18], [21])
2p—1 1
(9.6) ren)=2orer(pt;). pen

andthe factorial formula
(9.7) IC'(p+1)=p!, peNy=NU{0}.
We takethe Hermite polynomia([18], [21])
St - 2e)28 ) gen,,
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where[{] = £if gis even and$] = <1 if ¢ is odd. We considethe Rodriguesormula ([18],

[210)

2 dq 2
_(_1\9 T —x
(9.9) H, (@) = (~1) e (e ) ,q € N,.
If one places,/cx onz into (9.8) and employs
d d dx 1 d
9.10 )= — (- e
(9-10) d(\/E:c)() dm()d(\/Ex) \/Edw()7
then he provethe generalized Rodrigues formula
q 2 dq 2
— (_1\9 o3 pcT —cx
(9.11) H, (\/Ex) =(—=1)%c 2e o (e ) , ¢>0, geNj.

In this paper we have < ¢ < [£], p € N. From [9.1}) withf () = coe =", ¢o € C, ¢ > 0,
we get

(9.12) %f (z) = (=1)%c? f (x) H (Vex)

and thus the moment
(9.13) (mgq)’f(q)‘g = /Rqu }f(q) (g;)|2 dx
= /szq (—1)7ct f (z) H, (Vex)
— et [ e | (o) do
Substitutingy = \/cz, ¢ > 0 into (9.13) oneRgets

2
C

Ve Jr
We consider the Hermite polynomial

4]

2

dx

0,2
y e HY (y) dy.

k q! q—2k p
. g — _— < < —
(9.15) Hy (y) kE_O( 1) (g — 201 (2y)"™™, 0<¢g< [2} :
and the Lagrange identity of the second fofm|(7.3). Setting

o k Q‘ q—2k __ k (Qk)' q q—2k
re= U o T Y T L )2

R) (g _ q!
T(%)‘k!(q—%)!’

x (2k)! ’ q ’ 2(q—2k)
Aqk_ (T o 2°\ eR,

siy = (=) €R,
e R g q
By = qujTj! 9 2 €R,
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one gets that; = andryr; = i By .
Thus employlng-S) and substituting = y*~2* in (7.3) we find

Chi q!
zpzy = YR gy = (= 1)° W (g — 2k)! (2y)"*",

(g — 2k)
and
la/2] 2
(9.16) Hy (y) = (D mean | =D A ™42 > oy Buy® ),
k=0 k=0 0<k<j<[4]

for 0 < ¢ < [%],p € N. Letus denote
* — — —k—j) —2y? A * Tk
gk — /Ry4(q k)e 2 dy7 qug - /RQQ(Q(] g J)e 2 dyv Aqk = Aqk’ gk

andBy,; = 17y Bl 15, Therefore from|(9.14) and (9.116) one gets

qkj "~ qkj*“ qkj"

la/2]

A7) (may), 2 = |°| > Aut2 3 Bu). 0<a<[g]

0<k<j<[q/2]

From (9.1) and[(915) we find

., W@—-k -1 |x (2(2q—k—j5)—-D" |«
(9.18) qk — 16q—k 5, an d qk] — 42q—k—j 5
From (9.18) one gets

(9.19) Ay — % : ( 5 > (%) (4q — 4k — 1)1,

. 17 (2k)! (25)! |
. k+ q q
(9.20) By = (1) @\ﬁ( ok > ( 27 ) T(M— 2k — 25 — DI,
0<k<j<[i]0<qg<[t],peN From)oneflnds

22q 2k 1

(9.21) (4g — 4k — DN = NG F(?q—2k+§) ,

' T 1
(9.22) (4g — 2k — 25 — DN = Nz F<2q—k—j+§).
Also from (9.6) —[(9.7) we get

2p)! 2% 1
Therefore from[(9.119) - (9.22) and placikhgj onp into (9.23) we find
o L q ’ 2 1 . 1

(9.24) Aqk_ﬁ 22 (%)F k+2 I'( 2g 2k+2 :

(9.25) By, = %ﬁ (=1)" 25 < o ) ( qu >
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forall0 <k < j < [%],0<q<[2],p€eN. Letus denote
la/2] q 2 1 1
B 2% 2 1 _ :
(9.26) rq_’;z (2k> r <I<:+2>F<2q 2k+2>
_1\k+J ok+j q q
+2 > (=) <2k)(23>

0<k<j<[q/2]
1 1 1
r | T{j+=z )T (2q—k—7+=].
X (k—|—2) (J+2) (q k j+2>

From [9.26) one gets

[q/2]
1
(9.27) ZAqk +2 > Buy= _@F :
0<k<j<[q/2]
Thus from [9.17) and (9.27) we find
|C()| 1
(9.28) ) o = 5 T 5t

forall0 < ¢ < [2],p € N, andc € C, ¢ > 0. Let us denote

/2]
(9.29) T = 1> epalal,
q=0

whereeg, , is given as in 8). Therefore from tRe!” power of the right-hand side of the

inequality [8.4D) of the Corollary 8.2 and (9]28) - (9.29) we get

2

[p/2] 4
*\ 2P %\ 2p 1 %\ 2 ’CO|

(9-30) (Hp) z;gp,q (m2q)|f<q>|2 (Hp) 27r2 (Fp) T’

—
forallp e N, ¢y € C,andc > 0 (whereH;; = V)

If f: R — C is the Fourier transform of of the form f (z) = coe™** (¢o € C, ¢ > 0),
~|2
given as in the abstract,, the mean of: for |f|2, and¢,,, the mean of for ’f , then
jeol” 1 _ By
9.31 E, /| =———I7 —=I
( ) ‘ I%f‘ \/— 5 P 7T\/_
for any fixed but arbitrary € N. For instance, ity = 1 andc = % then
F;:W|Ep7f|, pGN.

Therefore from[(8.40)[ (913) and (9130) we get the following Corollary 9.1.
Corollary 9.1. Assume thal is the Euler gamma function defined by the forn{Qi]

(9.32) I'(2) = / t*~te7'dt, Re(z) >0,
0

whenever the complex variable = Re(z) + ¢Im(2), i = /—1, has a positive real part
Re (2). Denotes,, ,, I'; andT’; as in (8.38),[(9.26) and (9.29), respectively. Let us consider the
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non-negative real functioR : N — R, such that
peN={1,23 .1}
Then the extremum principle

933) R()> 5

holds for any fixed but arbitrary € N. Equality holds fop = 1.

For instance, ip € Ng = {1,2,3,...,9}, then

9.1. First nine cases of[(9.33).

|) If p=1, thenq = 0. ThUSFO =13 (%) =TT, E1,0 = -1, andP{ = ‘8170P0| = Wﬁ.
ButI' (1+1) = 1,/7. HenceR (1) = 5. Therefore thequalityin (9.33) holds for
p=1.
i) If p=2,theng =0,1.Thus

Fozﬂﬁa €20 = 2;

1 1 3
== )r(2+=)=2
ENORCHE

€21 = -2,
and
. 1
FQ = |€2’0F0 + 52’1F1| = 571'\/%

Butl' (2+1) = 3\/7. HenceR (2) = 3 -
Therefore the inequality i (9.83) holds fpr
|||) |fp—3th€ﬂ(]—0 1ThUSFO—7T 7830——6 Fl —7T 7T€31—9 and

. 3
Fg = ’8370110 + 83’1F1| = Z—LTF\/E

Butl' (3+ 3) = £/7. HenceR (3) =5-
Therefore the inequality i (9.83) holds fpr 3.
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iV) If p = 4, thenq 0,1,2. ThUSFO = Wﬁ €40 = 24 1" = T, €41 = —48;

54,222,
1 2
. 2k 2 2 1 ]'
Fz_gz (%) r (k+§)P(4—2k+§
_ykti ok [ 2 2
2 Z (=172 (2’f)(23')

(e (o) r(eense )
e ()r(sed) e () r(eed)
e

becausgk, j) € {(0,1)}, and

I} = |eaolo + €411 + €400

= ‘24+ (—48) Z +2 (?—Z)

Butl' (44 3) = 28/7. HenceR (4) = 32 . .L.
Therefore the inequality i (9.83) holds fpr 1.
V) If p = 5, theng = 0,1,2. ThusT} = 25%\/— Butl'(5+ 1) = 22/7. Hence

R(5) = % . . Therefore the inequality in (9.83) holds for= 5.

vi) If p = 6, thenq =0,1,2,3. Thusl'j = £x,/7. Butl' (6 + 1) = 1%%,/7. Hence
R(6) = 2. L Therefore the inequality if (9.] ||.3) holds fpr= 6.

vii) If p =7, thenq =0,1,2,3. Thusl's = 287, /7. Butl' (7 + 1) = 1825 /7. Hence
R(7) =% . L Therefore the mequalltyn.S) holds fpe= 7.

viii) If p = 8, theng = 0,1,2,3,4. ThusTy = 2% /7. Butl' (84 1) = 22008, /r,

HenceR (8) = 42 . ... Therefore the inequality if (9.33) holds for= 8.

ix) If p=9,thenq =0,1,2,3,4. ThusT}; = 234214;2457T\/— Butl (9 4 ) _ 34455192425 -

T = %ﬂ'ﬁ

:—|efnceR (9) = 132% - ;. Therefore the inequality if (9.83) holds for= 9.
n fact,

9! 99! 7
€9,0 = =91, €91 = 9- 2,7 €92 = _?E ( 9 ) )

99! /' 6
€93 = éa ( 3 ) y €94 = —81

I's = |eg,0l0 + €911 + €92’ + €933 + €9.414]

and
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wherel'y = /7, 'y = 37y/7, andl’y = 2Lwy/7 from the above case iv). Besides

:22%(23k)21“2(k+%)1“(6—2k+%>
2 3 e () (5)
xF<k+%>F(j+%>l;(6kj+%)
)+22(§>r2(1 %)F(zl

)r(

2 * +%>
+2(-1)2 g)(g r %)F(lJr%)F(

1
5+3)

I

|

no
N
DO | =
~~

)1
VR

(o))

+
—_

becausegk, j) € {(0,1)}, and

2 A 2
_ 2k
=y () ()
k=0
+2Z k+]2k’+](
1
2

r(s-20+3)
4)(5)
_ et

becausék, j) € {(0,1),(0,2),(1,2)}.We note that if one denotd®* (p) = 27 R (p), then he
easily getsk* (p) > 1 foranyp € N.

Corollary 9.2. Assume thal is defined by[(9.32). Consider the GaussfanR — C such that
f(z) = coe~ ", wherecy, ¢ are fixed but arbitrary constants ang € C, ¢ > 0. Assume that
., is the mean of: for | f|°. Considerf : R — C the Fourier transform off , given as in the

0<k<j<2

o)

273105

2
abstract ands,, the mean of for ’f’ . Denote(qu)|f(q)’2, the 2¢** moment of: for }f(q)]2
about the origin, as i (8.41), and the real constass as in [8.38). Denote

o :/R\f(x)Ide

[p/2]
(9.34) Epy= Z €p.g (qu)’f<q)|2v
q=0

and

if | E,,¢| < oo holds for0 < ¢ < [2] and any fixed but arbitrary € N.
Then the extremum principle

T+ ([ Ao L Je(_ /7
(9-35) B0 == ] (_ QEWR (p))ZW §<_2Ef'2>’
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holds for anyp € N. Equality holds fop = 1.

For instance, iip € Ny = {1,2,3,...,9}, thenE,; > 0 for p = 2,3,5,8; and< 0 for
p=1,4,6,7,9. Besides

C

1 c
—/=<R < — . — if No.
|CO|2 9 = f(p = 923 |CO|2 27 p € Ny

The proof of Corollary 92 is a direct application of the above-mentioned forrulg (9.31) and
the Corollary 9.1 (0r{(9.33)). In fact,

R =1 (v+3) /150
“r(oe3) o

— V3V R )

Iol

- 1 \/E
7T—-—:— —.
T e 27 el V2
Besides from[(8.26) one gets

2
2 c C 1
Ery = —/ |f ()| do = — |Co|2/e‘2‘”” dz = —%ﬁ |\/°2|_2F (1 + §> :

or Ry (1) : ‘2 \/; completing the proof of Corollar. 2 We note thatjf= 1, ¢ = % or

f(z) =e"2", thenR; (p) >
Also we note that the formuIE(Q_T]ZS) is an interesting formula on moments for Gaussians.

_1l,
2

9.2. First nine cases of[(9.35).
i) If p=1,then

2
E 2= .’BQdCE:CQ/G_chQdZL‘:m .
o= [ @ s =laf [ ol
Thus from (8.2p) we gek, ; = —E| ;. Butl' (1 + 3) = 3/7. Hence

Ry(1)=T <1+%)/|E1,f| - ﬁ\g_ \/E/QEW .

Therefore theequalityin (9.35) holds fop = 1.
We note from[(9.28) and (9.B1) that= 0 such that

V2c \/2_
ol Ic °
and
. V2 \/%
Co
respectively.
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i) If p =2, then from((8.2]7) we get
3 1
2| gt 2

Butl' (2+ 1) = 2\/7. Hence

1 1 c
0

Therefore the inequality in (9.85) holds fpr= 2. We note from|[(9.28) andl (9.B1) that
q = 0,1 such thaf’y = =/ as in the above case i),

V2¢ \/_ V2¢3 3
ol o |col” 4 4
and
. V2 V2c1 1 1
FQ =T D) |E27f| WWéE‘fF §F0 = T\ T,

respectively.
iii) If p =3, then from[(8.2B) we find

By;=-3 {QEW —~ 3/ 2 |f' (x)IZdﬁf} =3 {QEW -3
R

Butl' (3+ 1) = 2/7. Hence

1 1 c
Ry(3)=T (3+§)/\E3,f\ :5-|C—|2\/;.
0
3

Therefore the inequality in (9.85) holds for=
iv) If p =4, then from[(8.2P) one finds
Eyp=2 [12Ef|2 — 24/332 |/ (x)]zdx+/x4 | (x)fda:]
R

3 57 39

35 1 c
Ry(4) == — /=
)= Wﬁ

Therefore the inequality ity (9.85) holds fpr= 4.
v) If p =5, then from [(8.4P) one gets

Es;= -5 {24Ef|2 —60/x2|f’ (x)|2dx+5/x4|f’/ (:c)fdx]
R

3 57 255
=5 {24—60-1+5 16} B =

3
1E|f|2] = 1B

Hence

— L

Hence
63

5) = — . —
f( ) 17 ‘CU’Q
Therefore the inequality iri (9.85) holds fpr=
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vi) If p = 6, then from [(8.4B) we get

Es;=2 {360E|f|2 — 1080/ 2 |f (z)| da
R

+135/x4‘f'l(m)‘2dx—/a:6
R R

3 o7 2835
=2 [360-—-1080- 1 + 135 — —»————} B

7 () )2 dx}

16 64

855

32
231 1 c
R, (6) === . —_ /%
7 (6) 19 |CO|2\/;

Therefore the inequality iy (9.85) holds fpr= 6.
vii) If p =7, then from[(8.444) one obtains

Hence

Ery=—7 [720E|f|2 - 2520/ 2 |f (z)| da
R

2
+420/x4’f'l (x)‘zdx—7/x6 i (x)’ d:v}
R R
3 57 2835
= — 20—-2520-—4+420- — —7- —— | &
7245

Hence

429 1 c
Ry(7) = 22, 2 [€
f() 23 |CO|2\/;

Therefore the inequality iy (9.85) holds fpr= 7.
viii) If p = 8, then from [8.4p) we obtain

Fs s =2 |20160E, ;2 — 80640 | 22 |f (2))*dx + 16800 [ 2*|f" (2)|" d
¥ 1 A g

—448 / 20
R

i (x)’2 dr + /Rx8 ’f(4) (x)]de}

3 57 2835 . 273105
= 220160 — 80640 - = + 16800 - —— — 448 -
[060 80640 - + T TR } "
192465
T o1 Ve

Hence

495 1 c
R (8= EW\@

Therefore the inequality iy (9.85) holds fpr= 8.
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iX) If p =29, then from[(8.4p) one finds

Eo;=—9 [40320]5 sz — 181440 / 22 |f' (z)|° dz + 45360 / at | (x)|2dx
R R

2
—1680 / 2" (2)| dz+9 / ot | f@ (x)|2dx}
R R
3 57 2835 273105
— 9 {40320 — 181440 - = + 45360 - — — 1680 - 9.
{ i 16 6i 7 256 } 1#1°
2344545

Hence

12155 1 c
Rp(9) = —22. 2 |¢
f( ) 827 |C0‘2\/;

Therefore the inequality iy (9.85) holds fpr= 9.
We note that, from the Corollafy 9.1,

Ry (p)=2mR(p) =R (p) > 1
foranyp € N, if

Py = (orme 7).

becauser, ;| = 5-I';, from (9.31).

Corollary 9.3. Assume that the Euler gamma functibris defined by[(9.32). Consider the
Gaussian functiorf : R — C of the formf (z) = coe—@20)° wherecy, ¢z, are fixed but
arbitrary constants and, € C, ¢ > 0, zy € R. Assume that the mathematical expectation
E(x — 1) of & — x, for | f]* equals to

xm:/R(x—xoﬂf(x)Fdx:O.

Consider the Fourier transforrﬁ : R — C of f, given as in the abstract of this paper, afd
~2

the mean of for )f’ . Denote b)(m2q)|f<q>,2 the2¢"" moment of: for | f(@ \2 about the origin,

as in (8.41), and the constants, as in [8.38). Consider

[p/2]

Z Ep.q (Mag) ’f(Q)‘

if | £, ] < ocofor0 < ¢ < [£], and any fixed but arbitrary € N. If d 2e2%5 (> 0) denotes

the2p™ order derivative of2" with respect tazo, then the extremum prlnciple
1
v L\ ool e (A7 a)?
(936) | f| < 23p2 1 FQ + 5 : C%i - e 0. J(Q)pe 0 ,

holds for any fixed but arbitrary € N. Equality holds fopp = 1 andz, = 0.

We note that,, = 0 even ifzy # 0, while in the following Corollary 9.4 we have,, = 0
only if zo = 0.
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Proof. At first, we claim thathe general integral formula

2 T 1 d*
(937) / x?pe—Qc(x—xo) dr = 2;£:1 . m . 6_2@:(% : mGQng, c> 0, To € R,
R 2 C 2 0

holds for allp € Ny = NU {0}.
We note that, ifco = 0, then [9.1) follows. For example, jf= 1 andz, = 0, then

d2 2 2 d 2 2
— " = — (4cx €2C$0> = 4¢ (1 + 4dex?) 20 = 4e.
dxd dz 0 ( 0)

Thus [9.3F) yields
1 1
/x26_2“2dx = 5 . 1-dc=— 1.
R (4¢)* V 2¢ 4c '\ 2¢

This equals t(}(r2(1)+21) because
c 2
r(3) 2 lp (L7
2 2 2 2

implying (9.1). A direct proof for this goes, as follows:
/ zle 267 dy = L xd (6_2C$2>
R —4c Jr
— L xe—2cm2| —/6_2cx2dl’
—4c * R

1 2
=— [ e (g
4de [
1 ~(vaer)’ (M
= e “)d 2037)
4en/2c /R
1
_— ’ﬂ"
4cy/ 20\/_

becauséz| e~2*° — 0, as|z| — co. Itis easy to proveéhe integral formulg21]
(9.38) / a"e” @) dy = (20) " /7 H, (izo), i=+/—1, 79 €R,
R

forall n € Ny , whereH,, is the Hermite polynomia([18], [21]).
We note that ifz,, is the mearof = for | f|*andz, € R — {0}, then

- :/x|f<x>|2dx
R
= \60!2/35620(5”””0)2@:
R

2
= ——|CO, d (6_26(33_:00)2> + x9 ’CO\2 / 6_2C(x_x°)2dat,
4e R R

or
™ el
(939) Ty = .CEoE'f‘Q = EWLE(),
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because
E|f2:/|f(x)|2dx
R
= |Co|2/6_20(x_x°)2dx
R
2 2
= % e~ (V2ela==0)) "y (\/2_c(x — $0)>,
cJr
or
(9.40) E o= \/EM
71 2 /¢

On the other hand, the mathematical expectatiafi = — z, for | f|” is
Bla=a0) = = [ (=) |f (0 do.
then from [(9.3P) -{(9.40) one gets
Ty = /Rx |f ()| dz — xo/R \f (z)] do = oL e — 20 B pp2,

or
(9.41) T = 0.
In this case the mathematical expectatignis the mean of for |f]20nly if xog =0.
We note that if one places= 2p andiz, (i = v/=1) onz into (9.9) and employs
d d dxg d

= i

and thus

d?r d*
9.42 N = (=1)? .
then he proves

2 d2p 2
(943) Hzp (ZZL’()) = (_1)17 67$0—2€x07 p € No.
dxy’
Therefore from[(9.38) witlh = 2p, and [9.4B) one gets that the integral formula
2p
S VT S

(9.44) /Rxpe o) dx = o2 © ’ dxgpe 0,

holds forzg € R, and allp € Nj.

If one substitutesj—%, s € R onz into the following general integral he finds fro.44) that
/x2p€20(xxo)2dl,: 1 . _/SQpe—(s—\/%mo)QdS
R (2c)P*2 Jr
b VT (vEm) T (vmm)?
1
207tz 2% d (vV2exo)™
1 d?r
(9.45) = \/%1 pee T — e 0> 0, ;€ R,
293 Pt d (v2cx,)

holds for allp € Nj,.

J. Inequal. Pure and Appl. Mathb(1) Art. 4, 2004 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

60 JOHN MICHAEL RASSIAS

However,
L(.) fi(.) dro 1 .i(.)
d (\/2_0350) Cdry T d (\/2_0550) a (20)% drg "~ "’
and
dzr 1 d*

hold for allp € Ny. Therefore from[(9.45) and (9.46) we complete the proof of {9.37).
Second, from Gasquet et al.| [8, p.157-161] we claim that the Fourier trangforih — C
is of the form

o< 71'2 2 -
(9.47) F &) = coy | Le~TE2ma0E ¢ e € >0, xR
C

In fact, differentiating the Gaussian functign R — C of the form f (z) = cye=<===0)" with
respect tac, one gets

[ (@) = ~2¢(x — 20) f () = —2caf () + 2exof (x).

Thus the Fourier transform gf is

Ef' (&) =FIf (@) = [f (2)]" (€) = [-2caf (2)]" (€) + [2ezo f ()] (€),
or

(9.48) 2int  (6) = — = [(~2ima) f ()" (€) + 2ew0f (€),

by standard formulas on differentiation, from Gasquet €tlal [8, p. 157]. Thus

2in f (€)= = (£(9)) +2ew0f (©).

or ) )
—2m%6f (&) = of (€) + 2imeof (€),
or
(9.49) (F©) = 7€) =~ (wt +icx) £ 6).

Solving the first order ordinary differential equatipn (9.49) by the method [25] of the separation
of variables we get the general solution

(9.50) f (&) =K (&),
such thatf (0) = K (0). Differentiating the formuIO) with respectdgmne finds
2 =2 2_; / 2 2 .
O o LCRRSGI Ce=Er
From {9.48),((9.49)| (9.30) anf (9]51) we fiice K7 (£) e~ €-2m0¢ or K (£) = 0, or
(9.52) K(§) =K,
which is a constant. But from (9.50) anld (9.52) one gets
(9.53) f(0)=K(0) =K.
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Besides from the definition of the Fourier transform we get

f(0) = / e 20T f (1) da

:Zf@Mx

:Co/ec(me)de
R

G 6*[ﬁ($710)]2d (\/E (l’ _ 1‘0))7

Vel
or
(9.54) fmy—%Vé,%ec,c>o
From [9.58) and (9.54) one finds
(9.55) K = co\/é, co€C, ¢>0.

Therefore from[(9.50) and (9.65) we complete the proof of the fornjula](9 ATdther proof
of (9.47) is by employing the formul.2) fime special Gaussian () = coe~*", such that

Qg(f) = 00\/§€Jc§2, coeC, ¢>0.
c

In fact, f () = ¢ (v — o), OF

A

F(6) =6 —xo)) (€) = /

R

6—2i7r§a:¢ (l‘ _ xO) dr = / 6—27L7r§(w+a:0)¢ ([L’) dr

R
(with z + 2y onz)

. . . ~ ~ . 2 .o
— 67217r£:1:0 / 672I7T££C¢ (SL’) dr = 67217r£zo¢(£)’ or f (g) — eQ@w:poﬁco\/Eecg ’
R C
establishing[(9.47).

~12
Therefore from|(8.36) - (8.37) with,, = 0, from (9.41), and the mean gffor ’f’ of the
form

&= [ €|f©) @ =10l T [ e P,

as well as from[(9]1)[ (9.37) and (9]47), one finds that the left-hand side of the ineduality (8.40)
of Corollary[8.2 is

~ 2
(s ) = ([ 17 @Fas ) - ([ e [Feof ac)
R R
2 * g2 2
_ |CO|4E </ x2pe—2c(x—$o) dI) . </ €2pe—20 I3 d§> <WhereC* _ ﬂ-_)
c \Jr R c
= |CO|4 E \/7_1'1 . 1 = G_QCI(Q] . d_2p62cx(2) r (p + %)
C 24P+§ 02p+§ dxgp (20*)p+§
*\ 2P \/7_T 1 ’00‘4 —9cx2 d 22
= () 23p71F <p+ 5) Tl € OE{?G %

(with H» =1 /27¢/2) holds for allp € N, ¢y € C, ¢ > 0, andz, € R.
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Finally from the right-hand side of the inequalify (8.40) of Corolfary 8.2 with

[p/2] )
E,; = prq (/ 2<I’f(‘1)‘ daj)

such thatE, ;| < oo and
)
<m2p)|f\2 (m2p)|f"2 > (Hp) pEz,f’
for any fixed but arbitrary € N, one completes the proof of the extremum principle (9.36).

Corollary 9.4. Assume that the Euler gamma functibris defined by[(9.32). Consider the
Gaussian functiory : R — C of the formf () = coe=(*~ 20)” , Wherecy, ¢,xq are fixed but
arbitrary constants and, € C, ¢ > 0, zo € R. Assume that:m is the mean of: for |f| .
Consider the Fourier transfornf : R — C of f, given as in the abstract, arg, the mean of

2
for ‘f‘ . Consider theq'” moment of: for \f(q)|2by

(ugq)lf(q)|2 = /R(JJ — q;m>2q ‘f(fI) (x)‘Q dzx,

the constants, , as in {8.38), and

[p/2]
Epr= Z €pyq (:u2€1)|f<q)|27
q=0

if | E,,¢| < oo holds for0 < ¢ < [£], and any fixed but arbitrary € N. If

2
_ _ ™ | ol

andx} = xo £, ., then the extremum principle

11

\4/7_1' 1 |CO|2 * JR——" d* 2zt %
956) Byl < T (p4 ) (Bre) et )

holds for any fixed but arbitrary € N.
Equality holds fop = 1; xq = 0, or forp = 1; E|f|2 =1.

We note thatr,, = 0 only if zo = 0, while in the previous Corollary 9.3 we hawg, = 0

even ifxg # 0.We may caIIEma andErﬂ2 complementary probabilitfor energy integrals

Proof. It is clear, that from[(9]1)[ (9.37), (9.89), (9]40) ahd (9.47) that

(sz)m? (m2p)|f’2

— </R <:c - I0E|f2)2p‘ z)|? dx) (/é ) <Where Ty = on\fﬁ)
— @7}' </R (x — x0E|f2>2P €—2c(x—z0)2dx) . (/R §2pe—20*§2d§) (Where o = 7%2) .
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By placingz + Tok 20N and lettingzf = z, (1 — Emz) roE . we have

Ik

(p2p) g2 (M) 2 = w@ (/R x2pe—2c(x_z3)2dx) (i;ﬁk;é))

4 2
1 *2 d p *2
_ 7_(‘60’ < ;/E 2 6—20110 . — e?cxo ) ( )1 .
¢ \ 2%tz 2ty du (272 /c)P"2

However,
d* 1 d*
A (1) = 20 7 2p (),
12
and
*\ 2p _ 1
(HP) - 22(p+1) 2p°
Therefore
(9.57) (m2p>|f|2 (m2p)|f|2
_ x) 2P ﬁ 1 ‘CO|4 * —2 —2ca’ d2p 2cxr’
- (Hp) 23p71F (p—l— 5) o+l (E\f|2> e 'E(?]Pe ’
(2 (H:)™ |E,s|* from our above theorebn,
completing the proof of Corollary 9.4. O
9.3. Two Special Cases of (9.56).
@) If p=1,then
> .2 d dx}
— e2x0 — | 4ext 2c:1:0 0
dx%e dzg ( “FoC dx0>
d * 2cxg diﬂg ?
dzx} (xoe ) (d_xo>
.2 dxj
o *2 2cx w0
4cE|f‘2 <1 + 4cx, ) e~ Wheredwo =B

Therefore atzy = 0 (or 2}, = 0), d?e 2ea’ Jdz} = 4cE*
right hand side of (9.56), then

(9.58) R.H.S.(forp=1; zg=00rz; =0) \/—\/ |Co‘ If\ \/ 4CE|*f2\2
. _|CO| - FE
- 2 \/_ = B2

e If we denote by R.H.S. the

We note atc = xo = 0 one can get fro .39) that,, = zoLjp2 = 0.
But we havet,,, = 0. Therefore from[(8.26) one finds that
(9.59) |Ev sl = B

Thus from [9.58) and (9.59) we establish the equality] in (9.56pfet 1 andz, =
0.This corresponds to the equality pf (9.36), as well.

J. Inequal. Pure and Appl. Mathb(1) Art. 4, 2004 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

64 JOHN MICHAEL RASSIAS

Besides we note fronfi (9.56) a§ # 0 one gets that

(9.60) R.H.S. (for p=1; x5 #0) = \?\/F (;)@ ( f}2>_1 [4CE|*;|2 (1 +4C“’32)F
2

1
2

— 2

In this case from 9) we have that, = JZOE‘flz # 0. But&,, = 0. Therefore from
(8.51) one finds fop = 1; ¢ = 0, andw = 1 that

Eiy— —/R|f(x)|2dx — B,
satisfying [8.2p).

Thus from [9.5P) and (9.60) one establishes the inequality in](9.56) fer1 and
bothz, # 0 and £ ;> # 1, such that

2 2
— 2

If eitherzo = 0, or £, = 1, then the equality ir@@ holds fpr= 1.
(ii) If p = 2, then one gets

d* 20&852 %2 d? 2 20:532
(9.62) i€ = 4B ((1 + dex ) e )
2 %3 d * 3\ 2car”
o0 (04 1) )
2
= 1602E§|2 <3 + 24cx[§2 + 1662£CS4> e2o
Therefore atry = 0 (or zj, = 0), we have
d4 201*2 2 ot
(963) d_gjée 0 = 48¢c E\f|2
Thus
J 5 2 —2 4
R.H.S.(forp=2;2y =0 (ora; =0)) = \/? (- @ < |*f|2> /48P ,,
25 2/ ¢3 |f]
or
3 [mle? 3
(9.64) R.H.S= 5\/;% = EEmz, for p =2;29=0.

We note atr = z, = 0 one can get fron7 (9.39) that,, = 0. But we havet,, = 0.
Therefore from[(8.27) one finds that

Byp =2 / 1 @) =21 (@) de = 2 (Ew - §E|f|2) ’

or
1
(9.65) |Ba gl = 5B
Thus from [(9.64) and (9.65) we establish the inequality in (9.56p fer2 andz, = 0,
because
1 3
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Finally we note from[(9.56) at, # 0 one gets that

(9.67) R.H.S. (fop = 2; 20 # 0)

3 2 4
— 2By {3 +24c (1= Byp ) ad + 166 (1- By xé}

N

We note that

[ @=anIf @ e =4 [ (z=aoBye) (0 —an)? | @] da

— 4 {/Rx4|f(x)|2dx—2(1+E|f2)x04x3\f(x)]2dx

+ <1+4E‘f|2 +E‘f| ) /:cﬂf(:c)ﬁd;c

_2(E|f‘z—|—E|f‘2) /J;|f( ) d —i—Elflz:z;%/R\f(x)\de}.

But (9.37) holds even if we repla@p with any fixed but arbitrary. € N, (from (9.38)).
Then one gets that,

/R\f(x)\de = By,

/x|f(x)|2dx =T = ToE|sp2,
R

1 + 4ex?
[ 21 @F do = (ma) o = =508
R C

3xg + 4dex P

|1 @ do = ma) o = 270

and
3+ 24ca? + 167z
16¢2

/RxA‘ |f (2) do = (ma) g2 =

hold, if f (z) = coe=@=2)° ¢y € C, ¢ > 0, 29 € R. Therefore

[ @=an i @ do

= }LEﬂz [(3 + 24cxp + 1602353) — 8¢ <1 + Emz) (3m3 + 4cxé)

By

e (14 4B + B o) (a8 + dea)

3962 (E‘ s+ B

1 2
— 2By {3+4c [6— 6 (1 +E‘f|2) + (1 +AE, +E|f|2)} 22

) To+16c2 B2 2$O:|

Tk ]

2
416 [1 _9 (1 +E|f|2) n (1 +4E 0 + B2, )

2
-2 <E|f|2 + Ejje ) T Ep] e } } )
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or
2
3+ 4c <1 —F 2) x2
2 If] 0
[ @ = an?If @) o = ; By

holds, ifc > 0, ¢ € R.
In this case fron@Q) we have that, = 2o E ;2 # 0. But¢,, = 0. Therefore from
(8.51) one finds fop = 2; ¢ = 0,1 andw = 1 that

EQ,fz(—1)20% ( 260)/3_: ( (2) ) 1)©

($—xm0(x xmzo‘f )‘de
o () 2 (Do
(m—xm)o (z — )" ‘f(l )‘2d$

=2 [ [If @ do = (@ =21 @) da]

2
4

=2 | By — Ejpe |

or

1 2 ]
(9.68) Byy =3B |1 —4e (1 . Emz) 22 .

Thus from @7) and (9.68) one establishes the inequalify in](9.56) foR such that

2
2

NI

3 2 4
< 3B [3 +24c (1- Eyge) af+ 166 (1~ By ) xé} ,
because the condition
2,17 2,
1|40 (1= Eye) ad| +28 |4e(1- Byp) ad| +13>0,
or
4 2
(9.70) 64c (1 - Byyp) ah+112¢ (1= B ) 23 413> 0

holds forp = 2 and for fixed but arbitrary constants> 0, andz, € R.
If eitherzo = 0, or £, ;2 = 1, then we still have inequality irl1_(_97*56) for= 2.

Corollary 9.5. Assume that the Gamma functibris defined by[(9.32). Consider the general
Gaussian functiorf : R — C of the formf (z) = cee~“**+e#tes wheree;, (i = 0,1, 2, 3) are
fixed but arbitrary constants angl € C, ¢; > 0, andc,, c3 € R. Assume that the mathematical

expectation® (m — —) of z — 32 for | f|* equals to
C2 2
T = r— — z)|“dx = 0.
/ ( 201) £ (@)
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Consider the Fourier transfornf : R — C of f, given as in the abstract, arg, the mean of
~2

for ‘f‘ . Denote by(mzq)|f

and the constants, , as in

2 the2¢™ moment of: for \f@\? about the origin, as in (8.41),
@). Consider

[p/2]
Eyp= Z Epyg (m2q)|f(q)|2> p€eN.

q=0

If g = coe(cg+4clc3)/4cl € Candty = = €R, then the extremum principle

4 1 2 ) d2p 5 %
(9.71) |Epf| < fl FQ ( §> . |6p(1—|1 . e*CltO . ( 6261t0) 7
2 2r-

> dter

holds for any fixed but arbitrary € N.
Equality holds forp = 1; ¢, = 0 (0or ¢c; = 0).

We note that:,, = 0 even ift, # 0 or c; # 0, while in the following Corollary 96 we have
T, =0o0nlyiftg =00rc, =0.
Also we observe that i () = coe~1 1), andd, = e(F+iaes)/4e (5 ), then

(9.72) f(z) =dog(z) = goe @10 2o € C.
Proof. In fact, from [9.36) and (9.72) one gets that

xm:E<x—20—621>
:/(a:—Q—) f (@) de

(&1
2 2 C2 2
— | [ sl 52 [lg@Pa]
1 JRr
_ g2 2
=dy [chEm chEW}’
or

(9.73) Ty = 0.

In this case the mathematical expectatignis the mean of for |f|2 if to=00rcy =0.
We note that from([(9.40) and (9]72) one establishes

2 2 2
_ 2 N (< N i e GHeres
(9.74) Ejp = doFyg2 = dO\@—,@ N \@fcle o

This result can be computed directly from (9.40), as follows:

_ T |’50|2
Byge = \/g\/a
which leads t0[(9.74).
Similarly from (9.39) we get the mean gffor | f|* of the form

2
1 |C()’ Co 2
9.75 200 = to [ .o — fﬂt (3+4crcs) /201
5-79) /Rm|f(x)| v \/g\/c_l ° 2 e/ aver
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Also from ) one finds the Fourier transforfof f of the form
(976) f(f) — 5 /_6—2—152—i27rt0§ = ¢ 1€(c§+4clcg)/4cl e—(7r2§2—|—i7r02§)/cl7
C1 C1
Cy € C, c1 >0, andCQ, Cc3 € R. )
Finally we find the mean of for ‘f‘ , as follows:

- 2 2 _gnZe2
077) & — / §|F ) de = leof? elFHiam)iza T / ¢ 0 e =0,
R 1 Jr
The rest of the proof is similar to the proof of the Corollgry]9.3. O

Corollary 9.6. Assume the gamma functibrgiven as in[(9.32). Consider the general Gaussian
functionf : R — C of the formf (z) = coe~** T +es wheree, (i = 0,1, 2, 3) are fixed but
arbitrary constants and, € C, ¢; > 0, andc,, ¢3 € R. Assume that,, is the mean (or the
mathematical expectatiofi (z)) of = for | f|*. Consider the Fourier transforrfi : R — C of f,

~2
given as in the abstract, artg, the mean of for ‘f‘ )

Consider(us » the2¢"" moment of: for | £@|* by
7

f@ ‘

(/,qu)|f(q)|2 = /]R (I — ajm)zq ‘f(q) (I)‘Q dzx,

the constants, , as in {8.38), and

[p/2]
Ep = Z‘gp,q (/’L2q)’f(q)‘27 if [Epp| < oo
q=0

holds for0 < ¢ < [£], and any fixed but arbitrary € N. If

2
£o = Coe<02+40103>/4cl e C,

and
Co
to = — €R,
0 261

2
* o ™ |€0|
Ejpp=1—Ep <— 1- \/%ﬁ)

andtf = tOE‘*fF, then the following extremum principle

1

47T 1 ]. & 2 * -P —eqtE dzp c *2 2

9.78)  |Epsl < —EQ 1 (p+ 5) % ' ( |f|2> e <ﬁ62 0 ) ,
23 Clz t()

holds for any fixed but arbitrary € N.
Equality holds fop = 1; to = 0 (or ¢ = 0), or forp = 1; E|f|2 =1.

We note that,, = 0 only if ¢, = 0, while in the previous Corollary 9.5 we havg, = 0
even ifty # 0.

From (9.74) —((9.75) one gets that, = {oE;2, whereE, ;2 = \/g‘\‘f/“c'; Thus we get from

(9.78) — [9.7V) the proof of Corollafy 9.6, in a way similar to the proof of the Coroflary 9.4,
because from (9.72) we haygx) = ge—(*~)°, andz,, is the mean of: for | f|°.
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Table 9.1: The first thirty-three cases pf (9.33) ati(p) = 27 R (p) > 1

p R(p) R*(p)

1 0.16 1.00

2 0.48 3.00

3 0.80 5.00

4 0.43 2.69

5 0.59 3.71

6 1.93 12.16

7 2.97 18.65

8 1.68 10.53

9 2.34 14.70
10 7.80 48.98
11 11.63 | 73.06
12 6.65 41.81
13 9.33 58.61
14 31.30 |196.66
15 46.04 | 289.30
16 2652 | 166.61
17 37.26 | 234.09
18 125.48 | 788.41
19 183.10 |1150.43
20 105.83 | 664.95
21 14889 |935.48
22 502.68 | 3158.42
23 729.57 | 4584.05
24 42269 |2655.83
25 595.18 | 3739.60
26 2012.88 | 12647.30
27 2910.37 | 18286.41
28 1688.95 | 10611.98
29 2379.65 | 14951.80
30 8058.08 | 50630.40
31 11617.84 72997.06
32 6750.36 | 42413.73
33 9515.51 | 59787.71
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