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ABSTRACT. In 1927, W. Heisenberg demonstrated the impossibility of specifying simultane-
ously the position and the momentum of an electron within an atom.The following result named,
Heisenberg inequality, is not actually due to Heisenberg. In 1928, according to H. Weyl this re-
sult is due to W. Pauli.The said inequality states, as follows: Assume thatf : R → C is a complex
valued function of a random real variablex such thatf ∈ L2(R). Then the product of the second

moment of the random realx for |f |2 and the second moment of the random realξ for
∣∣∣f̂ ∣∣∣2is

at leastE|f |2 /4π , wheref̂ is the Fourier transform off , such thatf̂ (ξ) =
∫

R
e−2iπξxf (x) dx

andf (x) =
∫

R
e2iπξxf̂ (ξ) dξ, i =

√
−1 andE|f |2 =

∫
R
|f (x)|2 dx. In this paper we gen-

eralize the afore-mentioned result tothe higher moments forL2 functionsf and establish the
Heisenberg-Pauli-Weyl inequality.

Key words and phrases:Pascal Identity, Plancherel-Parseval-Rayleigh Identity, Lagrange Identity, Gaussian function, Fourier
transform, Moment, Bessel equation, Hermite polynomials, Heisenberg-Pauli-Weyl Inequality.
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1. I NTRODUCTION

In 1927, W. Heisenberg [9] demonstrated the impossibility of specifying simultaneously the
position and the momentum of an electron within an atom. In 1933, according to N. Wiener
[22] a pair of transforms cannot both be very small. This uncertainty principle was stated
in 1925 by Wiener, according to Wiener’s autobiography [23, p. 105–107], in a lecture in
Göttingen. In 1992, J.A. Wolf [24] and in 1997, G. Battle [1] established uncertainty principles
for Gelfand pairs and wavelet states, respectively. In 1997, according to Folland et al. [6],
and in 2001, according to Shimeno [14] the uncertainty principle in harmonic analysis says:
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2 JOHN M ICHAEL RASSIAS

A nonzero function and its Fourier transform cannot both be sharply localized.The following
result of theHeisenberg Inequalityis credited to W. Pauli according to H. Weyl [20, p.77,
p. 393–394]. In 1928, according to Pauli [20], the followingpropositionholds: the less the

uncertainty in|f |2, the greater the uncertainty in
∣∣∣f̂ ∣∣∣2 is , and conversely. This result does not

actually appear in Heisenberg’s seminal paper [9] (in 1927). According to G.B. Folland et al. [6]
(in 1997) Heisenberg [9] gave an incisive analysis of the physics of the uncertainty principle but
contains little mathematical precision. The following Heisenberg inequality provides a precise
quantitative formulation of the above-mentioned uncertainty principle according to Pauli [20].

In what follows we will use the following notation to denote the Fourier transform off (x) :

F (f (x)) ≡ [f (x)] ˆ (ξ) .

1.1. Second Order Moment Heisenberg Inequality ([3, 6]). For anyf ∈ L2(R), f : R → C,
such that

‖f‖2
2 =

∫
R
|f (x)|2 dx = E|f |2 ,

any fixed but arbitrary constantsxm, ξm ∈ R, and for the second order moments (variances)

(µ2)|f |2 = σ2
|f |2 =

∫
R

(x− xm)2 |f (x)|2 dx

and

(µ2)|f̂|2 = σ2

|f̂|2 =

∫
R

(ξ − ξm)2
∣∣∣f̂ (ξ)

∣∣∣2 dξ,

the second order moment Heisenberg inequality

(H1) (µ2)|f |2 · (µ2)|f̂|2 ≥
E2
|f |2

16π2
,

holds, where

f̂ (ξ) =

∫
R

e−2iπξxf (x) dx

and

f (x) =

∫
R

e2iπξxf̂ (ξ) dξ, i =
√
−1.

Equalityholds in (H1) iff (if and only if) the Gaussians

f (x) = c0e
2πixξme−c(x−xm)2 = c0e

−cx2+2(cxm+iπξm)x−cx2
m

hold for some constantsc0 ∈ C and c > 0. We note that ifxm 6= 0 and ξm = 0, then
f (x) = c0e

−c(x−xm)2, c0 ∈ C andc > 0.

Proof. Let xm = ξm = 0, and that the integrals in the inequality (H1) be finite. Besides
we consider both the ordinary derivatived

dx
|f |2 = 2 Re

(
ff̄ ′
)

and the Fourier differentiation
formula

Ff ′ (ξ) = [f ′(x)] ˆ (ξ) = 2πiξf̂ (ξ) .

Then we get that the finiteness of the integral∫
R

∣∣∣ξf̂ (ξ)
∣∣∣2 dξ

(
=

1

4π2

∫
R
|f ′ (x)|2 dx

)
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ON THE HEISENBERG-PAULI -WEYL INEQUALITY 3

impliesf ′ ∈ L2. Integration by parts yields

2

∫ a+

a−

x Re
(
f (x) f ′ (x)

)
dx =

∫ a+

a−

x
d

dx
|f (x)|2 dx = x |f (x)|2

∣∣∣∣a+

a−

−
∫ a+

a−

|f (x)|2 dx, −∞ < a− < a+ < ∞.

Sincef , xf , f ′ ∈ L2, the integrals in this equality are finite asa− → −∞ or a+ →∞ and thus
both limitsL− = lim

a−→−∞
a− |f (a−)|2 andL+ = lim

a+→∞
a+ |f (a+)|2 are finite. These two limits

L± are equal to zero, for otherwise|f (x)|2 would behave as1
x

for big x meaning thatf /∈ L2,
leading to contradiction. Therefore for the variances about the origin

(m2)|f |2 = s2
|f |2 =

∫
R

x2 |f (x)|2 dx

and

(m2)|f̂|2 = s2

|f̂|2 =

∫
R

ξ2
∣∣∣f̂ (ξ)

∣∣∣2 dξ,

one gets

1

16π2
‖f‖4

2 =

(
1

4π
E|f |2

)2

=
1

16π2

(
−
∫

R
|f (x)|2 dx

)2

=
1

16π2

[∫
R

x
d

dx
|f (x)|2 dx

]2

=
1

16π2

[
2

∫
R

x Re
(
f (x) f ′ (x)

)
dx

]2

=
1

4π2

[
1

2

∫
R

(
xf (x) f ′ (x) + xf (x)f ′ (x)

)
dx

]2

≤ 1

4π2

[∫
R
|xf (x) f ′ (x)| dx

]2

≤ 1

4π2

(∫
R

x2 |f (x)|2 dx

)(∫
R
|f ′ (x)|2 dx

)
= s2

|f |2 · s
2

|f̂|2 .

Equalityin these inequalities holds iffthe differential equationf ′ (x) = −2cxf (x) of first order
holds forc > 0 or if the Gaussiansf (x) = c0e

−cx2
hold for some constantsc0 ∈ C, andc > 0.

Assuming any fixed but arbitrary real constantsxm, ξm and employing the transformation

fxm,ξm (x) = e2πixξmf (x− xm) , xδ = x− xm 6= 0,

we establish the formula

f̂xm,ξm (ξ) = e−2πixm(ξ−ξm)f̂ (ξ − ξm) = e2πixmξm f̂ξm,−xm (ξ) .

Therefore the mapf → fxm,ξm preserves allL2p (p ∈ N) norms off andf̂ while shifting the
centers of mass off andf̂ by realxm andξm, respectively. Therefore equality holds in (H1) for
any fixed but arbitrary constantsxm, ξm ∈ R iff the general formula

f (x) = c0e
2πixξme−c(x−xm)2
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holds for some constantsc0 ∈ C, andc > 0. One can observe that this general formula is the
complete (general) solution of the followinga-differential equationf ′a = −2c (x− xm) fa, by
the method of the separation of variables, wherea = −2πξmi, fa = eaxf . We note that

f ′a =
dfa

dx
=

dfa

dxδ

dxδ

dx
=

dfa

dxδ

, xδ = x− xm.

In fact,
ln |fa| = −c (x− xm)2 ,

or
eaxf (x) = fa (x) = c0e

−c(x−xm)2 ,

or
f (x) = c0e

−axe−c(x−xm)2 .

This is a special case for the equality of the general formula (8.3) of our theorem in Section 8,
on the generalized weighted moment Heisenberg uncertainty principle. Therefore the proof of
this fundamental Heisenberg Inequality (H1) is complete. �

We note that, iff ∈ L2(R) and theL2-norm off is ‖f‖2 = 1 =
∥∥∥f̂∥∥∥

2
, then|f |2 and

∣∣∣f̂ ∣∣∣2
are both probability density functions. The Heisenberg inequalityin mathematical statistics
and Fourier analysisasserts that: The product of the variances of the probability measures

|f (x)|2 dx and
∣∣∣f̂ (ξ)

∣∣∣2 dξ is larger than an absolute constant. Parts of harmonic analysis on

Euclidean spaces can naturally be expressed in terms ofa Gaussian measure; that is, a measure
of the formc0e

−c|x|2dx, wheredx is the Lebesgue measure andc, c0 (> 0) constants. Among
these are: Logarithmic Sobolev inequalities, and Hermite expansions. Finally one [14] observes
that:

σ2
|f |2 · σ

2

|f̂|2 ≥
1

4
‖f‖4

2 ,

if f ∈ L2(R),

f̂ (ξ) =
1√
2π

∫
R

e−iξxf (x) dx

and

f (x) =
1√
2π

∫
R

eiξxf̂ (ξ) dξ,

where theL2-norm‖f‖2 is defined as in (H1) above.
In 1999, according to Gasquet et al. [8] the Heisenberg inequalityin spectral analysissays

that the product of the effective duration∆x and the effective bandwidth∆ξ of a signal cannot

be less than the value1
4
π = H∗ (=Heisenberg lower bound), where∆x2 = σ2

|f |2

/
E|f |2 and

∆ξ2

(
= σ2

|f̂|2
/

E|f̂|2
)

= σ2

|f̂|2
/

E|f |2

with f : R → C, f̂ : R → C defined as in (H1), and

E|f |2 =

∫
R

∣∣∣f̂ (ξ)
∣∣∣2 dξ = E|f̂|2 .

In this paper we generalize the Heisenberg inequality tothe higher moments forL2 functionsf
and establish theHeisenberg-Pauli-Weyl inequality.
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2. PASCAL TYPE COMBINATORIAL I DENTITY

We state and provethe new Pascal type combinatorial identity.

Proposition 2.1. If 0 ≤
[

k
2

]
is the greatest integer≤ k

2
, then

(C)
k

k − i

(
k − i

i

)
+

k − 1

k − i

(
k − i
i− 1

)
=

k + 1

k − i + 1

(
k − i + 1

i

)
,

holds for any fixed but arbitraryk ∈ N = {1, 2, . . .}, and 0 ≤ i ≤
[

k
2

]
for i ∈ N0 =

{0, 1, 2, . . .} such that
(

k
−1

)
= 0.

Note thatthe classical Pascal identityis(
k − i

i

)
+

(
k − i
i− 1

)
=

(
k − i + 1

i

)
, 0 ≤ i ≤

[
k

2

]
.

Proof. It is clear thatk (k − 2i + 1) + (k − 1) i = (k − i) (k + 1). Thus

k

k − i

(
k − i

i

)
+

k − 1

k − i

(
k − i
i− 1

)
=

k

k − i

(k − i)!

i! (k − 2i)!
+

k − 1

k − i

(k − i)!

(i− 1)! (k − 2i + 1)!

=
k

k − i

(k−i+1)!
k−i+1

i! (k−2i+1)!
k−2i+1

+
k − 1

k − i

(k−i+1)!
k−i+1

i!
i
(k − 2i + 1)!

=
(k − i + 1)!

i! (k − 2i + 1)!

1

(k − i) (k − i + 1)
[k (k − 2i + 1) + (k − 1) i]

=

(
k − i + 1

i

)
k + 1

k − i + 1
,

completing the proof of this identity. �

Note that all of the three combinations:
(

k−i
i

)
,
(

k−i
i−1

)
, and

(
k−i+1

i

)
exist and are positive

numbers if1 ≤ i ≤
[

k
2

]
for i ∈ N.

3. GENERALIZED DIFFERENTIAL I DENTITY

We state and provethe new differential identity.

Proposition 3.1. If f : R → C is a complex valued function of a real variablex, 0 ≤
[

k
2

]
is the

greatest integer≤ k
2
, f (j) = dj

dxj f , and(·) is the conjugate of(·), then

(*) f (x) f (k) (x) + f (k) (x) f̄ (x) =

[ k
2 ]∑

i=0

(−1)i k

k − i

(
k − i

i

)
dk−2i

dxk−2i

∣∣f (i) (x)
∣∣2,

holds for any fixed but arbitraryk ∈ N = {1, 2, . . .}, such that0 ≤ i ≤
[

k
2

]
for i ∈ N0 =

{0, 1, 2, . . .}.
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Note that fork = 1 we have

f (x) f (1) (x) + f (1) (x) f̄ (x) = (−1)[
1
2 ](=0) 1

1− 0

(
1− 0

0

)
d1−2·0

dx1−2·0

∣∣f (0) (x)
∣∣2

=
d

dx
|f (x)|2

=
(
|f (x)|2

)(1)
.

If we denoteGk (f) = ff (k) + f (k)f̄ , and(∣∣f (i)
∣∣2)(k−2i)

=
dk−2i

dxk−2i

∣∣f (i)
∣∣2

=
dk−2i

dxk−2i

∣∣∣∣ di

dxi
f

∣∣∣∣2 ,

0 ≤ i ≤
[
k

2

]
for k ∈ N = {1, 2, . . .}

andi ∈ N0, then (*) is equivalent to

(**) Gk (f) =

[ k
2 ]∑

i=0

(−1)i k

k − i

(
k − i

i

)(∣∣f (i)
∣∣2)(k−2i)

.

Proof. Fork = 1 (**) is trivial. Assume that (**) holds fork and claim that it holds fork + 1.
In fact,

G
(1)
k (f) =

(
ff (k) + f (k)f̄

)(1)

=
(
ff (k)

)(1)

+
(
f (k)f̄

)(1)

=
(
f (1)f (k) + ff (k+1)

)
+
(
f (k+1)f̄ + f (k)f (1)

)
=
(
f (1)f (k) + f (k)f (1)

)
+
(
ff (k+1) + f (k+1)f̄

)
=
(
f (1)(f (1))

(k−1)
+
(
f (1)
)(k−1)

f (1)
)

+ Gk+1 (f)

= Gk−1

(
f (1)
)

+ Gk+1 (f) ,

or the recursive sequence

(R) Gk+1 (f) = G
(1)
k (f)−Gk−1

(
f (1)
)
,

for k ∈ N = {1, 2, . . .}, with G0

(
f (1)
)

=
∣∣f (1)

∣∣2, andG1 (f) =
(
|f |2
)(1)

.
From the induction hypothesis, the recursive relation (R), the fact that

j∑
i=0

λi+1 =

j+1∑
i=1

λi, (−1)i−1 = − (−1)i

for i ∈ N0, and [
k − 1

2

]
=


[

k
2

]
− 1, k = 2v for v = 1, 2, . . .[

k
2

] (
= k−1

2

)
, k = 2λ + 1 for λ = 0, 1, . . .
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such that
[

k
2

]
≤
[

k−1
2

]
+ 1, if k ∈ N, we find

Gk+1 (f)

=


[ k
2 ]∑

i=0

(−1)i k

k − i

(
k − i

i

)(∣∣f (i)
∣∣2)(k+1−2i)


−


[ k−1

2 ]∑
i=0

(−1)i k − 1

k − 1− i

(
k − 1− i

i

)(∣∣f (i+1)
∣∣2)(k−1−2i)


=

{
(−1)0 k

k − 0

(
k − 0

0

)(∣∣f (0)
∣∣2)(k+1−2·0)

+

[ k
2 ]∑

i=1

(−1)i k

k − i

(
k − i

i

)(∣∣f (i)
∣∣2)(k+1−2i)


−


[ k−1

2 ]+1∑
i=1

(−1)i−1 k − 1

(k − 1)− (i− 1)

(
k − 1− (i− 1)

i− 1

)(∣∣f (i)
∣∣2)(k−1−2(i−1))


=

(|f |2)(k+1)
+

[ k
2 ]∑

i=1

(−1)i k

k − i

(
k − i

i

)(∣∣f (i)
∣∣2)(k+1−2i)


+


[ k−1

2 ]+1∑
i=1

(−1)i k − 1

k − i

(
k − i
i− 1

)(∣∣f (i)
∣∣2)(k+1−2i)


=

(|f |2)(k+1)
+

[ k
2 ]∑

i=1

(−1)i k

k − i

(
k − i

i

)(∣∣f (i)
∣∣2)(k+1−2i)


+


[ k
2 ]∑

i=1

(−1)i k − 1

k − i

(
k − i
i− 1

)(∣∣f (i)
∣∣2)(k+1−2i)

+ S (f)

 ,

where

S (f) =



0, if k = 2v for v = 1, 2, . . .

(−1)[
k−1
2 ]+1 (k − 1)

k −
([

k−1
2

]
+ 1
) (

k −
([

k−1
2

]
+ 1
)([

k−1
2

]
+ 1
)
− 1

)
×
(∣∣∣f([ k−1

2 ]+1)
∣∣∣2)(k+1−2([ k−1

2 ]+1))
,

if k = 2λ + 1 for λ = 0, 1, . . . .
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Thus

Gk+1 (f) =
(
|f |2
)(k+1)

+

[ k
2 ]∑

i=1

(−1)i

{
k

k − i

(
k − i

i

)
+

k − 1

k − i

(
k − i
i− 1

)}(∣∣f (i)
∣∣2)(k+1−2i)

+ S (f) ,

where

S (f) =


0, if k = 2v for v = 1, 2, . . .

(−1)[
k−1
2 ] 1−k

k−1−[ k−1
2 ]

(
k − 1−

[
k−1
2

][
k−1
2

] )(∣∣∣f([ k−1
2 ]+1)

∣∣∣2)(k−1−2[ k−1
2 ])

,

if k = 2λ + 1 for λ = 0, 1, . . .

=


0, if k = 2v for v = 1, 2, . . .

(−1)
k−1
2 1−k

k−1
2

(
k−1
2

k−1
2

)(∣∣∣f( k+1
2 )
∣∣∣2)(0)

, if k = 2λ + 1 for λ = 0, 1, . . .

=


0, if k = 2v for v = 1, 2, . . .

2 (−1)
k+1
2

(∣∣∣f( k+1
2 )
∣∣∣2) , if k = 2λ + 1 for λ = 0, 1, . . .

=


0,if k = 2v for v = 1, 2, . . .

(−1)[
k+1
2 ] k+1

k+1−[ k+1
2 ]

(
k + 1−

[
k+1
2

][
k+1
2

] )(∣∣∣f([ k+1
2 ])
∣∣∣2)(k+1−2[ k+1

2 ])
,

if k = 2λ + 1 for λ = 0, 1, . . . ,

because [
k + 1

2

]
=

k + 1

2
, if k = 2λ + 1 for λ = 0, 1, . . .

Besides we note that, from the above Pascal type combinatorial identity (C) andk
2

=
[

k
2

]
=[

k+1
2

]
, if k = 2v for v = 1, 2, . . . , one gets

(−1)[
k
2 ]

{
k

k −
[

k
2

] ( k −
[

k
2

][
k
2

] )
+

k − 1

k −
[

k
2

] ( k −
[

k
2

][
k
2

]
− 1

)}(∣∣∣f([ k
2 ])
∣∣∣2)(k+1−2[ k

2 ])

= (−1)[
k
2 ] k + 1

k −
[

k
2

]
+ 1

(
k −

[
k
2

]
+ 1[

k
2

] )(∣∣∣f([ k
2 ])
∣∣∣2)(k+1−2[ k

2 ])

= (−1)[
k+1
2 ] k + 1

k + 1−
[

k+1
2

] ( k + 1−
[

k+1
2

][
k+1
2

] )(∣∣∣f([ k+1
2 ])
∣∣∣2)(k+1−2[ k+1

2 ])
,
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if k = 2v for v = 1, 2, . . . . From these results, one obtains

Gk+1 (f) = (−1)0 k + 1

k + 1− 2 · 0

(
k + 1− 0

0

)(∣∣f (0)
∣∣2)(k+1−2·0)

+

[ k
2 ]∑

i=1

(−1)i k + 1

k + 1− i

(
k + 1− i

i

)(∣∣f (i)
∣∣2)(k+1−2i)

+S (f)

=

[ k+1
2 ]∑

i=1

(−1)i k + 1

k + 1− i

(
k + 1− i

i

)(∣∣f (i)
∣∣2)(k+1−2i)

,

completing the proof of (**) fork + 1 and thus by the induction principle onk, (**) holds for
anyk ∈ N. �

3.1. Special cases of (**).

G1 (f) =
(
|f |2
)(1)

,

G2 (f) =
(
|f |2
)(2) − 2

∣∣f (1)
∣∣2 ,

G3 (f) =
(
|f |2
)(3) − 3

(∣∣f (1)
∣∣2)(1)

,

G4 (f) =
(
|f |2
)(4) − 4

(∣∣f (1)
∣∣2)(2)

+ 2
∣∣f (2)

∣∣2 ,

G5 (f) =
(
|f |2
)(5) − 5

(∣∣f (1)
∣∣2)(3)

+ 5
(∣∣f (2)

∣∣2)(1)

,

G6 (f) =
(
|f |2
)(6) − 6

(∣∣f (1)
∣∣2)(4)

+ 9
(∣∣f (2)

∣∣2)(2)

− 2
∣∣f (3)

∣∣2 ,

G7 (f) =
(
|f |2
)(7) − 7

(∣∣f (1)
∣∣2)(5)

+ 14
(∣∣f (2)

∣∣2)(3)

− 7
(∣∣f (3)

∣∣2)(1)

,

G8 (f) =
(
|f |2
)(8) − 8

(∣∣f (1)
∣∣2)(6)

+ 20
(∣∣f (2)

∣∣2)(4)

− 16
(∣∣f (3)

∣∣2)(2)

+ 2
∣∣f (4)

∣∣2 .

We note that if one takes the above numerical coefficients ofGi(f) (i = 1, 2, . . ., 8) absolutely,
then one establishes the pattern

1
1 2
1 3
1 4 a1= 2
1 5 a2= 5
1 6 a3= 9 b1= 2
1 7 a4= 14 b2= 7
1 8 a5= 20 b3 = 16 c1= 2

with
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a1 = 2 b1 = a1 = 2 c1 = b1 = a1 = 2
a2 = 2 + 3 = 5 b2 = a1 + a2 = 7
a3 = 2 + 3 + 4 = 9 b3 = a1 + a2 + a3 = 16
a4 = 2 + 3 + 4 + 5 = 14
a5 = 2 + 3 + 4 + 5 + 6 = 20

Following this pattern we get

G9 (f) =
(
|f |2
)(9) − 9

(∣∣f (1)
∣∣2)(7)

+ a6

(∣∣f (2)
∣∣2)(5)

− b4

(∣∣f (3)
∣∣2)(3)

+ c2

(∣∣f (4)
∣∣2)(1)

,

where

a6 = a5 + 7 = 27,

b4 = b3 + a4 = 16 + 14 = 30,

c2 = c1 + b2 = 2 + 7 = 9.

Similarly, one gets

G10 (f) =
(
|f |2
)(10) − 10

(∣∣f (1)
∣∣2)(8)

+ a7

(∣∣f (2)
∣∣2)(6)

− b5

(∣∣f (3)
∣∣2)(4)

+ c3

(∣∣f (4)
∣∣2)(2)

− d1

∣∣f (5)
∣∣2 ,

where

a7 = a6 + 8 = 35,

b5 = b4 + a5 = 30 + 20 = 50,

c3 = c2 + b3 = 9 + 16 = 25,

d1 = c1 = b1 = a1 = 2.

3.2. Applications of the Recursive Sequence (R).

G4 (f) = G
(1)
3 (f)−G2

(
f (1)
)

=
(
ff (3) + f (3)f

)(1)

−
(
f (1)(f (1))

(2)
+
(
f (1)
)(2)

f (1)
)

=

{(
|f |2
)(4) − 3

(∣∣f (1)
∣∣2)(2)

}
−
{(∣∣f (1)

∣∣2)(2)

− 2
∣∣f (2)

∣∣2}
=
(
|f |2
)(4) − 4

(∣∣f (1)
∣∣2)(2)

+ 2
∣∣f (2)

∣∣2
and

G5 (f) = G
(1)
4 (f)−G3

(
f (1)
)

=

{(
|f |2
)(5) − 4

(∣∣f (1)
∣∣2)(3)

+ 2
(∣∣f (2)

∣∣2)(1)
}
−
{(∣∣f (1)

∣∣2)(3)

− 3
(∣∣f (2)

∣∣2)(1)
}

=
(
|f |2
)(5) − 5

(∣∣f (1)
∣∣2)(3)

+ 5
(∣∣f (2)

∣∣2)(1)

,

yielding also the above generalized differential identity (**) fork = 3 andk = 4, respectively.
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3.3. Generalization of the Identity (**). We denote

Hkl (f) = f (l)f (k) + f (k)f (l).

It is clear that

Hkl (f) =


Gk−l

(
f (l)
)

= f (l)(f (l))
(k−l)

+
(
f (l)
)(k−l)

f (l), if k > l

G0

(
f (l)
)

= 2
∣∣f (l)

∣∣2 , if k = l

Gl−k

(
f (k)
)

= f (k)(f (k))
(l−k)

+
(
f (k)
)(l−k)

f (k), if k < l

From these and (**) we conclude that

Hkl (f) =



[ k−l
2 ]∑

i=0

(−1)i k − l

k − l − i

(
k − l − i

i

)(∣∣f (i+l)
∣∣2)(k−l−2i)

, if k > l

2
∣∣f (l)

∣∣2 , if k = l

[ l−k
2 ]∑

i=0

(−1)i l − k

l − k − i

(
l − k − i

i

)(∣∣f (i+k)
∣∣2)(l−k−2i)

, if k < l

For instance, ifk = 3 > 2 = l, then from this formula one gets

H32 (f) = G3−2

(
f (2)
)

=

[ 3−2
2 ]∑

i=0

(−1)i 3− 2

3− 2− i

(
3− 2− i

i

)(∣∣f (i+2)
∣∣2)(3−2−2i)

= (−1)0 1

1− 0

(
1− 0

0

)(∣∣f (2)
∣∣2)(1−2·0)

=
(∣∣f (2)

∣∣2)(1)

.

In fact,

H32 (f) = f (2)f (3) + f (3)f (2) = f (2)(f (2))
(1)

+
(
f (2)
)(1)

f (2) = G1

(
f (2)
)

=
(∣∣f (2)

∣∣2)(1)

.

Another special case, ifk = 3 > 1 = l, then one gets

H31 (f) = G3−1

(
f (1)
)

=

[ 3−1
2 ]∑

i=0

(−1)i 3− 1

3− 1− i

(
3− 1− i

i

)(∣∣f (i+1)
∣∣2)(3−1−2i)

= (−1)0 2

2− 0

(
2− 0

0

)(∣∣f (1)
∣∣2)(2−2·0)

+ (−1)1 2

2− 1

(
2− 1

1

)(∣∣f (2)
∣∣2)(2−2·1)

=
(∣∣f (1)

∣∣2)(2)

− 2
∣∣f (2)

∣∣2 .
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In fact,

H31 (f) = f (1)f (3) + f (3)f (1)

= f (1)(f (1))
(2)

+
(
f (1)
)(2)

f (1)

= G2

(
f (1)
)

=
(∣∣f (1)

∣∣2)(2)

− 2
∣∣f (2)

∣∣2 .

4. GENERALIZED PLANCHEREL -PARSEVAL -RAYLEIGH I DENTITY

We state and provethe new Plancherel-Parseval-Rayleigh identity.

Proposition 4.1. If f and fa : R → C are complex valued functions of a real variablex,
fa = eaxf andf

(p)
a = dp

dxp fa, wherea = −2πξmi with i =
√
−1 and any fixed but arbitrary

constantξm ∈ R, f̂ the Fourier transform off , such that

f̂ (ξ) =

∫
R

e−2iπξxf (x) dx

with ξ real and

f (x) =

∫
R

e2iπξxf̂ (ξ) dξ,

as well asf , f
(p)
a , and(ξ − ξm)p f̂ are inL2(R), then

(4.1)
∫

R
(ξ − ξm)2p

∣∣∣f̂ (ξ)
∣∣∣2 dξ =

1

(2π)2p

∫
R

∣∣f (p)
a (x)

∣∣2 dx

holds for any fixed but arbitraryp ∈ N0 = {0, 1, 2, . . .}.

Proof. Denote

(4.2) g (x) = e−2πixξmf (x + xm) ,

for any fixed but arbitrary constantxm ∈ R.
From (4.2) one gets that

ĝ (ξ) =

∫
R

e−2iπξxg (x) dx(4.3)

=

∫
R

e−2iπξx
(
e−2πixξmf (x + xm)

)
dx

= e2πixm(ξ+ξm)

∫
R

e−2πi(ξ+ξm)xf (x) dx

= e2πixm(ξ+ξm)f̂ (ξ + ξm) .

Denote the Fourier transform ofg(p) either byFg(p) (ξ) , orF
[
g(p) (x)

]
(ξ) , or also as

[
g(p)(x)

]
ˆ (ξ) .

From this and Gasquet et al. [8, p. 155–157] we find

(4.4) ξpĝ (ξ) =
1

(2πi)p Fg(p) (ξ) .

Also denote

(4.5) hp (x) = g(p) (x) .

From (4.5) and the classical Plancherel-Parseval-Rayleigh identity one gets∫
R

∣∣∣ĥp(ξ)
∣∣∣2 dξ =

∫
R
|hp (x)|2 dx,
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or

(4.6)
∫

R

∣∣Fg(p) (ξ)
∣∣2 dξ =

∫
R

∣∣g(p) (x)
∣∣2 dx.

Finally denote

(4.7) (µ2p)|f̂|2 =

∫
R

(ξ − ξm)2p
∣∣∣f̂ (ξ)

∣∣∣2 dξ

the2pth moment ofξ for
∣∣∣f̂ ∣∣∣2for any fixed but arbitrary constantξm ∈ R andp ∈ N0.

Substitutingξ with ξ+ξm we find from (4.3) – (4.7) that

(µ2p)|f̂|2 =

∫
R

ξ2p
∣∣∣f̂ (ξ + ξm)

∣∣∣2 dξ

=

∫
R

ξ2p
∣∣∣e2πixm(ξ+ξm)f̂ (ξ + ξm)

∣∣∣2 dξ

=

∫
R

ξ2p |ĝ (ξ)|2 dξ

=
1

(2π)2p

∫
R

∣∣Fg(p) (ξ)
∣∣2 dξ

=
1

(2π)2p

∫
R

∣∣g(p) (x)
∣∣2 dx.

From this and (4.2) we find

(µ2p)|f̂|2 =
1

(2π)2p

∫
R

∣∣∣(e−2πixξmf (x + xm)
)(p)
∣∣∣2 dx.

Placingx− xm onx in this identity one gets

(µ2p)|f̂|2 =
1

(2π)2p

∫
R

∣∣∣(e−2πi(x−xm)ξmf (x)
)(p)
∣∣∣2 dx

=
1

(2π)2p

∫
R

∣∣∣(eaxf (x))(p)
∣∣∣2 dx.

Employingeaxf (x) = fa (x) in this new identity we find

(µ2p)|f̂|2 =
1

(2π)2p

∫
R

∣∣f (p)
a (x)

∣∣2 dx,

completing the proof of the required identity (4.1) ([16] – [24]). �

5. THE pTH -DERIVATIVE OF THE PRODUCT OF TWO FUNCTIONS

We state and outline a proof for the following well-known result on thepth-derivative of the
product of two functions.

Proposition 5.1. If fi : R → C (i = 1, 2) are two complex valued functions of a real variable
x, then thepth-derivative of the productf1f2 is given, in terms of the lower derivativesf

(m)
1 ,

f
(p−m)
2 by

(5.1) (f1f2)
(p) =

p∑
m=0

(
p
m

)
f

(m)
1 f

(p−m)
2

for any fixed but arbitraryp ∈ N0 = {0} ∪ N.
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Proof. In fact, for p = 0 the formula (5.1) is trivial, as(f1f2)
(0) = f

(0)
1 f

(0)
2 . Whenp = 1 the

formula (5.1) is(f1f2)
(1) = f

(1)
1 f2 + f1f

(1)
2 which holds.

Assume that (5.1) holds, as well. Differentiating this formula we get

(f1f2)
(p+1) =

p∑
m=0

(
p
m

)
f

(m+1)
1 f

(p−m)
2 +

p∑
m=0

(
p
m

)
f

(m)
1 f

(p+1−m)
2

=

p+1∑
m=1

(
p

m− 1

)
f

(m)
1 f

(p+1−m)
2 +

p∑
m=0

(
p
m

)
f

(m)
1 f

(p+1−m)
2

=

(
p
p

)
f

(p+1)
1 f2 +

p∑
m=1

[(
p

m− 1

)
+

(
p
m

)]
f

(m)
1 f

(p+1−m)
2 +

(
p
0

)
f1f

(p+1)
2

=

(
p + 1
p + 1

)
f

(p+1)
1 f2 +

p∑
m=1

(
p + 1
m

)
f

(m)
1 f

(p+1−m)
2 +

(
p + 1

0

)
f1f

(p+1)
2

=

p+1∑
m=0

(
p + 1
m

)
f

(m)
1 f

(p+1−m)
2 ,

as the classical Pascal identity

(P)

(
p

m− 1

)
+

(
p
m

)
=

(
p + 1
m

)
holds form ∈ N : 1 < m ≤ p. Therefore by induction onp the proof of (5.1) is complete. �

Employing the formula (5.1) withf1(x) = f(x), f2(x) = eax, wherea = −2πξmi, i =
√
−1,

ξm fixed but arbitrary real, and placingfa(x) = (f1f2)(x) = eaxf(x), one gets

(5.2) f (p)
a (x) = eax

p∑
m=0

(
p
m

)
ap−mf (m) (x) .

Similarly from the formula (5.1) withf1(x) = f(x), f2 (x) = f (x), |f |2 = ff andp = k,
m = j, we get the following formula

(5.3)
(
|f |2
)(k)

=
k∑

j=0

(
k
j

)
f (j)f (k−j),

for thekth derivative of|f |2.
Note that from (5.2) withm = k one gets the modulus off (p)

a to be of the form

(5.4)
∣∣f (p)

a

∣∣ =

∣∣∣∣∣
p∑

k=0

(
p
k

)
ap−kf (k)

∣∣∣∣∣ ,
because|eax| = 1 by theEuler formula: eiθ = cos θ + i sin θ, with θ = −2πξmx (∈ R).

Also note that the2pth moment of the realx for |f |2is of the form

(5.5) (µ2p)|f |2 =

∫
R

(x− xm)2p |f (x)|2 dx

for any fixed but arbitrary constantxm ∈ R andp ∈ N0.
Placingx + xm onx in (5.5) we find

(µ2p)|f |2 =

∫
R

x2p |f (x + xm)|2 dx.
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From this, (4.2) and

|g (x)| =
∣∣e−2πixξmf (x + xm)

∣∣ = |f (x + xm)|

one gets that

(5.6) (µ2p)|f |2 =

∫
R

x2p |g (x)|2 dx.

Besides (5.5) and|fa| = |f | yield

(5.7) (µ2p)|f |2 =

∫
R

(x− xm)2p |fa (x)|2 dx.

6. GENERALIZED I NTEGRAL I DENTITIES

We state and outline a proof for the following well-known result on integral identities.

Proposition 6.1. If f : R → C is a complex valued function of a real variablex, andh : R → R
is a real valued function ofx, as well as,w, wp : R → R are two real valued functions ofx,
such thatwp(x) = (x− xm)pw(x) for any fixed but arbitrary constantxm ∈ R andv = p− 2q,
0 ≤ q ≤

[
p
2

]
, then

i)

(6.1)
∫

wp (x) h(v) (x) dx =
v−1∑
r=0

(−1)r w(r)
p (x) h(v−r−1) (x) + (−1)v

∫
w(v)

p (x) h (x) dx

holds for any fixed but arbitraryp ∈ N0 = {0} ∪ N and v ∈ N, and all r : r =
0, 1, 2, . . ., v − 1, as well as

ii)

(6.2)
∫

R
wp (x) h(v) (x) dx = (−1)v

∫
R

w(v)
p (x) h (x) dx

holds if the condition

(6.3)
v−1∑
r=0

(−1)r lim
|x|→∞

w(r)
p (x) h(v−r−1) (x) = 0,

holds, and if all these integrals exist.

Proof. The proof is as follows.

i) For v = 1 the identity (6.1) holds, because by integration by parts one gets∫ (
wph

(1)
)
(x) dx =

∫
wp (x) dh (x) = (wph) (x)−

∫ (
w(1)

p h
)
(x) dx.

Assume that (6.1) holds forv. Claim that (6.1) holds forv + 1, as well. In fact, by
integration by parts and from (6.1) we get∫ (
wph

(v+1)
)
(x) dx

=

∫
wp (x) dh(v) (x)

=
(
wph

(v)
)
(x)−

∫
w(1)

p (x) h(v) (x) dx
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=
(
wph

(v)
)
(x)−

[(
v−1∑
r=0

(−1)r w(r+1)
p h(v−r−1)

)
(x) + (−1)v

∫ (
w(v+1)

p h
)
(x) dx

]

=
(
wph

(v)
)
(x)−

[
v∑

r=1

(−1)r−1 w(r)
p h(v−(r−1)−1)

]
(x)− (−1)v

∫ (
w(v+1)

p h
)
(x) dx

=
(
wph

(v)
)
(x) +

(
v∑

r=1

(−1)r w(r)
p h((v+1)−r−1)

)
(x) + (−1)v+1

∫ (
w(v+1)

p h
)
(x) dx

=

(v+1)−1∑
r=0

(−1)r w(r)
p h((v+1)−r−1)

 (x) + (−1)v+1

∫ (
w(v+1)

p h
)
(x) dx,

which, by induction principle onv, completes the proof of the integral identity (6.1).
ii) The proof of (6.2) is clear from (6.1) and (6.3).

�

6.1. Special Cases of (6.2):

i) If h (x) =
∣∣f (l) (x)

∣∣2andv = p− 2q, then from (6.2) one gets

(6.4)
∫

R
wp (x)

(∣∣f (l) (x)
∣∣2)(p−2q)

dx = (−1)p−2q

∫
R

w(p−2q)
p (x)

∣∣f (l) (x)
∣∣2 dx,

for 0 ≤ l ≤ q ≤
[

p
2

]
,

ii) If

h (x) = Re
(
rqkjf

(k) (x) f (j) (x)
)

,

and if (6.3) holds, then from (6.2) we get

(6.5)
∫

R
wp (x)

(
Re
(
rqkjf

(k) (x) f (j) (x)
))(p−2q)

dx

= (−1)p−2q

∫
R

w(p−2q)
p (x)

(
Re
(
rqkjf

(k) (x) f (j) (x)
))

dx,

whererqkj = (−1)q− k+j
2 for 0 ≤ k < j ≤ q ≤

[
p
2

]
, andv = p− 2q.

7. L AGRANGE TYPE DIFFERENTIAL I DENTITY

We state and provethe new Lagrange type differential identity.

Proposition 7.1. If f : R → C is a complex valued function of a real variablex, andfa = eaxf ,
wherea = −βi, with i =

√
−1 andβ = 2πξm for any fixed but arbitrary real constantξm, as

well as if

Apk =

(
p
k

)2

β2(p−k), 0 ≤ k ≤ p,

and

Bpkj = spk

(
p
k

)(
p
j

)
β2p−j−k, 0 ≤ k < j ≤ p,

wherespk = (−1)p−k (0 ≤ k ≤ p), then

(7.1)
∣∣f (p)

a

∣∣2 =

p∑
k=0

Apk

∣∣f (k)
∣∣2 + 2

∑
0≤k<j≤p

Bpkj Re
(
rpkjf

(k)f (j)
)
,
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ON THE HEISENBERG-PAULI -WEYL INEQUALITY 17

holds for any fixed but arbitraryp ∈ N0 = {0} ∪ N, where(·) is the conjugate of(·), and

rpkj = (−1)p− k+j
2 (0 ≤ k < j ≤ p), andRe (·) is the real part of(·).

Note thatspk ∈ {±1} andrpkj ∈ {±1,±i}.

Proof. In fact, the classical Lagrange identity

(7.2)

∣∣∣∣∣
p∑

k=0

rkzk

∣∣∣∣∣
2

=

(
p∑

k=0

|rk|2
)(

p∑
k=0

|zk|2
)
−

∑
0≤k<j≤p

|rkzj − rjzk|2,

with rk, zk ∈ C, such that0 ≤ k ≤ p, takes the new form∣∣∣∣∣
p∑

k=0

rkzk

∣∣∣∣∣
2

=

[(
p∑

l=0

|rl|2
)(

p∑
k=0

|zk|2
)
−

∑
0≤k<j≤p

|rk|2 |zj|2

−
∑

0≤k<j≤p

|rj|2 |zk|2
]

+ 2
∑

0≤k<j≤p

Re (rkrjzkzj)

=

[(
p∑

l=0

|rl|2 −
p∑

k 6=0

|rk|2
)
|z0|2 +

(
p∑

l=0

|rl|2 −
p∑

k 6=1

|rk|2
)
|z1|2

+ · · ·+

(
p∑

l=0

|rl|2 −
p−1∑
k 6=p

|rk|2
)
|zp|2

]
+ 2

∑
0≤k<j≤p

Re (rkrjzkzj),

or the new identity

(7.3)

∣∣∣∣∣
p∑

k=0

rkzk

∣∣∣∣∣
2

=

p∑
k=0

|rk|2 |zk|2 + 2
∑

0≤k<j≤p

Re (rkrjzkzj),

because

|rkzj − rjzk|2 = (rkzj − rjzk) (rkzj − rjzk)(7.4)

= |rk|2 |zj|2 + |rj|2 |zk|2 − (rkrjzkzj + rkrjzkzj)

= |rk|2 |zj|2 + |rj|2 |zk|2 − 2 Re (rkrjzkzj) ,

as well as ∑
0≤k<j≤p

|rk|2 |zj|2 +
∑

0≤k<j≤p

|rj|2 |zk|2(7.5)

=
∑

0≤k 6=j≤p

|rk|2 |zj|2

=

(∑
k 6=0

|rk|2
)
|z0|2 +

(∑
k 6=1

|rk|2
)
|z1|2 + · · ·+

(∑
k 6=p

|rk|2
)
|zp|2 .

Setting

(7.6) rk =

(
p
k

)
ap−k =

(
p
k

)
(−βi)p−k = (−i)p−k

(
p
k

)
βp−k,

one gets that

(7.7) |rk|2 =

(
p
k

)2

β2(p−k) = Apk,

J. Inequal. Pure and Appl. Math., 5(1) Art. 4, 2004 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


18 JOHN M ICHAEL RASSIAS

and

rkrj =

(
p
k

)(
p
j

)
(−βi)p−k (βi)p−j(7.8)

= i2p−k−j (−1)p−k

(
p
k

)(
p
j

)
β2p−k−j

= rpkjspk

(
p
k

)(
p
j

)
β2p−k−j

= Bpkjrpkj,

whereApk, Bpkj ∈ R, andspk = (−1)p−k ∈ {±1} as well as

rpkj = i2p−k−j = (−1)p− k+j
2 ∈ {±1,±i} .

Thus employing (5.4) and substituting

zk = f (k), rk =

(
p
k

)
ap−k (0 ≤ k ≤ p),

in (7.3), we complete from (7.6) – (7.8), the proof of the identity (7.1). �

We note that
spk = 1, if p ≡ k(mod 2);

spk = −1, if p ≡ (k + 1) mod 2.

Similarly we have
rpkj = 1, if 2p ≡ (k + j)(mod 4);

rpkj = i, if 2p ≡ (k + j + 1)(mod 4);

rpkj = −1, if 2p ≡ (k + j + 2)(mod 4);

rpkj = −i, if 2p ≡ (k + j + 3)(mod 4).

Finally (7.2) may be called theLagrange identity of first form, and (7.3) theLagrange identity
of second form.

7.1. Special cases of (7.1):

(i) ∣∣f (1)
a

∣∣2 =
∣∣(eaxf)′

∣∣2(7.9)

=
(
A10 |f |2 + A11 |f ′|2

)
+ 2B101 Re

(
r101ff ′

)
= β2 |f |2 + |f ′|2 + 2 (−β) Re

(
iff ′

)
= β2 |f |2 + |f ′|2 + 2β Im

(
ff ′
)
,

because

(7.10) Re (iz) = − Im (z) ,

whereIm (z) is the imaginary part ofz ∈ C.
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Also note thatanother wayto find (7.9), is to employ directly only (5.4), as follows:∣∣f (1)
a

∣∣2 = |af + f ′|2

= |−iβf + f ′|2

= (−iβf + f ′)
(
iβf + f ′

)
= β2 |f |2 + |f ′|2 + β (−i)

(
ff ′ − ff ′

)
= β2 |f |2 + |f ′|2 + 2β Im

(
ff ′
)
.

(ii) ∣∣f (2)
a

∣∣2 =
∣∣(eaxf)′′

∣∣2(7.11)

= A20 |f |2 + A21 |f ′|2 + A22 |f ′′|2 + 2 Re
(
r201ff ′ + r202ff ′′ + r212f

′f ′′
)

= β4 |f |2 + 4β2 |f ′|2 + |f ′′|2 + 2 Re
(
−2iβ3ff ′ − β2ff ′′ − 2iβf ′f ′′

)
= β4 |f |2 + 4β2 |f ′|2 + |f ′′|2 + 4β3 Im

(
ff ′
)

− 2β2 Re
(
ff ′′

)
+ 4β Im

(
f ′f ′′

)
.

Similarly, from (5.4) we get also (7.11), as follows:∣∣f (2)
a

∣∣2 =
∣∣a2f + af ′ + f ′′

∣∣2 =
(
−β2f − iβf ′ + f ′′

) (
−β2f + iβf ′ + f ′′

)
,

leading easily to (7.11).

8. ON THE HEISENBERG-PAULI -WEYL I NEQUALITY

We assume thatf : R → C is a complex valued function of a real variablex, andw : R → R
a real valued weight function ofx, as well asxm, ξm any fixed but arbitrary real constants.
Denotefa = eaxf , wherea = −2πξmi with i =

√
−1, andf̂ the Fourier transform off , such

that

f̂ (ξ) =

∫
R

e−2iπξxf (x) dx

and

f (x) =

∫
R

e2iπξxf̂ (ξ) dξ.

Also we denote

(µ2p)w,|f |2 =

∫
R

w2 (x) (x− xm)2p |f (x)|2 dx

the2pth weighted moment ofx for |f |2 with weight functionw and

(µ2p)|f̂|2 =

∫
R

(ξ − ξm)2p
∣∣∣f̂ (ξ)

∣∣∣2 dξ

the2pth moment ofξ for
∣∣∣f̂ ∣∣∣2. Besides we denote

Cq = (−1)q p

p− q

(
p− q

q

)
, if 0 ≤ q ≤

[p
2

] (
= the greatest integer≤ p

2

)
,

Iql = (−1)p−2q

∫
R

w(p−2q)
p (x)

∣∣f (l) (x)
∣∣2 dx, if 0 ≤ l ≤ q ≤

[p
2

]
,
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Iqkj = (−1)p−2q

∫
R

w(p−2q)
p (x) Re

(
rqkjf

(k) (x) f (j) (x)
)

dx,

if 0 ≤ k < j ≤ q ≤
[p
2

]
,

where

rqkj = (−1)q− k+j
2 ∈ {±1,±i}

and

wp = (x− xm)p w.

We assume that all these integrals exist. Finally we denote

Dq =

q∑
l=0

AqlIql + 2
∑

0≤k<j≤q

BqkjIqkj,

if |Dq| < ∞ holds for0 ≤ q ≤
[

p
2

]
, where

Aql =

(
q
l

)2

β2(q−l),

Bqkj = sqk

(
q
k

)(
q
j

)
β2q−j−k,

with β = 2πξm, andsqk = (−1)q−k, and

Ep,f =

[p/2]∑
q=0

CqDq,

if |Ep,f | < ∞ holds forp ∈ N.
Besides we assumethe two conditions:

(8.1)
p−2q−1∑

r=0

(−1)r lim
|x|→∞

w(r)
p (x)

(∣∣f (l) (x)
∣∣2)(p−2q−r−1)

= 0,

for 0 ≤ l ≤ q ≤
[

p
2

]
, and

(8.2)
p−2q−1∑

r=0

(−1)r lim
|x|→∞

w(r)
p (x)

(
Re
(
rqkjf

(k) (x) f (j) (x)
))(p−2q−r−1)

= 0,

for 0 ≤ k < j ≤ q ≤
[

p
2

]
. From these preliminaries we establish the following Heisenberg-

Pauli-Weyl inequality .

Theorem 8.1. If f ∈ L2 (R) , then

(8.3) 2p

√
(µ2p)w,|f |2 2p

√
(µ2p)|f̂|2 ≥

1

2π p
√

2
p

√
|Ep,f |,

holds for any fixed but arbitraryp ∈ N.

Equalityholds in (8.3) iff thea-differential equation

f (p)
a (x) = −2cp (x− xm)p fa (x)

of pth order holds for constantscp > 0, and any fixed but arbitraryp ∈ N.
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In fact, if cp =
k2

p

2
> 0, kp ∈ R− {0}, p ∈ N, then thisa-differential equation holds iff

f (x) = e2πixξm

p−1∑
j=0

ajx
j
δ

[
1 +

∞∑
m=0

(−1)m+1

(
k2

px
2p
δ

)m+1

P 2p+j
p P 4p+j

p · · ·P 2(m+1)p+j
p

]
,

holds, wherexδ = x − xm 6= 0, i =
√
−1, xm, ξm (∈ R) are any fixed but arbitrary constants,

andaj (j = 0, 1, 2, . . . , p− 1) are arbitrary constants inC, as well as

P 2(m+1)p+j
p = (2 (m + 1) p + j) (2 (m + 1) p + j − 1) · · · ((2m + 1) p + j + 1) ,

denotepermutationsfor p ∈ N, m ∈ N0, andj = 0, 1, 2, . . . , p− 1.
We note that ifxm is the mean ofx for |f |2 then

xm =

∫
R

x |f (x)|2 dx

(
=

∫ ∞

0

x
(
|f (x)|2 − |f (−x)|2

)
dx

)
.

Thus if f is either odd or even, then|f |2 is even andxm = 0. Similarly, if ξm is the mean ofξ

for
∣∣∣f̂ ∣∣∣2, then

ξm =

∫
R

ξ
∣∣∣f̂ (ξ)

∣∣∣2 dξ.

Also ξm = 0 if f̂ is either odd or even.
We also note that the conditions (8.1) – (8.2) may be replaced bythe two conditions:

(8.4) lim
|x|→∞

w(r)
p (x)

(∣∣f (l) (x)
∣∣2)(p−2q−r−1)

= 0,

for 0 ≤ l ≤ q ≤
[

p
2

]
and0 ≤ r ≤ p− 2q − 1, and

(8.5) lim
|x|→∞

w(r)
p (x)

(
Re
(
rqkjf

(k) (x) f (j) (x)
))(p−2q−r−1)

= 0,

for 0 ≤ k < j ≤ q ≤
[

p
2

]
and0 ≤ r ≤ p− 2q − 1.

Proof of the Theorem.In fact, from the generalized Plancherel-Parseval-Rayleigh identity (4.1),
and the fact that|eax| = 1 asa = −2πξmi, one gets

Mp = (µ2p)w,|f |2 · (µ2p)|f̂|2(8.6)

=

(∫
R

w2 (x) (x− xm)2p |f (x)|2 dx

)
·
(∫

R
(ξ − ξm)2p

∣∣∣f̂ (ξ)
∣∣∣2 dξ

)
=

1

(2π)2p

(∫
R

w2 (x) (x− xm)2p |fa (x)|2 dx

)
·
(∫

R

∣∣f (p)
a (x)

∣∣2 dx

)
.

From (8.6) andthe Cauchy-Schwarz inequality, we find

(8.7) Mp ≥
1

(2π)2p

(∫
R

∣∣wp (x) fa (x) f (p)
a (x)

∣∣ dx

)2

,

wherewp = (x− xm)pw, andfa = eaxf .
From (8.7) andthe complex inequality

(8.8) |ab| ≥ 1

2

(
ab + ab

)
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with a = wp (x) fa (x), b = f
(p)
a (x), we get

(8.9) Mp ≥
1

(2π)2p

[
1

2

∫
R

wp (x)
(
fa (x) f

(p)
a (x) + fa (x)f (p)

a (x)
)

dx

]2

.

From (8.9) and the generalized differential identity (*), one finds

(8.10) Mp ≥
1

22(p+1)π2p

∫
R

wp (x)

[p/2]∑
q=0

Cq
dp−2q

dxp−2q

∣∣f (q)
a (x)

∣∣2 dx

2

.

From (8.10) and the Lagrange type differential identity (7.1), we find

(8.11) Mp ≥
1

22(p+1)π2p

∫
R

wp (x)

[p/2]∑
q=0

Cq
dp−2q

dxp−2q

(
q∑

l=0

Aql

∣∣f (l) (x)
∣∣2

+2
∑

0≤k<j≤q

Bqkj Re
(
rqkjf

(k) (x) f (j) (x)
))]

dx

]2

.

From the generalized integral identity (6.2), fromf ∈ L2(R), the two conditions (8.1) – (8.2)
(or (8.4) – (8.5)), or from (6.4) – (6.5), and that all the integrals exist, one gets∫

R
wp (x)

dp−2q

dxp−2q

∣∣f (l) (x)
∣∣2 dx = (−1)p−2q

∫
R

w(p−2q)
p (x)

∣∣f (l) (x)
∣∣2 dx(8.12)

= Iql,

as well as

(8.13)
∫

R
wp (x)

dp−2q

dxp−2q
Re
(
rqkjf

(k) (x) f (j) (x)
)

= (−1)p−2q

∫
R

w(p−2q)
p (x) Re

(
rqkjf

(k) (x) f (j) (x)
)

= Iqkj.

From (8.11) and (8.12) – (8.13) we find the generalized2pth order moment Heisenberg uncer-
tainty inequality (forp ∈ N)

Mp ≥
1

22(p+1)π2p

[p/2]∑
q=0

Cq

(
q∑

l=0

AqlIql + 2
∑

0≤k<j≤q

BqkjIqkj

)2

(Hp)

=
1

22(p+1)π2p
E2

p,f , (Hp),

where

Ep,f =

[p/2]∑
q=0

CqDq, if |Ep,f | < ∞

holds, orthe general moment uncertainty formula

(8.14) 2p
√

Mp ≥
1

2π p
√

2
p

√
|Ep,f |.

Equalityholds in (8.3) iffthea-differential equationf (p)
a (x) = −2cpx

p
δfa (x) of pth order with

respect tox holds for some constantcp = 1
2
k2

p > 0, kp ∈ R − {0}, and any fixed but arbitrary
p ∈ N. �
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We consider thegenerala-differential equation

(ap)
dpy

dxp
+ k2

px
p
δy = 0

of pth order, wherexδ = x− xm 6= 0, kp 6= 0, y = fa (x) = eaxf (x), a = −2πξmi, p ∈ N, and
the equivalentδ-differential equation

(δp)
dpy

dxp
δ

+ k2
px

p
δy = 0,

because
dy

dx
=

dy

dxδ

dxδ

dx
=

dy

dxδ

d (x− xm)

dx
=

dy

dxδ

,

and
dpy

dxp
=

dpy

dxp
δ

, p ∈ N.

In order to solve equation (δp) one may employ the followingpower seriesmethod ([18], [21],
[25]) in (δp). In fact, we considerthe power series expansiony =

∑∞
n=0 anx

n
δ aboutxδ0 = 0,

converging (absolutely) in

|xδ| < ρ = lim
n→∞

∣∣∣∣ an

an+1

∣∣∣∣ = ∞, xδ 6= 0.

Thus

k2
px

p
δy =

∞∑
n=0

k2
panx

n+p
δ ,

and
dpy

dxp
δ

=
∞∑

n=p

P n
p anx

n−p
δ

(with permutationsP n
p = n (n− 1) (n− 2) · · · (n− p + 1))

=
∞∑

n+2p=p
(or n=−p)

P n+2p
p an+2px

n+p
δ

(with n + 2p) onn above and

P n+2p
p = (n + 2p) (n + 2p− 1) (n + 2p− 2) · · · (n + p + 1))

=
−1∑

n=−p

P n+2p
p an+2px

n+p
δ +

∞∑
n=0

P n+2p
p an+2px

n+p
δ

=
∞∑

n=0

P n+2p
p an+2px

n+p
δ

(with an+2p = 0 for all n ∈ { − p,−(p − 1), . . . ,−1}, or equivalentlyap = ap+1 = · · · =
a2p−1 = 0).

Therefore from these and equation (δp) one gets the followingrecursive relation

P n+2p
p an+2p + k2

pan = 0,

or

(Rp) an+2p = −
k2

pan

P n+2p
p

, n ∈ N0, p ∈ N.

J. Inequal. Pure and Appl. Math., 5(1) Art. 4, 2004 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


24 JOHN M ICHAEL RASSIAS

From the “null condition”

ap = 0, ap−1 = 0, . . . , a2p−1 = 0

and (Rp) we get

a3p = a5p = a7p = · · · = 0, a3p+1 = a5p+1 = a7p+1 = · · · = 0, . . . ,

and
a4p−1 = a6p−1 = a8p−1 = · · · = 0,

respectively. From (Rp) andn = 2pm with m ∈ N0 one finds the followingp sequences

(a2pm+2p) , (a2pm+2p+1) , (a2pm+2p+2) , . . . , (a2pm+3p−1) ,

with fixedp ∈ N and allm ∈ N0, such that

a2p = −
k2

p

P 2p
p

a0, a4p = −
k2

p

P 4p
p

a2p =
k4

p

P 2p
p P 4p

p

a0, . . . ,

a2pm+2p = (−1)m+1 k2m+2
p

P 2p
p P 4p

p · · ·P 2pm+2p
p

a0

are the elements of the first sequence(a2pm+2p) in terms ofa0, and

a2p+1 = −
k2

p

P 2p+1
p

a1, a4p+1 = −
k2

p

P 4p+1
p

a2p+1 =
k4

p

P 2p+1
p P 4p+1

p

a1, . . . ,

a2pm+2p+1 = (−1)m+1 k2m+2
p

P 2p+1
p P 4p+1

p · · ·P 2pm+2p+1
p

a1

are the elements of the second sequence(a2pm+2p+1) in terms ofa1, . . ., and(
a2p+(p−1) =

)
a3p−1 = −

k2
p

P 3p−1
p

ap−1,

(
a2p+(3p−1) =

)
a5p−1 = −

k2
p

P 5p−1
p

a3p−1 =
k2

p

P 3p−1
p P 5p−1

p

ap−1, . . . ,

(
a2pm+(3p−1) =

)
a(2m+3)p−1 = (−1)m+1 k2m+2

p

P 3p−1
p P 5p−1

p · · ·P (2m+3)p−1
p

ap−1

are the elements of the last sequence(a2pm+3p−1) in terms ofap−1. Therefore we find the
following p solutions

y0 = y0 (xδ) = 1 +
∞∑

m=0

(−1)m+1

(
k2

px
2p
δ

)m+1

P 2p
p P 4p

p · · ·P 2(m+1)p
p

,

y1 = y1 (xδ) = xδ

[
1 +

∞∑
m=0

(−1)m+1

(
k2

px
2p
δ

)m+1

P 2p+1
p P 4p+1

p · · ·P 2(m+1)p+1
p

]
, . . . ,

yp−1 = yp−1 (xδ) = xp−1
δ

[
1 +

∞∑
m=0

(−1)m+1

(
k2

px
2p
δ

)m+1

P 3p−1
p P 5p−1

p · · ·P (2m+3)p−1
p

]
,

or equivalently the

yj = yj (xδ) = xj
δ

[
1 +

∞∑
m=0

(−1)m+1

(
k2

px
2p
δ

)m+1

P 2p+j
p P 4p+j

p · · ·P 2(m+1)p+j
p

]
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for all j ∈ {0, 1, . . . , p − 1}, of the differential equation (δp), in the form of power series
converging (absolutely) by the ratio test.

Thus an arbitrary solution of (δp) (and of (ap)) is of the form

f (x) = e−ax

[
p−1∑
j=0

ajyj (xδ)

]
, xδ 6= 0,

with arbitrary constantsaj (j = 0, 1, 2, . . . , p− 1).
Choosing

a0 = 1, a1 = 0, a2 = 0, . . . , ap−2 = 0, ap−1 = 0;

a0 = 0, a1 = 1, a2 = 0, . . . , ap−2 = 0, ap−1 = 0;

· · · ;

and

a0 = 0, a1 = 0, a2 = 0, . . . , ap−2 = 0, ap−1 = 1,

one gets thatyi (i ∈ {0, 1, 2, . . . , p − 1}) are partial solutions of (δp), satisfyingthe initial
conditions

y0 (0) = 1, y′0 (0) = 0, . . . , y
(p−1)
0 (0) = 0;

y1 (0) = 0, y′1 (0) = 1, . . . , y
(p−1)
1 (0) = 0;

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ;

and

yp−1 (0) = 0, y′p−1 (0) = 0, . . . , y
(p−1)
p−1 (0) = 1.

If Yp = (y0, y1, . . . , yp−1), thenthe Wronskianatxδ = 0 is

W (Yp (0)) =

∣∣∣∣∣∣∣∣
y0 (0) y1 (0) · · · yp−1 (0)
y′0 (0) y′1 (0) · · · y′p−1 (0)
· · · · · · · · · · · ·
y

(p−1)
0 (0) y

(p−1)
1 (0) · · · y

(p−1)
p−1 (0)

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1

∣∣∣∣∣∣∣∣ = 1 6= 0,

yielding that thesep partial solutionsy0, y1, . . . , yp−1of (δp) arelinearly independent. Thus the
above formulay = fa (x) =

∑p−1
j=0 ajyj gives the general solution of the equation (δp) (and also

of (ap)).
We note that both the above-mentioned differential equations (ap) and (δp) are solved com-

pletely via well-knownspecial functionsfor p = 1 (with Gaussian functions) and forp = 2
(with Bessel functions), and via functions in terms of power series converging inR for p ≥ 3.
Therefore the proof of our theorem is complete.

We claim that, ifp = 1, the functionf : R → C given explicitly in our Introduction (with
c = c1 = k2

1/2 > 0, k1 ∈ R − {0}) satisfies the equality of (H1). In fact, the corresponding
a-differential equation

(a1)
dy

dx
+ k2

1xδy = 0,
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wherexδ = x− xm 6= 0, y = fa (x) = eaxf (x), a = −2πξmi, is satisfied by

y0 = y0 (x)

= 1 +
∞∑

m=0

(−1)m+1 (k2
1x

2
δ)

m+1

P 2
1 P 4

1 · · ·P
2(m+1)
1

= 1 +
∞∑

m=0

(−1)m+1 (c1x
2
δ)

m+1

(m + 1)!

(by the power series method and because

P 2
1 P 4

1 · · ·P
2(m+1)
1 = 2 · 4 · · · · 2 (m + 1) = 2m+1 (m + 1)!),

or

y0 = 1 +
∞∑

m=1

(−1)m (cx2
δ)

m

m!
= 1 +

(
e−cx2

δ − 1
)

= e−cx2
δ

(because
∑∞

m=1 (−1)m tm

m!
= e−t − 1).

Therefore the general solution of the differential equation (a1) is of the formy = a0y0 (with
arbitrary constantc0 = a0), or

eaxf (x) = c0e
−c(x−xm)2 , or f (x) = c0e

2πixξm · e−c(x−xm)2 .

However, one may establish thisf much faster, by the direct application of the method of
separation of variables to the differential equation (a1).

Analogously to the proof of (H1) in the Introduction we prove the following more general
inequality (H2).

8.1. Fourth Order Moment Heisenberg Inequality. For anyf ∈ L2(R), f : R → C and any
fixed but arbitrary constantsxm, ξm ∈ R, the fourth order moment Heisenberg inequality

(H2) (µ4)|f |2 · (µ4)|f̂|2 ≥
1

64π4
E2

2,f ,

holds, if

(µ4)|f |2 =

∫
R

x4
δ |f (x)|2dx

and

(µ4)|f̂|2 =

∫
R

ξ4
δ

∣∣∣f̂ (ξ)
∣∣∣2dξ

with xδ = x− xm, andξδ = ξ − ξm, are the fourth order moments, and

f̂ (ξ) =

∫
R

e−2iπξxf (x)dx, f (x) =

∫
R

e2iπξxf̂ (ξ)dξ, i =
√
−1,

as well as

E2,f = 2

∫
R

[(
1− 4π2ξ2

mx2
δ

)
|f (x)|2 − x2

δ |f ′ (x)|2 −4πξmx2
δ Im

(
f (x) f ′ (x)

)]
dx,

if |E2,f | < ∞ holds, whereIm (·) denotes the imaginary part of(·).
Equalityholds in (H2) iff the a-differential equationf ′′a (x) = −2c2x

2
δfa (x) of second order

holds, fora = −2πξmi, y = fa (x) = eaxf (x) and a constantc2 = 1
2
k2

2 > 0, k2 ∈ R − {0},
xδ = x− xm 6= 0, or equivalently

(a2)
d2y

dx2
+ k2

2x
2
δy = 0
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holds iff

f (x) =
√
|xδ|e2πixξm

[
c20J−1/4

(
1

2
|k2|x2

δ

)
+ c21J1/4

(
1

2
|k2|x2

δ

)]
holds for some constantsc20, c21 ∈ C and withJ±1/4 the Bessel functions of the firstkind of
orders±1

4
, [16]. We note that ifxm 6= 0 andξm = 0, then

f (x) =
√
|xδ|

[
c20J−1/4

(
1

2
|k2|x2

δ

)
+ c21J1/4

(
1

2
|k2|x2

δ

)]
.

We claim that the above functionf in terms of the Bessel functionsJ±1/4 is the general solution
of the saida-differential equation (a2) of second order. In fact,theδ-differential equation

(δ2)
d2y

dx2
δ

+ k2
2x

2
δy = 0

is equivalent to the followingBessel equation

z2d2u

dz2
+ z

du

dz
+

[
z2 −

(
1

4

)2
]

u = 0

of orderr = 1
4
, with u = y√

|xδ |
andz = 1

2
|k2|x2

δ. But the general solution of this Bessel

equation is

u (z)
(
= y

/√
|xδ|

)
= c20J−1/4 (z) + c21J1/4 (z)

= c20J−1/4

(
1

2
|k2|x2

δ

)
+ c21J1/4

(
1

2
|k2|x2

δ

)
for some constantsc20, c21 ∈ C.

In fact, if we denote

(8.15) S = sgn (xδ) =

{
1, xδ > 0

−1, xδ < 0
,

then one gets

du

dz
=

du

dxδ

/
dz

dxδ

=

[
S

|xδ|3/2

dy

dxδ

− 1

2

y

|xδ|5/2

]/
|k2| ,

and
d2u

dz2
=

d

dxδ

(
du

dz

)/
dz

dxδ

=

[
S

|xδ|5/2

d2y

dx2
δ

− 2
S

|xδ|7/2

dy

dxδ

+
5

4

y

|xδ|9/2

]/
k2

2.

Thus we establish

z2d2u

dz2
+ z

du

dz
=

1

4
|xδ|3/2 d2y

dx2
δ

+
1

16
u.

But
d2y

dx2
δ

= −k2
2x

2
δy,

or

|xδ|3/2 d2y

dx2
δ

= −k2
2x

4
δ

y√
|xδ|

= −4z2u.

Therefore the above-mentioned Bessel equation holds.
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However,
dy

dx
=

dy

dxδ

dxδ

dx
=

dy

dxδ

d (x− xm)

dx
=

dy

dxδ

,

and
d2y

dx2
=

d

dx

(
dy

dx

)
=

d

dxδ

(
dy

dxδ

)
dxδ

dx
=

d2y

dx2
δ

.

Therefore the above two equations (a2) and (δ2) are equivalent. Thus one gets

y = fa (x) = eaxf (x) =
√
|xδ|

[
c20J−1/4

(
1

2
|k2|x2

δ

)
+ c21J1/4

(
1

2
|k2|x2

δ

)]
,

or

f (x) =
√
|xδ|e−ax

[
c20J−1/4

(
1

2
|k2|x2

δ

)
+ c21J1/4

(
1

2
|k2|x2

δ

)]
,

establishing the functionf in terms of the two Bessel functionsJ±1/4.
However,

J1/4 (z) =
(z

2

) 1
4

∞∑
n=0

(−1)n

(
z
2

)2n

n!Γ
(

1
4

+ n + 1
) , z > 0.

Thus, ifz = 1
2
|k2|x2

δ > 0, then√
|xδ|J1/4

(
1

2
|k2|x2

δ

)
= S

2
√

2

Γ
(

1
4

) 4
√
|k2|

[
xδ −

k2
2

4 · 5
x5

δ + · · ·
]

,

because

Γ

(
5

4

)
=

1

4
Γ

(
1

4

)
, Γ

(
9

4

)
=

5

16
Γ

(
1

4

)
, . . . ,

andS = sgn (xδ), xδ 6= 0, such that|xδ| = Sxδ. Similarly,

J−1/4 (z) =
(z

2

)− 1
4

∞∑
n=0

(−1)n

(
z
2

)2n

n!Γ
(
−1

4
+ n + 1

) , z > 0.

Therefore √
|xδ|J−1/4

(
1

2
|k2|x2

δ

)
=

Γ
(

1
4

)
π

1
4
√
|k2|

[
1− k2

2

3 · 4
x4

δ + · · ·
]

,

because

Γ

(
1

4

)
Γ

(
3

4

)
= Γ

(
1

4

)
Γ

(
1− 1

4

)
=

π

sin 1
4
π

= π
√

2,

or

Γ

(
3

4

)
=

π
√

2

Γ
(

1
4

) , and Γ

(
7

4

)
= Γ

(
1 +

3

4

)
=

3

4
Γ

(
3

4

)
=

3
√

2π

4Γ
(

1
4

) , . . ..
A direct wayto find the general solution of the aboveδ-differential equation (δ2) is by ap-

plying the power series method for(δ2). In fact, consider two arbitrary constantsa0 = c20 and

a1 = c21 such thaty =
∞∑

n=0

anx
n
δ , aboutxδ0 = 0, converging (absolutely) in

|xδ| < ρ = lim
n→∞

∣∣∣∣ an

an+1

∣∣∣∣ = ∞, xδ 6= 0.

Thus
dy

dxδ

=
∞∑

n=1

nanx
n−1
δ =

∞∑
n=0

(n + 1) an+1x
n
δ ,
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and

d2y

dx2
δ

=
∞∑

n=1

(n + 1) nan+1x
n−1
δ

=
∞∑

n=0

(n + 2) (n + 1) an+2x
n
δ

=
∞∑

n+2=0 or
n=−2

(n + 4) (n + 3) an+4x
n+2
δ

= (2a2 + 6a3xδ) +
∞∑

n=0

(n + 4) (n + 3) an+4x
n+2
δ ,

as well as

k2
2x

2
δy = k2

δ

∞∑
n=0

anx
n+2
δ .

Therefore from (δ2) one getsthe recursive relation

(R2) an+4 = − k2
2an

(n + 4) (n + 3)
,

with a2 = a3 = 0.
Lettingn = 4m with m ∈ N0 = {0}∪N in this recursive relation, we find the following two

solutions of the equation (δ2):

y0 = y0 (xδ)

= 1 +
∞∑

m=0

(−1)m+1 (k2
2x

4
δ)

m+1

3 · 4 · · · (4m + 3) (4m + 4)

= 1− k2
2

3 · 4
x4

δ +
k4

2

3 · 4 · 7 · 8
x8

δ −
k6

2

3 · 4 · 7 · 8 · 11 · 12
x12

δ + · · · ,

and

y1 = y1 (xδ)

= xδ

[
1 +

∞∑
m=0

(−1)m+1 (k2
2x

4
δ)

m+1

4 · 5 · · · (4m + 4) (4m + 5)

]

= xδ −
k2

2

4 · 5
x5

δ +
k4

2

4 · 5 · 8 · 9
x9

δ −
k6

2

4 · 5 · 8 · 9 · 12 · 13
x13

δ + · · · .

We note that each one of these two power series converges bythe ratio test.
Thus an arbitrary solution of (δ2) (and of (a2)) is of the form

y = c20y0 + c21y1,

or
f (x) = e−ax [c20y0 (xδ) + c21y1 (xδ)] ,

wherexδ = x− xm 6= 0,

y0 =

[
π 4
√
|k2|
√
|xδ|J−1/4

(
1
2
|k2|x2

δ

)]
Γ
(

1
4

) , S ∈ { ± 1},
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and

y1 =

[
SΓ
(

1
4

)√
|xδ|J1/4

(
1
2
|k2|x2

δ

)]
2
√

2 4
√
|k2|

,

whereS is defined by (8.15).
Besides we note that froma2 = 0, a3 = 0 and the above recursive relation (R2) one gets
a6 = a10 = a14 = · · · = 0, as well asa7 = a11 = a15 = · · · = 0, respectively.

From this recursive relation (R2) and n = 4m with m ∈ N0 we get the following two
sequences(a4m+4), (a4m+5), such that

a4 = − k2
2

3 · 4
a0, a8 = − k2

2

7 · 8
a4 =

k4
2

3 · 4 · 7 · 8
a0, . . . ,

a4m+4 = (−1)m+1 k2m+2
2

3 · 4 · · · · · (4m + 3) (4m + 4)
a0,

and

a5 = − k2
2

4 · 5
a1, a9 = − k2

2

8 · 9
a5 =

k4
2

4 · 5 · 8 · 9
a1, . . . ,

a4m+5 = (−1)m+1 k2m+2
2

4 · 5 · · · · · (4m + 4) (4m + 5)
a1.

Choosinga0 = c20 = 1, a1 = c21 = 0; anda0 = c20 = 0, a1 = c21 = 1, one gets thaty0 andy1

are partial solutions of (δ2), satisfying the initial conditions

y0 (0) = 1, y′0 (0) = 0; and y1 (0) = 0, y′1 (0) = 1.

Thereforethe Wronskianof y0, y1 atxδ = 0 is

W (y0, y1) (0) =

∣∣∣∣∣∣
y0 (0) y1 (0)

y′0 (0) y′1 (0)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 0

0 1

∣∣∣∣∣∣ = 1 6= 0,

yielding that thesep = 2 solutionsy0, y1 are linearly independent. We note that, if we divide
the above power series (expansion) solutionsy0 andy1, we have

y1 (xδ)

y0 (xδ)
= y1 (xδ) (y0 (xδ))

−1

=

(
xδ −

k2
2

20
x5

δ + · · ·
)(

1− k2
2

12
x4

δ + · · ·
)−1

= xδ +
k2

2

30
x5

δ + · · · ,

which obviously is nonconstant, implying also thaty0 andy1 are linearly independent.
Thus the above formulay = a0y0 + a1y1 gives the general solution of (δ2) (and also of (a2)).

Similarly we prove the following inequality (H3).

8.2. Sixth Order Moment Heisenberg Inequality. For anyf ∈ L2(R), f : R → C and any
fixed but arbitrary constantsxm, ξm ∈ R, the sixth order moment Heisenberg inequality

(H3) (µ6)|f |2 · (µ6)|f̂|2 ≥
1

256π6
E2

3,f ,

holds, if

(µ6)|f |2 =

∫
R

x6
δ |f (x)|2dx
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and

(µ6)|f̂|2 =

∫
R

ξ6
δ

∣∣∣f̂ (ξ)
∣∣∣2dξ

with xδ = x− xm, andξδ = ξ − ξm, and

f̂ (ξ) =

∫
R

e−2iπξxf (x)dx, f (x) =

∫
R

e2iπξxf̂ (ξ)dξ,

as well as

E3,f = −3

∫
R

[
2
(
1− 6π2ξ2

mx2
δ

)
|f (x)|2 − 3x2

δ |f ′ (x)|2 −12πξmx2
δ Im

(
f (x) f ′ (x)

)]
dx,

if |E3,f | < ∞ holds, whereIm (·) denotes the imaginary part of(·).
Equalityholds in (H3) iff thea-differential equationf ′′′a (x) = −2c3x

3
δfa (x) of third order

holds, fora = −2πξmi, i =
√
−1, fa = eaxf , and a constantc3 =

k2
3

2
> 0, k3 ∈ R, or

equivalently iff

f (x) = e2πixξm

2∑
j=0

ajx
j
δ

[
1 +

∞∑
m=0

(−1)m+1

× (k2
3x

6
δ)

m+1

(4 + j) (5 + j) (6 + j) · · · (6m + 4 + j) (6m + 5 + j) (6m + 6 + j)

]

holds, wherexδ 6= 0, andaj (j = 0, 1, 2) are arbitrary constants inC.
Consider thea-differential equation

(a3)
d3y

dx3
+ k2

3x
3
δy = 0,

with y = fa (x) and the equivalentδ-differential equation

(δ3)
d3y

dx3
δ

+ k2
3x

3
δy = 0,

with xδ = x− xm andk3 ∈ R− {0}, such thatd3y/ dx3 = d3y/ dx3
δ.

Employing the power series method for (δ3), one considers the power series expansiony =∑∞
n=0 anx

n
δ aboutxδ0 = 0, converging (absolutely) in

|xδ| < ρ = lim
n→∞

∣∣∣∣ an

an+1

∣∣∣∣ = ∞, xδ 6= 0.

Thus

k2
3x

3
δy =

∞∑
n=0

k2
3anx

n+3
δ ,
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and

d3y

dx3
δ

=
∞∑

n=3

n (n− 1) (n− 2) anx
n−3
δ

=
∞∑

n=−3

(n + 6) (n + 5) (n + 4) an+6x
n+3
δ

=
(
6a3 + 24a4xδ + 60a5x

2
δ

)
+

∞∑
n=0

P n+6
3 an+6x

n+3
δ

=
∞∑

n=0

P n+6
3 an+6x

n+3
δ

(with a3 = a4 = a5 = 0), whereP n+6
3 = (n + 6) (n + 5) (n + 4). Therefore from these and

equation (δ3) one getsthe recursive relation

(R3) an+6 = − k2
3an

P n+6
3

, n ∈ N0

From “the null condition”

(N3) a3 = 0, a4 = 0, and a5 = 0

and the above recursive relation (R3) we get

a9 = a15 = a21 = · · · = 0,

a10 = a16 = a22 = · · · = 0, and

a11 = a17 = a23 = · · · = 0

respectively.
From (R3) andn = 6m with m ∈ N0 one finds the following three sequences(a6m+6),

(a6m+7), (a6m+8), such that

a6 = − k2
3

4 · 5 · 6
a0,

a12 = − k2
3

10 · 11 · 12
a6 =

k4
3

4 · 5 · 6 · 10 · 11 · 12
a0,

. . . ,

a6m+6 = (−1)m+1 k2m+2
3

4 · 5 · 6 · · · · · (6m + 4) (6m + 5) (6m + 6)
a0,

and

a7 = − k2
3

5 · 6 · 7
a1,

a13 = − k2
3

11 · 12 · 13
a7 =

k4
3

5 · 6 · 7 · 11 · 12 · 13
a1,

. . . ,

a6m+7 = (−1)m+1 k2m+2
3

5 · 6 · 7 · · · · · (6m + 5) (6m + 6) (6m + 7)
a1,
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as well as

a8 = − k2
3

6 · 7 · 8
a2,

a14 = − k2
3

12 · 13 · 14
a8 =

k4
3

6 · 7 · 8 · 12 · 13 · 14
a2,

. . . ,

a6m+8 = (−1)m+1 k2m+2
3

6 · 7 · 8 · · · · · (6m + 6) (6m + 7) (6m + 8)
a2.

Therefore we find the following three solutions

y0 = y0 (xδ)

= 1 +
∞∑

m=0

(−1)m+1 (k2
3x

6
δ)

m+1

4 · 5 · 6 · · · · · (6m + 4) (6m + 5) (6m + 6)

= 1 +
∞∑

m=0

(
a6m+6

a0

)
x6m+6

δ

for a0 6= 0,

y1 = y1 (xδ)

= xδ

[
1 +

∞∑
m=0

(−1)m+1 (k2
3x

6
δ)

m+1

5 · 6 · 7 · · · · · (6m + 5) (6m + 6) (6m + 7)

]

= xδ +
∞∑

m=0

(
a6m+7

a1

)
x6m+7

δ

for a1 6= 0, and

y2 = y2 (xδ)

= x2
δ

[
1 +

∞∑
m=0

(−1)m+1 (k2
3x

6
δ)

m+1

6 · 7 · 8 · · · · · (6m + 6) (6m + 7) (6m + 8)

]

= x2
δ +

∞∑
m=0

(
a6m+8

a2

)
x6m+8

δ

for a2 6= 0, of the differential equation (δ3), in the form of power series converging (absolutely)
by the ratio test. Thus an arbitrary solution of (δ3) (and of (a3)) is of the form

y = eaxf (x) = a0y0 + a1y1 + a2y2,

or

f (x) = e−ax [a0y0 (xδ) + a1y1 (xδ) + a2y2 (xδ)] ,

xδ 6= 0, with arbitrary constantsai (i = 0, 1, 2) in C. Choosing

a0 = 1, a1 = 0, a2 = 0;

a0 = 0, a1 = 1, a2 = 0; and

a0 = 0, a1 = 0, a2 = 1,
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one gets thatyj (j = 0, 1, 2) are partial solutions of (δ3), satisfying the initial conditions

y0 (0) = 1, y′0 (0) = 0, y′′0 (0) = 0;

y1 (0) = 0, y′1 (0) = 1, y′′1 (0) = 0; and

y2 (0) = 0, y′2 (0) = 0, y′′2 (0) = 1.

Therefore the Wronskian ofyj (j = 0, 1, 2) atxδ = 0 is

W (y0, y1, y2) (0) =

∣∣∣∣∣∣∣∣∣∣
y0 (0) y1 (0) y2 (0)

y′0 (0) y′1 (0) y′2 (0)

y′′0 (0) y′′1 (0) y′′2 (0)

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
1 0 0

0 1 0

0 0 1

∣∣∣∣∣∣∣∣∣∣
= 1 6= 0,

yielding that thesep = 3 partial solutionsyj (j = 0, 1, 2) of (δ3) are linearly independent.
Thus the above formulay =

∑2
j=0 ajyj gives the general solution of (δ3) (and also of (a3)).

Analogously we establish the following inequality (H4):

8.3. Eighth Order Moment Heisenberg Inequality. For anyf ∈ L2(R), f : R → C and any
fixed but arbitrary constantsxm, ξm ∈ R, the eighth order moment Heisenberg inequality

(H4) (µ8)|f |2 · (µ8)|f̂|2 ≥
1

1024π8
E2

4,f ,

holds, if

(µ8)|f |2 =

∫
R

x8
δ |f (x)|2dx

and

(µ8)|f̂|2 =

∫
R

ξ8
δ

∣∣∣f̂(ξ)
∣∣∣2dξ

with xδ = x− xm, ξδ = ξ − ξm, and

f̂ (ξ) =

∫
R

e−2iπξxf (x)dx, f (x) =

∫
R

e2iπξxf̂ (ξ)dξ,

as well as

E4,f = 2

∫
R

{[
4
(
3− 24π2ξ2

mx2
δ + 16π4ξ4

mx4
δ

)
|f (x)|2

−8x2
δ

(
3− 2π2ξ2

mx2
δ

)
|f ′ (x)|2 + x4

δ |f ′′ (x)|2
]

−8πξmx2
δ

[
4
(
3− π2ξ2

mx2
δ

)
Im
(
f (x) f ′ (x)

)
+πξmx2

δ Re
(
f (x) f ′′ (x)

)
− x2

δ Im
(
f ′ (x) f ′′ (x)

)]}
dx,

if |E4,f | < ∞ holds, whereRe (·) andIm (··) denote the real part of(·) and the imaginary part
of (··), respectively.

Equalityholds in (H4) iff the a-differential equation

f (4)
a (x) = −2c4x

4
δfa (x)
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of fourth order holds, fora = −2πξmi, i =
√
−1, fa = eaxf , and a constantc4 =

k2
4

2
> 0,

k4 ∈ R, or equivalently iff

f (x) = e2πixξm

3∑
j=0

ajx
j
δ

[
1 +

∞∑
m=0

(−1)m+1

× (k2
4x

8
δ)

m+1

(5 + j) (6 + j) · · · (8m + 7 + j) (8m + 8 + j)

]
holds, wherexδ 6= 0, andaj (j = 0, 1, 2, 3) are arbitrary constants inC.

8.4. First Four Generalized Weighted Moment Inequalities. (i)

M1 = (µ2)w,|f |2 (µ2)|f̂|2(8.16)

=

(∫
R

w2 (x) (x− xm)2 |f (x)|2 dx

)(∫
R

(ξ − ξm)2
∣∣∣f̂ (ξ)

∣∣∣2 dξ

)
≥ 1

16π2
(C0D0)

2

=
1

16π2
[C0 (A00I00)]

2

=
1

16π2
I2
00

=
1

16π2

(∫
R

w
(1)
1 (x) |f (x)|2 dx

)2

=
1

16π2
E2

1,f ,

because

I00 = −
∫

R

(
w

(1)
1 |f |2

)
(x) dx

with w1(x) = w(x)(x− xm). We note that ifw = 1 then

E1,f = C0D0 = I00

= −
∫

R

(
w

(1)
1 |f |2

)
(x) dx

= −
∫

R
|f (x)|2 dx

= −E|f |2 = −1 = −E|f̂|2 = −
∫

R

∣∣∣f̂ (ξ)
∣∣∣2 dξ

by the Plancherel-Parseval-Rayleigh identity, if|E1,f | < ∞ holds. Thus from (8.16) one gets
the classical second order moment Heisenberg uncertainty principlewhich says that the product
of the variance(µ2)|f |2 of x for the probability density|f |2 and the variance(µ2)|f̂|2 of ξ for

the probability density
∣∣∣f̂ ∣∣∣2 is at least

E2
|f |2

16π2 , which is the second order moment Heisenberg

Inequality (H1) in our Introduction.The Heisenberg lower boundH∗ = 1
4π

, for E|f |2 = 1, can

be different if one chooses a different formula for the Fourier transformf̂ of f . Finally, the
aboveinequality(8.16)generalizes(H1) of our Introduction (therew = 1).
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(ii)

M2 = (µ4)w,|f |2 (µ4)|f̂|2(8.17)

=

(∫
R

w2 (x) (x− xm)4 |f (x)|2 dx

)(∫
R

(ξ − ξm)4
∣∣∣f̂(ξ)

∣∣∣2 dξ

)
≥ 1

64π4
(C0D0 + C1D1)

2

=
1

64π4
[C0 (A00I00) + C1 (A10I10 + A11I11 + 2B101I101)]

2

=
1

64π4

[
I00 − 2

(
β2I10 + I11 − 2βI101

)]2
=

1

64π4

[∫
R

w
(2)
2 (x) |f (x)|2 dx

−2

∫
R

w2 (x)
[
β2 |f |2 + |f ′|2 + 2β Im

(
ff̄ ′
)]

(x) dx

]2

,

becauseRe
(
if f̄ ′

)
(x) = − Im

(
ff̄ ′
)
(x), and

I00 =

∫
R

w
(2)
2 (x) |f (x)|2 dx,

I10 =

∫
R

w2 (x) |f (x)|2 dx,

I11 =

∫
R

w2 (x) |f ′ (x)|2 dx,

and

I101 =

∫
R

w2 (x) Re
(
if f̄ ′

)
(x) dx,

with w2(x) = w(x)(x− xm)2.
It is clear that (8.17) is equivalent to

M2 ≥
1

64π4

[∫
R

(
w

(2)
2 − 2β2w2

)
(x) |f (x)|2 dx(8.18)

−2

∫
R

w2 (x) |f ′ (x)|2 dx− 4β

∫
R

w2 (x) Im
(
ff̄ ′
)
(x) dx

]2

=
1

64π4
E2

2,f ,

or

(8.19) 4
√

M2 ≥
1

2π
√

2

√
|E2,f |,

where

E2,f = C0D0 + C1D1(8.20)

= D0 − 2D1

= I00 − 2
(
β2I10 + I11 − 2βI101

)
=

∫
R

[(
w

(2)
2 − 2β2w2

)
|f |2 − 2w2 |f ′|2 − 4βw2 Im

(
ff̄ ′
)]

(x) dx,
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if |E2,f | < ∞ holds. We note that if|E2,f | = 1
2

holds, then from (8.19) one gets4
√

M2 ≥
1
4π

(= H∗),while if |E2,f | = 1, then

4
√

M2 ≥
1

2π
√

2
=

1

4π

√
2 (> H∗).

Thus we observe that the lower bound of4
√

M2 is greater thanH∗ if |E2,f | > 1
2
; the same

with H∗ if |E2,f | = 1
2
; and smaller thanH∗, if 0 < |E2,f | < 1

2
. Finally, the aboveinequality

(8.18)generalizes(H2) of Section 8 (therew = 1).
(iii)

M3 = (µ6)w,|f |2 (µ6)|f̂|2(8.21)

=

(∫
R

w2 (x) (x− xm)6 |f (x)|2 dx

)(∫
R

(ξ − ξm)6
∣∣∣f̂(ξ)

∣∣∣2 dξ

)
≥ 1

256π6
(C0D0 + C1D1)

2

=
1

256π6
[C0 (A00I00) + C1 (A10I10 + A11I11 + 2B101I101)]

2

=
1

256π6

[
I00 − 3

(
β2I10 + I11 − 2βI101

)]2
=

1

256π6

[
−
∫

R
w

(3)
3 (x) |f (x)|2 dx

+ 3

∫
R

w
(1)
3 (x)

[
β2 |f |2 + |f ′|2 + 2β Im

(
ff ′
)]

(x) dx

]2

,

because

I00 = −
∫

R
w

(3)
3 (x) |f (x)|2 dx, I10 = −

∫
R

w
(1)
3 (x) |f (x)|2 dx,

I11 = −
∫

R
w

(1)
3 (x) |f ′ (x)|2 dx,

and

I101 = −
∫

R
w

(1)
3 (x) Re

(
if (x) f ′ (x)

)
dx

=

∫
R

w
(1)
3 (x) Im

(
f (x) f ′ (x)

)
dx,

with w3(x) = w(x)(x− xm)3.
It is clear that (8.21) is equivalent to

M3 ≥
1

256π6

[∫
R

(
−w

(3)
3 + 3β2w

(1)
3

)
(x) |f (x)|2 dx(8.22)

+3

∫
R

w
(1)
3 |f ′ (x)|2 dx + 6β

∫
R

w
(1)
3 (x) Im

(
ff̄ ′
)
(x) dx

]2

=
1

256π6
E2

3,f ,

or

(8.23) 6
√

M3 ≥
1

2π 3
√

2
3

√
|E3,f |
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where

E3,f =

∫
R

[(
−w

(3)
3 + 3β2w

(1)
3

)
|f |2 + 3w

(1)
3 |f ′|2 + 6βw

(1)
3 Im

(
ff̄ ′
)]

(x) dx,

if |E3,f | < ∞ holds. We note that if|E3,f | = 1
4
, then from (8.23) we find6

√
M3 ≥ 1

4π
(= H∗),

while if |E3,f | = 1, then 6
√

M3 ≥ 1

2π 3√2
(> H∗). Thus we observe that the lower bound of

6
√

M3 is greater thanH∗ if |E3,f | > 1
4
; the same withH∗ if |E3,f | = 1

4
; and smaller thanH∗,

if 0 < |E3,f | < 1
4
. Finally, the aboveinequality(8.22)generalizes(H3) of our section 8 (there

w = 1).
(iv)

M4 = (µ8)w,|f |2 (µ8)|f̂|2(8.24)

=

(∫
R

w2 (x) (x− xm)8 |f (x)|2 dx

)(∫
R

(ξ − ξm)8
∣∣∣f̂ (ξ)

∣∣∣2 dξ

)
≥ 1

1024π8
(C0D0 + C1D1 + C2D2)

2

=
1

1024π8
[C0 (A00I00) + C1 (A10I10 + A11I11 + 2B101I101)

+C2 (A20I20 + A21I21 + A22I22 + 2B201I201 + 2B202I202 + 2B212I212)]
2

=
1

1024π8

[
I00 − 4

(
β2I10 + I11 − 2βI101

)
+2
(
β4I20 + 4β2I21 + I22 + 4β3I201 + 2β2I202 − 4βI212

)]2
=

1

1024π8

[∫
R

w
(4)
4 (x) |f (x)|2 dx

− 4

∫
R

w
(2)
4 (x)

[
β2 |f |2 + |f ′|2 + 2β Im

(
ff̄ ′
)]

(x) dx

+ 2

∫
R

w4 (x)
[
β4 |f |2 + 4β2 |f ′|2 + |f ′′|2 + 4β3 Im

(
ff ′
)

−2β2 Re
(
ff ′′

)
+ 4β Im

(
f ′f ′′

)]
(x) dx

]2
=

1

1024π8
E2

4,f ,

because

I00 =

∫
R

w
(4)
4 (x) |f (x)|2 dx,

I10 =

∫
R

w
(2)
4 (x) |f (x)|2 dx,

I11 =

∫
R

w
(2)
4 (x) |f ′ (x)|2 dx,

I20 =

∫
R

w4 (x) |f (x)|2 dx,

I21 =

∫
R

w4 (x) |f ′ (x)|2 dx,

I22 =

∫
R

w4 (x) |f ′′ (x)|2 dx,
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and

I101 =

∫
R

w
(2)
4 (x) Re

(
if (x) f ′ (x)

)
dx = −

∫
R

w
(2)
4 (x) Im

(
f (x) f ′ (x)

)
dx,

I201 =

∫
R

w4 (x) Re
(
−if (x) f ′ (x)

)
dx =

∫
R

w4 (x) Im
(
f (x) f ′ (x)

)
dx,

I202 =

∫
R

w4 (x) Re
(
−f (x) f ′′ (x)

)
dx = −

∫
R

w4 (x) Re
(
f (x) f ′′ (x)

)
dx,

I212 =

∫
R

w4 (x) Re
(
if ′ (x) f ′′ (x)

)
dx = −

∫
R

w4 (x) Im
(
f ′ (x) f ′′ (x)

)
dx,

with w4(x) = w(x)(x− xm)4.
It is clear that (8.24) is equivalent to

(8.25) 8
√

M4 ≥
1

2π 4
√

2
4

√
|E4,f |,

where

E4,f =

∫
R

[(
w

(4)
4 − 4β2w

(2)
4 + 2β4w4

)
|f |2 + 4

(
−w

(2)
4 + 2β2w4

)
|f ′|2 + 2w4 |f ′′|2

−8β
(
w

(2)
4 − β2w4

)
Im
(
ff ′
)
− 4β2w4 Re

(
ff ′′

)
+ 8βw4 Im

(
f ′f ′′

)]
(x) dx,

if |E4,f | < ∞ holds.We note that if|E4,f | = 1
8
, then from (8.25) we find8

√
M4 ≥ 1

4π
(= H∗),

while if |E4,f | = 1, then 8
√

M4 ≥ 1

2π 4√2
(> H∗). Thus we observe that the lower bound of

8
√

M4 is greater thanH∗ if |E4,f | > 1
8
; the same withH∗ if |E4,f | = 1

8
; and smaller thanH∗,

if 0 < |E4,f | < 1
8
. Finally, the aboveinequality(8.24)generalizes(H4) of our Section 8 (there

w = 1).

8.5. First form of (8.3), if w = 1, xm = 0 and ξm = 0. We note thatβ = 2πξm = 0,
wp(x) = xp, andw

(p)
p (x) = p! (p = 1, 2, 3, 4, . . .). Therefore the above-mentioned four special

cases (i) – (iv) yield the four formulas:

(8.26) E1,f = −
∫

R
|f (x)|2 dx = −E|f |2 ,

(8.27) E2,f = 2

∫
R

[
|f (x)|2 − x2 |f ′ (x)|2

]
dx,

(8.28) E3,f = −3

∫
R

[
2 |f (x)|2 − 3x2 |f ′ (x)|2

]
dx,

and

(8.29) E4,f = 2

∫
R

[
12 |f (x)|2 − 24x2 |f ′ (x)|2 + x4 |f ′′ (x)|2

]
dx,

respectively, if|Ep,f | < ∞ holds forp = 1, 2, 3, 4.
It is clear that, in general,

Aql =

(
q
q

)2

β0 = 1, if l = q, and Aql =

(
q
l

)2

β2(q−l), if l 6= q,

for 0 ≤ l ≤ q.
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Thus, ifβ = 0, one gets

(8.30) Aql =

 1, if l = q,

0, if l 6= q
= δlq (= the Kronecker delta), 0 ≤ l ≤ q.

It is obvious, ifβ = 0, that

(8.31) Bqkj = (−1)q−k

(
q
k

)(
q
j

)
β2q−j−k = 0, 0 ≤ k < j ≤ q,

such thatj + k < 2q for 0 ≤ k < j ≤ q; that is,β2q−j−k 6= β0 (= 1) for 0 ≤ k < j ≤ q.
Therefore from (8.30) and (8.31) we obtain

(8.32) Dq = AqqIqq = Iqq = (−1)p−2q

∫
R

w(p−2q)
p (x)

∣∣f (q) (x)
∣∣2 dx,

if |Dq| < ∞, holds for0 ≤ q ≤
[

p
2

]
.

We note that ifw = 1 andxm = 0, andξm = 0 orβ = 0, thenwp(x) = xp (p = 1, 2, 3, 4, . . .),
and

w(p−2q)
p (x) = (xp)(p−2q) = p (p− 1) · · · (p− (p− 2q) + 1) xp−(p−2q),

or

(8.33) w(p−2q)
p (x) =

p!

(p− (p− 2q))!
x2q =

p!

(2q)!
x2q, 0 ≤ q ≤

[p
2

]
.

From (8.32) and (8.33) we get the formula

(8.34) Dq = (−1)p−2q p!

(2q)!

∫
R

x2q
∣∣f (q) (x)

∣∣2 dx,

if |Dq| < ∞ holds for0 ≤ q ≤
[

p
2

]
.

Therefore from (8.34) one finds that

Ep,f =

[p/2]∑
q=0

CqDq

=

[p/2]∑
q=0

[
(−1)q p

p− q

(
p− q

q

)][
(−1)p−2q p!

(2q)!

∫
R

x2q
∣∣f (q) (x)

∣∣2 dx

]
,

or the formula

(8.35) Ep,f =

∫
R

[p/2]∑
q=0

(−1)p−q p

p− q

p!

(2q)!

(
p− q

q

)
x2q
∣∣f (q) (x)

∣∣2 dx,

if |Ep,f | < ∞ holds for0 ≤ q ≤
[

p
2

]
, whenw = 1 andxm = ξm = 0.

Let

(8.36) (m2p)|f |2 =

∫
R

x2p |f (x)|2 dx

be the2pth moment ofx for |f |2 about the originxm = 0, and

(8.37) (m2p)|f̂|2 =

∫
R

ξ2p
∣∣∣f̂ (ξ)

∣∣∣2 dξ
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the2pth moment ofξ for
∣∣∣f̂ ∣∣∣2 about the originξm = 0. Denote

(8.38) εp,q = (−1)p−q p

p− q

p!

(2q)!

(
p− q

q

)
, if p ∈ N and 0 ≤ q ≤

[p
2

]
.

Thus from (8.35) and (8.38) we find

(8.39) Ep,f =

∫
R

[p/2]∑
q=0

εp,qx
2q
∣∣f (q) (x)

∣∣2 dx,

if |Ep,f | < ∞ holds for0 ≤ q ≤
[

p
2

]
.

If w = 1 andxm = ξm = 0, one gets from (8.3) and (8.35) – (8.38) the following Corollary
8.2.

Corollary 8.2. Assume thatf : R → C is a complex valued function of a real variablex,
w = 1, xm = ξm = 0, and f̂ is the Fourier transform off , described in Theorem 8.1. Denote
(m2p)|f |2

(
or |f̂|2

) andεp,q as in (8.36) (or (8.37)) and (8.38), respectively for allp ∈ N.

If f ∈ L2(R), and all the above assumptions hold, then

(8.40) 2p

√
(m2p)|f |2 2p

√
(m2p)|f̂|2 ≥

1

2π p
√

2
p

√√√√√
∣∣∣∣∣∣
[p/2]∑
q=0

εp,q (m2q)|f (q)|2

∣∣∣∣∣∣,
holds for any fixed but arbitraryp ∈ N and0 ≤ q ≤

[
p
2

]
, where

(8.41) (m2q)|f (q)|2 =

∫
R

x2q
∣∣f (q) (x)

∣∣2 dx.

Equality in (8.40) holds iff the differential equationf (p) (x) = −2cpx
pf (x) of pth order holds

for somecp > 0, and any fixed but arbitraryp ∈ N.

If q = 0, then we note that (8.41) yields

(m0)|f |2 =

∫
R
|f (x)|2 dx = E|f |2 .

We also note that ifp = 5, then[p /2] = 2; q = 0, 1, 2. Thus from (8.39) we get

ε5,0 = (−1)5−0 5

5− 0

5!

(2 · 0)!

(
5− 0

0

)
= −120,

ε5,1 = (−1)5−1 5

5− 1

5!

(2 · 1)!

(
5− 1

1

)
= 300,

and

ε5,2 = (−1)5−2 5

5− 2

5!

(2 · 2)!

(
5− 2

2

)
= −25.

Therefore

(8.42) E5,f = −5

∫
R

[
24 |f (x)|2 − 60x2 |f ′ (x)|2 + 5x4 |f ′′ (x)|2

]
dx,

if |E5,f | < ∞ holds.
Similarly if p = 6, then

[
p
2

]
= 3; q = 0, 1, 2, 3. Thus from (8.39) one finds

ε6,0 = 720, ε6,1 = −2160, ε6,2 = 270, and ε6,3 = −2.
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Therefore

(8.43) E6,f = 2

∫
R

[
360 |f (x)|2 − 1080x2 |f ′ (x)|2 + 135x4 |f ′′ (x)|2 − x6 |f ′′′ (x)|2

]
dx,

if |E6,f | < ∞ holds. In the same way one gets

(8.44) E7,f = −7

∫
R

[
720 |f (x)|2 − 2520x2 |f ′ (x)|2 + 420x4 |f ′′ (x)|2 − 7x6 |f ′′′ (x)|2

]
dx,

(8.45) E8,f = 2

∫
R

[
20160 |f (x)|2 − 80640x2 |f ′ (x)|2 + 16800x4 |f ′′ (x)|2

−448x6 |f ′′′ (x)|2 + x8
∣∣f (4) (x)

∣∣2] dx,

and

(8.46) E9,f = −9

∫
R

[
40320 |f (x)|2 − 181440x2 |f ′ (x)|2 + 45360x4 |f ′′ (x)|2

−1680x6 |f ′′′ (x)|2 + 9x8
∣∣f (4) (x)

∣∣2] dx,

if |Ep,f | < ∞ holds forp = 7, 8, 9. We note that the casesEp,f : p = 1, 2, 3, 4 are given above
via the four formulas (8.26) – (8.29).

8.6. Second form of (8.3), ifξm = 0. In general forwp(x) = w(x)xp
δ with xδ = x − xm,

wherexm is any fixed and arbitrary real, andw : R → R a real valued weight function, as well
as,ξm = 0, we get from (5.1) and (8.32) that

Dq = Iqq = (−1)p−2q

∫
R

(w (x) xp
δ)

(p−2q)
∣∣f (q) (x)

∣∣2 dx

= (−1)p−2q

∫
R

p−2q∑
m=0

(
p− 2q

m

)
w(m) (x) (xp

δ)
(p−2q−m)

∣∣f (q) (x)
∣∣2 dx

= (−1)p−2q

∫
R

p−2q∑
m=0

(
p− 2q

m

)
w(m) (x)

p!

(p− (p− 2q −m))!
x

p−(p−2q−m)
δ

∣∣f (q) (x)
∣∣2 dx,

or

(8.47) Dq = (−1)p−2q

∫
R

[
p−2q∑
m=0

p!

(2q + m)!

(
p− 2q

m

)
w(m) (x) xm

δ

]
x2q

δ

∣∣f (q) (x)
∣∣2 dx,

if |Dq| < ∞ holds for0 ≤ q ≤
[

p
2

]
.

If m = 0, then one finds from (8.47) the formula (8.34). Therefore from (8.47) one gets that

(8.48) Ep,f =

∫
R

[p/2]∑
q=0

(−1)p−q p

p− q

(
p− q

q

)

×

[
p−2q∑
m=0

p!

(2q + m)!

(
p− 2q

m

)
w(m) (x) xm

δ

]
x2q

δ

∣∣f (q) (x)
∣∣2 dx,

if |Ep,f | < ∞ holds for0 ≤ q ≤
[

p
2

]
, whenw : R → R is a real valued weight function,xm any

fixed but arbitrary real constant andξm = 0. If m = 0 andxm = 0, then we find from (8.48)
the formula (8.35).
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If we denote

(8.49) εp,q,w (x) = (−1)p−q p

p− q

(
p− q

q

)[p−2q∑
m=0

p!

(2q + m)!

(
p− 2q

m

)
w(m) (x) xm

δ

]
,

then one gets from (8.48) that

(8.50) Ep,f =

∫
R

[p/2]∑
q=0

εp,q,w (x)x2q
δ

∣∣f (q) (x)
∣∣2 dx =

[p/2]∑
q=0

∫
R

εp,q,w (x) x2q
δ

∣∣f (q) (x)
∣∣2 dx,

if |Ep,f | < ∞ holds for0 ≤ q ≤
[

p
2

]
.

It is clear that the formula

(8.51) Ep,f =

[p/2]∑
q=0

(−1)p−q p

p− q

(
p− q

q

)

×
∫

R

[
p−2q∑
m=0

p!

(2q + m)!

(
p− 2q

m

)
w(m) (x) xm

δ

]
x2q

δ

∣∣f (q) (x)
∣∣2 dx,

if |Ep,f | < ∞ holds for0 ≤ q ≤
[

p
2

]
.

Therefore from (8.3) and (8.49) – (8.50) we get the following Corollary 8.3.

Corollary 8.3. Assume thatf : R → C is a complex valued function of a real variablex,
w : R → R a real valued weight function,xm any fixed but arbitrary real number,ξm = 0, and
f̂ is the Fourier transform off , described in our above theorem. Denote(µ2p)w,|f |2 , (m2p)|f̂|2
andεp,q,w(x) as in the preliminaries of the above theorem, (8.37) and (8.49), respectively, for
all p ∈ N.

If f ∈ L2(R), and all the above assumptions hold, then

(8.52) 2p

√
(µ2p)w,|f |2 2p

√
(m2p)|f̂|2 ≥

1

2π p
√

2

∣∣∣∣∣∣
[p/2]∑
q=0

∫
R

εp,q,w (x) x2q
δ

∣∣f (q) (x)
∣∣2 dx

∣∣∣∣∣∣
 1

p

,

holds for any fixed but arbitraryp ∈ N and0 ≤ q ≤
[

p
2

]
.

Equality in (8.52) holds iff the differential equation

f (p) (x) = −2cpx
p
δf (x)

of pth order holds for somecp > 0, and any fixed but arbitraryp ∈ N.

We note that forp = 2; q = 0, 1 andw2 (x) = w (x) x2
δ, with xδ = x − xm; ξm = 0, we get

from (8.49) that
ε2,0,w (x) = 2w (x) + 4w′ (x) xδ + w′′ (x) x2

δ ,

and
ε2,1,w (x) = −2w (x) .

Therefore from (8.48) one obtains

(8.53) E2,f =

∫
R

[(
2w (x) + 4w′ (x) xδ + w′′ (x) x2

δ

)
|f (x)|2 − 2w (x) x2

δ |f ′ (x)|2
]
dx,

if |E2,f | < ∞.
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This result (8.53) can be found also from (8.20), whereβ = 2πξm = 0 and thus

(8.54) E2,f =

∫
R

[
w

(2)
2 (x) |f (x)|2 − 2w2 (x) |f ′ (x)|2

]
dx,

if |E2,f | < ∞ holds, with

w2 (x) = w (x) (x− xm)2 = w (x) x2
δ ,

w
(1)
2 (x) = 2w (x) xδ + w′ (x) x2

δ

and
w

(2)
2 (x) = 2w (x) + 4w′ (x) xδ + w′′ (x) x2

δ .

8.7. Third form of (8.3), if w = 1. In general with any fixed but arbitrary real numbersxm,
ξm, xδ = x− xm andξδ = ξ − ξm, one finds

wp = xp
δ ,

w(r)
p = (xp

δ)
(r) =

p!

(p− r)!
xp−r

δ ,

and

w(p−2q)
p =

p!

(2q)!
x2q

δ .

Therefore the integralsIql, Iqkj of the above theorem take the form

(8.55) Iql = (−1)p−2q p!

(2q)!
(µ2q)|f (l)|2 , 0 ≤ l ≤ q ≤

[p
2

]
,

and

(8.56) Iqkj = (−1)p−2q p!

(2q)!
(µ2q)fkj

, 0 ≤ k < j ≤ q ≤
[p
2

]
,

wherefkj : R → R are real valued functions ofx, such that

(8.57) fkj (x) = Re
(
rqkjf

(k) (x) f (j) (x)
)

, 0 ≤ k < j ≤ q ≤
[p
2

]
,

with rqkj = (−1)q− k+j
2 , and

(8.58) (µ2q)|f (l)|2 =

∫
R

x2q
δ

∣∣f (l) (x)
∣∣2dx, 0 ≤ l ≤ q ≤

[p
2

]
,

is the2qth moment ofx for
∣∣f (l)

∣∣2, and

(8.59) (µ2q)fkj
=

∫
R

x2q
δ fkj (x)dx, 0 ≤ k < j ≤ q ≤

[p
2

]
,

is the2qth moment ofx for fkj.
We note that if0 ≤ k = j = l ≤ q ≤

[
p
2

]
, then

(8.60) fll (x) = sql

∣∣f (l) (x)
∣∣2 ,

and thus

(8.61) (µ2q)fll
= sql (µ2q)|f (l)|2 , 0 ≤ l ≤ q ≤

[p
2

]
,

wheresql = (−1)q−l.
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We considerAql andBqkj andβ as in the theorem, andεp,q as in (8.38). Therefore

(8.62) Dq = (−1)p−2q p!

(2q)!

[
q∑

l=0

Aql (µ2q)|f (l)|2 + 2
∑

0≤k<j≤q

Bqkj (µ2q)fkj

]
,

if |Dq| < ∞ holds for0 ≤ q ≤
[

p
2

]
. From (8.55) – (8.62) one gets

(8.63) Ep,f =

[p/2]∑
q=0

[
q∑

l=0

Aql (µ2q)|f (l)|2 + 2
∑

0≤k<j≤q

Bqkj (µ2q)fkj

]
,

if |Ep,f | < ∞ holds, for any fixed but arbitraryp ∈ N.
If w = 1 one gets from (8.3) and (8.55) – (8.63) the following Corollary 8.4.

Corollary 8.4. Assume thatf : R → C is a complex valued function of a real variablex,
w = 1, xm and ξm any fixed but arbitrary real numbers,xδ = x − xm and ξδ = ξ − ξm,
wp(x) = xp

δ , andf̂ is the Fourier transform off , described in our theorem. Let

(µ2p)|f |2 =

∫
R

x2p
δ |f (x)|2dx,

and

(µ2p)|f̂|2 =

∫
R

ξ2p
δ

∣∣∣f̂(ξ)
∣∣∣2dξ

be the2pth moment ofx for |f |2, and the2pth moment ofξ for
∣∣∣f̂ ∣∣∣2, respectively. Denote

(µ2q)|f (l)|2, (µ2q)fkj
(with fkj : R → R as in (8.57)) ,εp,q and Aql, Bqkj via (8.58), (8.59),

(8.38) and the preliminaries of the theorem, respectively for allp ∈ N. Also denote

Up = 2p

√
(µ2p)|f |2 2p

√
(µ2p)|f̂|2 .

If f ∈ L2(R), and all the above assumptions hold, then

(8.64) Up ≥ H∗
p

∣∣∣∣∣∣
[p/2]∑
q=0

εp,q

[
q∑

l=0

Aql (µ2q)|f (l)|2 + 2
∑

0≤k<j≤q

Bqkj (µ2q)fkj

]∣∣∣∣∣∣
 1

p

holds for any fixed but arbitraryp ∈ N and0 ≤ q ≤
[

p
2

]
, whereH∗

p = 1/ 2π p
√

2 (for p ∈ N) is
the generalized Heisenberg constant.

Equality in (8.64) holds iff thea-differential equation

f (p)
a (x) = −2cpx

p
δfa (x) , a = −2πξmi,

holds for somecp > 0, and any fixed but arbitraryp ∈ N.

We callUp theuncertainty productdue to the Heisenberg uncertainty principle (8.64).
We note that iff : R → R is a real valued function of a real variable, in the above Corollary

8.4, then

(8.65) fkj =
(
f (k)f (j)

)
Re (rqkj) , for 0 ≤ k < j ≤ q ≤

[p
2

]
,
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whererqkj ∈ {±1,±i}, such that

rqkj =

 1, if 2q ≡ (k + j) (mod 4)

−1, if 2q ≡ (k + j + 2) (mod 4)
; and

rqkj =

 i, if 2q ≡ (k + j + 1) (mod 4)

−i, if 2q ≡ (k + j + 3) (mod 4) .

Thus

(8.66) fkj =
(
f (k)f (j)

)


1, if 2q ≡ (k + j) (mod 4)

−1, if 2q ≡ (k + j + 2) (mod 4)

0, if 2q ≡ (k + j + 1) (or (k + j + 3)) (mod 4)

,

for 0 ≤ k < j ≤ q ≤
[

p
2

]
.

Therefore

(8.67) (µ2q)fkj
= (µ2q)f (k)f (j)


1, if 2q ≡ (k + j) (mod 4)

−1, if 2q ≡ (k + j + 2) (mod 4)

0, if 2q ≡ (k + j + 1) (or (k + j + 3)) (mod 4)

,

where

(µ2q)f (k)f (j) =

∫
R

x2q
δ

(
f (k)f (j)

)
(x) dx,

for 0 ≤ k < j ≤ q ≤
[

p
2

]
.

Similarly if f (k)f (j) : R → R, for 0 ≤ k < j ≤ q ≤
[

p
2

]
, are real valued functions of a real

variablex, we get analogous results.

9. GAUSSIAN FUNCTION

Considerw = 1, xm and ξm means andthe Gaussian functionf : R → C, such that
f (x) = c0e

−cx2
, wherec0, c are constants andc0 ∈ C, c > 0. It is easy to provethe integral

formula

(9.1)
∫

R
x2pe−2cx2

dx =
Γ
(
p + 1

2

)
(2c)p+ 1

2

, c > 0,

for all p ∈ N andp = 0, whereΓ is the Euler gamma function[21], such that

Γ

(
p +

1

2

)
=

1 · 3 · · · · · (2p− 1)

2p

√
π

for p ∈ N andΓ
(

1
2

)
=
√

π for p = 0. Note that the meanxm of x for |f |2is given by

xm =

∫
R

x |f (x)|2 dx = 0.

Also from Gasquet et al [8, p. 159-161], by applying differential equations [25], one gets that
the Fourier transform̂f : R → C is of the form

(9.2) f̂ (ξ) = c0

√
π

c
e−

π2

c
ξ2

, c0 ∈ C, c > 0.
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In this case the meanξm of ξ for
∣∣∣f̂ ∣∣∣2is given by

ξm =

∫
R

ξ
∣∣∣f̂ (ξ)

∣∣∣2 dξ = 0.

Therefore from (8.36) – (8.37) with meansxm = 0, ξm = 0 and from (9.1) – (9.2) one finds
that the2pth power of the left-hand side of the inequality (8.40) of the Corollary 8.2 is

(m2p)|f |2 · (m2p)|f̂|2(9.3)

=

(∫
R

x2p |f (x)|2 dx

)(∫
R

ξ2p
∣∣∣f̂ (ξ)

∣∣∣2 dξ

)
= |c0|4

π

c

(∫
R

x2pe−2cx2

dx

)(∫
R

ξ2pe−2c∗ξ2

dξ

)(
wherec∗ =

π2

c

)
= π

|c0|4

c

Γ
(
p + 1

2

)
(2c)p+ 1

2

Γ
(
p + 1

2

)
(2c∗)p+ 1

2

=
(
H∗

p

)2p
2Γ2

(
p +

1

2

)
|c0|4

c
,

for all fixed but arbitraryp ∈ N, c0 ∈ C, andc > 0
(

whereH∗
p = 1

2π p√2

)
. We note that

E|f |2 =

∫
R
|f (x)|2 dx(9.4)

= |c0|2
∫

R
e−2cx2

dx

=
|c0|2√

2c
Γ

(
1

2

)
= |c0|2

√
π

2c
, whereΓ

(
1

2

)
=
√

π.

If we denote

(2p− 1)!! = 1 · 3 · 5 · · · · · (2p− 1) , 0!! = (−1)!! = 1,

for p ∈ N andp = 0, respectively, then

(9.5) Γ

(
p +

1

2

)
=

(2p− 1)!!

2p

√
π for p ∈ N, and Γ

(
1

2

)
=
√

π for p = 0.

We considerthe Legendre duplication formula forΓ ([18], [21])

(9.6) Γ (2p) =
22p−1

√
π

Γ (p) Γ

(
p +

1

2

)
, p ∈ N

andthe factorial formula

(9.7) Γ (p + 1) = p!, p ∈ N0 = N ∪ {0}.

We takethe Hermite polynomial([18], [21])

(9.8) Hq (x) = (2x)q − q (q − 1)

1!
(2x)q−2 +

q (q − 1) (q − 2) (q − 3)

2!
(2x)q−4

− · · ·+ (−1)[
q
2 ] q![

q
2

]
!
(2x)q−2[ q

2 ] , q ∈ N0,
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where
[

q
2

]
= q

2
if q is even and

[
q
2

]
= q−1

2
if q is odd. We considerthe Rodriguesformula ([18],

[21])

(9.9) Hq (x) = (−1)q ex2 dq

dxq

(
e−x2

)
, q ∈ N0.

If one places
√

cx onx into (9.8) and employs

(9.10)
d

d (
√

cx)
(·) =

d

dx
(·) dx

d (
√

cx)
=

1√
c

d

dx
(·) ,

then he provesthe generalized Rodrigues formula

(9.11) Hq

(√
cx
)

= (−1)q c−
q
2 ecx2 dq

dxq

(
e−cx2

)
, c > 0, q ∈ N0.

In this paper we have0 ≤ q ≤
[

p
2

]
, p ∈ N. From (9.11) withf (x) = c0e

−cx2
, c0 ∈ C, c > 0,

we get

(9.12)
dq

dxq
f (x) = (−1)q c

q
2 f (x) Hq

(√
cx
)
,

and thus the moment

(m2q)|f (q)|2 =

∫
R

x2q
∣∣f (q) (x)

∣∣2 dx(9.13)

=

∫
R

x2q
∣∣∣(−1)q c

q
2 f (x) Hq

(√
cx
)∣∣∣2 dx

= |c0|2 cq

∫
R

x2qe−2cx2 ∣∣Hq

(√
cx
)∣∣2 dx.

Substitutingy =
√

cx, c > 0 into (9.13) one gets

(9.14) (m2q)|f (q)|2 =
|c0|2√

c

∫
R

y2qe−2y2

H2
q (y) dy.

We consider the Hermite polynomial

(9.15) Hq (y) =

[ q
2 ]∑

k=0

(−1)k q!

k! (q − 2k)!
(2y)q−2k, 0 ≤ q ≤

[p
2

]
,

and the Lagrange identity of the second form (7.3). Setting

rk = (−1)k q!

k! (q − 2k)!
2q−2k = (−1)k (2k)!

k!

(
q
2k

)
2q−2k

with
(2k)!

k!

(
q
2k

)
=

q!

k! (q − 2k)!
,

and denoting

A∗
qk =

(
(2k)!

k!

)2(
q
2k

)2

22(q−2k) ∈ R,

r∗qkj = 4q−(k+j) ∈ R,

s∗qkj = (−1)k+j ∈ R,

and

B∗
qkj = s∗qkj

(2k)! (2j)!

k!j!

(
q
2k

)(
q
2j

)
∈ R,
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one gets thatr2
k = A∗

qk andrkrj = r∗qkjB
∗
qkj.

Thus employing (9.15) and substitutingzk = yq−2k in (7.3) we find

zkzj = y2(q−k−j), rkzk = (−1)k q!

k! (q − 2k)!
(2y)q−2k ,

and

(9.16) H2
q (y) =

[q/2]∑
k=0

rkzk

2

=

[q/2]∑
k=0

A∗
qky

2q−4k + 2
∑

0≤k<j≤[ q
2 ]

r∗qkjB
∗
qkjy

2(q−k−j),

for 0 ≤ q ≤
[

p
2

]
, p ∈ N. Let us denote

J∗qk =

∫
R

y4(q−k)e−2y2

dy, J∗qkj =

∫
R

y2(2q−k−j)e−2y2

dy, Ãqk = A∗
qkJ

∗
qk,

andB̃qkj = r∗qkjB
∗
qkjJ

∗
qkj. Therefore from (9.14) and (9.16) one gets

(9.17) (m2q)|f (q)|2 =
|c0|2√

c

[q/2]∑
k=0

Ãqk + 2
∑

0≤k<j≤[q/2]

B̃qkj

 , 0 ≤ q ≤
[p
2

]
.

From (9.1) and (9.5) we find

(9.18) J∗qk =
(4 (q − k)− 1)!!

16q−k

√
π

2
, and J∗qkj =

(2 (2q − k − j)− 1)!!

42q−k−j

√
π

2
.

From (9.18) one gets

(9.19) Ãqk =
1

22q

√
π

2

(
q
2k

)2(
(2k)!

k!

)2

(4q − 4k − 1)!!,

(9.20) B̃qkj = (−1)k+j 1

22q

√
π

2

(
q
2k

)(
q
2j

)
(2k)! (2j)!

k!j!
(4q − 2k − 2j − 1)!!,

0 ≤ k < j ≤
[

q
2

]
,0 ≤ q ≤

[
p
2

]
, p ∈ N. From (9.5) one finds

(9.21) (4q − 4k − 1)!! =
22q−2k

√
π

Γ

(
2q − 2k +

1

2

)
,

(9.22) (4q − 2k − 2j − 1)!! =
22q−k−j

√
π

Γ

(
2q − k − j +

1

2

)
.

Also from (9.6) – (9.7) we get

(9.23)
(2p)!

p!
=

22p

√
π

Γ

(
p +

1

2

)
, p ∈ N.

Therefore from (9.19) – (9.22) and placingk, j onp into (9.23) we find

(9.24) Ãqk =
1

π
√

2
22k

(
q
2k

)2

Γ2

(
k +

1

2

)
Γ

(
2q − 2k +

1

2

)
,

(9.25) B̃qkj =
1

π
√

2
(−1)k+j 2k+j

(
q
2k

)(
q
2j

)
× Γ

(
k +

1

2

)
Γ

(
j +

1

2

)
Γ

(
2q − k − j +

1

2

)
,
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for all 0 ≤ k < j ≤
[

q
2

]
, 0 ≤ q ≤

[
p
2

]
, p ∈ N. Let us denote

(9.26) Γq =

[q/2]∑
k=0

22k

(
q
2k

)2

Γ2

(
k +

1

2

)
Γ

(
2q − 2k +

1

2

)
+ 2

∑
0≤k<j≤[q/2]

(−1)k+j 2k+j

(
q
2k

)(
q
2j

)

× Γ

(
k +

1

2

)
Γ

(
j +

1

2

)
Γ

(
2q − k − j +

1

2

)
.

From (9.26) one gets

(9.27)
[q/2]∑
k=0

Ãqk + 2
∑

0≤k<j≤[q/2]

B̃qkj =
1

π
√

2
Γq.

Thus from (9.17) and (9.27) we find

(9.28) (m2q)|f (q)|2 =
|c0|2√

c

1

π
√

2
Γq,

for all 0 ≤ q ≤
[

p
2

]
, p ∈ N, andc0 ∈ C, c > 0. Let us denote

(9.29) Γ∗p =

∣∣∣∣∣∣
[p/2]∑
q=0

εp,qΓq

∣∣∣∣∣∣ ,
whereεp,q is given as in (8.38). Therefore from the2pth power of the right-hand side of the
inequality (8.40) of the Corollary 8.2 and (9.28) – (9.29) we get

(9.30)
(
H∗

p

)2p

[p/2]∑
q=0

εp,q (m2q)|f (q)|2

2

=
(
H∗

p

)2p 1

2π2

(
Γ∗p
)2 |c0|4

c
,

for all p ∈ N, c0 ∈ C, andc > 0
(

whereH∗
p = 1

2π p√2

)
.

If f̂ : R → C is the Fourier transform off of the formf (x) = c0e
−cx2

(c0 ∈ C, c > 0),

given as in the abstract,xm the mean ofx for |f |2, andξm the mean ofξ for
∣∣∣f̂ ∣∣∣2, then

(9.31) |Ep,f | =
|c0|2√

c

1

π
√

2
Γ∗p

(
=

E|f |2

π
√

π
Γ∗p

)
,

for any fixed but arbitraryp ∈ N. For instance, ifc0 = 1 andc = 1
2
, then

Γ∗p = π |Ep,f | , p ∈ N.

Therefore from (8.40), (9.3) and (9.30) we get the following Corollary 9.1.

Corollary 9.1. Assume thatΓ is the Euler gamma function defined by the formula[21]

(9.32) Γ (z) =

∫ ∞

0

tz−1e−tdt, Re(z) > 0,

whenever the complex variablez = Re (z) + i Im (z), i =
√
−1, has a positive real part

Re (z). Denoteεp,q, Γq andΓ∗q as in (8.38), (9.26) and (9.29), respectively. Let us consider the
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non-negative real functionR : N → R, such that

R (p) =
Γ
(
p + 1

2

)
Γ∗p

, p ∈ N = {1, 2, 3, . . .}.

Then the extremum principle

(9.33) R (p) ≥ 1

2π
,

holds for any fixed but arbitraryp ∈ N. Equality holds forp = 1.

For instance, ifp ∈ N9 = {1, 2, 3, . . ., 9}, then

1

2π
≤ R (p) ≤ 429

23
· 1

2π
.

9.1. First nine cases of (9.33).

i) If p = 1, thenq = 0. ThusΓ0 = Γ3
(

1
2

)
= π

√
π, ε1,0 = −1, andΓ∗1 = |ε1,0Γ0| = π

√
π.

But Γ
(
1 + 1

2

)
= 1

2

√
π. HenceR (1) = 1

2π
. Therefore theequalityin (9.33) holds for

p = 1.
ii) If p = 2, thenq = 0, 1.Thus

Γ0 = π
√

π, ε2,0 = 2;

Γ1 = Γ2

(
1

2

)
Γ

(
2 +

1

2

)
=

3

4
π
√

π,

ε2,1 = −2,

and

Γ∗2 = |ε2,0Γ0 + ε2,1Γ1| =
1

2
π
√

π.

But Γ
(
2 + 1

2

)
= 3

4

√
π. HenceR (2) = 3 · 1

2π
.

Therefore the inequality in (9.33) holds forp = 2.
iii) If p = 3, thenq = 0, 1.ThusΓ0 = π

√
π, ε3,0 = −6; Γ1 = 3

4
π
√

π, ε3,1 = 9, and

Γ∗3 = |ε3,0Γ0 + ε3,1Γ1| =
3

4
π
√

π.

But Γ
(
3 + 1

2

)
= 15

8

√
π. HenceR (3) = 5 · 1

2π
.

Therefore the inequality in (9.33) holds forp = 3.
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iv) If p = 4, thenq = 0, 1, 2. ThusΓ0 = π
√

π, ε4,0 = 24; Γ1 = 3
4
π
√

π, ε4,1 = −48;
ε4,2 = 2,

Γ2 =
1∑

k=0

22k

(
2
2k

)2

Γ2

(
k +

1

2

)
Γ

(
4− 2k +

1

2

)
+ 2

∑
0≤k<j≤1

(−1)k+j 2k+j

(
2
2k

)(
2
2j

)
×Γ

(
k +

1

2

)
Γ

(
j +

1

2

)
Γ

(
4− k − j +

1

2

)
= Γ2

(
1

2

)
Γ

(
4 +

1

2

)
+ 22Γ2

(
1 +

1

2

)
Γ

(
2 +

1

2

)
+ 2 (−1) 2Γ

(
1

2

)
Γ

(
1 +

1

2

)
Γ

(
3 +

1

2

)
=

105 + 12− 60

16
π
√

π =
57

16
π
√

π,

because(k, j) ∈ {(0, 1)}, and

Γ∗4 = |ε4,0Γ0 + ε4,1Γ1 + ε4,2Γ2|

=

∣∣∣∣24 + (−48)
3

4
+ 2

(
57

16

)∣∣∣∣ π√π =
39

8
π
√

π.

But Γ
(
4 + 1

2

)
= 105

16

√
π. HenceR (4) = 35

13
· 1

2π
.

Therefore the inequality in (9.33) holds forp = 4.
v) If p = 5, thenq = 0, 1, 2. ThusΓ∗5 = 255

16
π
√

π. But Γ
(
5 + 1

2

)
= 945

32

√
π. Hence

R (5) = 63
17
· 1

2π
. Therefore the inequality in (9.33) holds forp = 5.

vi) If p = 6, thenq = 0, 1, 2, 3. ThusΓ∗6 = 855
32

π
√

π. But Γ
(
6 + 1

2

)
= 10395

64

√
π. Hence

R (6) = 231
19
· 1

2π
. Therefore the inequality in (9.33) holds forp = 6.

vii) If p = 7, thenq = 0, 1, 2, 3. ThusΓ∗7 = 7245
64

π
√

π. But Γ
(
7 + 1

2

)
= 135135

128

√
π. Hence

R (7) = 429
23
· 1

2π
. Therefore the inequality in (9.33) holds forp = 7.

viii) If p = 8, thenq = 0, 1, 2, 3, 4. ThusΓ∗8 = 192465
128

π
√

π. But Γ
(
8 + 1

2

)
= 2027025

256

√
π.

HenceR (8) = 495
47
· 1

2π
. Therefore the inequality in (9.33) holds forp = 8.

ix) If p = 9, thenq = 0, 1, 2, 3, 4. ThusΓ∗9 = 2344545
256

π
√

π. But Γ
(
9 + 1

2

)
= 34459425

512

√
π.

HenceR (9) = 12155
827

· 1
2π

. Therefore the inequality in (9.33) holds forp = 9.
In fact ,

ε9,0 = −9!, ε9,1 = 9 · 9!

2!
, ε9,2 = −9

7

9!

4!

(
7
2

)
,

ε9,3 =
9

6

9!

6!

(
6
3

)
, ε9,4 = −81

and

Γ∗9 = |ε9,0Γ0 + ε9,1Γ1 + ε9,2Γ2 + ε9,3Γ3 + ε9,4Γ4| ,
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whereΓ0 = π
√

π, Γ1 = 3
4
π
√

π, andΓ2 = 57
16

π
√

π from the above case iv). Besides

Γ3 =
1∑

k=0

22k

(
3
2k

)2

Γ2

(
k +

1

2

)
Γ

(
6− 2k +

1

2

)
+ 2

∑
0≤k<j≤1

(−1)k+j 2k+j

(
3
2k

)(
3
2j

)
×Γ

(
k +

1

2

)
Γ

(
j +

1

2

)
Γ

(
6− k − j +

1

2

)
= Γ2

(
1

2

)
Γ

(
6 +

1

2

)
+ 22

(
3
2

)2

Γ2

(
1 +

1

2

)
Γ

(
4 +

1

2

)
+ 2 (−1) 2

(
3
0

)(
3
2

)
Γ

(
1

2

)
Γ

(
1 +

1

2

)
Γ

(
5 +

1

2

)
=

2835

64
π
√

π,

because(k, j) ∈ {(0, 1)}, and

Γ4 =
2∑

k=0

22k

(
4
2k

)2

Γ2

(
k +

1

2

)
Γ

(
8− 2k +

1

2

)
+ 2

∑
0≤k<j≤2

(−1)k+j 2k+j

(
4
2k

)(
4
2j

)
×Γ

(
k +

1

2

)
Γ

(
j +

1

2

)
Γ

(
8− k − j +

1

2

)
=

273105

256
π
√

π,

because(k, j) ∈ {(0, 1), (0, 2), (1, 2)}.We note that if one denotesR∗ (p) = 2πR (p), then he
easily getsR∗ (p) ≥ 1 for anyp ∈ N.

Corollary 9.2. Assume thatΓ is defined by (9.32). Consider the Gaussianf : R → C such that
f (x) = c0e

−cx2
, wherec0, c are fixed but arbitrary constants andc0 ∈ C, c > 0. Assume that

xm is the mean ofx for |f |2. Considerf̂ : R → C the Fourier transform off , given as in the

abstract andξm the mean ofξ for
∣∣∣f̂ ∣∣∣2. Denote(m2q)|f (q)|2 , the2qth moment ofx for

∣∣f (q)
∣∣2

about the origin, as in (8.41), and the real constantsεp,q as in (8.38). Denote

E|f |2 =

∫
R
|f (x)|2 dx

and

(9.34) Ep,f =

[p/2]∑
q=0

εp,q (m2q)|f (q)|2 ,

if |Ep,f | < ∞ holds for0 ≤ q ≤
[

p
2

]
and any fixed but arbitraryp ∈ N.

Then the extremum principle

(9.35) Rf (p) =
Γ
(
p + 1

2

)
|Ep,f |

(
=

√
π

2E|f |2
R∗ (p)

)
≥ 1

|c0|2

√
c

2

(
=

√
π

2E|f |2

)
,
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holds for anyp ∈ N. Equality holds forp = 1.

For instance, ifp ∈ N9 = {1, 2, 3, . . ., 9}, thenEp,f > 0 for p = 2, 3, 5, 8; and< 0 for
p = 1, 4, 6, 7, 9. Besides

1

|c0|2

√
c

2
≤ Rf (p) ≤ 429

23
· 1

|c0|2

√
c

2
, if p ∈ N9.

The proof of Corollary 9.2 is a direct application of the above-mentioned formula (9.31) and
the Corollary 9.1 (or (9.33)). In fact,

Rf (p) = Γ

(
p +

1

2

)/
|Ep,f |

= Γ

(
p +

1

2

)/
1

π
√

2
Γ∗p
|c0|2√

c

= π
√

2

√
c

|c0|2
R (p)

≥ π

√
2c

|c0|2
· 1

2π
=

1

|c0|2

√
c

2
.

Besides from (8.26) one gets

E1,f = −
∫

R
|f (x)|2 dx = − |c0|2

∫
R

e−2cx2

dx = −|c0|2√
2c

√
π = −|c0|2√

2c
2Γ

(
1 +

1

2

)
,

or Rf (1) = 1
|c0|2
√

c
2
, completing the proof of Corollary 9.2. We note that ifc0 = 1, c = 1

2
, or

f (x) = e−
1
2
x2

, thenRf (p) ≥ 1
2
.

Also we note that the formula (9.28) is an interesting formula on moments for Gaussians.

9.2. First nine cases of (9.35).

i) If p = 1, then

E|f |2 =

∫
R
|f (x)|2 dx = |c0|2

∫
R

e−2cx2

dx =
|c0|2√

2c

√
π.

Thus from (8.26) we getE1,f = −E|f |2 . But Γ
(
1 + 1

2

)
= 1

2

√
π. Hence

Rf (1) = Γ

(
1 +

1

2

)/
|E1,f | =

1

|c0|2

√
c

2
=
√

π
/

2E|f |2 .

Therefore theequalityin (9.35) holds forp = 1.
We note from (9.28) and (9.31) thatq = 0 such that

Γ0 = π

√
2c

|c0|2
(m0)|f |2 = π

√
2c

|c0|2
E|f |2 = π

√
π,

and

Γ∗1 = π

√
2c

|c0|2
|E1,f | = π

√
2c

|c0|2
E|f |2 = Γ0 = π

√
π,

respectively.
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ii) If p = 2, then from (8.27) we get

E2,f = 2

[
E|f |2 −

∫
R

x2 |f ′ (x)|2 dx

]
= 2

[
E|f |2 −

3

4
E|f |2

]
=

1

2
E|f |2 .

But Γ
(
2 + 1

2

)
= 3

4

√
π. Hence

Rf (2) = Γ

(
2 +

1

2

)/
|E2,f | = 3 · 1

|c0|2

√
c

2
.

Therefore the inequality in (9.35) holds forp = 2. We note from (9.28) and (9.31) that
q = 0, 1 such thatΓ0 = π

√
π as in the above case i),

Γ1 = π

√
2c

|c0|2
(m2)|f ′|2 = π

√
2c

|c0|2
∫

R
x2 |f ′ (x)|2 dx = π

√
2c

|c0|2
3

4
E|f |2 =

3

4
π
√

π,

and

Γ∗2 = π

√
2c

|c0|2
|E2,f | = π

√
2c

|c0|2
1

2
E|f |2 =

1

2
Γ0 =

1

2
π
√

π,

respectively.
iii) If p = 3, then from (8.28) we find

E3,f = −3

[
2E|f |2 − 3

∫
R

x2 |f ′ (x)|2 dx

]
= −3

[
2E|f |2 − 3 · 3

4
E|f |2

]
=

3

4
E|f |2 .

But Γ
(
3 + 1

2

)
= 15

8

√
π. Hence

Rf (3) = Γ

(
3 +

1

2

)/
|E3,f | = 5 · 1

|c0|2

√
c

2
.

Therefore the inequality in (9.35) holds forp = 3.
iv) If p = 4, then from (8.29) one finds

E4,f = 2

[
12E|f |2 − 24

∫
R

x2 |f ′ (x)|2 dx +

∫
R

x4
∣∣f ′′ (x)

∣∣2 dx

]
= 2

[
12− 24 · 3

4
+

57

16

]
E|f |2 = −39

8
E|f |2 < 0.

Hence

Rf (4) =
35

13
· 1

|c0|2

√
c

2
.

Therefore the inequality in (9.35) holds forp = 4.
v) If p = 5, then from (8.42) one gets

E5,f = −5

[
24E|f |2 − 60

∫
R

x2 |f ′ (x)|2 dx + 5

∫
R

x4
∣∣f ′′ (x)

∣∣2 dx

]
= −5

[
24− 60 · 3

4
+ 5 · 57

16

]
E|f |2 =

255

16
E|f |2 .

Hence

Rf (5) =
63

17
· 1

|c0|2

√
c

2
.

Therefore the inequality in (9.35) holds forp = 5.
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vi) If p = 6, then from (8.43) we get

E6,f = 2

[
360E|f |2 − 1080

∫
R

x2 |f ′ (x)|2 dx

+ 135

∫
R

x4
∣∣f ′′ (x)

∣∣2 dx−
∫

R
x6
∣∣∣f ′′′ (x)

∣∣∣2 dx

]
= 2

[
360− 1080 · 3

4
+ 135 · 57

16
− 2835

64

]
E|f |2

= −855

32
E|f |2 < 0.

Hence

Rf (6) =
231

19
· 1

|c0|2

√
c

2
.

Therefore the inequality in (9.35) holds forp = 6.
vii) If p = 7, then from (8.44) one obtains

E7,f = −7

[
720E|f |2 − 2520

∫
R

x2 |f ′ (x)|2 dx

+ 420

∫
R

x4
∣∣f ′′ (x)

∣∣2 dx− 7

∫
R

x6
∣∣∣f ′′′ (x)

∣∣∣2 dx

]
= −7

[
720− 2520 · 3

4
+ 420 · 57

16
− 7 · 2835

64

]
E|f |2

= −7245

64
E|f |2 < 0.

Hence

Rf (7) =
429

23
· 1

|c0|2

√
c

2
.

Therefore the inequality in (9.35) holds forp = 7.
viii) If p = 8, then from (8.45) we obtain

E8,f = 2

[
20160E|f |2 − 80640

∫
R

x2 |f ′ (x)|2 dx + 16800

∫
R

x4
∣∣f ′′ (x)

∣∣2 dx

−448

∫
R

x6
∣∣∣f ′′′ (x)

∣∣∣2 dx +

∫
R

x8
∣∣f (4) (x)

∣∣2 dx

]
= 2

[
20160− 80640 · 3

4
+ 16800 · 57

16
− 448 · 2835

64
+

273105

256

]
E|f |2

=
192465

128
E|f |2 .

Hence

Rf (8) =
495

47
· 1

|c0|2

√
c

2
.

Therefore the inequality in (9.35) holds forp = 8.
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ix) If p = 9, then from (8.46) one finds

E9,f = −9

[
40320E|f |2 − 181440

∫
R

x2 |f ′ (x)|2 dx + 45360

∫
R

x4
∣∣f ′′ (x)

∣∣2 dx

−1680

∫
R

x6
∣∣∣f ′′′ (x)

∣∣∣2 dx + 9

∫
R

x8
∣∣f (4) (x)

∣∣2 dx

]
= 9

[
40320− 181440 · 3

4
+ 45360 · 57

16
− 1680 · 2835

64
+ 9 · 273105

256

]
E|f |2

= −2344545

256
E|f |2 < 0.

Hence

Rf (9) =
12155

827
· 1

|c0|2

√
c

2
.

Therefore the inequality in (9.35) holds forp = 9.

We note that, from the Corollary 9.1,

Rf (p) = 2πR (p) = R∗ (p) ≥ 1

for anyp ∈ N, if

f (x) = e−2x2

(
or E|f |2 =

√
π

2

)
,

because|Ep,f | = 1
2π

Γ∗p, from (9.31).

Corollary 9.3. Assume that the Euler gamma functionΓ is defined by (9.32). Consider the
Gaussian functionf : R → C of the formf (x) = c0e

−c(x−x0)2 , wherec0, c,x0 are fixed but
arbitrary constants andc0 ∈ C, c > 0, x0 ∈ R. Assume that the mathematical expectation
E(x− x0) of x− x0 for |f |2 equals to

xm =

∫
R

(x− x0) |f (x)|2 dx = 0.

Consider the Fourier transform̂f : R → C of f , given as in the abstract of this paper, andξm

the mean ofξ for
∣∣∣f̂ ∣∣∣2. Denote by(m2q)|f (q)|2 the2qth moment ofx for

∣∣f (q)
∣∣2 about the origin,

as in (8.41), and the constantsεp,q as in (8.38). Consider

Ep,f =

[p/2]∑
q=0

εp,q (m2q)|f (q)|2 ,

if |Ep,f | < ∞ for 0 ≤ q ≤
[

p
2

]
, and any fixed but arbitraryp ∈ N. If d2p

dx2p
0

e2cx2
0 (> 0) denotes

the2pth order derivative ofe2cx2
0 with respect tox0, then the extremum principle

(9.36) |Ep,f | ≤
4
√

π

2
3p−1

2

· Γ
1
2

(
p +

1

2

)
· |c0|2

c
p+1
2

· e−cx2
0 ·
(

d2p

dx2p
0

e2cx2
0

) 1
2

,

holds for any fixed but arbitraryp ∈ N. Equality holds forp = 1 andx0 = 0.

We note thatxm = 0 even ifx0 6= 0, while in the following Corollary 9.4 we havexm = 0
only if x0 = 0.
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Proof. At first, we claim thatthe general integral formula

(9.37)
∫

R
x2pe−2c(x−x0)2dx =

√
π

24p+ 1
2

· 1

c2p+ 1
2

· e−2cx2
0 · d2p

dx2p
0

e2cx2
0 , c > 0, x0 ∈ R,

holds for allp ∈ N0 = N ∪ {0}.
We note that, ifx0 = 0, then (9.1) follows. For example, ifp = 1 andx0 = 0, then

d2

dx2
0

e2cx2
0 =

d

dx0

(
4cx0e

2cx2
0

)
= 4c

(
1 + 4cx2

0

)
e2cx2

0 = 4c.

Thus (9.37) yields ∫
R

x2e−2cx2

dx =
1

(4c)2

√
π

2c
· 1 · 4c =

1

4c

√
π

2c
.

This equals to
Γ(1+ 1

2)
(2c)1+

1
2

because

Γ

(
3

2

)
=

1

2
Γ

(
1

2

)
=

√
π

2

implying (9.1). A direct proof for this goes, as follows:∫
R

x2e−2cx2

dx =
1

−4c

∫
R

xd
(
e−2cx2

)
=

1

−4c

[
xe−2cx2 |R −

∫
R

e−2cx2

dx

]
=

1

4c

∫
R

e−2cx2

dx

=
1

4c
√

2c

∫
R

e−(
√

2cx)
2

d
(√

2cx
)

=
1

4c
√

2c

√
π,

because|x| e−2cx2 → 0, as|x| → ∞. It is easy to provethe integral formula[21]

(9.38)
∫

R
xne−(x−x0)2dx = (2i)−n√πHn (ix0) , i =

√
−1, x0 ∈ R,

for all n ∈ N0 , whereHn is the Hermite polynomial([18], [21]).
We note that ifxm is the meanof x for |f |2andx0 ∈ R− {0}, then

xm =

∫
R

x |f (x)|2 dx

= |c0|2
∫

R
xe−2c(x−x0)2dx

= −|c0|2

4c

∫
R

d
(
e−2c(x−x0)2

)
+ x0 |c0|2

∫
R

e−2c(x−x0)2dx,

or

(9.39) xm = x0E|f |2 =

√
π

2

|c0|2√
c

x0,
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because

E|f |2 =

∫
R
|f (x)|2 dx

= |c0|2
∫

R
e−2c(x−x0)2dx

=
|c0|2√

2c

∫
R

e−(
√

2c(x−x0))
2

d
(√

2c (x− x0)
)
,

or

(9.40) E|f |2 =

√
π

2

|c0|2√
c

.

On the other hand, ifthe mathematical expectationof x− x0 for |f |2 is

E (x− x0) = xm =

∫
R

(x− x0) |f (x)|2 dx,

then from (9.39) – (9.40) one gets

xm =

∫
R

x |f (x)|2 dx− x0

∫
R
|f (x)|2 dx = x0E|f |2 − x0E|f |2 ,

or

(9.41) xm = 0.

In this case the mathematical expectationxm is the mean ofx for |f |2only if x0 = 0.
We note that if one placesq = 2p andix0

(
i =

√
−1
)

onx into (9.9) and employs

d

d (ix0)
(·) =

d

dx0

(·) dx0

d (ix0)
= −i

d

dx0

(·) ,

and thus

(9.42)
d2p

d (ix0)
2p (·) = (−1)p d2p

dx2p
0

(·)

then he proves

(9.43) H2p (ix0) = (−1)p e−x2
0

d2p

dx2p
0

ex2
0 , p ∈ N0.

Therefore from (9.38) withn = 2p, and (9.43) one gets that the integral formula

(9.44)
∫

R
x2pe−(x−x0)2dx =

√
π

22p
· e−x2

0 · d2p

dx2p
0

ex2
0 ,

holds forx0 ∈ R , and allp ∈ N0.
If one substitutes s√

2c
, s ∈ R onx into the following general integral he finds from (9.44) that∫

R
x2pe−2c(x−x0)2dx =

1

(2c)p+ 1
2

·
∫

R
s2pe−(s−

√
2cx0)

2

ds

=
1

(2c)p+ 1
2

·
√

π

22p
· e−(

√
2cx0)

2

· d2p

d
(√

2cx0

)2p e(
√

2cx0)
2

=

√
π

23p+ 1
2

1

cp+ 1
2

· e−2cx2
0 · d2p

d
(√

2cx0

)2p e2cx2
0 , c > 0, x0 ∈ R,(9.45)

holds for allp ∈ N0.
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However,
d

d
(√

2cx0

) (·) =
d

dx0

(·) dx0

d
(√

2cx0

) =
1

(2c)
1
2

· d

dx0

(·) ,

and

(9.46)
d2p

d
(√

2cx0

)2p (·) =
1

(2c)p

d2p

dx2p
0

(·) , c > 0, x0 ∈ R,

hold for allp ∈ N0. Therefore from (9.45) and (9.46) we complete the proof of (9.37).
Second, from Gasquet et al. [8, p.157-161] we claim that the Fourier transformf̂ : R → C

is of the form

(9.47) f̂ (ξ) = c0

√
π

c
e−

π2

c
ξ2−i2πx0ξ, c0 ∈ C, c > 0, x0 ∈ R.

In fact, differentiating the Gaussian functionf : R → C of the formf (x) = c0e
−c(x−x0)2 with

respect tox, one gets

f ′ (x) = −2c (x− x0) f (x) = −2cxf (x) + 2cx0f (x) .

Thus the Fourier transform off ′ is

Ff ′ (ξ) = F [f ′ (x)] (ξ) = [f ′ (x)]
∧

(ξ) = [−2cxf (x)]∧ (ξ) + [2cx0f (x)]∧ (ξ) ,

or

(9.48) 2iπξf̂ (ξ) =
−2c

−2iπ
[(−2iπx) f (x)]∧ (ξ) + 2cx0f̂ (ξ) ,

by standard formulas on differentiation, from Gasquet et al [8, p. 157]. Thus

2iπξf̂ (ξ) =
c

iπ

(
f̂ (ξ)

)′
+ 2cx0f̂ (ξ) ,

or
−2π2ξf̂ (ξ) = cf̂ ′ (ξ) + 2iπcx0f̂ (ξ) ,

or

(9.49)
(
f̂ (ξ)

)′
= f̂ ′ (ξ) = −2π

c
(πξ + icx0) f̂ (ξ) .

Solving the first order ordinary differential equation (9.49) by the method [25] of the separation
of variables we get the general solution

(9.50) f̂ (ξ) = K (ξ) e−
π2

c
ξ2−i2πx0ξ,

such thatf̂ (0) = K (0). Differentiating the formula (9.50) with respect toξ one finds

(9.51) f̂ ′ (ξ) = e−
π2

c
ξ2−i2πx0ξ

[
K ′ (ξ) + K (ξ)

(
−2π2

c
ξ − i2πx0

)]
.

From (9.48), (9.49), (9.50) and (9.51) we find0 = K ′ (ξ) e−
π2

c
ξ2−i2πx0ξ, or K ′ (ξ) = 0, or

(9.52) K (ξ) = K,

which is a constant. But from (9.50) and (9.52) one gets

(9.53) f̂ (0) = K (0) = K.
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Besides from the definition of the Fourier transform we get

f̂ (0) =

∫
R

e−2iπ·0·xf (x) dx

=

∫
R

f (x) dx

= c0

∫
R

e−c(x−x0)2dx

=
c0√
c

∫
R

e−[
√

c(x−x0)]
2

d
(√

c (x− x0)
)
,

or

(9.54) f̂ (0) = c0

√
π

c
, c0 ∈ C, c > 0.

From (9.53) and (9.54) one finds

(9.55) K = c0

√
π

c
, c0 ∈ C, c > 0.

Therefore from (9.50) and (9.55) we complete the proof of the formula (9.47).Another proof
of (9.47) is by employing the formula (9.2) forthe special Gaussianφ (x) = c0e

−cx2
, such that

φ̂ (ξ) = c0

√
π

c
e−

π2

c
ξ2

, c0 ∈ C, c > 0.

In fact,f (x) = φ (x− x0), or

f̂ (ξ) = [φ (x− x0)]
∧ (ξ) =

∫
R

e−2iπξxφ (x− x0) dx =

∫
R

e−2iπξ(x+x0)φ (x) dx

(with x + x0 onx)

= e−2iπξx0

∫
R

e−2iπξxφ (x) dx = e−2iπξx0φ̂ (ξ) , or f̂ (ξ) = e−2iπx0ξc0

√
π

c
e−

π2

c
ξ2

,

establishing (9.47).

Therefore from (8.36) – (8.37) withxm = 0, from (9.41), and the mean ofξ for
∣∣∣f̂ ∣∣∣2of the

form

ξm =

∫
R

ξ
∣∣∣f̂ (ξ)

∣∣∣2 dξ = |c0|2
π

c

∫
R

ξ · e−2π2

c
ξ2

dξ = 0,

as well as from (9.1), (9.37) and (9.47), one finds that the left-hand side of the inequality (8.40)
of Corollary 8.2 is

(m2p)|f |2 (m2p)|f̂|2 =

(∫
R

x2p |f (x)|2 dx

)
·
(∫

R
ξ2p
∣∣∣f̂ (ξ)

∣∣∣2 dξ

)
= |c0|4

π

c

(∫
R

x2pe−2c(x−x0)2dx

)
·
(∫

R
ξ2pe−2c∗ξ2

dξ

)(
wherec∗ =

π2

c

)
= |c0|4

π

c

( √
π

24p+ 1
2

· 1

c2p+ 1
2

· e−2cx2
0 · d2p

dx2p
0

e2cx2
0

)(
Γ
(
p + 1

2

)
(2c∗)p+ 1

2

)

=
(
H∗

p

)2p
√

π

23p−1
Γ

(
p +

1

2

)
· |c0|4

cp+1
· e−2cx2

0
d2p

dx2p
0

e2cx2
0 ,(

with H∗
p = 1

/
2π p
√

2
)

holds for allp ∈ N, c0 ∈ C, c > 0, andx0 ∈ R.
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Finally from the right-hand side of the inequality (8.40) of Corollary 8.2 with

Ep,f =

[p/2]∑
q=0

εp,q

(∫
R

x2q
∣∣f (q)

∣∣2 dx

)
such that|Ep,f | < ∞ and

(m2p)|f |2 (m2p)|f̂|2 ≥
(
H∗

p

)2p
E2

p,f ,

for any fixed but arbitraryp ∈ N, one completes the proof of the extremum principle (9.36).�

Corollary 9.4. Assume that the Euler gamma functionΓ is defined by (9.32). Consider the
Gaussian functionf : R → C of the formf (x) = c0e

−c(x−x0)2, wherec0, c,x0 are fixed but
arbitrary constants andc0 ∈ C, c > 0, x0 ∈ R. Assume thatxm is the mean ofx for |f |2.
Consider the Fourier transform̂f : R → C of f , given as in the abstract, andξm the mean ofξ

for
∣∣∣f̂ ∣∣∣2. Consider the2qth moment ofx for

∣∣f (q)
∣∣2by

(µ2q)|f (q)|2 =

∫
R

(x− xm)2q
∣∣f (q) (x)

∣∣2 dx,

the constantsεp,q as in (8.38), and

Ep,f =

[p/2]∑
q=0

εp,q (µ2q)|f (q)|2 ,

if |Ep,f | < ∞ holds for0 ≤ q ≤
[

p
2

]
, and any fixed but arbitraryp ∈ N. If

E∗
|f |2 = 1− E|f |2

(
= 1−

√
π

2

|c0|2√
c

)
andx∗0 = x0E

∗
|f |2 , then the extremum principle

(9.56) |Ep,f | ≤
4
√

π

2
3p−1

2

· Γ
1
2

(
p +

1

2

)
· |c0|2

c
p+1
2

·
(
E∗
|f |2

)−p

· e−cx∗20 ·
(

d2p

dx2p
0

e2cx∗
2

0

) 1
2

,

holds for any fixed but arbitraryp ∈ N.
Equality holds forp = 1; x0 = 0, or for p = 1; E|f |2 = 1.

We note thatxm = 0 only if x0 = 0, while in the previous Corollary 9.3 we havexm = 0
even ifx0 6= 0.We may callE|f |2 andE∗

|f |2 complementary probability(or energy) integrals.

Proof. It is clear, that from (9.1), (9.37), (9.39), (9.40) and (9.47) that

(µ2p)|f |2 (m2p)|f̂|2

=

(∫
R

(
x− x0E|f |2

)2p

|f (x)|2 dx

)
·
(∫

R
ξ2p
∣∣∣f̂ (ξ)

∣∣∣2 dξ

)(
where xm = x0E|f |2

)
=
|c0|4

c
π

(∫
R

(
x− x0E|f |2

)2p

e−2c(x−x0)2dx

)
·
(∫

R
ξ2pe−2c∗ξ2

dξ

)(
where c∗ =

π2

c

)
.
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By placingx + x0E|f |2onx and lettingx∗0 = x0

(
1− E|f |2

)
= x0E

∗
|f |2 we have

(µ2p)|f |2 (m2p)|f̂|2 = π
|c0|4

c

(∫
R

x2pe−2c(x−x∗0)
2

dx

)(
Γ
(
p + 1

2

)
(2c∗)p+ 1

2

)

= π
|c0|4

c

( √
π

24p+ 1
2

1

c2p+ 1
2

· e−2cx∗
2

0 · d2p

dx∗
2p

0

e2cx∗
2

0

)(
Γ
(
p + 1

2

)
(2π2/c)p+ 1

2

)
.

However,
d2p

dx∗
2p

0

(·) =
1(

E∗
|f |2

)2p

d2p

dx2p
0

(·) ,

and (
H∗

p

)2p
=

1

22(p+1)π2p
.

Therefore

(m2p)|f |2 (m2p)|f̂|2(9.57)

=
(
H∗

p

)2p
√

π

23p−1
Γ

(
p +

1

2

)
· |c0|4

cp+1

(
E∗
|f |2

)−2p

· e−2cx∗
2

0 · d2p

dx2p
0

e2cx∗
2

0(
≥
(
H∗

p

)2p |Ep,f |2 from our above theorem
)

,

completing the proof of Corollary 9.4. �

9.3. Two Special Cases of (9.56).

(i) If p = 1, then

d2

dx2
0

e2cx∗
2

0 =
d

dx0

(
4cx∗0e

2cx∗
2

0
dx∗0
dx0

)
= 4c

d

dx∗0

(
x∗0e

2cx∗
2

0

)(dx∗0
dx0

)2

= 4cE∗2
|f |2

(
1 + 4cx∗

2

0

)
e2cx∗

2

0 , where
dx∗0
dx0

= E∗
|f |2 .

Therefore atx0 = 0 (or x∗0 = 0), d2e2cx∗
2

0 /dx2
0 = 4cE∗2

|f |2 . If we denote by R.H.S. the
right hand side of (9.56), then

R.H.S. (for p = 1; x0 = 0 or x∗0 = 0) =
4
√

π

2

√
Γ

(
3

2

)
|c0|2

c

(
E∗
|f |2

)−1√
4cE∗2

|f |2(9.58)

=

√
π

2

|c0|2√
c

= E|f |2 .

We note atx = x0 = 0 one can get from (9.39) thatxm = x0E|f |2 = 0.
But we haveξm = 0. Therefore from (8.26) one finds that

(9.59) |E1,f | = E|f |2 .

Thus from (9.58) and (9.59) we establish the equality in (9.56) forp = 1 andx0 =
0.This corresponds to the equality of (9.36), as well.
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Besides we note from (9.56) atx0 6= 0 one gets that

R.H.S. (for p = 1; x0 6= 0) =
4
√

π

2

√
Γ

(
3

2

)
|c0|2

c

(
E∗
|f |2

)−1 [
4cE∗2

|f |2

(
1 + 4cx∗

2

0

)] 1
2

(9.60)

= E|f |2

[
1 + 4c

(
1− E|f |2

)2

x2
0

] 1
2

.

In this case from (9.39) we have thatxm = x0E|f |2 6= 0. But ξm = 0. Therefore from
(8.51) one finds forp = 1; q = 0, andw = 1 that

E1,f = −
∫

R
|f (x)|2 dx = −E|f |2

satisfying (8.26).
Thus from (9.59) and (9.60) one establishes the inequality in (9.56) forp = 1 and

bothx0 6= 0 andE|f |2 6= 1, such that

(9.61) |E1,f | = E|f |2 ≤ E|f |2

[
1 + 4c

(
1− E|f |2

)2

x2
0

] 1
2

.

If eitherx0 = 0, or E|f |2 = 1, then the equality in (9.56) holds forp = 1.
(ii) If p = 2, then one gets

d4

dx4
0

e2cx∗
2

0 = 4cE∗2
|f |2

d2

dx2
0

((
1 + 4cx∗

2

0

)
e2cx∗

2

0

)
(9.62)

= 16c2E∗3
|f |2

d

dx0

((
3x∗0 + 4cx∗

3

0

)
e2cx∗

2

0

)
= 16c2E∗4

|f |2

(
3 + 24cx∗

2

0 + 16c2x∗
4

0

)
e2cx∗

2

0 .

Therefore atx0 = 0 (or x∗0 = 0), we have

(9.63)
d4

dx4
0

e2cx∗
2

0 = 48c2E∗4
|f |2 .

Thus

R.H.S. (for p = 2; x0 = 0 (or x∗0 = 0)) =
4
√

π

2
5
2

√
Γ

(
5

2

)
|c0|2

c
3
2

(
E∗
|f |2

)−2√
48c2E∗4

|f |2 ,

or

(9.64) R.H.S.=
3

2

√
π

2

|c0|2√
c

=
3

2
E|f |2 , for p = 2; x0 = 0.

We note atx = x0 = 0 one can get from (9.39) thatxm = 0. But we haveξm = 0.
Therefore from (8.27) one finds that

E2,f = 2

∫
R

[
|f (x)|2 − x2 |f ′ (x)|2

]
dx = 2

(
E|f |2 −

3

4
E|f |2

)
,

or

(9.65) |E2,f | =
1

2
E|f |2 .

Thus from (9.64) and (9.65) we establish the inequality in (9.56) forp = 2 andx0 = 0,
because

(9.66) |E2,f | =
1

2
E|f |2 <

3

2
E|f |2 .
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Finally we note from (9.56) atx0 6= 0 one gets that

(9.67) R.H.S. (forp = 2; x0 6= 0)

=
3

2
E|f |2

[
3 + 24c

(
1− E|f |2

)2

x2
0 + 16c2

(
1− E|f |2

)4

x4
0

] 1
2

.

We note that∫
R

(x− xm)2 |f ′ (x)|2 dx = 4c2

∫
R

(
x− x0E|f |2

)2

(x− x0)
2 |f (x)|2 dx

= 4c2

[∫
R

x4 |f (x)|2 dx− 2
(
1 + E|f |2

)
x0

∫
R

x3 |f (x)|2 dx

+
(
1 + 4E|f |2 + E2

|f |2

)
x2

0

∫
R

x2 |f (x)|2 dx

− 2
(
E|f |2 + E2

|f |2

)
x3

0

∫
R

x |f (x)|2 dx +E2
|f |2x

4
0

∫
R
|f (x)|2 dx

]
.

But (9.37) holds even if we replace2p with any fixed but arbitraryn ∈ N0 (from (9.38)).
Then one gets that,∫

R
|f (x)|2 dx = E|f |2 ,∫

R
x |f (x)|2 dx = xm = x0E|f |2 ,∫

R
x2 |f (x)|2 dx = (m2)|f |2 =

1 + 4cx2
0

4c
E|f |2 ,∫

R
x3 |f (x)|2 dx = (m3)|f |2 =

3x0 + 4cx3
0

4c
E|f |2 ,

and ∫
R

x4 |f (x)|2 dx = (m4)|f |2 =
3 + 24cx2

0 + 16c2x4
0

16c2
E|f |2

hold, if f (x) = c0e
−c(x−x0)2 , c0 ∈ C, c > 0, x0 ∈ R. Therefore∫

R
(x− xm)2 |f ′ (x)|2 dx

=
1

4
E|f |2

[(
3 + 24cx2

0 + 16c2x4
0

)
− 8c

(
1 + E|f |2

) (
3x2

0 + 4cx4
0

)
+ 4c

(
1 + 4E|f |2 + E2

|f |2

) (
x2

0 + 4cx4
0

)
−32c2

(
E|f |2 + E2

|f |2

)
x4

0+16c2E2
|f |2x

4
0

]
=

1

4
E|f |2

{
3 + 4c

[
6− 6

(
1 + E|f |2

)
+
(
1 + 4E|f |2 + E2

|f |2

)]
x2

0

+ 162
[
1− 2

(
1 + E|f |2

)
+
(
1 + 4E|f |2 + E2

|f |2

)
− 2

(
E|f |2 + E2

|f |2

)
+ E2

|f |2

]
x4

0

}
,
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or ∫
R

(x− xm)2 |f ′ (x)|2 dx =
3 + 4c

(
1− E|f |2

)2

x2
0

4
E|f |2 ,

holds, ifc > 0, x0 ∈ R.
In this case from (9.39) we have thatxm = x0E|f |2 6= 0. But ξm = 0. Therefore from

(8.51) one finds forp = 2; q = 0, 1 andw = 1 that

E2,f = (−1)2−0 2

2− 0

(
2− 0

0

)∫
R

2!

0!

(
2
0

)
(1)(0)

× (x− xm)0 (x− xm)2·0 ∣∣f (0) (x)
∣∣2 dx

+ (−1)2−1 2

2− 1

(
2− 1

1

)∫
R

2!

2!

(
0
0

)
(1)(0)

× (x− xm)0 (x− xm)2·1 ∣∣f (1) (x)
∣∣2 dx

= 2

∫
R

[
|f (x)|2 dx− (x− xm)2 |f ′ (x)|2 dx

]

= 2

E|f |2 −
3 + 4c

(
1− E|f |2

)2

x2
0

4
E|f |2

 ,

or

(9.68) E2,f =
1

2
E|f |2

[
1− 4c

(
1− E|f |2

)2

x2
0

]
.

Thus from (9.67) and (9.68) one establishes the inequality in (9.56) forp = 2 such that

|E2,f | =
1

2
E|f |2

∣∣∣∣1− 4c
(
1− E|f |2

)2

x2
0

∣∣∣∣(9.69)

<
3

2
E|f |2

[
3 + 24c

(
1− E|f |2

)2

x2
0 + 16c2

(
1− E|f |2

)4

x4
0

] 1
2

,

because the condition

4

[
4c
(
1− E|f |2

)2

x2
0

]2

+ 28

[
4c
(
1− E|f |2

)2

x2
0

]
+ 13 > 0,

or

(9.70) 64c2
(
1− E|f |2

)4

x4
0 + 112c

(
1− E|f |2

)2

x2
0 + 13 > 0

holds forp = 2 and for fixed but arbitrary constantsc > 0, andx0 ∈ R.
If eitherx0 = 0, or E|f |2 = 1, then we still have inequality in (9.56) forp = 2.

Corollary 9.5. Assume that the Gamma functionΓ is defined by (9.32). Consider the general
Gaussian functionf : R → C of the formf (x) = c0e

−c1x2+c2x+c3 , whereci, (i = 0, 1, 2, 3) are
fixed but arbitrary constants andc0 ∈ C, c1 > 0, andc2, c3 ∈ R. Assume that the mathematical

expectationE
(
x− c2

2c1

)
of x− c2

2c1
for |f |2 equals to

xm =

∫
R

(
x− c2

2c1

)
|f (x)|2 dx = 0.
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Consider the Fourier transform̂f : R → C of f , given as in the abstract, andξm the mean ofξ

for
∣∣∣f̂ ∣∣∣2. Denote by(m2q)|f (q)|2 the2qth moment ofx for

∣∣f (q)
∣∣2 about the origin, as in (8.41),

and the constantsεp,q as in (8.38). Consider

Ep,f =

[p/2]∑
q=0

εp,q (m2q)|f (q)|2 , p ∈ N.

If ε0 = c0e
(c22+4c1c3)/4c1 ∈ C andt0 = c2

2c1
∈ R, then the extremum principle

(9.71) |Ep,f | ≤
4
√

π

2
3p−1

2

· Γ
1
2

(
p +

1

2

)
· |ε0|2

c
p+1
2

1

· e−c1t20 ·
(

d2p

dt2p
0

e2c1t20

) 1
2

,

holds for any fixed but arbitraryp ∈ N.
Equality holds forp = 1; t0 = 0 (or c2 = 0).

We note thatxm = 0 even ift0 6= 0 or c2 6= 0, while in the following Corollary 9.6 we have
xm = 0 only if t0 = 0 or c2 = 0.

Also we observe that ifg (x) = c0e
−c1(x−t0)2 , andd0 = e(c22+4c1c3)/4c1 (> 0), then

(9.72) f (x) = d0g (x) = ε0e
−c1(x−t0)2 , ε0 ∈ C.

Proof. In fact, from (9.36) and (9.72) one gets that

xm = E

(
x− c2

2c1

)
=

∫
R

(
x− c2

2c1

)
|f (x)|2 dx

= d2
0

∫
R

(
x− c2

2c1

)
|g (x)|2 dx

= d2
0

[∫
R

x |g (x)|2 dx− c2

2c1

∫
R
|g (x)|2 dx

]
= d2

0

[
c2

2c1

E|g|2 −
c2

2c1

E|g|2

]
,

or

(9.73) xm = 0.

In this case the mathematical expectationxm is the mean ofx for |f |2 if t0 = 0 or c2 = 0.
We note that from (9.40) and (9.72) one establishes

(9.74) E|f |2 = d2
0E|g|2 = d2

0

√
π

2

|c0|2√
c1

=

√
π

2

|c0|2√
c1

e
c22+4c1c3

2c1 .

This result can be computed directly from (9.40), as follows:

E|f |2 =

√
π

2

|ε0|2√
c1

which leads to (9.74).
Similarly from (9.39) we get the mean off for |f |2 of the form

(9.75)
∫

R
x |f (x)|2 dx = t0E|f |2 =

√
π

2

|ε0|2√
c1

t0 =
1

2

√
π

2

|c0|2 c2

c1
√

c1

e(c22+4c1c3)/2c1 .
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Also from (9.47) one finds the Fourier transform̂f of f of the form

(9.76) f̂ (ξ) = ε0

√
π

c1

e
−π2

c1
ξ2−i2πt0ξ

= c0

√
π

c1

e(c22+4c1c3)/4c1e−(π2ξ2+iπc2ξ)/c1 ,

c0 ∈ C, c1 > 0, andc2, c3 ∈ R.

Finally we find the mean ofξ for
∣∣∣f̂ ∣∣∣2, as follows:

(9.77) ξm =

∫
R

ξ
∣∣∣f̂ (ξ)

∣∣∣2 dξ = |c0|2 e(c22+4c1c3)/2c1 π

c1

∫
R

ξ · e−2π2

c1
ξ2

dξ = 0.

The rest of the proof is similar to the proof of the Corollary 9.3. �

Corollary 9.6. Assume the gamma functionΓ,given as in (9.32). Consider the general Gaussian
functionf : R → C of the formf (x) = c0e

−c1x2+c2x+c3, whereci, (i = 0, 1, 2, 3) are fixed but
arbitrary constants andc0 ∈ C, c1 > 0, andc2, c3 ∈ R. Assume thatxm is the mean (or the
mathematical expectationE (x)) of x for |f |2. Consider the Fourier transform̂f : R → C of f ,

given as in the abstract, andξm the mean ofξ for
∣∣∣f̂ ∣∣∣2.

Consider(µ2q)|f (q)|2 the2qth moment ofx for
∣∣f (q)

∣∣2 by

(µ2q)|f (q)|2 =

∫
R

(x− xm)2q
∣∣f (q) (x)

∣∣2 dx,

the constantsεp,q as in (8.38), and

Ep,f =

[p/2]∑
q=0

εp,q (µ2q)|f (q)|2 , if |Ep,f | < ∞

holds for0 ≤ q ≤
[

p
2

]
, and any fixed but arbitraryp ∈ N. If

ε0 = c0e
(c22+4c1c3)/4c1 ∈ C,

and

t0 =
c2

2c1

∈ R,

E∗
|f |2 = 1− E|f |2

(
= 1−

√
π

2

|ε0|2√
c1

)
andt∗0 = t0E

∗
|f |2, then the following extremum principle

(9.78) |Ep,f | ≤
4
√

π

2
3p−1

2

· Γ
1
2

(
p +

1

2

)
· |ε0|2

c
p+1
2

1

·
(
E∗
|f |2

)−p

· e−c1t∗02 ·
(

d2p

dt2p
0

e2c1t∗20

) 1
2

,

holds for any fixed but arbitraryp ∈ N.
Equality holds forp = 1; t0 = 0 (or c2 = 0), or for p = 1; E|f |2 = 1.

We note thatxm = 0 only if t0 = 0, while in the previous Corollary 9.5 we havexm = 0
even ift0 6= 0.

From (9.74) – (9.75) one gets thatxm = t0E|f |2 , whereE|f |2 =
√

π
2
|ε0|2√

c1
. Thus we get from

(9.76) – (9.77) the proof of Corollary 9.6, in a way similar to the proof of the Corollary 9.4,
because from (9.72) we havef (x) = ε0e

−c1(x−t0)2 , andxm is the mean ofx for |f |2.
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Table 9.1: The first thirty-three cases of (9.33) andR∗ (p) = 2πR (p) ≥ 1

p R(p) R*(p)
1 0.16 1.00
2 0.48 3.00
3 0.80 5.00
4 0.43 2.69
5 0.59 3.71
6 1.93 12.16
7 2.97 18.65
8 1.68 10.53
9 2.34 14.70
10 7.80 48.98
11 11.63 73.06
12 6.65 41.81
13 9.33 58.61
14 31.30 196.66
15 46.04 289.30
16 26.52 166.61
17 37.26 234.09
18 125.48 788.41
19 183.10 1150.43
20 105.83 664.95
21 148.89 935.48
22 502.68 3158.42
23 729.57 4584.05
24 422.69 2655.83
25 595.18 3739.60
26 2012.88 12647.30
27 2910.37 18286.41
28 1688.95 10611.98
29 2379.65 14951.80
30 8058.08 50630.40
31 11617.84 72997.06
32 6750.36 42413.73
33 9515.51 59787.71
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