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Abstract

In 1941 Hyers solved the well-known Ulam stability problem for linear mappings. In 1951 Bourgin
was the second author to treat this problem for additive mappings. In 1982—1998 Rassias established
the Hyers—Ulam stability of linear and nonlinear mappings. In 1983 Skof was the first author to
solve the same problem on a restricted domain. In 1998 Jung investigated the Hyers—Ulam stability
of more general mappings on restricted domains. In this paper we introduce additive mappings of two
forms: of “Jensen” and “Jensen type,” and achieve the Ulam stability of these mappings on restricted
domains. Finally, we apply our results to the asymptotic behavior of the functional equations of these

types.
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1. Introduction

In 1940 and in 1968 Ulam [24] proposed theneral Ulam stability problem

“When is it true that by slightly changing the hypotheses of a theorem one can still
assert that the thesis of the theorem remains true or approximately true?”
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In 1941 Hyers [13] solved the aforementioned problem for linear mappings. In 1951
Bourgin [3] was the second author to treat this problem for additive mappings. In 1978,
according to Gruber [12], this kind of stability problems is of particular interest in prob-
ability theory and in functional equations. In 1978 Rassias [22] employed Hyers' ideas
to new linear mappings. In 1980 and in 1987, Fenyd [7,8] established the stability of the
Ulam problem for quadratic and other mappings. In 1987 Gajda and Ger [10] showed that
one can get analogous stability results for subadditive multifunctions. Other interesting
stability results have been achieved also by the following authors: Aczél [1], Borelli and
Forti [2,9], Cholewa [4], Czerwik [5], Drljevic [6], and Kannappan [15]. In 1982—-1998
Rassias [16—21] established the Hyers—Ulam stability of linear and nonlinear mappings.
In 1999 Gavruta [11] answered a question of Rassias [18] concerning the stability of the
Cauchy equation. In 1983 Skof [23] was the first author to solve the Ulam problem on a
restricted domain. In 1998 Jung [14] investigated the Hyers—Ulam stability for more gen-
eral mappings on restricted domains. In this paper we introduce additive mappings of two
new forms: of “Jensen” and “Jensen type,” and achieve the Ulam stability of these map-
pings on restricted domains. Finally, we apply our results to the asymptotic behavior of the
functional equations of these types.

Throughout this paper, let be a real normed space alidbe a real Banach space in
the case of functional inequalities, as well }etandY be real linear spaces for functional
equations.

Definition 1. A mappingA: X — Y is calledadditive of the first formf A satisfies the
additive functional equation

A(x1+x2) + A(x1 — x2) = 2A(x1) (1)
for all x1, x2 € X. We note that (1) is equivalent the Jensen equation
X+ 1
A(552) = 3laco+ a0 )

for x = x1 4+ x2, y = x1 — x2.

Definition 2. A mappingA : X — Y is calledadditive of the second forih A satisfies the
additive functional equation

A(x1+x2) — A(xy — x2) = 2A(x2) ()
for all x1, x2 € X. We note that (2) is equivalent the Jensen type equation
xX—y 1
A =—|A —A 2
(£3%) = 3l - a0) @)

for x = x1 4+ x2, y = x1 — x2.
Definition 3. A mapping f: X — Y is calledapproximately oddf f satisfies the func-
tional inequality

[f)+ f(—=0)| <o 3
for some fixed? > 0 and for allx € X.
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In this section we state the following Theorem 1 which was proved by Rassias [19] in
1994.

Theorem 1. If a mappingf : X — Y satisfies the inequalities
| f 1+ x2) + f (1 = x2) = 2f (x0) || <3, (4)
| 7@ <o (5)

for some fixed, 5o > 0 and for all x1, x2 € X, then there exists a unique additive mapping
A: X — Y of the first form which satisfies the inequality

f) —A@| <8+ (6)

for all x € X. If, moreover, f is measurable orf (tx) is continuous ir¢ for each fixed
x € X thenA(tx) =tA(x) forall x € X andr € R.

The last assertion holds according to Rassias’ work [16] in 1982.

2. Stability of Eq. (1) on arestricted domain

Theorem 2. Letd > 0 andé, o > 0 be fixed. If a mapping : X — Y satisfies inequal-
ity (4) for all x1, x2 € X, with ||x1|| + |l x2|| > d, and(5), then there exists a unique additive
mappingA : X — Y of the first form such that

5
[fe)— AW < >8+8 (7)

for all x € X. If, moreover, f is measurable orf (tx) is continuous ir¢ for each fixed
x € X,thenA(tx) =tA(x) forall x € X andr € R.

Proof. Assume||x1| + ||x2]| < d. If x1 =x2 =0, then we choose e X with |¢|| =d.
Otherwise, let us choose

d _ d .
t= <1+ —)xl if lcall > llx2ll, t= <1+ —)xz if ]l < [lx2ll.
llx1ll [|x2]l
We note that|7|| = [lxall +d > d if [lxall = [lx2ll, [I2]l = llx2ll +d > d i [lxa]| < [lx2]l.
Clearly, we see that
e — 2l + llx2+ 21l = 201l = (Ilxall + llx2ll) >, llx1 —x2ll + 1127]] > d,
e+ 2l + | =x2+ 21l = 2l = (Ilxall + lIx2ll) > d, lxall + llzll > d. (8)

Inequalities (8) come from the corresponding substitutions attached between the right-hand
sided parentheses of the following functional identity.
Therefore from (4), (8), the triangle inequality, and thectional identity
2[f (x1+x2) + f(x1—x2) — 2f (x1)]
=[fGa+x2)+ fx1—x2—21) = 2f (x1—1)]
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(with x1 — onx1 andxz + ¢ onx»)

—[f1—x2—20) + f(x1 —x2+21) — 2f (x1— x2)]
(with x1 — x2 onxy and 2 on x»)

+[f (1 —x24+20) + f(x1+x2) = 2f (x1+1)]
(with x1 +7 onxy and—x2 + ¢ onx»)

+2[f(x1+0)+ f(x1—1) —2f(x1)] (with x1 onx; andr onxy),

we get
2| f(x1+x2) + fx1—x2) —2f (x1) | <8+ +8+25 =58

or

5
| £ 1t x2) + F O —x2) —2f )| < 56 (9)

Applying now Theorem 1 and inequality (9), one gets that there exists a unique additive
mappingA : X — Y of the first form that satisfies the additive equation (1) and inequal-
ity (7), such thatA(x) = lim,_ 27" f(2"x) . Our last assertion is trivial according to
Theorem 1.

We note that if we defind, = {(x1, x2) € X2 |xi|| <d, i =1, 2} for somed > 0, then
{(x1, x2) € X2 [lxa]l + llx2ll > 2d} € X2\S2. O

Corollary 1. If we assume that a mappinty X — Y satisfies inequalitie@)—(5)for some
fixeds, 8o > 0 and for all (x1, x2) € X?\S», then there exists a unique additive mapping
A:X — Y of the first form, satisfying7) for all x € X. If, moreover,f is measurable
or f(tx) is continuous ir for each fixedr € X, thenA(rx) =tA(x) for all x € X and
allr e R.

Corollary 2. A mappingf : X — Y is additive of the first form if and only if the asymptotic
condition

| f a4+ x2) + fx1 = x2) = 2f (x0) | = O @slxall + lx2ll — o0 (10)
holds.
Proof. Following the corresponding techniques of the proof of Jung [14], one gets from

Theorem 2 and asymptotic condition (10) thats additive of the first form. The reverse
assertion is obvious. O

However, in 1983 Skof [23] proved an asymptotic propertytfa additive mappings
A:X — Y, such that

A(x1+x2) = A(x1) + A(x2) (11)

holds for allxy, x2 € X.
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3. Stability of Eq. (2)

Theorem 3. If a mappingf : X — Y satisfies the inequality

| f 1+ x2) — fx1—x2) = 2f (x2) | < & (12)

for somes > 0 and for all x1, x2 € X, then there exists a unique additive mappifig
X — Y of the second form which satisfies the inequality

3
[fe) —A)| < 50 (13)

for all x € X. If, moreover, f is measurable orf (tx) is continuous ir¢ for each fixed
x € X,thenA(tx) =tA(x) forall x € X andr € R.

Proof. Replacingry = x2 =0in (12), we find

lr@f < % (14)

Thus, substituting1 = x> = x in (12), one gets
3
|f@o—fO@-2fm]<s or [[f@)-2fw]<s+][rO] <38 or

lfey =27t @0 < ga(l -2h (15)
for all x € X. Therefore from (15), witha on place ofx (i =1,2,...,n — 1), we obtain
lfey =2 x| <|fe -2 f@of + 27 @) — 272220 | + -
+ 27D @ty — 27 f (20 |
< ga(1+ 27 427 Da-27h
or
[rw -2 f@n] < Ja-2" (16)

foranyn e N and allx € X.
We claim that

Ax)=2""A(2"x) (17)

holds for anyz € N and allx € X. In fact, replacinge; = x2 = 0in (2) one findsA (0) = 0.
Thus substitutinge; = x2 = x in (2) we getA(2x) = 2A(x) for all x € X. Therefore by
induction onn one gets that

A@™Hr) = A2 2"0) = 2A(2"x) = 2- 2" A(x) = 2" A(x)

for all x € X, completing the proof of (17).
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By (16), forn > m > 0 andh = 2" x, we have
|27 f@) =27 p@m | =27 |27 @) — f ()|
3 3 3
< 2—'"55(1— 2-(n=m)y — E5(2—'" -2 < E52—'" —~0 asm—oo. (18)

From (18) and the completenessiof we get that the Cauchy sequen@e” f (2"x)}
converges. Therefore we may apply a direct method to the definition efich that the
formula

A(x)= lim 27" £(2"x) (19)
n—oo
holds for allx € X [16—19]. From formula (19) and inequality (12), it follows that
|ACr1+x2) — A(x1 — x2) — 2A(x2) |
= lim 27" Hf(Z”xl +2"x2) — f(2'x1 —2"x2) — 2f(2"x2) H < lim 27§ =0,
n—oo n—oo

or Eqg. (2) holds for allv1, x> € X. ThusA: X — Y is an additive mapping of the second
form. According to inequality (16) and formula (19), one gets that inequality (13) holds.

Assume now that there is another additive mappitigX — Y of the second form
which satisfies Eq. (2), formula (17), and inequality (13). Therefore

[A(x) —A'(0)|| =27"|A@"x) — A'(2"x) |
<27'|A@'x) - fF@| + | f@2'x) — A'@"5)|]
< 2”(28 + :—;8> =352"—->0 asn— o
or
A(x)=A'(x) (20)

for all x € X, completing the proof of the first part of our Theorem 3.
The proof of the last assertion in our Theorem 3 is obvious according to Rassias’
work [16]. O

4. Stability of Eq. (2) on arestricted domain

We note that from (3) anflf (—2x) + f(2x)|| < 6 (from (3) with 2x onx) and (15) as
wellas|| f(—2x) —2f(—x)|| < (3/2)é (from (15) with 2¢ onx), and the triangle inequality
one gets

2| f(—x)+ f@| < |-[f(=20) = 2f ()]

+ |-[f@0) = 2f ]| + | f(=20) + f(20)|

3. 3
<Z54+25+0=35+0
S8+ 50+ +
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or
3 0 @3
lfen+rm| <5+ 5 e,
2 2
Therefored = 3§ and (3) takes the independentioéquivalent form
£ (=) + f0)] <3s. 3)

Theorem 4. Letd > 0 and § > 0 be fixed. If an approximately odd mappiffig X — Y
satisfies inequality12) for all x1, x2 € X with ||x1]| + [|x2]| > d and inequality(3’) for all
x € X with ||x|| > d, then there exists a unique additive mappigX — Y of the second
form such that

33
[f0—am| <5 (21)

for all x € X. If, moreover, f is measurable orf (tx) is continuous ir¢ for each fixed
x € X,thenA(tx) =tA(x) forall x € X andr € R.

Proof. Assume||x1| + ||x2]| < d. If x1 = x2 =0, then we choose e X with ||¢|| =d.
Otherwise, let us choose

d . d .
r= <1+ —>X1 if flxall > llxall, 1= <1+ —)xz if fleall < llxzll-
[lx] [lx2]]
We note that7|| = llx1ll +d > d if |lxall = llx2ll, Il = llx2ll +d > d i Jlxa]l < [lx2]l-

Clearly, we see that

e =71l llez + 21l = 20121 = (leall + llx2ll) > d,
1 = 71l + llez — 21l = 20121 — (leall + llx2ll) > d,
llx1 — 260+ llxzll = 2017l — (leall + llx2ll) = d, £l + llx2ll > 4, (22)

and|lt — xzl = Izl — llx2ll = (Ix2ll +d) — llx2ll = d, becausdt|| = ||x2[| +d.
Therefore from (3, (12), (22), and the functional identity
fx1+x2) — f(x1—x2) — 2f(x2)
=[f(x1+x2) — f(x1—x2—20) = 2f (x2+1)]

(with x; —r onx; andx + 7 onx»)

+[fGatxz =20 — fxr—x2) = 2f (x2 = 1)]
(with x1 —r onx1 andxz — ¢ Onx»)

—[fGa+x2—21) — f(x1—x2—21) — 2f (x2)]
(with x1 — 2r onx1 andx» on x»)

+2[f(t +x2) — f(t —x2) — 2f (x2)]
(with t onx1 andxs onxy)

+2[f(t —x2) + f(—(t —x2))] (witht —x2 0nx),
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we get

[ fGra4x2) — fxr—x2) —2f (x2) | <8+ 8+ 8+ 26+ 65 =55 + 65 =115.
(23)

Applying Theorem 3 and inequality (23), we prove that there exists a unique additive
mappingA : X — Y of the second form that satisfies Eq. (2) and inequality (21), complet-
ing the proof of Theorem 4. O

We note that if we definé1 = {x € X: ||x|| < d} and S = {(x1, x2) € X2 ||xi|| <d,
i =1, 2} for some fixed! > 0, then{x € X: |x|| > 2d} C X\S1 and{(x1, x2) € XZ: |x1]l+
Ix2ll > 2d} C X?\S2.

Coroallary 3. If we assume that a mappinf): X — Y satisfies inequality12) for some
fixeds > 0and(3) forall x € X\ S1 and for all (x1, x2) € X2\S», then there exists a unique
additive mappingi : X — Y of the second form, satisfyir§g1)for all x € X. If, moreover,
f is measurable orf (x) is continuous inr for each fixedc € X, thenA(rx) =t A(x) for
all x € X andr € R.

Corollary 4. Amappingf : X — Y is additive of the second form if and only if the asymp-
totic conditions

[f(=x)+ fx)| =0 and |f(x1+x2)— flx1—x2) —2f(x2)| =0, (24)
as|lx|| — oo and|x1|| + |lx2|| = oo hold, respectively.

Proof. Following the corresponding techniques of the proof of Jung [14], one gets from
Theorem 4 and asymptotic conditions (24) thfais additive of the second form. The
reverse assertion is clearc

References

[1] J. Aczél, Lectures on Functional Equations and Their Applications, Academic Press, New York, London,
1966.

[2] C. Borelli, G.L. Forti, On a general Hyers—Ulam stability result, Internat. J. Math. Math. Sci. 18 (1995)
229-236.

[3] D.G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc. 57 (1951)
223-237.

[4] P.W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984) 76-86.

[5] St. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62
(1992) 59-64.

[6] H. Drljevic, On the stability of the functional quadratic @nrorthogonal vectors, Publ. Inst. Math. (Beograd)
(N.S.) 36 (1984) 111-118.

[7] I. Fenyd, Osservazioni su alcuni teoremi di D.H. Hyers, Istit. Lombardo Accad. Sci. Lett. Rend. A 114
(1980) 235-242.

[8] I. Fenyd, On an inequality of P.W. Cholewa, in: General Inequalities, 5, in: Internat. Schriftenreiche Numer.
Math., Vol. 80, Birkh&auser, Basel, 1987, pp. 277-280.

[9] G.L. Forti, Hyers—Ulam stability of functional equations in several variables, Aequationes Math. 50 (1995)
143-190.



524 J.M. Rassias, M.J. Rassias / J. Math. Anal. Appl. 281 (2003) 516-524

[10] Z. Gajda, R. Ger, Subadditive multifunctions and Hyers—Ulam stability, in: General Inequalities, 5, in: In-
ternat. Schriftenreiche Numer. Math., Vol. 80, Birkhduser, Basel, 1987.

[11] P. Gavruta, An answer to a question of John M. Rassias concerning the stability of Cauchy equation, in:
Advances in Equations and Inequalities, in: Hadronic Math. Ser., 1999, pp. 67-71.

[12] P.M. Gruber, Stability of isometries, Trans. Amer. Math. Soc. 245 (1978) 263-277.

[13] D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. 27 (1941) 222-224;
D.H. Hyers, The stability of homomorphisms and related topics, in: Global Analysis—Analysis on Mani-
folds, in: Teubner-Texte Math., Vol. 57, 1983, pp. 140-153.

[14] S.-M. Jung, On the Hyers—Ulam stability of the functional equations that have the quadratic property,
J. Math. Anal. Appl. 222 (1998) 126-137.

[15] PI. Kannappan, Quadratic functional equation and inner product spaces, Results Math. 27 (1995) 368—-372.

[16] J.M. Rassias, On approximation of approximately linear mappings by linear mappings, J. Funct. Anal. 46
(1982) 126-130.

[17] J.M. Rassias, On approximation of approximately linear mappings by linear mappings, Bull. Sci. Math. 108
(1984) 445-446.

[18] J.M. Rassias, Solution of a problem of Ulam, J. Approx. Theory 57 (1989) 268-273.

[19] J.M. Rassias, On the stability of a multi-dimensional Cauchy type functional equation, in: Geometry, Analy-
sis and Mechanics, World Scientific, 1994, pp. 365-376.

[20] J.M. Rassias, On the stability of the general Euler-Lagrange functional equation, Demonstratio Math. 29
(1996) 755-766.

[21] J.M. Rassias, Solution of the Ulam stability problem for Euler-Lagrange quadratic mappings, J. Math. Anal.
Appl. 220 (1998) 613-639.

[22] Th.M. Rassias, On the stability of linear mappings in Banach spaces, Proc. Amer. Math. Soc. 72 (1978)
297-300.

[23] F. Skof, Sull’, approssimazione delle applicazioni localmeénéglditive, Atti Accad. Sci. Torino Cl. Sci. Fis.

Mat. Natur. 117 (1983) 377-389.
[24] S.M. Ulam, A Collection of Mathematical Problems, Interscience, New York, 1968, p. 63.



