Southeast Asian Bulletin of Mathematics (2002) 26: 101-112 Southeast Asian

Bulletin of
Mathematics
© Springer-Verlag 2002

Solution of the Ulam Stability Problem for an Euler Type
Quadratic Functional Equation

John Michael Rassias

Pedagogical Department, E. E., National and Capodistrian University of Athens, Section
of Mathematics and Informatics, 4, Agamemnonos Str., Aghia Paraskevi, Athens 15342,
Greece.

E-mail: jrassias@primedu.uoa.gr

AMS Subject Classification (1991): 39B.

Abstract. In 1968 S.M. Ulam proposed the problem: “When is it true that by changing a little
the hypotheses of a theorem one can still assert that the thesis of the theorem remains true or
approximately true?”’. In 1978 according to P.M. Gruber this kind of problems is of particu-
lar interest in probability theory and in the case of functional equations of different types. In
1997 W. Schuster established a new vector quadratic identity on the basis of the well-known
Euler type theorem on quadrilaterals: If ABCD is a quadrilateral and M, N are the mid-points
of the diagonals AC, BD as well as A’, B’, C’, D’ are the mid-points of the sides AB, BC, CD,
DA, then |AB|* + |BC|> + |CD|? 4 |DA|* = 2|A'C’|* 4 2|B'D’|* + 4] MN|?. Employing in
this paper the above geometric identity we introduce the new Euler type quadratic functional
equation

2[0(x0 — x1) + O(x1 — x2) + O(x2 — x3) + Q(x3 — X0)]
= Q(xg — X1 —x2 + x3) + Q(x0 + x1 — X2 — x3) +20(x0 — X1 + X2 — x3)

for all vectors (xo,x1,X2,X3) € X*, with X and Y linear spaces. For every x € R set Q(x) =
x2. Then the mapping Q : X — Y is quadratic. Note also thatif Q : R — Ris quadratic, then
we have Q(x) = Q(1)x>. Besides note that the geometric interpretation of the special example

2[(x0 — x1)% + (x1 = x2)” + (x2 — x3)” + (x3 — x0)’]
= (x0 — x1 —xz+X3)2+(xo+x1 —X2—X3)2+2(X0—X1+XZ—X3)2

leads to the above-mentioned Euler type theorem on quadrilaterals ABCD with position
vectors xg, X1, Xz, x3 of vertices A, B, C, D, respectively. Then we solve the Ulam stability
problem for the afore-mentioned equation, with non-linear Euler type quadratic mappings
0: X —7Y.
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1. The Euler Type Quadratic Functional Equation

Definition 1. Let X and Y be linear spaces. Then a 4-dimensional non-linear mapping
Q: X — Y, is called Euler type quadratic, if the new 4-dimensional Euler type qua-
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dratic functional equation
2[0(x0 — x1) + O(x1 — x2) + Q(x2 — x3) + O(x3 — X0)]
=Q0(xo—x1 —Xx2+x3)+ Q(x0+x1 —x2 —x3) +20(x0 —x1 + x2 — x3) (1)
holds for all 4-dimensional vectors (xo, X1, X2, x3) € X* ([17-28]).
Note that Q is called Euler type quadratic because the following identity
2[()60 — X1)2 + (x) — Xz)z + ()CQ — X3)2 + (X3 — XO)Z]
= (0 — %1 — X2+ x3)> + (%0 + X1 —x2 — x3)% + 2(x0 — X1 + X2 — x3)°

holds for all real xy, x;, x3, X3, whose geometric interpretation leads to the Euler
type theorem on quadrilaterals ABCD with position vectors xg, X1, X2, x3 of vertices
A, B, C, D, respectively, and because the functional equation

0(2"x) = (2")°Q(x), (2)

holds for all x e X and all n e N ([2], [4], [35]).
In fact, substitution of x; =0 (i =0, 1,2, 3) in Equ. (1) yields that

0(0) = 0. (1a)

Lemma 1. Let Q : X — Y be a 4-dimensional non-linear Euler type quadratic map-
ping satisfying Equ. (1). Then Q is an even mapping; that is, equation

O(—x) = O(x) (3)
holds for all x € X

Proof. Substituting xo = x; = x, =0 and x3 = x in Equ. (1) and employing (1a)
one gets that equation

2[20(0) + Q(—x) + Q(x)] = Q(x) + Q(=x) +20(-x),
or
O(—x) — Q(x) = 40(0),

or the required equation (3), completing the proof of Lemma 1. ]

Lemma 2. Let Q : X — Y be a 4-dimensional non-linear Euler type quadratic map-
ping satisfying Equ. (1). Then Q satisfies the general functional equation

O(x) =27"Q(2"x) (2a)
forall xe X and alln e N.
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Proof. Substituting xo = x, x; =0, x; = x, x3 = 0 in Equ. (1) and employing Egs.
(1a) and (3) one gets the basic equation

2[20(x) +20(=x)] = 20(0) +20(2x),

or
20(2x) — 40(—x) — 40(x) = —20(0) = 0,
or
20(2x) - 80(x) = 0,
or
0(x) = 2720(2x) 4)
forall xe X.

Then induction on n € N with x — 2"~!x in the basic equation (4) yields Equ.
(2a). In fact, the basic equation (4) with x — 2"~!x yield that the functional equa-
tion

0(2"'x) =2720(2"x) (4a)

holds for all x € X.
Moreover by induction hypothesis with n — n — 1 in the general equation (2a)
one gets that

0(x) =27V (2" ) (4b)

holds for all x € X.
Thus functional equations (4a)—(4b) imply

O(x) =272"12720(2"x),
or
O(x) =272'0(2"x),
for all x € X and all n € N, completing the proof of the required general functional
equation (2a) and hence the proof of Lemma 2. ]
2. The Euler Type Quadratic Functional Inequality

Definition 2. Let X be a normed linear space and let Y be a real complete normed
linear space. Then a 4-dimensional non-linear mapping f : X — Y, is called ap-



104 J.M. Rassias

proximately Euler type quadratic, if the new 4-dimensional Euler type quadratic
functional inequality

12[f (x0 — x1) + f(x1 = x2) + f(x2 — x3) + f(x3 — x0)]
—[f(x0o—x1 —x2+x3) + f(x0 + X1 — x2 — X3)
+2f(x0 —x1 +x2 —x3)]| < ¢ (0

holds for all 4-dimensional vectors (xo,x1,X2,X3) € X* with a constant ¢ > 0 (inde-
pendent of Xy, X1, X2, X3).

Definition 3. Let X be a normed linear space and let Y be a real complete normed
linear space. Assume in addition that there exists a constant ¢ > 0 (independent of
x € X). Then a 4-dimensional non-linear Euler type quadratic mapping Q : X — Y, is
said that exists near an approximately 4-dimensional non-linear Euler type quadratic
mapping [ : X — Y, if the following inequality

1/ (x) = 0l < 5 ¢ (1"
holds for all x € X

Example. Take f: R — R be a real function such that f(x) = Ix> +k, [ = real

1. .
constant (#0), and k& = constant : |k| < 76 in order that f satisfies Inequ. (1)'.

Moreover, there exists a unique 4-dimensional non-linear Euler type quadratic
mapping Q : R — R such that one gets

O(x) = lim 272'f(2"x) = lim 27[I(2"x)* + k] = Ix*.

n—oo n—oo
Finally claim that Inequ. (1)” holds. In fact, the above-mentioned condition on

1
k:lkl < 16 implies

1 113 11
— = 2 — 2 = —C —_—C = —C
1) = QW) = 0% + k) — 2] = [kl < g <~ =5

satisfying Inequ. (1)”, because from Inequ. (1)’ one gets that
12{[1(x0 — x1)% + K] + [[(x1 = x2)° + k] + [1(x2 = x3)* + k] + [I(x3 — x0)* + K]}
—{ll(xo —x1 —x2 + X3)2 + k] 4+ [I(xo + x1 —x2 — X3)2 + k]

+ 2[1()60 — X1+ Xx2 — X3)2 —l—k]}” <c
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or
2{k+k+k+k} —{k+k+2k}| =4kl <c

or
1

In general, we have the following conclusion.

Theorem. Let X be a normed linear space and let Y be a real complete normed linear
space. Assume in addition the above-mentioned 4-dimensional non-linear mappings Q,
fand the three definitions. Then the limit

0(x) = lim 2/(2"x) (5)

n—oo

exists for all xe X and allne N and Q : X — Y is the unique 4-dimensional non-
linear Euler type quadratic mapping near an approximately 4-dimensional non-linear
Euler type quadratic mapping f - X — Y.

We shall first prove the existence in Theorem, which is a consequence of the fol-
lowing Lemmas 3—6. Substitution of x; =0 (i =0, 1,2, 3) in Inequ. (1)’ yields that

14[4/(0)] = [2/(0) + 2/ ()]l < ¢,

or

17O < (1a)’

A0

Lemma 3. Let [ : X — Y be an approximately 4-dimensional non-linear Euler type
quadratic mapping satisfying Inequ. (1)'. Then f'is an approximately even mapping;
that is, inequality
1f(=x) =Sl <e (3)
holds for all x € X with constant ¢ > 0 (independent of x € X).
Proof. Substituting xo = x; = x, = 0, x3 = x in Inequ. (1)’ one gets that inequality
122/ (0) + / (=x) + S ()] = [/ (x) + 3/ (=x)]l| < ¢,

or

=/ (=x) + /(%) + 4/ (0)]| < ¢,
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or

1/ (=x) = f(x) =47 (0)]| < ¢ (3)"
holds for all xe X.

Similarly substituting xo = x; = x, = x, x3 =0 in Inequ. (1)’ we establish in-
equality

1212/(0) + /(x) + f(=x)] = [f (=) + 3/ (W] < ¢,

or

£ (=x) — f(x) +4f(0)]| < c (3)"

holds for all x € X. Note that substitution of x with —x in Inequ. (3)” also yields
Inequ. (3)"” for all x € X.

Thus employing Inegs. (3)”—(3)"” and triangle inequality one finds the required
inequality

20/ (=) = SN < £ (=x) = £(x) = 4F )| + I/ (=x) = f(x) + 47 (0)]|

<c+c=2c
or
1/ (=x) = f ()l < ¢,
completing the proof of Lemma 3. ]

Lemma 4. Let f: X — Y be an approximately 4-dimensional non-linear Euler type
quadratic mapping satisfying Inequ. (1)'. Then f satisfies the general functional in-
equality

1) 2 7@ < (1 =2, (2a)’

for all x e X and all n € N with constant ¢ > 0 (independent of x € X).

Proof. Substituting xo = x, x; =0, x = x, x3 = 0 in Inequ. (1)’ one gets that in-
equality

1212/ (%) + 2/ (=x)] = [2/(0) + 2/ (2x)][| < ¢,
or

=2/ (2x) + 4/ (=x) + 4/ (x) = 2/ (0)| < ¢,
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or
c
17/ (2x) = 2/ (=x) = 2/ (x) + f(O)]| < 5 (3a)”
holds for all x € X.
Inequ. (3)’ yields functional inequality
12/ (=x) = 2/ (x)|| < 2¢ (3b)"

forall xe X.
Applying Inegs. (1a)’—(3a)”"—(3b)” and triangle inequality we find that the basic
inequality

4/ (x) = 27%f (2x)]
= I/ (2x) =4/ ()l = [/ (2x) = 4/ (x) + £ (0)] + [/ (O]
</ (2x) =47 (x) + £O)]l + |-/ (0)]]
< (2x) = 21 (=x) = 2/ (x) + S(O)] + [2f (=) = 2/ (][] + L/ (O}
1£(2x) = 2/ (=x) = 21 (%) + SO + 112/ (=x) = 2/ (x)|[ + L/ (O)]]

IA

c ¢ 2c+8c+c 11
< gt2tg=T—r— =70
or
_ 11 11
1760 = 22 @0 < e (=351 - 2)c). @y

holds for all x € X with constant ¢ (independent of x € X) > 0.
Replacing now x with 2x in the basic inequality (4)’ one concludes that

If(2x) =272 (2% < (1—2 e,

or
2727(2) ~ 24 (2] < 1327 2% (©

holds for all x € X.
Functional inequalities (4)'—(6) and the triangle inequality yield

£ (x) =273 @201 < |1 (x) = 2727 (20)| + 127 (2x) = 27 (2%
11

< pl-22)+@2 -2,
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or that the functional inequality

/() 24 @) < 15 (1- 24, (62)

holds for all x € X.
Similarly by induction onn € N with x — 2"~ !x in the basic Inequ. (4)’ claim that
the general functional inequality (2a)’ holds for all x € X and all n € N with constant

¢ (independent of x € X) > 0. In fact, the basic inequality (4)" with x — 2"~ !x yield
the functional inequality

11

LF2" ) =27/ ")l < 5 (1 =27,
or that the functional inequality
—2(n—1) n—1 —2n n 11 2(n—1) _ »=2n\,
2720V p@r ) — 2 @M) < @ -2 e, ()

holds for all x € X.
Moreover, by induction hypothesis with n — n — 1 in the general inequality (2a)’
one gets that

If (x) =220V 2| < 12( — 272 ), (7b)

holds for all x € X.
Thus functional inequalities (7a)—(7b) and the triangle inequality imply

£ (x) =272F (2"x)]| < Hf(x) - @)
+ (27207 f (2 ) 27 (20|
< %[(1 _ 272(;771)) + (272(n71) _ 272n)]c

or

/() 277 @) < 15(1 -2,

for all x e X and all n € N, completing the proof of the required general functional
inequality (2a)’, and thus the proof of Lemma 4. [ ]

Lemma 5. Let f : X — Y be an approximately 4-dimensional non-linear Euler type
quadratic mapping satisfying Inequ. (1)'. Then the sequence { f,,(x)} of functions f,:

Jalx) =2721(2") (8)

converges.
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Proof. Note that from the general functional inequality (2a)" and the completeness
of Y, one proves that the above-mentioned sequence (8) is a Cauchy sequence.
In fact, if i > j > 0, then

/i) — £ = 12727 (27x) — 272 £ (27x)|
= 272720 f(21x) — £(27)], 9)

holds for all x € X, and all i, j € N. Setting & = 2/x in (9) and employing the gen-
eral functional inequality (2a)’ one concludes that

1£(x) = [l = 272127209 £ 2 h) — £ ()|

< 2—21‘%(1 _ 2—2(1‘—.1‘))0,

or
1/i(x) = i)l < %(272}' -2 < %2*% - 13—12*2(1'“%,
or
' 520+
lim || fi(x) — fi(x)] <? lim 27V c=0
J— 0 o
or

Jim [fi(x) = ()l =0, (9a)

which yields that the sequence of functions f, : f,(x) =272"f(2"x) or (8) is a
Cauchy sequence, completing the proof of Lemma 5. ]

Lemma 6. Let f : X — Y be an approximately 4-dimensional non-linear Euler type
quadratic mapping satisfying Inequ. (1)'. Assume in addition a mapping Q : X — Y
given by the above-said formula (5). Then Q = Q(x) is a well-defined mapping and
that Q is a 4-dimensional non-linear Euler type quadratic mapping in X.

Proof. Employing Lemma 5 and formula (5), one gets that Q is a well-defined map-
ping. This means that the limit (5) exists for all x € X.

In addition we can claim that Q satisfies the functional equation (1) for all 4-
dimensional vectors (xg, X1, X2, X3) € X*. In fact, it is clear from the 4-dimensional
Euler type quadratic functional inequality (1)’ and the limit (5) that the following
functional inequality

272121 (2"x0 — 2"x1) + £(2"x1 — 2"x2) 4+ £(2"x2 — 2"x3) 4+ f(2"x3 — 2""x0)]
— [f(2”xo —2"x1 —2"x + 2"X3) + f(2”x0 +2"x1 —2"xy — 2”)63)
+2£(2"x0 — 2"x1 + 2"xy — 2"x3)]|| < 27"¢, (10)
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holds for all vectors (xo, X1, X2, x3) € X* and all n € N. Therefore from (10) one gets

H { lim 272 [2"(xo — x1)] + hm 272" (x) — x2)] + hrn 272 12" (x7 — x3)]

n—oo n— o0

n—oo

+ lim 272"f[2" (3 — xo)]}

- { lim 272" [2"(xo — X1 — X2 + x3)] + lim 272"£[2"(xp + X1 — X2 — x3)]

n— oo n— o0

< (lim 2*2")(? —0,

n— oo n—

+ 2 lim 272"f[2"(X() — X1+ X2 — )Q)}}‘

or

12[0(x0 — x1) + O(x1 — x2) + O(x2 — x3) + O3 — Xo)]
—[O(x0 — x1 — X2 + x3) + O(x0 + X1 — X2 — X3)
+ 2Q(X0 — X1+ X2 — X3)]|| =0 (108.)

or mapping Q satisfies equation (1) for all vectors (xo, X1, X2,x3) € X*. Thus Q is
a 4-dimensional non-linear Euler type quadratic mapping, completing the proof of
Lemma 6.

It is now clear from Lemmas 1-6 and especially from the general inequality (2a)’,
n — oo, and formula (5) that inequality (1)” holds in X. Hence the existence proof
in this Theorem is complete. ]

Proof of Uniqueness in Theorem. Let Q' : X — Y be another 4-dimensional non-
linear Euler type quadratic mapping satisfying the new 4-dimensional Euler type
quadratic functional equation (1), such that inequality

1)~ QW < 3¢ (12)"

holds for all x € X. If there exists a 4-dimensional non-linear Euler type quadratic
mapping Q : X — Y satisfying the new 4-dimensional Euler type quadratic func-
tional equation (1), then

0(x) = 0'(x), (11)
holds for all x € X; that is, Q is unique in X.

To prove the afore-mentioned unigueness one employs the general functional
Equ. (2a) for Q and Q’, as well, so that

Q'(x) =270/ (2"x), (2a)"
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holds for all x € X, and all n e N. Moreover, the triangle inequality and Inegs.
(1)"—(1a)"” yield inequality

10(2"x) — Q'(2"x)|| < |Q(2"x) — f(2"X)[| + I/ (2"x) — Q'(2"x)||
SRIUR TS|
12 1276

¢,

or
l0@™) ') < g e (12)

forall x € X, and all n € N. Then from Egs. (2a)—(2a)”, and Inequ. (12), one proves
that

10(x) = Q'(x)|| = 127" 0(2"x) = 277" Q'(2"x)[| = 27>"[| 0(2"x) — Q'(2"x)]|
< %272}16, _ %27(2n+1)c’
or

10() ~ Q') < 52 e (122)

holds for all x € X and all n € N. Therefore from above-mentioned Inequ. (12a),
and n — oo, one establishes

lim 0(x) - Q') = & ( im 21 o,

n— o0 3

or

0(x) = Q'(x),
for all x € X, completing the proof of uniqueness and thus the stability of this
Theorem ([1]-[16]) and ([29]-[35]). ]
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