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The Tricomi equation yu., + u,, = 0 was established in 1923 by Tricomi who is the pioneer of parabolic elliptic
and hyperbolic boundary value problems and related problems of variable type. In 1945 Frankl established a
generalization of these problems for the well-known Chaplygin equation K(y)uy. + u,, =0 subject to the
Frankl condition 1+ 2(K/K’) > 0, y<0. In 1953 and 1955 Protter generalized these problems even further
by improving the above Frankl condition. In 1977 we generalized these results in R" (n > 2). In 1986
Kracht and Kreyszig discussed the Tricomi equation and transition problems. In 1993 Semerdjieva considered
the hyperbolic equation Kj(y)ux, + (Ka(y)u,), +ru =f for y <0. In this paper we establish uniqueness of
quasi-regular solutions for the Tricomi problem concerning the more general mixed type partial differential
equation K;(y)(Ma(x)uy), + M1 (x)(K2(y)uy), + ru = f which is parabolic on both lines x =0; y =0, elliptic
in the first quadrant x > 0, y > 0 and hyperbolic in both quadrants x<0, y > 0;x >0, y<0. In 1999 we
proved existence of weak solutions for a particular Tricomi problem. These results are interesting in fluid
mechanics.

Keywords: Quasi-regular solution; Tricomi equation; Chaplygin equation; Bi-parabolic equation; Bi-hyper-
bolic equation; Tricomi problem
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1. INTRODUCTION

In 1904 Chaplygin [11] noticed that the equation of a perfect gas was K( y)uxx+ 1y, = 0.
In 1923 Tricomi [17] initiated the work on boundary value problems for linear partial
differential mixed type equations of second order and related equations of variable
type. In 1945 Frankl [3] drew attention to the fact that the Tricomi problem was closely
connected to the study of gas flow with nearly sonic speeds. In 1953 and 1955 Protter
[7] generalized and improved the aforementioned results in the euclidean plane. In 1977
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we [8] generalized these results in R” (n > 2). In 1982 we [9] established a maximum
principle of the Cauchy problem for hyperbolic equations in R*™" (n>2). In 1983 we
[10] solved the Tricomi problem with two parabolic lines of degeneracy and, in 1992,
we [12] established the well-posedness of the Tricomi problem in euclidean regions.
Interesting results for the Tricomi problem were achieved by Barantsev [1] in 1986,
and Kracht and Kreyszig [4] in 1986, as well. Related information was reported by
Fichera [2] in 1985, and Kreyszig [5,6] in 1989 and 1994. Our [11,14,15] work, in
1990 and 1999, was in analogous areas of mixed type equations. In 1993 Semerdjieva
introduced the hyperbolic equation Ki(y)uc+ (Ka(y)uy), +ru = f in the lower half-
plane. In 1997 we [13] considered the more general case of the above hyperbolic equa-
tion, so that it was elliptic in the upper half-plane and parabolic on the line y =0. In this
paper we consider the more general Tricomi problem with partial differential equation
the new bi-parabolic elliptic bi-hyperbolic equation

Lu = Ki(p)(Ma(x)uy) + My () (Ko p)uy), + r(x, y)u = f(x, ), (%)

which is parabolic on both segments x=0, 0<y<1; y=0, 0<x <1, elliptic in the
euclidean region G,={(x,y) € G(CR?: x > 0, y > 0} and hyperbolic in both euclidean
regions Gj, = {(x,y) € G(CR?): x >0, y <0} ; Gp,={(x, y)€eG(CR*): x <0, y > 0},
with G the mixed domain of (*). In 1999 we [15] proved existence of weak solutions
for a particular Tricomi problem. Then we establish uniqueness of quasi-regular sol-
utions [3,7,8,10-13] for the Tricomi problem, concerning the above mixed type Eq.
(*). However, the question about the uniqueness of quasi-regular solutions and the
existence of weak solutions for this general Tricomi problem in several variables is
still open. These results are interesting in Aerodynamics and Hydrodynamics.

2. THE TRICOMI PROBLEM

Consider the bi-parabolic elliptic bi-hyperbolic equation (*) in a bounded simply-con-
nected mixed domain G with a piecewise smooth boundary 0G = g; U g, U g3 Uy, U y3,
where f=f(x,y) is continuous in G, r=r(x,y) is once-continuously differentiable
in G,K;=K(y) (i=1,2) are once-continuously differentiable for ye[—k,k,] with
—ky=inf{y: (x,y)eG} and k,=sup{y: (x,y)eG}, and M,=M(x) (i=1,2) are
once-continuously differentiable for xe€[—my, my] with —m =inf{x:(x,y) € G} and
my=sup{x: (x,y)eG}. Besides

>0 fory>0, >0 for x>0,
Ki(»3=0 fory=0, and M ;(x){ =0 forx=0,
<0 fory<0, <0 forx <O,

as well as K»(y) > 0 and M,(x) > 0 everywhere in G, so that

>0 fory>0, >0 forx>0
K(y)=Ki(y)/Kx(»)$ =0 fory=0, and M(x)= M (x)/M(x){ =0 for x=0.
<0 fory<0, <0 forx<0
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We assume that the following two limits lim,_,o K(y) and lim,_,o M(x) exist in G.
In this paper we also assume

>0 forx>0,y>0
K(y)yM(x)§ =0 forx=0;y=0
<0 forx >0,y <0; x <0,y >0.

We note that the case KM > 0 for x < 0, y < 01is not considered here. The above Eq. (*)
degenerates its order at the origin O(0, 0). The boundary dG of the domain G is formed
by the following curves:

(1) A curve g; which is the elliptic arc lying in the first quadrant x >0, y >0
and connecting the points A4(1,0) and B(0, 1); (2) two hyperbolic characteristic arcs
8> and g3

e 12 4, y_ 172 e 12 5, y_ 12
o /1 (M) di = /0 (K@) Pdr, g fo (M) di = /0 (K (1) dr,

descending from the points A(1,0) and O(0, 0) until they terminate at a common point
of intersection Pi(x,,,Vp ) in the fourth quadrant x >0, y <0; and (3) two other
hyperbolic characteristic arcs y» and ys:

X Y X y
N 12 g 12 o 2 12
" /0 (M) di = /1 KO di, /0 (=M (1) di = /0 (K(0)'" di,

emanating from the points B(0,1) and O(0,0) until they terminate at a common
point of intersection P>(x,,,y,,) in the second quadrant x <0, y > 0. Assume the
boundary condition

u=0 ong Ug Uyp. (%)
The Tricomi problem, or Problem (T') consists in finding a function u = u(x, y) which

satisfies the Eq. (*) in G and the boundary condition (**) on g; U g2 U y».

Definition A function u = u(x, y) is a quasi-regular solution [7,8,10-13] of Problem (T) if
() u € C*(G) N C(G), G = G UG; (ii) the Green’s theorem (of the integral calculus)
is applicable to the integrals

// uyLudx dy, // uy Lu dx dy;
G G

(iii) the boundary and region integrals, which arise, exist; and (iv) u satisfies the mixed
type Eq. (*) in G and the boundary condition (**) on g; U g, U y».

THEOREM  Consider the bi-parabolic elliptic bi-hyperbolic Eq. (*) and the boundary
condition (**). Also consider the afore-described simply-connected mixed domain G of
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the xy euclidean plane. Besides let us assume the conditions:
(R r<0ong3Uys,
(Ry) 1 the elliptic arc g is star-like in the sense that x dy—y dx >0,

R.) - 2r+xry+yry, <0 forx>0,y>0
(Rs) : {r+xrx<0 for x>0,y<0 and r+yr, <0 forx=<0,y>0,
Ry): Ki(y)>0 fory>0;Ki(y) <0 fory<0; Kj(0)=0
(Ra): K (y) >0 inG and Ky(y) —yKy(») >0 fory>0,
®9) Mi(x) >0 for x > ;M (x) <0 for x <0; M1(0)=0
Rs): . .
’ M>(x) >0 inG and My(x) — x M(x) >0 forx>0,

Re): Ki(y)>0, inG, and
(R7) : A.Ji (x)>0, inG, fori=1,2, with symbols

O =00)/3x, O*=d(O)/dx, (), =030/, () =d(O)/dy,

where f=f(x,y) is continuous in G, r=r(x,y) is once-continuously differentiable in G,
K;=K(y) (i=1,2) are once-continuously differentiable for y €[—ky,k,| with —k,=
inf{y: (x, y)e G} and k,=sup{y: (x,y) € G}, and M;= M;(x) (i=1,2) are once-continu-
ously differentiable for xe€[—my,my] with —m;=inf{x: (x,y)e€ G} and my=sup{x:
(x,y)eG}. Then the Problem (T) has at most one quasi-regular solution in G.

Proof We apply the well-known a—b—c energy integral method with ¢ =0, and use the
above mixed type Eq. (*) as well as the boundary condition (**). First, we assume two
quasi-regular solutions u;, u, of the Problem (7).

Then we claim that u=u; —u, =0 holds in the domain G. In fact, we investigate

0=J=2(u, Lu)y = //ZZuLudxdy, (1)
G

where lu = b(x) uy + c¢(y)u,, and Lu= L(u;—uz) = Luy—L u, =f—f=0in G, with choices

x inG,x>0,y>0 y inG,x>0,y>0
b=bx)={x inG,x>0,y<0, c=c¢(y)=30 inG,x>0,y<0 2)
0 inG,x<0,y>0 y inG,x<0,y>0

We consider the new differential identities

2bKy Mauuyx = (bKiMouy) —(bM>) Ky,
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26Ky Myuguty, = 26Ky Myuary), — 26M, Kyt — (bK2M1 uf) (M) Kl
2¢Ki Mouyuye = 2K Mouyuy), — 2¢cK; ]\22 Uity — (cK1M2u§)1,+(cK1)/M2ui,
2CK2M1MJ,Myy = (CK2M1 u%) _(CKZ)/MI Ll}z,,
v),

2bruu, = (bruz)x - (br)xuz, 2cruu, = (cruz)y — (cr)},u2 ,

as well as ¢, is the coefficient of u, in Lu, or

h = n(x,y) = Ki(y) Ma(x), (3)
and 1, is the coefficient of u, in Lu, or
h = t(x,y) = Ky(»)Mi(x). 4)

Employing these identities and the classical Green’s theorem of the integral calculus
we obtain from (*), (1), (3), and (4) that

0=J= // 2(buy + cuy)[Kl (Mauy) + M(Kauy), + ru] dx dy
G

= // 2(buy + Cl/ly)[KlM2uxx + K2M1uyy + fuy + fuy + ru] dxdy = Ig + I,
G

(5)
where
I = // (Aui + Bu}z, +T? + 2Auxuy> dxdy,
G
and
Iy = / (fiui + éuf, + > + 2Auxuv) ds
3G ’ ’

with

A=—-K; (sz). + (CK])/Mz + 2bt1, B = Kz(bM]). — (CKz)/Ml + 2ct,

r=—[@n, +@),),

A = —[bKyM, + cKi Ms —bts — cty]

— —[B(K, My — 13) + ¢(Ki Ma —1;)] = 0 (because of (3) and (4)) in G,

and

A = (bv) — en)K M>, B = (=bv + en)Ka My,
f = (bvy + cvy)r, A =bKryM vy + cKiM>vy on 0G,
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where

v=(v1,n2) = (dy/ds, — dx/ds) (6)
is the outer unit normal vector on the boundary oG of the domain G such that

ds* = dx* +dy* > 0, |v|:(vf+v§)l/2:1,

[[oasar= [ onas Z/()yd”‘dyzfag()”ds’

G

and

are the Green'’s integral formulas.
Note thatin G, x>0, y > 0 with b = x, ¢ =y (from (2)) one gets, from (3) and (4), that

A =—Ki|(xM>)* + (vKi) M + 2xt; = —K{(M; + x M3) + (K; + yK))M> + 2xK, M,

= xK| ]\22 +yK{M> >0 (from conditions (Re) and (R7)),

B = K)(xM)* — (yK2) My + 2yt = Ko(M + x M) — (Ky + yKy) M + 2yKy M
=xK> /\/.11 +yK5M; > 0 (from conditions (R¢) and (R7)),
I'=—[(xr), + (yr),] = =(2r + xry + yry) > 0 (from condition (R3) : x > 0,y > 0),
and

AB — A? = (xKi My +yK| M>)(xKy My +yK, M)
= X(Kle A}l ]‘/.[2) + Xy(KlKéMl /\22 +K1K2 Ml M2> —I—y(K{KéMlMQ) >0
(from conditions (Rg) and (R7)).

Similarly in G, x>0, y <0 with b=x, ¢=0 (from (2)) we find, from (3) and (4), that

A =—K{(xM>)* + (0 - K])/MQ +2xt; = —K{(M;, 4+ x M») + 2xK M,

— (—K,)(M» — x Ms) > 0 (from conditions (Ry) and (Rs)),
B=Ky(xM))* = (0- KoY My +2-0- KMy = Ko(M; + xMy) = 0 (from (Ry) and (Ry)),

['=—[(xr),+(0-r),] = —(r+xry) > 0 (from condition (R3):x >0,y <0),
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and

AB — A2 = (—K\)K>(M; 4+ x M)(M> — x M>) > 0 (from conditions (R4) and (Rs)).

Finally in G, x <0, y>0 with b=0, c=y (from (2)) we find, from (3) and (4), that

A=—Ki(0- M)+ (yK)M2+2-0-K; My = (yKi) My = (Ki + yK[)M> > 0,
(from conditions (Rs) and (Rg)),

B = K2(0 . M])' — (sz),Ml + 2yK£M1 = —K2M1 — yKéMl + 2yKéM1
= (=M )(K, — yKj}) > 0 (from conditions (R4) and (Rs))

r— —[(o )+ ( yr)y] = —(r+yr,) > 0 (from condition (Rs): x < 0,y > 0),

and
AB — A* = (=M )M>(K> — yK;) > 0 (from conditions (R4) and (Rs)).
Therefore the region first integral I (of (5)) is

IG = IEL —+ 16/,1 —+ 16/,2 -+ I() > 0, (7)

where G, = G, U dG,, such that 3G, = g, U(0A), and Gj, = G, U 3G, (i=1,2), such
that G, = (40)U g3 U gy and 3G, = (OB)U y, U y;s.
In fact,

0= Au_zx + Bu}z, + 2Auzuy, = Q(uy, uy),

where

5, = // O(uy, uy) dx dy

e

G,x>0,y>0
= // [(xKlll.dz +yK{M2>ui+(xK2]\.41 +yK§M1)u}2,] dxdy >0
G,x>0,y>0

(from conditions (R¢) and (R7)),

IE/,I = f/ Q(u.’(a uy) dx dy
G,x>0,y<0

// [(—Kl)(Mz—x]\'J2>ui+K2(M1—i—x]\.ll)ui] dxdy >0

G,x>0,y<0

(from conditions (Rs) and (R7)),
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= [ owaixa

G.x<0,y=0

= [ [k rkipa + (ke = KoM vy = 0

G,x=0,y=0

(from conditions (R4) and (Ry)),

and
(2r + xry + yry)ut dxdy > 0
G.x>0,y20
2
I = /:/ T dxdy = — // (r+ xru” dx dy > 0 (from condition (R3)).
G,x>0,y<0
Z )
(r+ yry)u2 dxdy > 0
G,x<0,y>0

We note that on g; with b=x (> 0), c=y (=0) (from (2)) we find that

xXvi — yv)Ki M, B = (—xvi + ) KM,

(
= (xvi + yv)r, A =xKoyMvy + yK M.
From the boundary condition (**) we get on g, that 0 =du=u,dx+u,dy, or

Uy, = Nvy, u, = Nv,

on g; where N is a normalizing factor. We denote

Q = Q (uy, uy) = /Iu% + l}uf + 2Auxuy,

a quadratic form on 9G with respect to u,, u,. Also we denote
H = K\Myv} + KoM v3,

on the boundary dG of the mixed domain G. From (8) and (10) the form (9) is

Q = N%(xv; + y»)H.

®)

©)

(10)

(11)

From the star-likelness condition (R,) on gy, the fact that H > 0 on gy, and (**) on g,

as well as from (11) we get

I, = / Q(ux,u},) ds +/ Tds = / N2(xvi + yv)H ds +/ (xvy + yvo)ri® ds,
81 81 81

81
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or

I, = / N%(xdy — ydx)H > 0. (12)

&1

Similarly on g, with b=x (> 0), ¢c=0 (from (2)) we get

I, = / Q(ux,u},) ds —i—/ T’ ds = | N*(xv))Hds +/ (xv)ru*ds, or
82 82 &2 82 (13)

Igz = 0?

because u =0 on g, (from (¥*) and thus from (8) on g,) and H =0 on the characteristic
g> of (*) (from (10)). On g3 also with b=x (>0), ¢ =0 (from (2)) one gets

Iy, = Q(uv,u}) ds—}—/ T’ ds

&3

/ [(xKlevl)u + (- szMlvl)u + 2(x Ky M v7)uy u}] ds—l—/ [(xvl)r]uzds, or
83 &3

/ [(Kle)(wl)u + (=Ko M) (xv il + 2(Ko M) (xv2)uy u}]

g3

+/g [r(xvy)] W ds > 0, (14)

because on g3 we have v; = —(M /(M — K))'/?<0, v, = —(—=K/(M — K))"/*< 0, and
r <0 (from (Ry) ), as well as

A = (Ki Ma)(xv) = x(—K)Ma(M /(M — K))'/* > 0,
B = (—K:M)(xv)) = xKx M{(M /(M — K))"/> > 0, and
AB — (A) = [(KiMo)(ov))[(—Ka M) (ovn)] — [(Ka M) (o)
= —X*K KoM My — XH(KaM)* v = —x* KoM H = 0

because H =0 on the characteristic g5 of (*) (from (10)). Besides on y, with b=0, c=y
(from (2)) we get

I, :/ Q(ux,uv‘,) ds+/ T’ ds :/ Nz(yvz)Hds—}—/ (yv)ru* ds, or
V2 Y2 V2

)

I, =0, (15)
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because u =0 on y; (from (**) and thus from (8) on y,) and H =0 on the characteristic
y, of (*) (from (10)). Finally on y3 also with b=0, c=y (> 0) (from (2)) one gets

Iy = | O(uy,uy) ds+/ VTR

V3 V3

= [ [okidtomsnd + KoMy + 20K Mavsa, [ ds+ [ (v ds
V3

V3

or

By = [ [=RMH00E + (KM a1 + 2K M v, | d
V3

+ [ [r(v)l*ds > 0, (16)

V3

because on y3 we have v = —(—M /(K — M))"/?< 0, v; = —(K/(K — M))"/*< 0, and
r < 0 (from (Ry)). Therefore from (12) to (16)

Iyc = Igl +Ig2 + Igs +I)’2 +IV3 = Igl +Ig3 + Iys > 0. (17)

From (5), (7), and (17) we claim that
u=0 (18)

in G. In fact, from (5), (7), and (17) we get 0 = I + Iy > 0 with I > 0, I35 > 0.
These relations yield

Ig =1I,; =0. (19)

From (19): Iz =0 and the fact that I 20, Iz =0 (i=1, 2), Iy > 0, we find that

I = f / [(xm M+ yK;Mz)ui + (sz M+ ngMl)uﬁ] dxdy =0,

G,x>0,y>0

yielding u,=u,=01in G, x>0, y >0 since K] > 0 and ]\;I,- > 0 (i=1,2) from conditions
(Rg) and (R5), respectively. Thus u=constant in G, x>0, y >0, and u=0 on g; (from
(**)) it will follow that

u(x,y)=0 inG,x>0,y>0. (20)
We find also the same result as (20) if we employ

Iéhl =0, or IG”Z =0, orly=0 (withr>0and2r+xr,+yr,>0:x>0,y>0).
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Similarly from (19): Iz =0 and the fact that [, >0, [,, =0, I, >0, [, =0,
I, > 0 we get that

Iy = / [(—KOMa(M /(M = K))'P 16l 4+ KoMy (M /(M = K)o

&3

2Ky My(—K /(M — K))l/zuxuy]x ds+ | (=r)(M/(M — K))'"%i2 ds

&3

:/ [(_Kl)MzM‘ﬂui + KoMy MV2u — 2K My (—K) P uy
&3
+ (—r)Ml/zuz]x(M —K)"2ds, or

I, = / [KzMz(( — K)l/zux — Ml/zuy)2+(—r)u2]x(—dy) =0, (21)
&3

yielding that
u=0 ong, (22)

as ¥<0 on gz from condition (R;). Similarly
2
I, = / (KM (K P = (= M) P (=i [y (=) = 0, 23)
V3

yielding
u=0 onys, (24)

as r<0 on y; from condition (Ry).

Thus by a well-known theorem on hyperbolic equations if # =0 on g, (from (**)) and
u=0 on g3 (from (22)) then u=0 in G, x>0, y <0. (Another reasoning is that, in
particular, u(x,0)=0 and u,(x,0)=0, so that =0 in G, x>0, y <0, because of the
uniqueness of the solution of the Cauchy problem for hyperbolic Eq. (*)). Similarly
if u=0 on y, (from (**)) and u=0 on y; (from (24)) then u=0 throughout G, x <0,
y>0. Thus

u(x,y) =0,

everywhere in G, completing the proof of the uniqueness theorem.
Note that the case: r=0 in G and K;(0)=M;(0)=0 (i=1, 2), yields also uniqueness
results for the Problem (7).
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