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Abstract

In 1941 D.H. Hyers solved the well-known Ulam stability problem for linear mappings.
In 1951 D.G. Bourgin was the second author to treat the Ulam problem for additive
mappings. In 1982-1998 we established the Hyers—Ulam stability for the Ulam problem
of linear and nonlinear mappings. In 1983 F. Skof was the first author to solve the Ulam
problem for additive mappings on a restricted domain. In 1998 S.M. Jung investigated the
Hyers—Ulam stability of additive and quadratic mappings on restricted domains. In this
paper we improve the bounds and thus the results obtained by S.M. Jung, in 1998. Besides
we establish the Ulam stability of mixed type mappings on restricted domains. Finally,
we apply our recent results to the asymptotic behavior of functional equations of different
types.
0 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

In 1940 and in 1968 Ulam [23] proposed theneral Ulam stability problem
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“When is it true that by slightly changing the hypotheses of a theorem one can
still assert that the thesis of the theorem remains true or approximately true?”

In 1941 Hyers [13] solved this problem for linear mappings. In 1951 Bourgin [3]
was the second author to treat the Ulam problem for additive mappings. In 1978,
according to Gruber [12], this kind of stability problems is of particular interest
in probability theory and in the case of functional equations of different types. In
1978 Rassias [21] employed Hyers'’ ideas to new linear mappings. In 1980 and in
1987, Fenyo [7,8] established the stability of the Ulam problem for quadratic and
other mappings. In 1987 Gajda and Ger [10] showed that one can get analogous
stability results for subadditive multifunctions. Other interesting stability results
have been achieved also by the following authors: Aczél [1], Borelli and Forti [2,
9], Cholewa [4], Czerwik [5], Drlje\é [6], and Kannappan [15]. In 1982—-1998 we
[16—20] solved the above Ulam problem for different mappings. In 1999 Gavruta
[11] answered a question of ours [18] concerning the stability of the Cauchy
equation. In 1983 Skof [22] was the first author to solve the Ulam problem for
additive mappings on a restricted domain. In 1998 Jung [14] investigated the
Hyers—Ulam stability for additive and quadratic mappings on restricted domains.
In this paper we improve the bounds and thus the stability results obtained by
Jung, in 1998. Besides we establish the Ulam stability for more general equations
of two types on a restricted domain. Finally we apply our recent results to the
asymptotic behavior of functional equations of different types.

Throughout this paper, It be a real normed space afiiche a real Banach
space in the case of functional inequalities, as well aXlendY be real linear
spaces for functional equations.

Definition 1. A mappingf : X — Y is calledadditive(respectivelyguadratig if
f satisfies the equation

fx1+x2) = f(x1) + f(x2) (1)
(respectively,f (x1 4+ x2) + f(x1 — x2) = 2f (x1) + 2f (x2)) for all x1, x2 € X.
Theorem 1. Let§ > O be fixed. If a mapping : X — Y satisfies the quadratic
inequality

| f 1+ x2) + fF (r1 = x2) — 2 (x1) — 2 (x2)|| <8 2

for all x1, xp € X, then there exists a unique quadratic mappidgX — Y such
that|| f(x) — Q(x)|| < d/2forall x € X.

Definition 2. A mapping f : X — Y is calledapproximately oddrespectively,
even if f satisfies

|f@)+f(=x)| <6 (3)
(respectively] f(x) — f(—x)| < 0) for some fixed > 0 and for allx € X.
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Definition 3. A mappingM : X — Y is calledadditive (respectivelyguadratiq
in X if M satisfies the functional equation of two types

3 3
M(in)+ZM(Xi): Z M(x;+xj) 4)
i—1 i=1

1<i<j<3

forall x; € X (i =1, 2,3). We note that all the real mappings: R — R of the
two types:M (x) = ax or M(x) = Bx? satisfy (4) for allx € R and all arbitrary
but fixeda, 8 € R.

We note that the mappiny/ : X — Y may be callednixed typesas it is either
additive or quadratic. The same terminology occurs to the mappihgatisfying
the following Eq. (25).

2. Stability of the quadratic equation (1) on arestricted domain

Theorem 2. Letd > 0 and$ > 0 be fixed. If a mapping : X — Y satisfies the
guadratic inequality(2) for all x1, x2 € X, with ||x1|| 4+ [lx2] = d, then there exists
a unique quadratic mappin@ : X — Y such that

5
lf) — 0| < 58 (5)

forall x € X.

Proof. Assume||x1|| + [lx2]| < d. If x1 = x» =0, then we choose ac X with
Izl =d. Otherwise, let

d .
t=1+—Jx1, if llxall > llx2l;
[lxall

d .
t= <1+ —)xz, if lxall < [lx2l.
[lx2]]

We note thati|z]| = |lxill +d > d, if |lxall > [lx2ll; llZll = llx2ll +d > d, if
lx1]l < |lx2]l. Clearly, we see

e — 21l + llx2 + 1 = 2|l = (lxall + llx2ll) > d,

llx1 —x2ll + 1127]] = llx1 — x2ll +2d > d,

lxs+1ll 4+ l—x2+ 1] > d,

xall + [l = d, Izl + llx2ll = d, Izl + 1zl > d. (6)

These inequalities (6) come from the corresponding substitutions attached
between the right-hand sided parentheses of the following functional identity.
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Besides from (2) withc;y = x2 = 0 we get that| £ (0)|| < §/2. Therefore from
(2), (6), and the neviunctional identity

2[f (1 +x2) + f(x1— x2) — 2f (x1) — 2f (x2) — f(0)]
=[fla+x2) + fx1 —x2—20) —2f (x1— 1) — 2f (x2+1)]

(with x; — r onx; andx, + ¢ onxy)

—[frr—x2—20) + fx1—x2+21) — 2f (x1 — x2) — 2f (21)]
(with x1 — x2 onx; and 2 onx»)

+[frr—x2+20)+ f(x1+x2) —2f (x1+1) — 2f (—x24+1)]
(with x1 +¢ onx1 and—x2 + ¢ onx»)

+2[fx1+0+ flar—1) —2f(x1) — 2f ()]
(with x1 onx1 andr on x»)

+2[f(t +x2)+ [t —x2) = 2f (1) — 2 (x2)]
(with t onx1 andxz onx»)

—2[f@)+ f(O)—2f(t)—2f(1)] (with onxy andz onxy),

we get

2| f(x1+x2) + f(x1—x2) — 2f (x1) — 2f (x2) — f(O)]|
<S+8+6+25+ 286+ 25 =96,

or

9
| £ Ge1+x2) + £ (x1—x2) — 2f (x1) — 2f (x2)|| < 58+ | £ <5s.
7

Applying now Theorem 1 and the above inequality (7), one gets that there
exists a unique quadratic mappigg X — Y that satisfies the quadratic equation
(1) and the inequality (5), such thét(x) = lim, .. 2~2" f (2"x), completing the
proof of Theorem 2. O

Obviously our inequalities (5) and (7) are sharper than the corresponding
inequalities of Jung [14], where the right-hand sides were equél /)5 and
768, respectively.

We note that if we defing, = {(x1, x2) € X% ||xi| <d, i = 1,2} for some
d > 0, then{(x1, x2) € X% |lx1|l + l|lx2]l > 2d} C X2\ S>.

Corollary 1. If we assume that a mapping: X — Y satisfies the quadratic
inequality(2) for some fixed > 0 and for all (x1, x2) € X%\ 2, then there exists
a unique quadratic mappin@ : X — Y satisfying(5) for all x € X.
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Corollary 2. A mappingf: X — Y is quadratic if and only if the asymptotic
condition

| £ G2 4x2) + fx1 — x2) — 2f (x1) — 2f (x2) | — O,
as|lx1|l + [lx2ll = oo

holds.
Proof. Following the correspondingtechniques of the proof of Jung [14], in 1998,
one gets from Theorem 2 and the above asymptotic conditiorytietuadratic.
The reverse assertion is obvious

However, in 1983 Skof [22] proved an asymptotic property of the additive
mappings.

3. Stability of Eq. (4) of two types

In 1998 Jung [14] applied the induction principle and proved the following
Lemma 1.

Lemma 1. Assume that a mappinf): X — Y satisfies the inequality

3 3
Hf(sz') — fr14x2) — fr14x3) — fr2+x3)+ ) flx)| <8
i=1 i=1
(8)
for some fixed > 0and forallx; € X (i =1, 2, 3). It then holds that
2"+1 2" -1 "
Hf(x) - Wf(z x)+ Wf(—z X)
<38 27 (=3851-2"), ©)
i=1

forallxe Xandne N =1{1,2,...}.

In this paperwithout the induction principlewe prove the above-mentioned
Lemma 1.

Proof. Let us denote
2 +1
= 2l
2l 1
T2+l

Ai(x) =3f2 )+ f(—271) - F(2),

ai

bi = Bi(x) =3f(—=2"0) + f(271x) — f(=2'x),
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Ti(x)=a;i f(2x)+bi f(—=2'x),  Sp(x) =To(x) — T, (x),

such thatlp(x) = f(x),forallx e X,i e N, ={1,2,...,n},andn € N.
We note that

aj—1=3a; +b;, bi—1=a; + 3b;

hold foranyi e N, ={1,2,...,n},n € N.
From these identities we get that

Ti1(x) = Ti(x) =ai—1f (27 1x) + bi_1f (=2 "1x) — T3 (x)

= Ba; +b;) f(271x) + (a; +3b) f (=271x) — a; f(2'x) — bi f(=2'x)

=a;i[3f @) + f(=271) — f(20)]
+hi[3f (=271 + f27H) — f(=20)],
or the formula
Ti—1(x) = Ti(x) = a; A; (x) + b; B; (x)

holds foranyi e N, ={1,2,...,n},n € N.
We note that

Sa(x) =To(x) — Ty(x) = Y _[Ti-1(x) = Ti(x)].
i=1
Therefore from this formula and (10) one obtains the new formula

Su(x) = [aiAi(x) +bi Bi (x)].
i=1
Replacingr; =0 (i =1, 2, 3) in (8) one gets

lro| <s.

Settingx; = x, x2 = x, x3 = —x in (8) we find from (12) that
I3 @)+ f(=x) = f(20) =2/ (O] <8

or
137 @)+ f(=x) = f20)| <38

holds for allx € X.
Substituting—x for x in (13), one obtains

37 (=x) + f(x) = f(=20)] <3s.
Placing 2-1x onx in (13) and (14) we get

[Ai(x)| <38 and |B;(x)| <38
foralli e N,,neN.

(10)

(11)

(12)

(13)

(14)

(15)
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Thus from the formula (11), the inequalities (15), and the triangle inequality

we prove

n

18|l <D [lail | Ai o) | + 104l | Bi(x) []

i=1
241 20-1 LI _
<332[22[+1 221+1} =36y 277=35(1-2"), (16)
i=1
for all x € X andn € N, completing the proof of this Lemma 1.0

In 1998 Jung [14] applied Lemmadn approximately even mappingsand
proved the following Theorem 3.

Theorem 3. Assume an approximately even mappifigX — Y satisfies the
guadratic inequality(8). Then there exists a unique quadratic mapp®gX —
Y which satisfies the quadratic equati¢t) and the inequality

| fe) =0 <38 (17)
for a fixeds > 0 and for allx € X.

Note that the right-hand side of (17) containsthdéerm. In 1998 Jung [14]

applied Lemma bn approximately odd mappingsand proved also the follow-
ing Theorem 4.

Theorem 4. Assume an approximately odd mappifigX — Y satisfies the
additive inequality(8). Then there exists a unique additive mappihgX — Y
which satisfies the additive equati¢f) and the inequality

£ ) — Ax)| < 38 (18)
for a fixeds > 0 and for all x € X.

4, Stability of Eq. (4) on arestricted domain

In this section, we establish the Hyers—Ulam stability on a more general

restricted domain.

Theorem 5. Letd > 0 and § > 0 be fixed. If an approximately even mapping
f:X — Y satisfies the quadratic inequalif®) for all x; € X (i = 1, 2, 3) with
21'3:1 llxi|ll = d, then there exists a unique quadratic mappigX — Y, such
that

|fx)—0@)| <1588 (19)
forall x € X.
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Proof. AssumeZ?:1 lxill <d. If x; =0 (i =1,2,3), then we choose ac X
with ||z]] > 2d. Otherwise, chooserac X with ||¢|| > d; clearly

3
llxn — ¢l + llxall + llxz+ £l = 201t = > llxill > d,
i=1
bl + 2l + = el >d. ezl + lxall + 7] >4,
lbeall + = 1l + el = 201¢] + 1xall > d. (20)

Besides from (8) withy; =0 (i =1, 2, 3) we get that| f (0)| < 8.
Therefore from (8), (20), and the ndunctional identity

3 3
f(Zm) — fx1+x2) = f(x1+x3) = fOx2+x3)+ ) f(xi)+ f(O)
i=1

i=1
=[f1+x2+x3) — fxa+x2—1) — f(x1+x3) — f(x2+x3+1)
+ fx1—1)+ f(x2) + f(x3+1)]
(with x; —r onx1, x2 onxp, andxz + ¢ onx3)
+[fxatx2—1) = fx1+x2) — fr1—1) — flxa—1) + f(x1)
+ f(x2) + f(=1)]
(with x1 onx1, x2 onxs, and—r onxs)
+[fa+x3+1) — fx2+x3) — fxa+1) — fxa+1) + f(x2)
+ f(x3) + f(1)]
(with x2 onx1, x3 onx2, ands onx3)
—[fx2) = fFlxa—1) = flx24+1) — fO) + f(x2) + f (=) + f(1)]

(with xo onx1, —t onx», andr onx3),

we get

3
"f(le) — f14x2) — f(x1+x3) — f(x2+ x3)
i=1
3
+ Y f)+ f(0)

i=1

<8+86+8+85=46,

or

3 3
”f(le) — flx14+x2) — f(x1+x3) — f(x2+x3)+2f(xi)
i=1

i=1
<45+ | £(0)] < 5s. (21)
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Applying the Theorem 3 and the inequality (21), we prove that there exists a
unique quadratic mappin@ : X — Y that satisfies the quadratic equation (4) and
the inequality (19), completing the proof of the Theorem &

Obviously, our inequalities (19) and (21) are also sharper than the correspond-
ing inequalities of Jung [14], where the right-hand sides were equald@d
78, respectively.

We note that if we definés = {(x1, x2, x3) € X3: |xi|| <d, i = 1,2, 3} for
some fixed? > 0, then{(x1, x2, x3) € X3: Y2, [lx; || > 3d} € X3\Ss.

Corollary 3. If we assume that an approximately even mappjfiigX — Y
satisfies the inequalit{8) for some fixed > 0 and for all (x1, x2, x3) € X3\ S3,
then there exists a unique quadratic mappiigX — Y satisfying(19) for all
xeX.

Coroallary 4. An approximately even mapping X — Y is quadratic if and only
if the following asymptotic condition

— 0,

3 3
Hf(in) — flx1+x2) — f(x1+x3) — f(x2+x3)+Zf(xi)
i—1

i=1

3
as y x| — oo,
i=1
holds.
Similarly, we prove the following Theorem 6.

Theorem 6. Letd > 0 and § > 0 be fixed. If an approximately odd mapping
f:X — Y satisfies the additive inequalif) for all x; € X (i =1, 2, 3) with
Z?zl llx; |l > d, then there exists a unique additive mappihgX — Y, such that

£ o) — Ax)| < 158 (22)

forall x € X.

Obviously, our inequalities (21) and (22) are also sharper than the correspond-
ing inequalities of Jung [14], where the right-hand sides were equéland 25,
respectively.

Coroallary 5. If we assume that an approximately odd mappindd — Y satisfies
the inequality(8) for some fixed > 0 and for all (x1, x2, x3) € X3\ S3, then there
exists a unique additive mappig. X — Y satisfying(22)for all x € X.
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Corollary 6. An approximately odd mappinf): X — Y is additive if and only if
the following asymptotic condition

El

3
" (Zm) — fOr14x2) — fr14x3) — f(r2+x3) + ) f(xi)| — 0
i=1

as Z x| — o0,

i=1
holds.

Remark 1. From (3) for approximately even mappings, the quadratic inequality
(8) (with x1 = x, x2 = x, x3 = —x), and the triangle inequality, one obtains that

4 f(x) =272 o) < |3 () + f(—x) — f(2x) = 2£ (O
+[=[f0 = r@]|+[2r0]
<8+60+25=35+6,

or
lf)—272f@0) < (5 + %)(1 —272),

According to our works [19,20] on quadratic mappings, one proves that

0
[£e) -2 f @0 < (5 i §)<1— 272,

holds for alln € N, and allx € X, which yields there is a unique quadratic
mappingQ : X — Y, such thatQ (x) = lim, .« 2-%* f(2"x) and

0
| £@)— 0w <o+ (23)

But this inequality is also sharper than the corresponding inequality of Jung [14],
where the right-hand side was equabte 6/2.

Remark 2. From (3) for approximately odd mappings, the additive inequality (8)
(with x1 = x, x2 = x, x3 = —x), and the triangle inequality, one gets that

2| Fx) =27 F 0| <3 (x) + f(=x) — F(2x) — 2 (0|
+ =0+ @]+ [2r0]
<85+60+25=35+0,

or

lfe) -2t fo] < @s+o)@—27h.



J.M. Rassias / J. Math. Anal. Appl. 276 (2002) 747-762 757

According to our works [16—18] on additive mappings, one proves that

|fe)—27" @) <Bs+6)2-27"),
holds for alln € N, and allx € X, which yields that there is a unique additive
mappingA : X — Y, such thatA(x) =lim,_.« 27" f(2"x) and

|fx)—A@)| <38 +6. (24)
In the following definition wegeneralizethe above functional equation (4).

Definition 4. A mappingM : X — Y is calledadditive(respectivelyguadratiq in
R*if M satisfies the functional equation of two types

4
M(Zx,)—}- Y M +x))
i=1 1<i<j<4
4
=Y M@+ Y M@Ei+xj+x) (25)
i=1 1<i<j<k<4

forallx; e X (i=1,2,3,4).

5. Stability of Eq. (25)
In this section, we establish the Hyers—Ulam stability for new equations.

Theorem 7. Assume an approximately even mappifigX — Y satisfies the
following quadratic inequality

4 4
Hf(ZXi) + Z S (xi+xj) —Zf(xi)

i=1 1<i<j<4 im1

- Z S +x;+x0)| <9, (26)

1<i<j<k<4

for some fixed > 0andé > Oandforallx; € X (i =1, 2, 3,4). Then there exists
a unique quadratic mappin@ : X — Y which satisfies the quadratic equation
(25)and the inequality

5
lfe)— o] <8+ &0 (27)

forall x € X.
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Proof. Replacingry; =0 (i =1, 2, 3,4) in (26), we find|| f (0)|| < 8. Thus, sub-
stitutingx; =x (i =1, 2) andx; = —x (j = 3,4) in (26), one gets

[4f () +4f(—x) — f(2x) — f(—2x)| < 68 (28)

for all x € X. Therefore from (28), (3) for approximately even mappings, the
guadratic inequality (26), and the triangle inequality, we obtain that

24f () — fO)| < ||4f @) +4f(—x) — f(2x) — f(=2x)|
+ || =4[ f(=x) = FO]| + [ f(=20) = f20)|
<68+40+0 =65+ 50,
or

5 5
) —272f@20) < 5 +50 (: (5 + é6»)(1— 2—2)).

According to our works [19,20] on quadratic mappings, one proves that

5
[fe) =272 2| < (8 + ée)a —27m), (29)

holds for anyz € N, and allx € X. Similarly from (25) we get, by induction on,
that

Q(x) =272"Q(2"), (30)
holds for anyz € N, and allx € X.
By (29), forn > m > 0, andh = 2" x, we have

”2—2nf(2nx) _ 2—2mf(2mx) H
— 2—2m H2—2(n—m)f(2n—m . zmx) _ f(zmx) H
— 2—2m H2—2(n—m)f(2n—mh) o (h) ”

5
< (5 + 69)22'" —0, asm— oo. (31)

From (31) and the completeness Bf we get that the Cauchy sequence
{22 f(2"x)} converges. Therefore we [19,20] may apply a direct method to the
definition of Q such thatQ (x) = lim,_, o, 2-2* £(2"x) holds for allx € X. From
the quadratic inequality (26), it follows that

4
Q(Zm) > 0Gi+x) - Z 0(xi)
i=1

1<i<j<4

<27%'§ >0, asn— oo,

- ) OGitxj+x)

1<i<j<k<4
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forall x; e X (i =1,2,3,4). Thus it is obvious thaD satisfies the quadratic
equation (25). Analogously, by (3), we can show tigai0) = 0 (with x; =0
(i=1234 in (25)) and thatQ is even from (3) with 2x on place ofx,
1Q(x) — Q(—x)[| <272"0 — 0, asn — o0, Or Q(—x) = Q(x).

According to (29), one gets that the inequality (27) holds. Assume now that
there is another quadratic mappi® : X — Y which satisfies the quadratic
equation (25), the formula (30) and the inequality (27). Therefore

[o) - Q)| =27 0@'x) - Q'@"x)|
<2?[Je@w) - @0+ f@0 - 0'@0|]

5
< 2<8 + 69)2_2” — 0, asn— oo,
or

0'(x) = Q(x),

for all x; € X, completing the proof of our Theorem 70

6. Stability of Eq. (25) on arestricted domain

In this section, we establish the Hyers—Ulam stability for even more general
equations of two types on a restricted domain.

Theorem 8. Letd > 0, § > 0 and 6 > 0 be fixed. If an approximately even
mapping f : X — Y satisfies the quadratic inequali{6) for all x; € X (i =
1,2, 3) with Zf‘zl llx; |l > d, then there exists a unique quadratic mappifg

X — Y, such that

0
100 — 0] < 5(5 + 6) (32)
forall x € X.

Proof. Assumer‘=1 llxi |l < d. We choose a € X with ||¢| > 2d. Clearly, we
see

4
lber — £l + [lx2ll + llxz + £+ llxall > 20l = > llxi |l > d,

i=1
llxall + lxall + lxall 1 = £l = liell + (lxall + llxall + llxall) > d,
ezl + llxall + llxall + 121l > d,

2l 4+ llxall + izl + 1| — 21l > d. (33)
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Besides from (26) withy; =0 (i =1, 2, 3, 4) we get thatl] £ (0)|| < . Therefore
from (26), (33), and the following nefunctional identity

4
f(Zm) — fri+x2+x3) — f(x1+x2+x4) — f(x1+x3+ x2)
i=1

— flx24+x3+x4) + f(x1+x2) + f(x1+x3) + f(x1+ x4)

4
+ f(x24x3) + f(x2+xa) + f(x3+x8) — Y f(xi) = £(O)

i=1
4
=f<zxi) —fa+x2+x3) — fa+x2+xa—1)
i=1
— f(x1+x3+xa)— fo+x3+xa+1)+ fxr+x2—1)
+fxi+x3)+ fra+xa—1) 4+ fxo+x3+1)+ f(x2+ x4)

+ f(x3+xa+1) — fxr—1)— f(x2) = fxza+1) — f(xa)
(with x1 — onx1, x2 ONx2, x3 -+ ONx3, andxs ONx4)

+[fOrtxe+xa—1) = fOr+x2+x0) — f(xa+x2—1)
—fxat+xa—1)— fa+xa—1)+ f(x1+x2) + f(x1+ xa)
+ =0+ fa+xa)+ fe2—0)+ f(xa—1) — f(x1)
— f(x2) = f(x4) — f(—D)]

(with x1 onx1, x2 ONx2, x4 ONx3, and — ¢ ONxg4)

+[f(x2+x3+x4+1) — fx2+x3+xa) — f(x2+x3+1)
—fx2atxa+1)— fxa+xa+1)+ flxz2+x3) + f(x2+ xa)
+ 2+ + fx3+xa)+ fxs+1)+ fxa+1) — fx2)
— f(x3) = f(xa) = f(1)]

(with x2 onx1, x3 0Nx2, x4 ONx3, ands onxg)
—[f2+xa) = flra+xa+1) — fxa+xa—1) — f(x2) — f(xa)
+ f2+x4)+ f2+D)+ fxa—1) + f(xa+1) + f(x4—1)
+ f(0) = f(x2) — f(xa) — f() — f(—D)]

(with x2 onx1, x4 ONx2, t ONx3, and — ¢ ONxg4),

we get
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4
Hf(z ) Z f(xl+xj)_2f(xl
i=1

1<i<j<4

— ) fitxj+x)| <4+ | FO] <55 (34)

1<i<j<k<4

Applying the Theorem 7 and the inequality (34), we prove that there exists a

unigue quadratic mappin@ : X — Y that satisfies the quadratic equation (25)
and the inequality (32), completing the proof of the Theorem®8.

We note that if we definds = {(x1, x2, x3,x4) € X% |xill <d, i =1,2,3, 4}
for some fixed? > 0, then{(x1, x2, x3, x4) € X*: Y7, x| = 4d} € X*\Sa.

Corollary 7. If we assume that an approximately even mappjfiigX — Y
satisfies the inequalityf26) for some fixeds > 0 and 6 > 0, and for all
(x1, X2, x3, x4) € X*\ 84, then there exists a unique quadratic mappihgX — ¥
satisfying(32) for all x € X.

Corollary 8. An approximately even mappinf: X — Y is quadratic and satis-
fies the quadratic equatiof25)if and only if the following asymptotic condition

4
Hf(Zx,») > flitxp - Zf(x,
i=1

1<i<j<4

- Z [ +xj+ xi)

1<i<j<k<4

0, as Z lx; || — oo,
i=1

holds.
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