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EXISTENCE OF WEAK SOLUTIONS FOR A PARABOLIC
ELLIPTIC-HYPERBOLIC TRICOMI PROBLEM

By

John Michael RASSIAS

Abstract. It is well-known that the pioneer of mixed type boundary
value problems is F. G. Tricomi (1923) with his Tricomi equation:
Yitxx + ttyy = 0. In this paper we consider the more general case of
above equation so that

Lu = Ki(y)usx + (K2(p)y)' +ru= f

is hyperbolic-elliptic and parabolic, and then prove the existence of
weak solutions for the corresponding Tricomi problem by employing
the well-known a-b-c energy integral method to establish an a-priori
estimate. This result is interesting in fluid mechanics.

The Tricomi Problem

Consider the parabolic elliptic-hyperbolic equation

Lu = Ki(p)uxx + (K2(»)uy)" + r(x, y)u = £ (x, ), (%)

(2}, {6]), in a bounded simply-connected domain D(c R?) with a piecewise-
smooth boundary G = dD =g, UgyUgs, where f = f(x,y) is continuous, r=
Hx, ) (<0) and K, = Kj(y) are once-continuously differentiable for x e [—1,1]
and ye [-m, M| with —m =inf{y : (x, y) e D}, and M =sup{y : (x,y) € D},
and Ki(y) >0 for y>0,=0for y=0, and <0 for y < 0. Also K) = K5(y) 8
twice-continuously differentiable in [—m, M], K>(y) > 0 in D. Besides lim,_o K(»)
exists, if K = K(y) = Ki(y)/Ka(y) > 0 whenever y > 0, = 0 whenever y =0, and
< 0 whenever y < 0.
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L
>

A'=(-1,0)

Finally g, is “the elliptic arc (for ¥ > 0)” connecting points 4’ = (—1.0) and
4 = (1,0), g> is “the hyperbolic characteristic arc (for y < 0)” connecting points
A=(1,0) and P=(0,y,): J;" V/—K(t)dt=—1 (eg. if K; = y and K> =1, then
yo=—(3/2" = —131), go(=PA): x=[)/=K()dt+1, and g3 is “the
hyperbolic characteristic arc (for y < 0)” connecting points 4’ = (—1,0) and P =
(0,5,): gs(= A'P): x=— [ \/-K()dt — 1.

Denote “the elliptic subregion of D by D, (= the space bounded by g; and
A'A4), “the hyperbolic subregion of D by Dy (= the space bounded by ¢, g3 and
AA'), and “the parabolic arc of D” by

Dy(=A'A)={(x,y)eD: —1<x<1,y=0}

Note that the order of equation (*) does not degenerate on the line y = 0. But
(*) is parabolic for y = 0 because K;(0) =0 and K>(0) > 0 hold simultaneously.
Assume boundary condition

u=0 on g Ug. (%)

The Tricomi problem, or Problem (7) consists in finding a function u =
u(x, y) which satisfies equation (*) in D and boundary condition (**) on g, Ug;

(141, 5], 7).

PreELIMINARIES. Denote o= (x),%): %, o =0, |2| = + a2 Also if p=
(x.y)eR? and p=(%7)eR% then denote p*=x¥yp®, (p,p)=x¥+ 7,
Pl = (<p. o).
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Finally denote

0 7} . cc
Di=—, Dy=—, and (D%)(p)=(D]'Du)(p)

dx dy

=

for sufficiently smooth functions u = u(p) : p = (x,v) € R*. Consider the adjoint
equation

Ltw = Ki(3)wsx + (Ka(3)wy) + r(x, p)w = f(x, ), [+]

([1]-[2], [6]), in D, where L* is the formal adjoint operator of the formal operator
L and is L™ = L. (Note that equations for characteristics of (*) and [*] are
identical). In fact,

(K2(y)wy)" = Ka(¥)wyy + K3 (y)wy, and
thus
L7w = (Ki ()W) + (Ka(2)w),, = (K5 ()W), + r(x, y)w
= Lw, because (Kx(3)w),, = (Ka(3)w)' + (K3(3)w),.
Note in general that if

2 2
Lu= Z ai(p)DiDju + Za,-(p)Dfu +a(p)u, then
ij=1 /

i=1

2 2
L'w= Y DiDi(ai(p)w) =Y _ Dila(p)w) + a(p)w.

ij=1 =1
Assume adjoint boundary condition
w=0 on g Ugs. [
Denote
C*(D) = {u(p)| p = (x,y) € D(= DUG): u=u(p)
is twice-continuously differentiable in D}.

This space is complete normed space with norm

lull 25y = max{|Du(p)| | p € D: |a| < 2}.
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Also denote

L*(D) = {u

| o < ao}.

The norm of space L?(D) is

1/2
Tl = 1l 200y = (j |u(p)|2dp) ,

where p = (x,y), and dp = dxdy.
Besides denote

D(L) = {ue C*(D): u=0 on g;Ug,},
which is the domain of the formal operator L, and
DILY) ={we C*D): w=0 on g, Ugs},

which is the domain of the adjoint operator L*.
Finally denote

W3(D) = {u| D°u(-) € LA(D), |a| <2}

which is the complete normed Sobolev space with norm

1/2
llull, = H””wg[p) = (WH?}(D) T+ Z HD%‘H%}(D)) )

|le}=2

or equivalently: [jul|, = (Z HDiuHiz(D))l’/z,
<2
sz(D“bd) = D(L)H'Hg’

which is the closure of domain D(L) with norm | - |,, and
3(D,bd*) = D(L),.,
which is the closure of domain D(L™) with norm || -||,, or equivalently:
W3(D,bd*) = {we W}(D): {Lu,w)y = {u,L*w), for all ue W7 (D,bd)}
on the corresponding norms.

DEFINITION. A function u = u{p) € L?(D) is a weak solution of Problem
(T) if
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{fswro = <u, L w  ([4]), p- 86-106)

holds for all we W$(D,bd") ([4]i2), p- 86-106).

CRITERION ([1]). (i). A necessary and sufficient condition for the existence of
a weak solution of Problem (7') is that the following a-priori estimate

Iwllo < CIL wllo, (4P)

holds for all we W7 (D,bd"), and for some C = const. > 0 ([4]2), p. 86-106).
(i1). A sufficient condition for the existence of a weak solution of Problem (7)
is that the following a-priori estimate

Iwlly < CILLTwllo, (4P

holds for all we W3(D,bd*), and for some C = const. > 0.

Also note that both the Hahn-Banach Theorem and the Riesz Representation
Theorem would play ([4]), p. 92-95) an important role in this paper if above
criterion were not employed. For the justification of the definition of weak solutions
we apply Green’s theorem ([4];), p. 95-98) and classical techniques in order to
show that f=Lu in D and u=0 on g; Uga.

A-Priori estimate ([4P])

We apply the a —b — ¢ classical energy integral method and use adjoint
boundary condition [**]. Then claim that the a-priori estimate [4P] holds for all
we W3 (D,bd"), and for some C = const. > 0.

In fact, we investigate

Jt=2{M*w, LTw)y = JJ 2M wLw dxdy (1)
D

where
M*w=a*(x,y)w+ b7 (x, p)ws + " (x, y)w, in D,
with choices:

y+c; fory=0

1
T = + = — i + =
at= 7 and b x—¢ in D, and ¢ {Cz for y < 0

where ¢; = 1 + ¢, and ¢, ¢p: are positive constants.
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Consider the ordinary identities:

2aK wwyx = (2aKywwy), — 2aK| wi — (a, K, wi)x + anKiw?,

2aK,wwy, =

(2aKawwy), — Zaszf, - ((aKz)},wz)y + (aKz)yywz,
26K wiWsy = (BKiw2), — b Kyjw?,

2bKswywyy = (2bKawywy), — (BKaw}), + b Kow} — 2(bK2) wiw,,

2eKiw Wiy = (2eKiwewy), — (€K wi)y -+ (cKl)ywi — 2K cxwyxwy,
2cKawywyy = (cKaw}), — (cKa) w3,
2arww = 2arw?®,  2brww, = (brw?), — (br)l.f,
2erww, = (crwz)y — (cr)ywz, 2atww, = (atw?), — (at)ywz,
2btwywy = 2btwyw,,  2etwywy, = 2c'twﬁ,

where ¢ (= coefficient of w, in Ltw), or

t=K(»).

(3)

Then employing above identities and Green’s theorem, and setting 1 = K;(y)

we obtain from (1) and [*] that

e j J 2(aw + b+ ¢ ) [Ki (9)Wax + Ka(3)wyy + rw + tw,] dxdy
D
=1Ip + Il + L+ L,

where
Ih= ”JA*W}E + B*w} 4+ CTw? + 2D wow,) dxdy,

Ll = % {2a" w(Kiwevi + Kawyva) } ds,
G(=aD)

L = %G(_aDj{f[ijv[ =L (a+K2)yV2] + [(B v + ctva)r] + [(atva) 1] }w? ds,

and
I3+G =

4; (A*w2 + B*w. + 2D wyw,) ds,
G

(4)
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with
AT = —2ﬂ+K1 — b;Kl + (C‘_‘LK[)J,,
BT = —2at K, + b\ K>y — ((‘+K2)y S 2L‘+[,
C* = 2a*r+ Kial, + (a7 K3), | — [(677), + (c7r),] - {(aﬁ)y}‘
DT = —[Kicl + (b7Ky), — b*Y, and
A.Jr = (b*vl = C+I’Z)K1, B+ = (—b+V| + C+V3)Kz,
DT = bTKzvy + ¢ K v, where
d d>
v = (v1,v2) = (EJ;,*?:), (ds > 0), (5)
is the outer unit normal vector on the boundary G of the mixed domain D.
Note that in D,y >0 (if a* =—1/2, bt =x—¢), ¢" = y+c2):

A" =K — (K) + (v + @)Ky), = K + (y + 0)K],
B" =K+ (K2) = (y+ 2)K2), + 2y + )t = Ko + (v + ) K3,

1

=—-[Br+(x—e)ry+(v+c)ryl, and
D" = —[((x — e1)K2), — (x — e1){]
= ~[(x ~ en)K; — (x— e1)K;] = 0,

because from (3): = Kj(p).
Similarly in D,y <0 (if a™ =—1/2, b =x—¢1, ¢" =c3):

AT =K - (Ki) + (K1), = ook],
BT =K+ (K>) — (CZKZ); 4263t = 2K;5 + Cszf,

1

¢ = [r=3&] (- e+ (en) - [31]

=—[2r+ (x—¢1)ry + cary], and

D = —[((x—¢1)K2), — (x —1)] =0,

because from (3): t = Kj(y).
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Therefore
I =n+ 5+ 1,

where Q = A"w2 + B*‘wﬁ + 2D wowy = Ouy, uy),

I = ” O(wx, wy) dxdy, or
D,y=0

=[] i+ 5 )Rt + (Rt -+ e Knd) dud,
Dy=0

L= jJ O(wx, wy) dxdy, or
D, y<0

B=|| ki + @R + ki dxay
D,y<0
and

7= ” SrvPdids o
JJD

—JJ Br+ (x — e1)rx + (p + e2)ry]w? dxdy
I+ B D,y=0
=

— J [2r + (x —c1)rx + czry]w2 dxdy.
D.y<0

On G: claim that
Iis > 0.
In fact,

Ii{ynUya) - Lluy]{w(f(l w1 + Kawyva)}ds =0,

because w =0 on g, Ugs from [**].
Also that

3 = *J‘ {w(Kiwxvi + Kowyv)}ds > 0.
g

In fact, on g,:

tx =/ —Kdy, or vy — —V—KVI,

because dx = —v,ds and dy = v; ds from (5).
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Also
aw =wedx +w,dy = (—wxv2 +wyr) ds
= (wxV—K +w )y ds (with K = K;/K>)

B vV=Kiw, +vKaw,
VEK;
i Klwx = \/—K]szy
—/—K1 K>

. Kywyeon + KZWyVZ

ey o ds (because: Krvy = —v/—K1Kzv)

vy ds

Vi ds

or
(Kywavy + Kowyve) ds|, = —/ =K Kz dw. (7),
Therefore from (7), and by integration by parts we get that
1 1
I?é-?z :EJ —Kled(Wz) :~§J (\/ ﬁKle)’wzdy,
g2 gz

because w =0 at the end-points of g2 (as w=0 on g; and w=0 on g3).
But

dy=vids>0 on g,.
Thus

1 K K)
J (K1 Ky) widy > 0 (7)a
g2

o=c| Sk
e "4, Rk

4
from condition [Ry], completing the proof of (7), and thus of (7) (from (7),).
Claim now that

Ly >0 (8)

In fact,
L = lK” +[(&1 v + cTva)r] + —'EKIV w?ds, or
2(gUgs) — s L2 2V2 1 2 5 S22 )

Howy= [ (@ +cnvtyas=o, ®),

g1Ugs

because w =0 on g;Ugs from [**] and ¢ = K, from (3).
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Also that

1 1
12'*_“]2 = Lv{ [EKévz} +[((x = e1)vi + eava)r] + [_EKZV:Z] }w2 ds,

or
L, = Jg {{(x — c1)vy + cava)riw? ds > 0, (8),
2
from condition [R,] and the fact that (x — ¢;)vy + 212 <0 on g, (ason gp : vy >
0, <0and x—¢; = [ —K(t)dt — ¢y < 0) completing the proof of (8), where
= I;Eglugz) —+—I;_;2 = I;;Z(> 0).

Claim then that

J7'3-‘—(? = } Q+(Wx, Wy) ds > 0, (9)
G
where
Q+(WX: wy) = fi+w)25 + B—+W’§ + 213+way

is quadratic form with respect to w,, and w, on G.
In fact, note that on g; (if a™ = —1/2,b" =x—c1, ¢ = yp+ca):
At =[x—c)v— (p+ K, Bt =[-(x—c)v+(y+e)nk,
D = (x —¢))Kava + (¥ + 2) K11
From adjoint boundary condition [**] we get
0= dw|, =wydx+wydy, or
wy = Nty w, = Nty (9a)

where N* = normalizing factor. Therefore
By = [ @ tmmds= [ WPler=cm+ v+l (10
g qn

where
H=Kvi+K»? (>0 on g1). (10a)

It is clear from (10)-(10a) and condition [R,] that

3g

L =f (N*)[(x— e1)dy — (y + 2) dx]H 2 0. (10b)
g1
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Similarly on g5 (if a* = —1/2, bt =x— ¢}, ¢* = 2):

L, = J OF (W, wy) ds = [ (N*)l[(x — )y +aw|Hds, or
K Jgs

I, :J (N*)*[(x = ¢1) dy — c2dx]H = 0, (11)
g3
because
H=0 on gs, (11a)
as gy 1s characteristic.
Finally claim that on g, (if a* =—1/2,b" =x—¢|, ¢" = 02):
L = J QF (wx, wy)ds > 0. (12)
g2
In fact, 0 = Q*(u'x,u{,,) is non-negative definite on g,. It is clear that

A= [(-‘—Cl)lﬁ —szz]Kg >0 on g,

because of
¥
(x—a)l, = J VvV =K(t)dt —cy <0 on g,
= o
) d.
vl:ﬂ >0, vzzfg <0, K, <0,
ds ds o
g2 92
v; = ——Kv| on g, and of condition [Rg]. In fact,

[(x = et — eamall,, = [(L VoK@ di ) 4 m} Y
= (J:\/jmdr+c;\/j— co>v| >0 on ¢

from condition [R¢]. Therefore

~ 4
A = (J V=K1 dt+ e2vV—K — Cu) viK; >0 on gs. (12a)
0
Also

B" = [—(x—¢;)vi + c212]Ka, or

¥
Bt = —(J Vv —K(1)dt + eovV—K — ('())VlK}_ >0 on g, (12b)
0
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because of condition [R¢], vi|,, > 0, Kglg2 > 0, and of above facts. Note that

92

A = (=K)BT on g. [12a]
Besides

D¥ = (x —¢c1)Kyvy + 2 Kyvi,  or

DT = [— (J: V—K(1)dt — cU)Kg\/:?—i— c;Kl] Vi, or

- i3
D" = /K| K> (j V—K(t)dt + eV —K — CO)“'] on gs, (12¢)
0
because
—K/KoV—K = V=K and KV—K =+/-K|K>.
Note that
Dt =+v—KB" on g, [12¢]

because —K K> = v—KK;.
Finally from [12a] and [12c], we get

ATB* — (DY)’ =0 on g,. [12d]
Therefore the quadratic form Q7 is

0t = 0" (wy, wy) = (V—Kwy + wy)z(é*’) >0 on gy, or

Q* ds = —(\/j(wx + wy)2 (J} \/—-_Kmdt—k eV =K — c()) Kxdy, or
0

L =- L{\/wa +wy)? (J; V-K(f)dt+ 2V K - c0> Kydy >0, [12]

because of condition [R¢|, dy(= vids)|,, >0, and K> >0 on g;, completing the
proof of (12).
Therefore

=n.+L.+15, or (13)



Existence of Weak solutions for a Parabolic 49

1 (KiKy)" ol
\;’-—KIK'z

Ig =
J {lix=ci)n + Cg'.';_]r}n ds
J —c)dy — (y+c2) dx|H

L (V=Kwy +w, ( [: V—K(1)dt + c2vV=K — Cn) Kady.  (14)
But on g,(: dx=+v/—Kdy)
[(x = c1)vi + cavalds = (x — 1) dy — eadx = [(x — ¢1) — c;V—=K] dly
= (J; oKD dt— VTR = cu) dy (<0). (l4a)
Thus

Ig = J )*[(x = e1)dy — (y + c2) dx]H
#1

L {w st R
_[(mmw}_f(j:mmmﬁ-m)m]}dwo‘ (13)

where H = Kyvi + K3v} (> 0 ong;), and N* = normalizing factor: w, = NTy,
w, = N7v; (on gy).

Note from (15) that the two conditions ([R),|—[Ris]) could be replaced by the
following condition [Ry] on g,:

v
[Rll ¥ {K]IKE}’ +41"\/—K1K1(-[ \,/-‘K(I)d!—(.'z —K—Cu) > 0. (16}
0
Similarly

I :Ig_y.)_o+13“d,$o, or (17)
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=[] -G - an+ o+ el
D,y=0
+(Ki+(y+c)Kwk + (K + (v + CQ)KZ')W;‘,}dxdy
+JJ {=(2r + (x = e)rx + cory)W?
D.y<0

+ (e2K{)w}i + 2Kz + c2K;y)w} } dxdy. (18)

It is clear now from (4), (15), and (18) that

JE =L I = T (19)
1 ;
pa’ +;b2 > 2labl, p>0. (20)
But from (1) we get
M wL w = 2atwLtw + 2bTw, L w + 2¢ w, Lt w. (21)

Therefore from (1), (20) and (21) we find

JH £ J 2|M wLw| dxdy
D

< J l' {2fatwl L wl 4+ 2(6Twy| LT w| 4+ 2{ctwy| LY wl} dxdy
D

Hy

é[ D{ {m(a+w)2 +i(L+w)2] - [ﬂz(b+wx)2 +ﬂl2(L*’w)2]

+ [,Lg(c*wy)z +£—(L+w)2] } dxdy, or
3

JT < ” T {w, wye, wy) dxdy + (L+i+ 1
D

I ;3) ”D(L+w)2 dxdy, (22)

where u; = const. > 0(i =1,2,3), and
T =T (w,wewy) = (@)W + (67 00x)* + () (wy) "

Denote

B 55 o b oo B4 U (23)
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Thus from (19) and (22)-(23) we get
If < d* 5 ‘”[)Tﬂw, Wy, wy) dxdy + CH|Lw||5, or
I - J JD T (w, wx, wy) dxdy < CE||L*w||3. (24)

Therefore from (2), (18) and (24) we find
” {* [(3r+ (x = e1)re + (¥ +c2)ry) +%#1JW2
JDy=0
+ (K1 + (y + 2)K]) — o (x — 1) w?

+ (K2 + (¥ + 2)K;) — (v + c'z)z}w}%} dxdy

+ [(e2K]) = a(x = 1) ]y
+ [(2K; + ©2K;) — p;(cz)z]wf, } dxdy

< C|L*w|3. (25)

But

= ([l Jor oo

Thus from (25)—(26) and conditions ([R3;]-[R4]—[Rs]) we get
Cillwll} < CRUL*wli§, or
Iwli? < 2L wl,

with C = C;/C; = const. > 0, completing the proof of the a-priori estimate [4P].
Note that

Cy = /min(dy1,d21,031) + min(d12,022,d32) (> 0), (27)
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where
dj =const. >0 (i =1,2,3;j=1,2) in conditions ([Rs]-[Rs]-[Rs]).
Therefore by above Criterion ([1]) the following Existence Theorem holds.

Existence Theorem
Consider Problem (7°) with parabolic elliptic-hyperbolic equation:
Lu = K (p)uss + (Ka(y)uy)" + r(x, y)u = f(x, ),

and boundary condition: ¥ =0 on g;Ug;. Also consider the simply-connected

domain D(<%?) bounded by a piecewise-smooth boundary G = D = g, Ug» U

gi:curve g; (for y >0) connecting 4’ = (—1,0) and A = (1,0), and charac-

teristics g2, g3 (for y <0) such that gp: x= [ /=K(dt+1, g3: x=— [

v—K(t)dt — 1, and K = K, /K, : lim,_ K(y) exists, K;(y) > 0 whenever y > 0,

=0 whenever y =0, and < 0 whenever y <0, as well as K3(y) >0 in D.
Assume conditions:

[Ria]: <0 on gy,
[Rip]: (KiK2)' >0 on g,
[Ric]: K/ >0(i=1,2) in D,
[Ra]: (x — ¢1)dy — (¥ + ¢2)dx = 0: “star-likedness” on g,

Ry): 4Br+(x—cr)rx+ (y+ca)ry) +py < — 46 <0 fory >0
Al A42r+ (x—cp)retaaky) + 4y < —4912 <0 for y <0,

[Rs]: K+ (y+c)K| — pp(x — Cl)z >dy >0 fory=0
| K —m(x—e)? 28>0 for y <0,

[Rs]: K2+(J’+02)K2'_N3(}’+C‘2)2 >0y >0 fory>0
) 284 exRE= pales)’ 2 B 0 for y <0,

where J; are positive constants (i=1,2,3;j=1,2), and

[Re): J:\/—K(r)dt+cm/—]((y)—co<O on ¢a,

where K;(i =1,2), r, and f are sufficiently smooth, and ¢; = 1 + ¢y, and ¢y, 2,
and y; (i =1,2,3) are positive constants.
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Then there exists a weak solution of Problem (7T) in D.

SpeciAL casg: In D take

K=y and Kr =y —ky,(>0), where k=constant >2 and

1

Ve
¥, = constant (< 0): J ————dt=—1(y, <t<0), or equivalently
0 i— kyp

p_l/(vk — ktan™! for k > 2.

e

Then conditions [Ry), [Ra], [Rs] and [Re] hold on y =0 and in general in D.

Note that substituting ,/—#/(t —ky,) = ¢, one gets that
r Gk tan”!, | 2] (v—rky,)
0 l/kyp - yp y_kyp yy )’p )

where

297 -1 ¥
R SRt

NoTE that conditions ([R;,]—[Ris]) could be substituted by condition [R;| (16).

Orpen: If r =0, then (25) does not yield existence of weak solution.
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