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In this paper we solve the following Ulam problem: “Give conditions in order for 
a linear mapping near an approximately linear mapping to exist” and establish 
results involving a product of powers of norms [S. M. Ulam, “A Collection of 
Mathematical Problems,” Interscience, New York, 1961; “Problems in Modern 
Mathematics,” Wiley, New York, 1964; “Sets, Numbers, and Universes,” MIT 
Press, Cambridge, MA, 19743. There has been much activity on a similar “ 
s-isometry” problem of Ulam [J. Gervirtz, Proc. Amer. Math. Sot. 89 (1983), 
633-636; P. Gruber, Trans. Amer. Math. Sot. 245 (1978), 263-277; J. Lindenstrauss 
and A. Szankowski, “Non-linear Perturbations of Isometrics,” Colloquium in honor 
of Laurent Schwartz, Vol. I, Palaiseau, 19851. This work represents an improve- 
ment and generalization of the work of D. H. Hyers [Proc. Nat. Acad. Sci USA 27 
(1941), 222-2241. 0 1989 Academic Press, inc. 

THEOREM. Let X be a normed linear space with norm 11 . I), and let Y be 
a Banach space with norm 11 . l12. Assume in addition that f: X + Y is a 
mapping such that f(t .x) is continuous in t for each fixed x. If there exist 
a,b,O<a+b<l, andc,>Osuch that 

(1) 

for all x, y E X, then there exists a unique linear mapping L: X + Y such that 

llf~~~-~~~~ll*~~~Il~ll~+b (2) 

for allxEX, where c=~,/(2-2“+~). 

If one takes a = b = 0 in this theorem and follows our proof, one obtains 
an additive functional L such that 11 f(x) - L(x)11 z < c2, for all x in X. This 
is Hyer’s result [3]. 

Proof of Existence. Inequality (1) and y = x imply 

Ilf(2x)-2f(x)llzGcz~ Ilxllf;+b, 
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(3) 

More generally, the following lemma holds. 

LEMMA 1. In the space X, 

n-l 
IIf(2”x)/2”-f(x)l/,<c, 1 2’(U+h-‘)-‘. llxll’;+h (4) 

i=O 

for some c2 B 0 and for any integer n. 

To prove Lemma 1 we proceed by induction on n. 
For n = 1, the result is obvious from (3). We assume then that (4) holds 

for n = k and prove that (4) is true for n = k + 1. Indeed, from (4) and n = k 
and 2.x=2 we find: 

k-l 

Ilf(2kz)/2k-f(z)l12<c2 1 2i.(u+bP’)P1. IIZll~+b, 
i=O 

or 

k-l 

Ilf(2k” .X)/2k+1-f(2x)/21126cr. ,Fo 2(i+l).(a+b--l)-l. llXll;+~, 

or 

Therefore from (3) and (4) we get 

or (4) holds for n= k+ 1, or 

Ilf(2k+‘.x)/2k+‘-f(x)llz~c2 i 2’(“+b-1)-1.ilxll~+b. (6) 
,=O 

m/57/3-3 
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But 
,I ~ I 

x2 
h+f-‘l< 

r=O 

f 2’(u+b-l)= 1 p2;+beI =$ 

I=0 
(7) 

Set 
c = co. c,/2. (7)’ 

It is clear that (3) and (6) yield (4), completing the proof of Lemma 1. 
Then Lemma 1, (7), and (7)’ imply 

Ilf~~“~~~/~“-f~~~ll,~~~ll~ll~+h (8) 

for any x E X, any positive integer IZ, and some c2 3 0. 

LEMMA 2. The sequence {f (2” . x)/2”} converges. 

We first use (8) and the completeness of Y to prove that the sequence 
{f(2”.x)/2”} is a C auc h y sequence. In fact, if i > j > 0, then 

Ilf(2’.x)p-f(2’~x)/2’II,=2~‘~ l[f(2’.x)/2’-‘-f(2’.x)ll, (9) 

and if we set 2’.x=h in (9) and employ (8) we get 

llf(2”x)/2i- f(2’.x)/2’II, 

or 

lim ~lf(2’x)/2’-f(2’~x)/2’~~,=0 (10) 
j-m 

because a, b: 0 < a + b < 1. 
It is obvious now from (10) and the completeness of Y that the sequence 

{ f(2” x)/2”} converges and therefore the proof of Lemma 2 is complete. 
We set 

L(x)= lim ‘y. 
n-cc (11) 

It is clear from (1) and (11) that 

Ilf(2".x+2"'Y)- Cf(2”.x)+f(2”.y)]11~~c2.~~2”.xll’;. 112”‘yll;, 

or 
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or 

II lim n-m [f(2”. (x + y))/2”] - Jirnm [f(2”. x)/2”] 

- lim [f(2”. y)/2”] 11 2 = 0, 
n-m 

or 

IIL(~+Y~-~~~~-~~Y~ll,=~ for any x, y E X, 

or 

Lb + Y) = L(x) + L(Y) for any x, y E X. (12) 

From (12) we get 

L(q.x)=q.L(x) (13) 

for any q E Q, where Q is the set of rationals. 

LEMMA 3. Let Y+ be the space of continuous linear functionals and 
consider the mapping 

T: t + g(L(t .x)), or T:R-+R (14) 

such that 

T(t) = g(Ut .x1), (15) 

where gc Y+, t E R, and x E X, x := fixed. Then T is a continuous mapping. 

To prove Lemma 3 we proceed as follows: Let 

(16) 

such that 

T(t) = lim T,,(t), (17) n+3c 

where XEX, x:=fixed and tE[W, gg Y+. 
Then T,(t) are continuous and therefore T is measurable as the 

pointwise limit of continuous mappings T,,. Moreover, T is a 
homomorphism with respect to addition “+,” that is, 

T(x+Y)= T(x)+ T(Y) (18) 

for any x, y E R. It is clear now that (18) and the measurability of T imply 
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that T is a continuous mapping and thus the proof of Lemma 3 is 
complete. 

Then Lemma 3 and the fact that Y+ separates points of Y yield the 
linearity of L. However, if we take limits on both sides of (8) as n -+ cc we 
obtain (2). Therefore, we have proved the existence of a linear mapping 
L : X + Y which also satisfies (2). 

Uniqueness. It remains to show the uniqueness part of our theorem. 

Let M be a linear mapping M: X + Y, such that 

IIf(Mb)ll,dc’. Il~ll;‘+~‘, c’ 2 0, (19) 

for any x E X where a’, 6’: 0 < a’ + b’ < 1 and c’ is a constant. Zf there exists 
a linear mapping L: X + Y such that (2) holds, then 

for any x E X. 

L(x) = M(x) (20) 

To prove (20) we must prove the following 

LEMMA 4. Zf (2) and (19) hold, then 

lJL(x)-M(x)(),~m”+b~l.c. llxllf;+b+mu’fb’~‘.c’. l/x114’+” (21) 

for any x E X, 

The required result (21) follows immediately if we use inequalities (2) 
and (19), the linearity of L and M, as well as the triangle inequality. In 
fact, 

L(m .x) 
L(x) = ~ M(x) = 

M(m .x) 
m ’ m ’ 

IIL(m.x)--M(m.x)ll,<L(m.x)-f( m.x)l(,+ IIM(m.x)-f(m.x)l12. Then 
if we apply (2) and (19) we obtain inequality (21) and the proof of 
Lemma 4 is complete. 

It is clear now that (21) implies lim,,, [IL(x)-M(x)ll, =0 for any 
x E X, completing the proof of (20). Thus the uniqueness part of our 
Theorem is complete, as well. 

Remark. A Banach space Y is said to have the approximation property 
if for any compact set KC Y and any E > 0, there exists P E L( Y, Y) 
depending on K and E, with finite-dimensional range such that 

for any x E K. 
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The approximation problem states: Is every compact operator T in 
L(X, Y) a limit in the norm of operators with finite dimensional range? 

The approximation problem has a negative solution in Banach spaces 
(which are not Hilbert spaces) and was solved in the negative by Per Enflo 
(1973) via an example of a separable reflexive Banach space that does not 
have the approximation property. 

Query. What is the situation in the above theorem in case a + b = l? 
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