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In this paper we establish maximum principles of the Cauchy problem for hyper-
bolic equations in R* and R"*! (n>2). Our maximum principles generalize the
results of Weinberger 5], and Sather [3, 4] for a class of equations such that the
coefficients can be allowed to depend upon ¢, as well, in {x,, x,, t}-space and
{Xy4 X3 X, t}-space. Throughout this paper, the influence of the work of Douglis
[1] is apparent. See [2].

1. MAXiMUM PRINCIPLE IN R?

Consider the hyperbolic equation
Lu=k(t) - (uyy, + Uy,y,) +u,=flx, 1) € C°(D), (1)
where x = (x|, x,) and the domain D is defined as

-T

D={(xt):T,<t<T<0,x]+x2< (J (—k(s))”zds)ZE.

¢
Let S, be the portion of the boundary of D, which lies in the plane t =T,
and S, be the remainder of the boundary G of D, which is a characteristic
conoid with respect to (1).
Then let us introduce a solution u of (1) in D which satisfies the initial
conditions

u(x, T,) =Ff(x) € C*(D),  u,x, T,) = h(x) € C°(D).
With the change of variable -
v(x, t) = u(x, t) — F(x) 2)
Eq. (1) can be written as follows:
Lo=k(t) - (Uy,x, + Xs,x,) + 0, = F(x, 1) € C*(D), 3)

where F=f —k - (F, ., + Fo,x,)-
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On the other hand, the initial data above change to
v(x, T,) =0, v(x, Ty) = h(x) € C(D). 4)
Assume the transformation to spherical polar coordinates
X, =7-Cos p, X, =r - sin p, (5)

where
.T \
PE|0,2n], r= ‘ (—k(s))"* ds.
‘1

By applying (5) we get
vxl*"l—{—UX:Xz:Urr'*(l/r)' L‘,+(1/r2)-1)pp, (6)
Lv=k()- (v, + (1/7’2) : Upp) + (1/r) - k(t) - v, + v, = Fyr, p, 1), )

where F, € C°(D).
Let S7 be the part of S,, where r, > e, such that

o= | (k) ds. e (—k(s)" ds. (®)

YTy -70

where T, <t < T° < T<O.

The direct characteristic conoid S, as well as the truncated one S are
generated by the bicharacteristics of space-time (5). The angle parameter p is
obviously constant along each fixed generator of S,.

On the other hand, the total derivative of S, is given by

djdr =—(—k)~V* - (0/at — (—k)"* - &/ér). (9)
We observe that for any smooth function w = w(r, p, ) we have
w- Lv=(wr),+ k- (w),, + v, - k(w/r —2w,) — 2w,v,
— (kw,, +w,) - v+ (kw/r’) - v,,
=— (—k)2 . d(w(v, + (k)" - v,)/dr + v(w, + (k)" - w,))
+ B(w) - v, + v - F(w) + D(w, p), (10)
where
d((wv), + (—k)'"* - (wv),)/dr = — (k)% - (k - (wo),, + (We),q
— (wv), - k' - (k)" - (1/2)),
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B(w)==2k-w,+(1/r) - w-k+w-k'.(—k)"¥.(1/2),
Fw)=—k-w,,—w,+w,- k- (—k)"V*.(1)2),

D(w, p) = (kw/r?) - v,, — 2w,v,,
B=[kw/r*)-v,,, D==2w,-v,
We set as

w=w(r,p, )=r"?. (—k)~",

such that —2k - w, + (1/r) - kw vanishes.
Then the identity (10) becomes, on §¢,

w - Lv = —(=k)¥* . d(d* (wv))/dr + G(w) + v - F(w),

(ar

(12)

where d* = d/ot + (—k)V? - 6/or such that d*(wv)=w-d*(v) +v-d*(w),

and G(w) =B(w) - v, + D(w, v).
Assume the operators

_ -To 2n e
Rev—J dr-J' o(r,p,t)dp  on St.

e 0

In addition, we assume the following condition
2n
V(p)=f v,, dp=0 on S%.
p=0

Then we have the following properties:

(i) R,B =0 because of (+). Define

Rv=IlimR,v
e—~0

when the limit exists. Then RB =0.

(13)

(+)

(14)

() If Q= (ry, p, T,) and Q, = (e, p, T°), then for P = P(0, 0, T(<0))

RAH) - d@* ou)ar) = [ ap [ o(P) - da* ) -

[}

dp

K+ KO [T wd @)

0

2x e
+ (k)2 - J’o (v —o(P)) - d¥(w)

dp,
Q.

(15)
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im ([ w- d* () dp) = lim (J (v~ o(P)) - d*(w)

dp) =0, (16)

Qe Q

RICH)"™ - dld* () ar) = [ dp [ o(P) - dla* () -

Q 0

. (’_k)l/Z + (_k)l/Z R J‘h W - d+(l))

dp
]

0 0= o)) -4 ()

dp (17)
Q

(iii) Similarly, we find

RGO =" dp+ [ (o = o(P)) - dlwk'/2(—k)")dr - dr

©0

+ [0k A 0 = o))

0

dp. (18)
o

(iv) Finally,

T

R(v - F(w)) =J:” dp- [ v d(@* n))dr-dr- (k)% (19)

Substituting (i)-(iv) into (12) we get the following fundamental integral
identity

R(w- Lv)= g dp- [ = v(P) - [dla* (w)dr - (—)"
—d(w - k'/2(—k)V*)/dr] dr

[Tl 4 ) = = oP) - k2]

0

dp
Q

R [ o) 4 )| (20)

-0

THEOREM 1. Assume that v(r, p,t) € C(D) satisfies the differential
inequality Lv=F,<0, and that v(r, p, Ty) =0, v/(r, p, Ty)=h(r, p) <0,
where D is defined above, and assume the following condition:

d(w - k'[2(—k)"?)/dr — d(d* (w))/dr - (—K)"" > 0, (21)

and (+). Then v(r, p,t) <0 in D.
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Proof. Let P be the point with the smallest r-coordinate T for which v
vanishes. The identity (20) implies

2

0>—J w-,
0

dp, (22)
[}

which is a contradiction. By continuity v cannot become positive even when
v,< 0 is not strict. Therefore, under the condition (+) and condition (21) the
operator L has a maximum property in D. Q.E.D.

THEOREM 2. Assume that v(r, p, t) € C*(D) satisfies the differential ine-
quality
Lo=k(t)- (@, + (1/r?) - v,,) + (1/r) - k(t) - v, + v, + a(r, p, 1) - v,
+b(r,p,t) - v+e(r,pt) v, +m(r, p,t)-v=Fyr, p, 1), (23)
where a, b, ¢, and m are continuously differentiable functions of the

independent variables r, p,t in D described above, and that o(r, p, t) =0,
v,(r, p, t) <0, Fy € C*(D). Assume, in addition, the conditions

d [w- (k'/z(—k)'/2 + (a —JO a,- dr)) ]/dr

—d(d*(w))/dr - (=k)"* >0, (24)
—k [ adr— (k). (a—{.a,dr), 25
c Joar (k) (a Joa, r) (25)
b,—m+ J (a),/2k dr >0, (26)
0
W=rV2 . (—k)" . exp ( [ a/2k dr), @7)

and (+). Then v(r, p,t) <0 in D.

Proof. We prove in the same way as in the case of (20) that the
following fundamental integral identity holds, as well:

R(w - Lv) =~"2" dp - J (v —v(P)) - [d(d*(w))/dr - (—K)V2

—d (wk’/Z(—k)‘” + (a - "" a,- dr) ) /dr] dr
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+ "2” dp - [rov c(m-w—(w-b),)dr— "h w [d*(v) - (—k)?

S0 <0

- (k'/z(—k)‘/Z + (a — "' a, dr)) - v(P))] dp
), .
— 0" [T o) - d* ()| dp. (28)
), .
The proof now is obvious. Q.E.D.

Remark. To have v, < 0 given v, < 0, we choose
vo=v(r, p,t)—c, - explc, - t) <0, for c¢;,i=1,2, both positive,

such that ¢l +¢,-c+m> 0.

2. MAXIMUM PRINCIPLE IN R"+! (n > 2)

Consider the hyperbolic equation

Lu=k(t)- N u,, +u,=f(x.1)€ C'(D), (29)

—_

where x = (x,, X3,..., X,,) and the domain D is defined as

" T Ly
D=0 Ty<t<T<0, Y x< (J (—k(s))"? ds) 2 .
i=1 t
Let S, be the portion of the boundary of D, which lies in the plane ¢t = T,
and S, be the remainder of the boundary G of G, which is a characteristic
conoid with respect to (29).

THEOREM 3. Assume that v(r, p, q, t) € C*(D) satisfies the differential
inequality

n—2

Lo=k0)- (v, + 87" (go,/rYop+ X oaw,)a,) )
+ 1= D/r] KO - v+ vy 0, P ) v,
n-2

+ay(rp g, t) v+ S ap (gt - Vg,

i=1

+b(r,p,q.8) - v,+m(r,p,q,t)- v=F(r, p,q,t)<0, (30)

409/85.1-8



112 JOHN MICHAEL S. RASSIAS

where a;, i =1, 2,...,n, b, and m are continuously differentiable functions of
the independent variables r, p,q,t in D described above, and that
o(r, p,q,t)=0, v(r, p, g, t) <0, FE C*(D), and

x,=r-cosp-sing, -sing, --- sing,_,,

X,=r-sinp-.sinq, -sing, ---sing,_,,

x,,._l =r-co8q,_;-8ing,_,,
X,=r-cosq,_,, p€Elo,2x],
G=1(q1» Gy s Gu2)s q,€[0,zn], i=12,.,n-2,
"Gy = &2

g, = COSec g, - sin g, - sin’g, --- sin" g, _,,

g=sing, - sin’ g, --- sin

g, =sin g, - sin g, - sin’q, --- sin"" ‘g, ,,

g, =sing, - sin’g, - sin g, - sin’q, --- sin" ‘g, _,,

g, =sin g, - sin’q, - sin’q, - sing, - sin’g, --- sin" ‘g, _,,
g,_;=sing, - sin’q, - sin" g, _, - sin"~*g,_,,

g n-2=— g .
Assume, in addition the conditions

d [w : (k'/z(—k)'“ + <al —_g: @), dr) + (k)2 (b —J‘o’ b, dr)) ] /dr

— (—K)¥* - d(d*(w) + b - w)/dr >0, (31)
[k /2(—k)"?] + (a1 _ J @), a'r) +(=k)"2. (b ('8, dr)
— ()" 8 (J (@, + (—k)"2 - Bk - dr] /3[ — k2%, (32)

n— n-2

S [ @+ RV b2kt @)y =+ Y @0

i=1

i=

+ JJ (@), + (k)" - by)/2k dr >0, (33)

w=r""W2. (k)" V4. exp (Jr (a, + (-K)"* - b)/2k dr) - sin q,
1]

int—2

- sin’g, --- sin" " g, _,, (34)
d* = o/ot + (—k)* - d/or, (35)
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and

I vpdp={ v,,dq=0, i=12.,n-20nS; (36)

“p=0 “q;=0
where S is the part of S,, such that r, > e. Then v(r, p,q,t) <0 in D.

Proof. We define w as in (34) in order that the expression —2k - w, +
(n—1).k-w/rvanishes if a, =b =0. Let us assume the operators

R,v :J:O dr-§u(r,p.q.0dS  on S5, (37)
dS=g-dq,-dq, - dq,_,, (38)
and
szljir‘} R, v, (39)
when the limit exists. Then the proof follows. Q.E.D.
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