A Maximum Principle in \mathbb{R}^{n+1}

JOHN MICHAEL S. RASSIAS

Daphne, Athens, Greece

Submitted by J. P. LaSalle

In this paper we establish maximum principles of the Cauchy problem for hyperbolic equations in \mathbb{R}^3 and \mathbb{R}^{n+1} $(n \ge 2)$. Our maximum principles generalize the results of Weinberger [5], and Sather [3, 4] for a class of equations such that the coefficients can be allowed to depend upon t, as well, in $\{x_1, x_2, t\}$ -space and $\{x_1, x_2, \dots, x_n, t\}$ -space. Throughout this paper, the influence of the work of Douglis [1] is apparent. See [2].

1. MAXIMUM PRINCIPLE IN \mathbb{R}^3

Consider the hyperbolic equation

$$Lu = k(t) \cdot (u_{xx_1} + u_{x_2,x_2}) + u_{tt} = f(x,t) \in C^0(\overline{D}), \tag{1}$$

where $x = (x_1, x_2)$ and the domain D is defined as

$$D = \{(x, t): T_0 \leqslant t \leqslant T < 0, x_1^2 + x_2^2 < \left(\int_t^T (-k(s))^{1/2} ds\right)^2 \}.$$

Let S_0 be the portion of the boundary of D, which lies in the plane $t = T_0$, and S_4 be the remainder of the boundary G of D, which is a characteristic conoid with respect to (1).

Then let us introduce a solution u of (1) in D which satisfies the initial conditions

$$u(x,T_0)=\tilde{r}(x)\in C^2(\overline{D}), \qquad u_t(x,T_0)=h(x)\in C^0(\overline{D}).$$

With the change of variable

$$v(x,t) = u(x,t) - \tilde{r}(x) \tag{2}$$

Eq. (1) can be written as follows:

$$Lv = k(t) \cdot (v_{x_1x_1} + x_{x_2x_2}) + v_{tt} = F(x, t) \in C^0(\overline{D}), \tag{3}$$

where
$$F = f - k \cdot (\tilde{r}_{x_1 x_1} + \tilde{r}_{x_2 x_2})$$
.

On the other hand, the initial data above change to

$$v(x, T_0) = 0, v_t(x, T_0) = h(x) \in C^0(\overline{D}).$$
 (4)

Assume the transformation to spherical polar coordinates

$$x_1 = r \cdot \cos p, \qquad x_2 = r \cdot \sin p,$$
 (5)

where

$$p \in [0, 2\pi], \ r = \int_{t}^{T} (-k(s))^{1/2} ds.$$

By applying (5) we get

$$v_{x_1,x_1} + v_{x_2,x_3} = v_{rr} + (1/r) \cdot v_r + (1/r^2) \cdot v_{pp},$$
 (6)

$$Lv = k(t) \cdot (v_{rr} + (1/r^2) \cdot v_{nn}) + (1/r) \cdot k(t) \cdot v_r + v_{tt} = F_0(r, p, t), \tag{7}$$

where $F_0 \in C^0(\overline{D})$.

Let S_4^e be the part of S_4 , where $r_0 > e$, such that

$$r_0 = \int_{T_0}^T (-k(s))^{1/2} ds, \qquad e = \int_{T_0}^T (-k(s))^{1/2} ds,$$
 (8)

where $T_0 \leqslant t \leqslant T^0 \leqslant T < 0$.

The direct characteristic conoid S_4 as well as the truncated one S_4^e are generated by the bicharacteristics of space-time (5). The angle parameter p is obviously constant along each fixed generator of S_4 .

On the other hand, the total derivative of S_4 is given by

$$d/dr = -(-k)^{-1/2} \cdot (\partial/\partial t - (-k)^{1/2} \cdot \partial/\partial r). \tag{9}$$

We observe that for any smooth function w = w(r, p, t) we have

$$w \cdot Lv = (wv)_{tt} + k \cdot (wv)_{rr} + v_r \cdot k(w/r - 2w_r) - 2w_t v_t$$

$$- (kw_{rr} + w_{tt}) \cdot v + (kw/r^2) \cdot v_{pp}$$

$$= - (-k)^{1/2} \cdot d(w(v_t + (-k)^{1/2} \cdot v_r)/dr + v(w_t + (-k)^{1/2} \cdot w_r))$$

$$+ B(w) \cdot v_r + v \cdot F(w) + D(w, p), \tag{10}$$

where

$$d((wv)_t + (-k)^{1/2} \cdot (wv)_r)/dr = -(-k)^{-1/2} \cdot (k \cdot (wv)_{rr} + (wv)_{tt} - (wv)_r \cdot k' \cdot (-k)^{-1/2}) \cdot (1/2)),$$

$$B(w) = -2k \cdot w_r + (1/r) \cdot w \cdot k + w \cdot k' \cdot (-k)^{-1/2} \cdot (1/2),$$

$$F(w) = -k \cdot w_{rr} - w_{tt} + w_r \cdot k' \cdot (-k)^{-1/2} \cdot (1/2),$$

$$D(w, p) = (kw/r^2) \cdot v_{pp} - 2w_t v_t,$$

$$\tilde{B} = [kw/r^2] \cdot v_{pp}, \qquad \tilde{D} = -2w_t \cdot v_t.$$

We set as

$$w = w(r, p, t) = r^{1/2} \cdot (-k)^{-1/4}, \tag{11}$$

such that $-2k \cdot w_r + (1/r) \cdot kw$ vanishes.

Then the identity (10) becomes, on S_4^e ,

$$w \cdot Lv = -(-k)^{1/2} \cdot d(d^{+}(wv))/dr + G(w) + v \cdot F(w), \tag{12}$$

where $d^+ = \partial/\partial t + (-k)^{1/2} \cdot \partial/\partial r$ such that $d^+(wv) = w \cdot d^+(v) + v \cdot d^+(w)$, and $G(w) = B(w) \cdot v_r + \tilde{D}(w, v)$.

Assume the operators

$$R_e v = \int_e^{r_0} dr \cdot \int_0^{2\pi} v(r, p, t) dp \quad \text{on } S_4^e.$$
 (13)

In addition, we assume the following condition

$$V(p) = \int_{p=0}^{2\pi} v_{pp} \, dp = 0 \qquad \text{on } S_4^e. \tag{+}$$

Then we have the following properties:

(i) $R_{\rho}\tilde{B} = 0$ because of (+). Define

$$Rv = \lim_{e \to 0} R_e v \tag{14}$$

when the limit exists. Then $R\tilde{B} = 0$.

(ii) If
$$Q = (r_0, p, T_0)$$
 and $Q_e = (e, p, T^0)$, then for $P = P(0, 0, T(<0))$

$$R_{e}[(-k)^{1/2} \cdot d(d^{+}(wv))/dr] = \int_{0}^{2\pi} dp \int_{e}^{r_{0}} v(P) \cdot d(d^{+}(w))/dr \cdot dr$$

$$\cdot (-k(t))^{1/2} + (-k(t))^{1/2} \cdot \int_{0}^{2\pi} w \, d^{+}(v) \, \Big|_{Q_{e}}^{Q} dp$$

$$+ (-k)^{1/2} \cdot \int_{0}^{2\pi} (v - v(P)) \cdot d^{+}(w) \, \Big|_{Q_{e}}^{Q} dp, \tag{15}$$

$$\lim_{e \to 0} \left(\int_{0}^{2\pi} w \cdot d^{+}(v) \Big|_{Q_{e}} dp \right) = \lim_{e \to 0} \left(\int_{0}^{2\pi} (v - v(P)) \cdot d^{+}(w) \Big|_{Q_{e}} dp \right) = 0, \quad (16)$$

$$R[(-k)^{1/2} \cdot d(d^{+}(wv))/dr] = \int_{0}^{2\pi} dp \cdot \int_{0}^{r_{0}} v(P) \cdot d(d^{+}(w))/dr \cdot dr$$

$$\cdot (-k)^{1/2} + (-k)^{1/2} \cdot \int_{0}^{2\pi} w \cdot d^{+}(v) \Big|_{Q} dp$$

$$+ (-k)^{1/2} \cdot \int_{0}^{2\pi} (v - v(P)) \cdot d^{+}(w) \Big|_{Q} dp \quad (17)$$

(iii) Similarly, we find

$$R(G(w)) = -\int_0^{2\pi} dp \cdot \int_0^{r_0} (v - v(P)) \cdot d(wk'/2(-k)^{1/2})/dr \cdot dr$$
$$+ \int_0^{2\pi} (wk'/2(-k)^{1/2}) \cdot (v - v(P)) \Big|_0 dp.$$
(18)

(iv) Finally,

$$R(v \cdot F(w)) = \int_0^{2\pi} dp \cdot \int_0^{r_0} v \cdot d(d^+(w))/dr \cdot dr \cdot (-k)^{1/2}.$$
 (19)

Substituting (i)-(iv) into (12) we get the following fundamental integral identity

$$R(w \cdot Lv) = \int_{0}^{2\pi} dp \cdot \int_{0}^{r_{0}} (v - v(P)) \cdot [d(d^{+}(w))/dr \cdot (-k)^{1/2} - d(w \cdot k'/2(-k)^{1/2})/dr] dr$$

$$- \int_{0}^{2\pi} w[(-k)^{1/2} \cdot d^{+}(v) - (v - v(P)) \cdot k'/2(-k)^{1/2}] \Big|_{Q} dp$$

$$- (-k)^{1/2} \cdot \int_{0}^{2\pi} (v - v(P)) \cdot d^{+}(w) \Big|_{Q} dp.$$
(20)

THEOREM 1. Assume that $v(r, p, t) \in C^2(\overline{D})$ satisfies the differential inequality $Lv = F_0 \le 0$, and that $v(r, p, T_0) = 0$, $v_t(r, p, T_0) = h(r, p) \le 0$, where D is defined above, and assume the following condition:

$$d(w \cdot k'/2(-k)^{1/2})/dr - d(d^{+}(w))/dr \cdot (-k)^{1/2} \geqslant 0,$$
 (21)

and (+). Then $v(r, p, t) \leq 0$ in D.

Proof. Let P be the point with the smallest t-coordinate T for which v vanishes. The identity (20) implies

$$0 \geqslant -\int_{0}^{2\pi} w \cdot v_{t} \bigg|_{Q} dp, \tag{22}$$

which is a contradiction. By continuity v cannot become positive even when $v_t \le 0$ is not strict. Therefore, under the condition (+) and condition (21) the operator L has a maximum property in D. Q.E.D.

THEOREM 2. Assume that $v(r, p, t) \in C^2(\overline{D})$ satisfies the differential inequality

$$Lv = k(t) \cdot (v_{rr} + (1/r^2) \cdot v_{pp}) + (1/r) \cdot k(t) \cdot v_r + v_{tt} + a(r, p, t) \cdot v_r + b(r, p, t) \cdot v + c(r, p, t) \cdot v_t + m(r, p, t) \cdot v = F_0^0(r, p, t),$$
(23)

where a, b, c, and m are continuously differentiable functions of the independent variables r, p, t in D described above, and that v(r, p, t) = 0, $v_t(r, p, t) \le 0$, $F_0^0 \in C^0(\overline{D})$. Assume, in addition, the conditions

$$d\left[w\cdot\left(k'/2(-k)^{1/2}+\left(a-\int_{0}^{r}a_{r}\cdot dr\right)\right)\right]/dr$$

$$-d(d^{+}(w))/dr\cdot(-k)^{1/2}\geqslant0,$$
(24)

$$c = k^{-1} \cdot \int_0^r a \, dr - (-k)^{-1/2} \cdot \left(a - \int_0^r a_r \, dr \right), \tag{25}$$

$$b_p - m + \int_0^r (a)_p/2k \, dr \geqslant 0,$$
 (26)

$$w = r^{1/2} \cdot (-k)^{1/4} \cdot \exp\left(\int_0^r a/2k \cdot dr\right),\tag{27}$$

and (+). Then $v(r, p, t) \leq 0$ in D.

Proof. We prove in the same way as in the case of (20) that the following fundamental integral identity holds, as well:

$$R(w \cdot Lv) = \int_0^{2\pi} dp \cdot \int_0^{r_0} (v - v(P)) \cdot \left[\frac{d(d^+(w))}{dr} \cdot (-k)^{1/2} - \frac{d(wk'/2(-k)^{1/2} + \left(a - \int_0^r a_r \cdot dr\right)}{dr} \right] dr$$

$$+ \int_{0}^{2\pi} dp \cdot \int_{0}^{r_{0}} v \cdot (m \cdot w - (w \cdot b)_{p}) dr - \int_{0}^{2\pi} w \left[d^{+}(v) \cdot (-k)^{1/2} - \left(k'/2(-k)^{1/2} + \left(a - \int_{0}^{r} a_{r} dr \right) \right) \cdot (v - v(P)) \right] \Big|_{Q} dp$$

$$- (-k)^{1/2} \cdot \int_{0}^{2\pi} (v - v(P)) \cdot d^{+}(w) \Big|_{Q} dp. \tag{28}$$

The proof now is obvious.

O.E.D.

Remark. To have $v_i < 0$ given $v_i \le 0$, we choose

$$v_0=v(r,\,p,\,t)-c_1\cdot\exp(c_2\cdot t)<0,\qquad\text{for}\quad c_i,\,i=1,\,2,\,\text{both positive},$$
 such that $c_2^2+c_2\cdot c+m>0.$

2. Maximum Principle in \mathbb{R}^{n+1} $(n \ge 2)$

Consider the hyperbolic equation

$$Lu = k(t) \cdot \sum_{i=1}^{n} u_{x_i x_i} + u_{ti} = f(x, t) \in C^0(\overline{D}),$$
 (29)

where $x = (x_1, x_2, ..., x_n)$ and the domain D is defined as

$$D = \left\{ (x, t) \colon T_0 \leqslant t \leqslant T < 0, \sum_{i=1}^n x_i^2 < \left(\int_t^T (-k(s))^{1/2} ds \right)^2 \right\}.$$

Let S_0 be the portion of the boundary of D, which lies in the plane $t = T_0$, and S_4 be the remainder of the boundary G of G, which is a characteristic conoid with respect to (29).

THEOREM 3. Assume that $v(r, p, q, t) \in C^2(\overline{D})$ satisfies the differential inequality

$$Lv = k(t) \cdot \left(v_{rr} + g^{-1} \left(\frac{\partial (g_0 v_p / r^2)}{\partial p} + \sum_{i=1}^{n-2} \frac{\partial (g_i v_{q_i})}{\partial q_i} \right) \right)$$

$$+ \left[(n-1)/r \right] \cdot k(t) \cdot v_r + v_{tt} + a_1(r, p, q, t) \cdot v_r$$

$$+ a_2(r, p, q, t) \cdot v + \sum_{i=1}^{n-2} a_{i+2}(r, p, q, t) \cdot v_{q_i}$$

$$+ b(r, p, q, t) \cdot v_t + m(r, p, q, t) \cdot v = F(r, p, q, t) \leq 0,$$
(30)

where a_i , i=1,2,...,n, b, and m are continuously differentiable functions of the independent variables r, p, q, t in D described above, and that v(r,p,q,t)=0, $v_t(r,p,q,t)\leqslant 0$, $F\in C^0(\overline{D})$, and

$$x_{1} = r \cdot \cos p \cdot \sin q_{1} \cdot \sin q_{2} \cdots \sin q_{n-2},$$

$$x_{2} = r \cdot \sin p \cdot \sin q_{1} \cdot \sin q_{2} \cdots \sin q_{n-2},$$

$$\vdots$$

$$x_{n-1} = r \cdot \cos q_{n-3} \cdot \sin q_{n-2},$$

$$x_{n} = r \cdot \cos q_{n-2}, \quad p \in [0, 2\pi],$$

$$q = (q_{1}, q_{2}, ..., q_{n-2}), \quad q_{i} \in [0, \pi], \quad i = 1, 2, ..., n-2,$$

$$g = \sin q_{1} \cdot \sin^{2} q_{2} \cdots \sin^{n-2} q_{n-2} = g_{n-2},$$

$$g_{0} = \csc q_{1} \cdot \sin q_{3} \cdot \sin^{2} q_{4} \cdots \sin^{n-4} q_{n-2},$$

$$g_{1} = \sin q_{1} \cdot \sin q_{3} \cdot \sin^{2} q_{4} \cdots \sin^{n-4} q_{n-2},$$

$$g_{2} = \sin q_{1} \cdot \sin^{2} q_{2} \cdot \sin q_{3} \cdot \sin^{2} q_{4} \cdots \sin^{n-4} q_{n-2},$$

$$g_{3} = \sin q_{1} \cdot \sin^{2} q_{2} \cdot \sin^{3} q_{3} \cdot \sin^{2} q_{4} \cdot \sin^{3} q_{5} \cdots \sin^{n-4} q_{n-2},$$

$$g_{n-3} = \sin q_{1} \cdot \sin^{2} q_{2} \cdots \sin^{n-3} q_{n-3} \cdot \sin^{n-4} q_{n-2},$$

$$g_{n-2} = g.$$

Assume, in addition the conditions

$$d\left[w \cdot \left(k'/2(-k)^{1/2} + \left(a_1 - \int_0^r (a_1)_r dr\right) + (-k)^{1/2} \cdot \left(b - \int_0^r b_r dr\right)\right)\right] / dr - (-k)^{1/2} \cdot d(d^+(w) + b \cdot w)/dr \geqslant 0,$$
(31)

$$[k'/2(-k)^{1/2}] + \left(a_1 - \int_0^r (a_1)_r dr\right) + (-k)^{1/2} \cdot \left(b - \int_0^r b_r dr\right)$$

$$= (-k)^{1/2} \cdot \partial \left(\int_0^r (a_1 + (-k)^{1/2} \cdot b)/k \cdot dr\right] / \partial t - k'/2k, \tag{32}$$

$$\sum_{i=1}^{n-2} \int_{0}^{r} ((a_{1})_{q_{i}} + (-k)^{1/2} \cdot b_{q_{i}})/2k \, dr + (a_{2})_{p} - m + \sum_{i=1}^{n-2} (a_{i+2})_{q_{i}} + \int_{0}^{r} ((a_{1})_{p} + (-k)^{1/2} \cdot b_{p})/2k \, dr \ge 0,$$
(33)

$$w = r^{(n-1)/2} \cdot (-k)^{-1/4} \cdot \exp\left(\int_0^r (a_1 + (-k)^{1/2} \cdot b)/2k \, dr\right) \cdot \sin q_1$$
$$\cdot \sin^2 q_2 \cdots \sin^{n-2} q_{n-2}, \tag{34}$$

$$d^{+} = \partial/\partial t + (-k)^{1/2} \cdot \partial/\partial r, \tag{35}$$

and

$$\int_{p=0}^{2\pi} v_{pp} dp = \int_{q_i=0}^{\pi} v_{q_i q_i} dq_i = 0, \qquad i = 1, 2, ..., n-2, \text{ on } S_4^e,$$
 (36)

where S_4^e is the part of S_4 , such that $r_0 > e$. Then $v(r, p, q, t) \leq 0$ in D.

Proof. We define w as in (34) in order that the expression $-2k \cdot w_r + (n-1) \cdot k \cdot w/r$ vanishes if $a_1 = b = 0$. Let us assume the operators

$$R_e v = \int_a^{r_0} dr \cdot \oint v(r, p, q, t) dS \qquad \text{on } S_4^e, \tag{37}$$

$$dS = g \cdot dq_1 \cdot dq_2 \cdots dq_{n-2}, \tag{38}$$

and

$$Rv = \lim_{e \to 0} R_e v,\tag{39}$$

when the limit exists. Then the proof follows.

Q.E.D.

REFERENCES

- A. DOUGLIS, The problem of Cauchy for linear hyperbolic equations of 2nd order, Comm. Pure Appl. Math. 7 (1954), 271-295.
- M. H. PROTTER AND H. F. WEINBERGER, "Maximum Properties in Differential Equations of Second Order," Prentice-Hall, Englewood Cliffs, N.J.
- D. SATHER, Maximum properties of Cauchy's problem in 3-dimensional space-time, Arch. Rational Mech. Anal. 18 (1965), 14-26.
- D. SATHER, A maximum property of Cauchy's problem in n-dimensional space-time, Arch. Rational Mech. Anal. 18 (1965), 27-38.
- H. F. Weinberger, A maximum property of Cauchy's problem in 3-dimensional spacetime, Proc. Symp. Pure Math. IV. Partial differential equations, Proc. Amer. Math. Soc. (1961), 91-99.