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PREFACE

This Euler’s  commemorating volume entitled  : 
Functional Equations , Integral Equations, Differential Equations and Applications  (F. I. D. A),
is a forum for exchanging ideas among eminent mathematicians and physicists,  from many parts of 
the world, as a tribute to the tri-centennial birthday anniversary of Leonhard  Paul  Euler (April 
15,1707 A.D., b. in Basel – September 18,  1783 A.D., d.  in St. Petersburg). 
This  998  pages long collection is composed of outstanding contributions in mathematical and  
physical equations and inequalities and other fields of mathematical, physical and life sciences.  
In addition, this anniversary volume is  unique in its target, as it strives to represent a broad and highly 
selected participation from across and beyond the scientific and technological country regions. It is 
intended to boost the cooperation among mathematicians and physicists working on a broad variety of 
pure and applied mathematical areas. 
Moreover, this new volume will provide readers and especially researchers with a detailed overview of 
many significant insights through advanced developments on  Euler’s  mathematics and physics. This 
transatlantic collection of mathematical  ideas and methods comprises a wide area of applications in 
which equations,  inequalities and computational techniques pertinent to their solutions  play a core 
role.
Euler’s influence has been tremendous on our everyday life, because new tools have been 
developed, and revolutionary research results have been achieved , bringing scientists of exact 
sciences even closer, by fostering the emergence of new approaches, techniques and perspectives. 
The central scope of this commemorating 300birthday anniversary volume is broad, by deeper  
looking at the impact and the ultimate role of mathematical and physical challenges, both inside and 
outside research institutes, scientific foundations and organizations. 
We have recently observed a more rapid development in the areas of research of Euler worldwide.  
Leonhard P. Euler (1707-1783) was actually the most influential mathematician and prolific writer of 
the eighteenth century, by having contributed to almost all the fundamental fields of mathematics and 
mathematical physics. In calculus of variations, according to C. Caratheodory, Euler’s work: Methodus 
inveniendi lineas curves…(1740 A.D.) was one of the most beautiful works ever written. Euler  was 
dubbed Analysis Incarnate by his peers for his incredible ability. He was especially great from his 
writings and that  produced more academic work on mathematics than anyone. He could produce an 
entire new mathematical paper in about thirty minutes and had huge piles of his works lying on his 
desk. It was not uncommon to find Analysis Incarnate ruminating over a new subject with a child on 
his lap. 
This volume is suitable for graduate students and researchers interested in functional equations, 
integral equations and differential equations and would make an ideal supplementary reading or 
independent study research text.  
This item will also be of interest to those working in other areas of mathematics and physics. It is a 
work of great interest and enjoyable read as well as unique in market. 

This Euler’s volume (F. I. D. A.) consists of six (6) issues containing various parts of contemporary 
pure and applied mathematics with emphasis to Euler’s mathematics and physics. 
It contains  sixty eight  (68)  fundamental research  papers of  one hundred one (101) outstanding  
research contributors from  twenty seven (27) different countries. 
In particular, these contributors come from: 
Algerie (1 contributor); Belgique (2); Bosnia and Herzegovina (2); Brazil (2); Bulgaria (3); China (9); 
Egypt (1); France (3); Greece (2); India (8); Iran (3); Italy (1); Japan (7); Korea (7); Morocco (3); Oman 
(2); Poland (3); R. O. Belarus (8); Romania (2); Russia (3); Saudi Arabia (1); Serbia and Montenegro 
(5); The Netherlands (3); U. A. Emirates (1);U. K. (2); U. S. A.  (15); Uzbekistan (2). 

First Issue (F. E. I.)  consisting of  14 research papers, 181 pages long, contains various parts of  
Functional Equations and Inequalities,
namely:
Euler’s Life and Work, Ulam stability, Hyers – Ulam stability  and Ulam – Gavruta - Rassias stability of 
functional equations, Euler – Lagrange type  and  Euler – Lagrange – Rassias quadratic mappings in 
Banach and Hilbert spaces, Aleksandrov and isometry Ulam stability problems, stability of Pexider 
and Drygas functional equations, alternative of fixed point, and Hyers - Ulam stability of differential 
equations.   
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Second Issue (MT. PDE)  consisting of  9  research papers, 117 pages long, contains various parts of  
Mixed Type Partial Differential Equations,
namely:
Tricomi - Protter problem of nD mixed type partial differential equations, solutions of generalized 
Rassias’ equation, degenerated elliptic equations, mixed type oblique derivative problem, Cauchy 
problem for Euler – Poisson - Darboux equation,  non - local boundary value problems, non-
uniqueness of transonic flow past a flattened airfoil, multiplier methods for mixed type equations. 
Third Issue (F . D . E.)  consisting of  9 research papers, 146  pages long, contains various parts of  
Functional and Differential Equations,
namely:
Iterative method for singular Sturm - Liouville problems, Euler type boundary value problems in 
quantum mechanics, positive solutions of boundary value problems, controllability of impulsive 
functional semi-linear differential inclusions in Frechet spaces,  asymptotic properties of solutions of  
the Emden-Fowler equation, comparison theorems for perturbed half-linear Euler differential 
equations, almost sure asymptotic estimations for solutions of stochastic differential delay equations,  
difference equations inspired by Euler’s discretization method, extended oligopoly models. 
Fourth Issue (D. E. I.)  consisting of  9  research papers, 160 pages long, contains various parts of  
Differential Equations and Inequalities,
namely:
New spaces with wavelets and multi-fractal analysis, mathematical modeling of flow control and wind 
forces, free convection in conducting fluids, distributions in spaces, strong stability of operator– 
differential equations, slope – bounding procedure, sinc methods and PDE, Fourier type analysis and 
quantum mechanics. 
Fifth Issue (DS. IDE.)  consisting of  9 research papers, 159 pages long, contains various parts of  
Dynamical Systems and Integro - Differential  Equations,
namely:
Semi-global analysis of dynamical systems, nonlinear functional-differential and integral equations, 
optimal control of dynamical systems, analytical and numerical solutions of singular integral 
equations, chaos control of classes of complex dynamical systems, second order integro-differential 
equation, integro-differential equations with variational derivatives generated by random partial 
integral equations, inequalities for positive operators, strong convergence for a family of non-
expansive mappings. 
Sixth  Issue (M. T. A.)  consisting of  18 research papers, 231 pages long, contains various parts of  
Mathematical Topics and Applications,
namely:
Maximal subgroups and theta pairs in a group, Euler constants on algebraic number fields, 
characterization of modulated Cox measures on topological spaces, hyper-surfaces with flat r-mean 
curvature and Ribaucour transformations, Leonhard Euler’s methods and ideas live on in the 
thermodynamic hierarchical theory of biological evolution, zeroes of  L-series in characteristic  p,  
Beck’s graphs, best co-positive approximation function, Convexity in the theory of the Gamma 
function, analytical and differential – algebraic properties of Gamma function, Ramanujan’s 
summation formula and related identities, ill – posed problems, zeros of the q-analogues of Euler 
polynomials, Eulerian and other integral representations for some families of hyper-geometric 
polynomials, group C*-algebras and their stable rank, complementaries of Greek means to Gini 
means, class of three- parameter weighted means, research for Bernoulli’s inequality.  

Deep gratitude is due to all those  Guest Editors and Contributors who helped me to carry out this 
intricate project. My warm thanks to my family: 
Matina- Mathematics Ph. D. candidate  of  the Strathclyde University (Glasgow, United  Kingdom), 
Katia- Senior student of Archaeology and History of Art of the National and Capodistrian University of 
Athens (Greece), and Vassiliki- M. B. A. of the University of La Verne, Marketing Manager in a  FMCG 
company (Greece). Finally  I express my special appreciation to: 
The Executive Editor of the International Journal of Applied  Mathematics & Statistics (IJAMAS)
Dr. Tanuja Srivastava for her nice cooperation and great patience. 

John Michael Rassias  

Special Editor-in-Chief of Euler’s volume F. I. D. A. – IJAMAS.
National and Capodistrian University of Athens, Greece 
E-mail: jrassias@primedu.uoa.gr; jrassias@tellas.gr 
URL: http://www.primedu.uoa.gr/~jrassias/
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An Iterative Method for the Computation of Eigenpairs of
Singular Sturm-Liouville Problems

B.S. Attili

Mathematical Sciences Department
United Arab Emirates University

P. O. Box 17551, Al-Ain, UAE
b.attili@uaeu.ac.ae

ABSTRACT

We propose an iterative method coupled with simple shooting for computing the eigenpairs

of singular Sturm-Liouville problems. The problem is first transformed into a regular initial

value problem which is then solved using standard numerical methods. The accuracy of

the proposed iterative method per step is the same as that of the IVP solver. Numerical

examples will be presented to demonstrate the efficiency of the method.

Keywords: Eigenpairs, Sturm-Liouville, Singular B. V. P’s.

2000 Mathematics Subject Classification: 65N25.

1 Introduction

It is well known that the study of Sturmian theory is an important aid in solving numerous

problems in mathematical physics, thermodynamics, electrostatics, quantum mechanics and

statistics. These sciences are rich source of the eigenvalue problems that are termed ”Sturm-

Liouville” two point boundary value problems of the form

− (py′
)′ + qy = λwy (1.1)

on some interval (a, b) of the real line subject to some boundary conditions. Very often and in

applications singularities are encountered at one or more points in that interval. For example

equations having the form given in (1.1) appears when separation of variables is attempted on

the heat equation in a solid sphere or the electrostatic potential in the sphere. The source of

the singularity in this case is the vanishing of the function p at the endpoints.

When applied to the singular problems of the form (1.1), standard numerical methods designed

for regular ordinary differential equations will have difficulties in terms of convergence and

suffer from a loss of accuracy. In some cases they may even fail to converge [2]. For that

reason, special numerical methods have been proposed to handle the singular problem. Such

proposed methods converge, some with a lesser order of convergence due to the singularity

and some under various assumptions on the data, may retain the standard rate of convergence

in the regular case. We refer to [3, 6, 8] and the references therein for more on this point.
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Many authors considered the Sturm-Liouville problem both the singular and the regular cases.

For example polynomial Sturm-Liouville problems were considered by [1], singular problems

with rational coefficients was considered by [10] while regular and singular problems were

studied extensively by [11, 12, 13, 16, 17]. Some theoretical results can be found for example

[2, 7, 14, 15].

In this work we propose an iterative method, coupled with simple shooting for the numerical

solution of (1.1). In each step of the iteration we solve a regular ODE and, therefore, may use

standard numerical methods. Thus the accuracy of the proposed iterative method per step is

the same as the accuracy of the numerical ODE solver used, see [8].

The outline of the paper is as follows. In Section 2 some preliminary results are given to set up

the terminology and state the class of the boundary value problems to be numerically treated.

We discuss the applicability of the simple shooting method to this class of singular boundary

value problems in Section 3. In Section 4 we introduce the iterative method and discuss its

justification. Some numerical examples are given in the last section.

2 Preliminaries

Before considering the Sturm-Liouville eigenvalue problem further, it is worth mentioning that

a general second order linear ordinary differential equation of the form

P (x)u′′ + Q(x)u′ + (R(x) + λ)u = 0

can be transformed to Sturm-Liouville problem which has the form

− (p(x)u′)′ + [q(x) + λw(x)]u = 0. (2.1)

This can be done by first dividing by P (x) and then multiplying by the integrating factor given

by e
∫ x Q

P
dt.

It is amazing how much information one can infer about the eigenvalues and eigenfunctions

of a Surm-Liouville problem without actually solving the differential equation explicitly. Thus

from very general and simple considerations, one can discover that the eigenvalues are real,

are discrete if the domain is finite, have a lowest member, increase without limit, and that the

corresponding eigenfunctions are orthogonal to each other, oscillate, oscillate more rapidly

the larger the eigenvalue, to mention just a few pieces of useful information. In practice this

kind of information is quite often the primary thing of interest. In other words, the philosophy

quite often is that one verifies that a certain system is of the Surm-Liouville types, thus having

at one’s immediate disposal a concomitant list of properties of the system, properties whose

qualitative nature is quite sufficient to answer the questions one had about the system in the

first place. The standard existence theory for solutions of the differential equation given by

(2.1) can be found in for example Reid [15] and Naimark [14]

In considering this equation (2.1), which can be written in the form

�(u) = λw(x)u on I, (2.2)

where

�(u) = − (p(x)u′)′ + q(x)u

Int. J. Appl. Math. Stat.; Vol. 9, No. J07, June 2007 9



I = (a, b), −∞ < a < b < ∞,

we will make the following assumptions:

p, q, w : I → R. (2.3)

p−1, q, w ∈ Lloc (I) (2.4)

p(x) > 0, w(x) > 0 almost everywhere on I. (2.5)

We mean by Lloc (I) the set of real-valued functions on I which are Lebesgue integrable on

each compact subintervals of I. When additional assumptions are needed they will be speci-

fied. Standard terminology associated with singular differential operators will be used here.

Definition 2.1. The endpoint a ∈ I is said to be regular if a is finite and p−1, q, w ∈ L[a, c] for

some c ∈ (a, b). An endpoint is called singular if it is not singular.

Note that this definition implies that an end point is singular if it is infinite or the end point is

finite but one of p−1, q, w is not in L[a, c] in any neighborhood of the endpoint.

By a solution of (2.2) we mean a function u and pu′ are both absolutely continuous on all

compact subintervals of I (the classical derivative u′ may not be absolutely continuous) and

in this case (2.2) holds a.e. on I and its left hand side is defined a.e. on I. The reader is

referred to for details. Throughout this paper we will assume that the endpoint a is regular and

the endpoint b to be singular, limit circle (LC). Under the foregoing assumptions, all solutions

of (2.2) are L2
w (I) . For x ∈ I and H,Q : I → C define the ”generalized” Wronskian by

Wx (H,Q) =

∣∣∣∣∣ H (x) Q (x)
p (x) H ′ (x) p (x) Q′ (x)

∣∣∣∣∣ . (2.6)

This Wonskian is needed since for all solutions H,Q, we have the well known Green’s formula∫ d

c
(H�(Q) − Q�(H)) = Wx (H,Q) |dc ; c, d ∈ I.

Note that if Wx (H,Q) = 1, then H and Q are in L2
w (I) . If we let

U =

(
u1

pu2

)
, P =

(
0 1/p

q 0

)
and W =

(
0 0
w 0

)
,

then (
H (x) Q (x)

p (x) H ′ (x) p (x) Q′ (x)

)
is a fundamental solution matrix of

Ú = (P − λW ) U.

Having this, choose real valued solutions θ(x, λ) and ϕ (x, λ) satisfying the initial conditions

θ(a, λ) = p (a) ϕ′(a, λ) = 1, (2.7)

p (a) θ′(a, λ) = ϕ(a, λ) = 0, (2.8)

10  International Journal of Applied Mathematics & Statistics



and Wx (θ, ϕ) = 1 for all x ∈ I. Such choice is possible since for example θ(x, λ) and ϕ (x, λ)
can be two linearly independent solutions of (2.2) for any real λ. Now, there exists a meromor-

phic function m(λ), known as the Weyle’s m-function, with simple poles on the real axis such

that the linear combination

ψ(x, λ) = θ(x, λ) + m(λ)ϕ (x, λ)

satisfies

Wb− (u, ψ) = 0, (2.9)

where u is a solution of,

(� − λw)u = wf

for any f ∈ L2
w (I) as long as λ is not a pole of m(λ). Condition (2.9) is the only boundary

condition that can be assumed at b, similar discussions can be found in [8], [11] and [12],

an arbitrary boundary condition may be imposed at a. As mentioned before, assuming that

λ = 0 is not a pole of m(λ) is equivalent to the solvability of (2.2) subject to (2.9). This means

this assumption is needed and hence assumed from now on. As a result the boundary value

problem can be stated as follows:

For a given f ∈ L2
w (I) , find u ∈ L2

w (I) such that

�(u) = wf on I,

u(a) = A Wb− (u, ψ) = 0.
(2.10)

3 The Shooting Method

The shooting method constructs a solution of a boundary value problem by iteratively solving

a sequence of initial value problems where the initial conditions are modified in each step.

Since the problem we are considering is linear, the shooting method usually converges in

two iterations. We will review the simple shooting method for solving systems of ODEs. In

particular, we will present a version of the method that is particularly useful to us in the next

section.

Suppose we are required to solve a boundary value problem of the form

Y ′ = PY + G on I (3.1)

where Y =

(
y1

y2

)
, P ∈ M2(L�oc(I)) and G ∈ M2,1(L�oc(I)), together with the boundary

conditions

y1(a) = α, y2(b) = γ. (3.2)

The shooting method starts by solving the initial value problem (IVP) consisting of (3.1) together

with the initial conditions

Y (a) =

(
α

β

)
(3.3)

for arbitrary β. Then we try to fix β such that the boundary condition y2(b) = γ is satisfied. In

the linear case, β can be exactly determined. We will use the notation Y (x, η) for the solution
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of the IVP (3.1) such that Y (a, η) = η. Assuming all the necessary conditions for the existence

and uniqueness of solutions of the IVP (3.1), (3.3), β can be determined as follows.

Let β be an arbitrary real number

1. Set η0 =

(
α

β

)
.

2. Solve the IVPs
Y ′ = PY,

Y (a) = ei, i = 1, 2

}
(3.4)

where ei is the i-th standard unit vector in R2.

2.1 Set

Φ = (Y (b, e1) Y (b, e2)) (3.5)

3. Solve
Y ′ = PY + G,

Y (a) = 0

}
. (3.6)

3.1 Set

C = Φη0 + Y (b, 0). (3.7)

4. Set η =

(
α

β

)
, C =

(
α

γ

)
where α, β are computed from

Φ(η − η0) = C − C (3.8)

5. The solution of the boundary value problem (3.1), (3.2) is given by

Y (x) = (Y (x, e1)Y (x, e2))η + Y (x, 0). (3.9)

Now Y (x) solves (3.1) since if we differentiate both sides of (3.9) and using (3.4) and (3.6) we

get

Y ′(x) = P (Y (x, e1)Y (x, e2))η + PY (x, 0) + G

= P [(Y (x, e1)Y (x, e2))η + Y (x, 0)] + G

= PY (x) + G

i.e. Y (x) is a solution of (3.1). To satisfy the boundary conditions; that is, y1(a) = α, y2(b) = γ.

Using the initial conditions in (3.4), (3.5) and (3.6) we get

Y (a) = (Y (a, e1)Y (a, e2)η = η.

Hence y1(a) = α. Using (3.9), (3.5), (3.7) and (3.8) we get

Y (b) = Φη + Y (b, 0)

= Φ(η − η0) + C

= C,

so that y2(b) = γ. This means to obtain the solution of the boundary value problem (3.1), (3.2)

will requires solving the three initial value problems given in (3.4) and (3.6).
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To apply the shooting method to the singular problem, we proceed as in the regular shooting

method; that is, find the solution of the initial value problem

�(u) = wf on I,

u(a) = A pu′ (a) = s
(3.10)

and try to fix s such that Wb− (u, ψ) = 0. To be able to use an initial value solver like Runge-

Kutta method, transform (3.10) into a first order system that has the form

ú1 = u2 − ṕ

p
u1

ú2 =
q

p
u1 − wf

subject to the initial conditions

u1(a) = pA, u2(a) = s.

Using the method of variation of parameters, we can write the solution of (3.10) as

u(x) = Aψ(x) + sϕ(x) + ϕ(x)
∫ x

a
ψ(t)f(t)w(t)dt + ψ(x)

∫ b

x
ϕ(t)f(t)w(t)dt.

(Here, ψ(x) = ψ(x, 0), ... etc.) Therefore,

Wb− (u, ψ) = AWb− (ψ, ψ) + sWb− (ϕ, ψ) + Wb− (ϕ, ψ)
∫ b

a
ψ(t)f(t)w(t)dt

= −s −
∫ b

a
ψ(t)f(t)w(t)dt.

Thus, letting τ = −Wb− (u, ψ) − s and u1 the solution of (3.10) with s replaced by τ we get

Wb− (u, ψ) = 0. In other words, u1 solves the boundary value problem (2.10) and the shooting

method converges in two steps.

4 The Iterative Method

We will employ the shooting method presented in the previous section to reduce the BVP (2.10)

to a regular IVP given by (3.10) away from the singular the singular point b. When near b, the

solution may become unbounded or oscillatory. This poses a difficult problem which needs

curing. Notice that for a certain class of problems, while the solution u may become infinite or

oscillates, the quantity pu remains finite or vanishes at b. We will take advantage of this fact to

develop an iterative method for solving the IVP given by (3.10). Assuming that the function p

is differentiable on I. Introduce the change of variables y1 = pu and y2 = pu′ and rewrite the

boundary value problem as the system

Y ′ = MY + Nu + F, (4.1)

where

Y =

(
y1

y2

)
, M =

(
0 1
0 0

)
, N =

(
p′

q

)
and F =

(
0
−f

)
. (4.2)
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Then, assuming that u is known for the moment, equation (4.1) together with the initial condition

Y (a) = η ≡
(

pM

β

)
, (4.3)

where β is arbitrary, form a regular initial value problem amenable to numerical methods for

regular IVPs. The boundary value problem (2.10) is equivalent to the following problem: Find

u, β and Y such that

(a) Y satisfies (4.1), (4.3)

(b) y2(b−) = 0

(c) y1(x) = p(x)u(x) for all x ∈ I.

According to the setting (4.1), (4.3), we will derive the iterative method for the solution of the

IVP. To do so rewrite (4.1) as (
eMxY

)′
= eMx(Nu + F ) (4.4)

and let

z = e−MxY.

Then (3.1), (3.3) are transformed into

z′ = P (x)z + F̃ ,

z(a) = η̃

}
(4.5)

where

P (x) =
1

p(x)
e−MxN(x)

(
1
0

)
eMx =

⎛⎝ p′−xq
p

xp′−x2q
p

q
p

xq
p

⎞⎠ ,

F̃ = e−MxF

and

η̃ = e−Maη.

Thus our iterative method is equivalent to

z0(a) = η̃

z′n+1 = p(x)zn + F̃

zn+1(a) = η̃

which in turn is equivalent to

zn+1(x) = η̃ +
∫ x

a
[p(s)zn(s) + F̃ (s)]ds, x ∈ I. (4.6)

This discussion leads to the following Algorithm:

Suppose u0 is an initial guess satisfying the initial conditions at α and ε is a given tolerance.

(1) For n = 0, 1, 2, . . . do
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(2) Solve
Y ′

n+1 = AYn+1 + Bun + F,

Yn+1(a) = η

}
(3) If ‖Yn+1 − Yn‖ < ε, then a solution is obtained. Stop;

else, set n = n + 1, un = 1
py

(n)
1 and go to (2).

Finally, convergence of the scheme given by (4.6) follows from the following theorem whose

proof can be found in [16] p. 5.

Theorem 4.1. Let I = [a, b), p(t) ∈ M2(L�oc(I)), F̃ ∈ M2,1(Ll0c(I)). Then the iterative process

(4.6) converges uniformly on any compact subinterval of I to the unique solution of the IVP

(4.5).

One final remark is that from a computational point of view, the singularity of the problem (3.10)

is dealt with in a purely algebraic way, namely, in solving the equation

pun+1 = y1,n+1

for un+1.

Since p(b) = 0 and u(b−) exists, then y1(b−) = 0. Therefore, in order to find the value of un+1(b)
one may use an extrapolation method of order comparable to the order of the numerical method

used to solve the IVP numerically. The same approach as in the previous remark can be used

to find values of u in case p(x) has zeros inside the interval I. Again since this is done

algebraically, the cost is minimal.

5 Numerical Results:

In this section, we will present some numerical examples to illustrate the theory developed in

the previous sections. The initial value problems involved will be solved using Runge-Kutta

Schemes of order 4 (RK-4) and in some cases of order 2 (RK-2).

Example 1. (The Legendre Equation). This is the equation

− ((1 − x2
)
ý(x)

)́
+

1
4
y(x) = λy(x); 0 < x < 1,

with I = (0, 1). For λ = 1
4 two linearly independent solutions are (see (2.7) and (2.8))

θ(x) = 1 and φ(x) = ln
1 + x

1 − x
; xεI

with boundary conditions

y(0) = 0 and W (y, ϕ)(1−) = 0.

This is the classical case whose eigenfunctions are the classical Legendre polynomials and

whose eigenvalues are known to be

λn = n(n + 1) +
1
4
; n = 0, 1, 2, 3, .....
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Table 4.1 shows the computed eigenvalues with the value of the Wronskian using the iterative

method in addition to results of Baily et al [4, 5] using an advanced code SLEIGN2.

n λ−iterative W (y, ϕ)(1−) λ−SLEIGN2

0 0.2500000 0.0 0.2500000

1 2.250027 6.897943-8 2.250000

2 6.250152 3.605173-8 6.250000

The computed values were done with a step size h = 1
16 and the initial value problems were

solved using Runge-Kutta of order 4. The iterative method also produced eigenvalues for n > 3
but we reported the first 3 for the sake of comparison.

Example 2. The Latzko equation: It has the form

− 1
x7

(py′)′ + y = λy; 0 < x < 1

with p(x) =
(
1 − x7

)
. This is a historical differential equation associated with a heat conduction

problem studied for the first time by Latzko in 1920. For details on the problem see Fichera [9].

The endpoint 0 is clearly regular while the endpoint 1 is singular since 1
0(1− x7)−1dx = ∞. For

boundary conditions we can take

θ(x) = 1 and φ(x) = ln(
1

x − 1
), I = (0, 1).

This means the boundary conditions are

y(0) = 0; W (y, ψ)(1−) = 0.

We solve the above singular boundary value problem for the eigenvalues λ using Algorithm 1.

n λ−iterative λ−SLEIGN2 λ−Durfee W (y, ψ)(1−)

0 8.727820 8.7274702 8.72747 3.634088-8

1 152.4451 152.423014 152.423 6.131883-7

2 435.1673 435.060768 435.060 -3.656848-7

3 855.9708 855.681700 855.680 -9.60201-7

Again the computed values were done with a step size h = 1
16 and the initial value problems

were solved using Runge-Kutta of order 4. The solutions corresponding to the first two eigen-

values are shown in figures 5.1 and 5.2.

ftbpF5.5677in3.3261in0infig1.gifftbpF5.8297in3.7455in0infig2.gif
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ABSTRACT

We study a boundary value problem consisting of a second-order q-difference equation to-

gether with Dirichlet boundary conditions. Separation of variables leads us to an eigenvalue

problem for a second-order Euler q-difference equation. We determine the exact number of

eigenvalues.
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1 Introduction

While in ordinary calculus we study differential equations and in discrete calculus we study

difference equations, we study so-called q-difference equations in quantum calculus. Let

q > 1 and T = {qk : k ∈ N0}. (1.1)

For a function u : T × T → R, we define the Jackson derivatives of u with respect to the first

and the second variable, respectively, by

ux(x, t) =
u(qx, t) − u(x, t)

(q − 1)x
and ut(x, t) =

u(x, qt) − u(x, t)
(q − 1)t

.

Let N ∈ N. In this paper, we consider the boundary value problem

x2uxx = t2utt, u(1, t) = u(qN , t) = 0, (1.2)

which is a second-order q-difference equation together with Dirichlet boundary conditions. For

material on quantum calculus we refer to the monograph by Kac and Cheung (Kac and Cheung

2002), the paper by Bohner and Ünal (Bohner and Ünal 2005), and the books about dynamic

equations on time scales by Bohner and Peterson (Bohner and Peterson 2001, Bohner and

Peterson 2003).
∗Research supported by UMR’s OURE program
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Now we rewrite the second-order q-difference equation in (1.2) as a second-order q-recursion

relation. By the definition of the Jackson derivative, the second-order partial of u with respect

to x is given by

uxx(x, t) =
ux(qx, t) − ux(x, t)

(q − 1)x
. (1.3)

When we expand equation (1.3), we obtain

uxx(x, t) =
u(q2x,t)−u(qx,t)

(q−1)qx − u(qx,t)−u(x,t)
(q−1)x

(q − 1)x
.

Similarly we can compute the partial utt. Thus, the second-order q-difference equation in (1.2)

is equivalent to

x2

(
u(q2x, t) − (q + 1)u(qx, t) + qu(x, t)

x2

)
= t2

(
u(x, q2t) − (q + 1)u(x, qt) + qu(x, t)

t2

)
,

i.e.,

u(q2x, t) − (q + 1)u(qx, t) + qu(x, t) = u(x, q2t) − (q + 1)u(x, qt) + qu(x, t). (1.4)

The setup of this paper is as follows. In the next section, we use separation of variables to

arrive at a certain eigenvalue problem. Finally, in Section 3 we determine the eigenvalues and

the number of eigenvalues of the resulting eigenvalue problem. An example is given as well.

2 Separation of Variables

We let u(x, t) = f(x)g(t) so that u(qx, t) = f(qx)g(t) and u(q2x, t) = f(q2x)g(t). This is also

applied to the terms u(x, qt) and u(x, q2t). When we substitute these values into the partial

q-difference equation (1.4), we get

f(q2x)g(t) − (q + 1)f(qx)g(t) + qf(x)g(t) = f(x)g(q2t) − (q + 1)f(x)g(qt) + qf(x)g(t). (2.1)

Now we divide each side of (2.1) by f(x)g(t) to gather like terms and then set both sides equal

to a constant λ to arrive at

f(q2x) − (q + 1)f(qx) + qf(x)
f(x)

=
g(q2t) − (q + 1)g(qt) + qg(t)

g(t)
= λ. (2.2)

Hence, from (1.2) and (2.2), the eigenvalue problem for f is

f(q2x) − (q + 1)f(qx) + (q − λ)f(x) = 0, f(1) = f(qN ) = 0. (2.3)

The second-order q-difference equation in (2.3) is an Euler–Cauchy q-difference equation as

studied in (Bohner and Ünal 2005). We let f(x) = αlogq x, which in return gives us

f(qx) = αlogq qx = αf(x) and f(q2x) = f(q(qx)) = αf(qx) = α2f(x).

Now we make these substitutions into the Euler–Cauchy equation in (2.3) and get

α2f(x) − (q + 1)αf(x) + (q − λ)f(x) = 0.
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The characteristic equation therefore reads

α2 − (q + 1)α + (q − λ) = 0. (2.4)

We solve (2.4) for α and get

α =
q + 1 ±√(q + 1)2 − 4(q − λ)

2
=

q + 1
2

±
√(

q − 1
2

)2

+ λ.

Hence we let

α1 =
q + 1

2
+

√(
q − 1

2

)2

+ λ and α2 =
q + 1

2
−
√(

q − 1
2

)2

+ λ.

We distinguish the following three cases:

Case I. λ > −
(

q − 1
2

)2

;

Case II. λ = −
(

q − 1
2

)2

;

Case III. λ < −
(

q − 1
2

)2

.

The general solution of the Euler–Cauchy equation in (2.3) for each case is found in (Bohner

and Ünal 2005) as follows:

Case I: f(x) = c1α
logq x

1 + c2α
logq x

2 , (2.5)

Case II: f(x) = (c1 lnx + c2)
(

q + 1
2

)logq x

, (2.6)

Case III: f(x) = |α|logq x(c1 cos (θ logq x) + c2 sin (θ logq x)), (2.7)

where θ = arccos
(

Re α
|α|
)

and c1, c2 ∈ R.

3 Finding Eigenvalues

Our next step is to look at the three different cases and thus find the eigenvalues of (2.3).

Case I

We apply the first Dirichlet condition f(1) = 0 to (2.5) to obtain

f(1) = c1α
logq 1

1 + c2α
logq 1

2 = c1 + c2 = 0 so that c := c1 = −c2.

Now we use the relationship between c1 and c2 and apply it to the general solution and then

use the other Dirichlet condition f(qN ) = 0 to find

0 = f(qN ) = c

(
α

logq qN

1 − α
logq qN

2

)
= c

(
αN

1 − αN
2

)
.
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Since c = 0 results in the trivial solution, we shall discuss

αN
1 = αN

2 .

This can occur if α1 = α2 or (for even N ) if α1 = −α2. First, α1 = α2 implies

q + 1
2

+

√(
q − 1

2

)2

+ λ =
q + 1

2
−
√(

q − 1
2

)2

+ λ,

i.e.,

2

√(
q − 1

2

)2

+ λ = 0 so that λ = −
(

q − 1
2

)2

,

which is not a valid value for λ in Case I. Next, α1 = −α2 implies

q + 1
2

+

√(
q − 1

2

)2

+ λ = −q + 1
2

+

√(
q − 1

2

)2

+ λ

which results in q = −1, contradicting (1.1). Thus there are no eigenvalues in this case.

Case II

Now we look at the case where λ = −( q−1
2 )2 and use equation (2.6) with the first Dirichlet

condition to find

0 = f(1) = (c1 ln 1 + c2)
(

q + 1
2

)logq 1

= c2.

We let c := c1 and apply the second Dirichlet condition, which gives

0 = f(qN ) = c ln qN

(
q + 1

2

)logq qN

= cN ln q

(
q + 1

2

)N

.

For this to be true either c = 0, N = 0, q = 1, or q = −1, which would all not lead to any

eigenvalues. Hence there are no eigenvalues in this case also.

Case III

Finally we look at the case where λ < −( q−1
2 )2 and use equation (2.7) with the first Dirichlet

condition to find

0 = f(1) = |α|logq 1(c1 cos(θ logq 1) + c2 sin(θ logq 1)) = c1.

We let c := c2 and apply the other Dirichlet condition to obtain

0 = f(qN ) = |α|logq qN
(c sin(θ logq qN )) = c|α|N sin(θN). (3.1)

Note now that

|α| =
√

q − λ and θ = arccos
(

Re α

|α|
)

= arccos
(

q + 1
2
√

q − λ

)
.

Therefore we obtain from (3.1) that

0 = f(qN ) = c
√

q − λ
N

sin(θN). (3.2)
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When looking at (3.2), we can see that λ = q would work, but this is not in the range of values

we are looking at for this case. So we consider the only other possible solution, which is

sin(θN) = 0. This leads us to θmN = mπ, which gives us the values λm, m ∈ N0, where

arccos
(

q + 1
2
√

q − λm

)
=

mπ

N
. (3.3)

Solving for λm provides

λm = q −
(

q + 1
2 cos (mπ

N )

)2

(3.4)

for m = 1, . . . , (N − 2)/2 if N is even and m = 1, . . . , (N − 1)/2 if N is odd. Hence we arrive at

the following main result of this paper.

Theorem 3.1. Let N ∈ N. The problem (2.3) has exactly⌊
N − 1

2

⌋
, where �·� denotes the greatest integer function,

eigenvalues, and they can be calculated from the formula (3.4). The corresponding eigenfunc-

tions are given by

f(t) =
√

q − λm
logq t

sin
(

mπ logq t

N

)
. (3.5)

Example 3.2. Let N = 6. For m = 0, f given by (3.5) is trivial, so this case does not lead to an

eigenvalue. For m = 1, the eigenvalue and corresponding eigenfunction is

λ1 =
−q2 + q − 1

3
and f1(t) =

(
q + 1√

3

)logq t

sin
(

π logq t

6

)
.

For m = 2, the eigenvalue and corresponding eigenfunction is

λ2 = −(q2 + q + 1) and f2(t) = (q + 1)logq t sin
(

π logq t

3

)
.

Next, m = 3 would imply by (3.3) that q = −1, which therefore does not lead to an eigenvalue.

Similarly, (3.3) implies that m = 4 and m = 5 leads to q < −1. Further values of m result in

repetition of the above arguments. Hence there are only two eigenvalues in this case as given

above. In particular, if q = 2, then the eigenvalues are −1 and −7.
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Birkhäuser Boston Inc., Boston, MA.
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ABSTRACT

We investigate the existence of positive solutions of third order boundary value problems

with changing sign Carathéodory nonlinearities of the form. We provide simple sufficient

conditions on the nonlinearity f in order to obtain a priori bounds on solutions of a one-

parameter family of problems, related to the original one. We then rely on the topological

transversality theorem to prove the existence of positive solutions of the given problem. As

a byproduct, we shall obtain a multiplicity result.
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bound on solutions, positive solutions, Granas topological transversality theorem.
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1 Introduction

In this paper, we are concerned with the existence of positive solutions of three-point boundary

value problems for third order differential equations,

u′′′(t) = f(t, u(t), u′(t), u′′(t)) 0 < t < 1 (1)

u(0) = u′(a) = u(1) = 0, 0 < a < 1. (2)

Problems of this type arise naturally in the description of physical phenomena, where only

positive solutions, i.e. solutions u satisfying u(t) > 0 for all t ∈ (0, 1), are meaningful. It is well

known that Krasnoselskii’s fixed point theorem in a cone (see [14],) has been instrumental in

proving existence of positive solutions of problem (1), (2).

In the last decade or so, several papers have been devoted to the study of positive solutions to

third order differential equations with two-point or three-point boundary conditions. Most of the

previous works assume that f is nonnegative, depends only on u, and some other conditions.

See for instance[1], [3], [4], [5],[8], [9], [12], [14], [15] and [16]. It should be pointed out that

even in the case of second order boundary problems, only few papers have dealt with changing
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sign nonlinearities, that also depend on the first derivative of u. We refer the interested reader

to [2] and [6].

Our aim, in this paper, is to establish sufficient conditions on the nonlinearity f that will allow

us to obtain a priori bounds on solutions of a one-parameter family of problems related to (1),

(2). We, then, rely on the topological transversality theorem of Granas (see [10] for definitions

and details) to prove the existence of at least one positive solution of problem (1), (2).

Our assumptions are simple and more general than the conditions found in the literature. In

fact, we obtain a multiplicity result as a byproduct of our main result, with no extra assumptions.

We exploit the fact that the nonlinearity changes sign with respect to its second argument. We

do not rely on cone preserving mappings, and the sign of the Green’s function, see see [4],

of the corresponding linear homogeneous problem plays no role in our analysis. We assume,

however, the existence of positive upper and lower solutions. For general results, not neces-

sarily on positive solutions, see [7], [9] and [11].

2 Preliminaries

Let I denote the real interval [0, 1]. AC(I) is the Banach space of real-valued absolutely

continuous functions on I, equipped with the norm ||u||0 := max{|u(t)|; t ∈ I}. For k =
1, 2, . . . ACk(I) is the Banach space of absolutely continuous functions defined on I together

with their derivatives up to order k, with the norm ||u||(k) = ‖u‖0 + ‖u′‖0 + . . .+ ‖u(k)‖0. AC2
0 (I)

is the space of functions u ∈ AC2(I) satisfying u(0) = u′(a) = u(1) = 0; L1(I) is the space

of Lebesgue integrable functions on I with its usual norm.

We say that f : I × R3 → R is a Carathéodory function, if f satisfies the following conditions

(i) f(t, ., ., .) is continuous for almost every t ∈ I,

(ii) f(., u, v, w) is measurable for all (u, v, w) ∈ R3,

(iii) for every R > 0, there exists hR ∈ L1(I) such that |u| +|v|+|w| ≤ R implies |f(t, u, v, w)| ≤
hR(t) for almost all t ∈ I.

Since our arguments are based on the topological transversality theorem we consider the

following one-parameter family of problems

u′′′(t) = λ f(t, u(t), u′(t), u′′(t)) 0 < t < 1 (3)

u(0) = u′(a) = u(1) = 0, 0 < a < 1 (4)

for 0 ≤ λ ≤ 1.

For λ = 0 problem (3), (4) has only the trivial solution.

Proof. Obvious.

It follows that the corresponding Green’s function G(t, s) exists. To construct G(t, s) we proceed

as follows (for a general nth order problem see [13] ). Let uj(t), 1 ≤ j ≤ 3 be solutions of y′′′ = 0
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such that the following boundary conditions are satisfied

u1(0) = 1, u′
1(a) = 0, u1(1) = 0

u2(0) = 0, u′
2(a) = 1, u2(1) = 0

u3(0) = 0, u′
3(a) = 0, u3(1) = 1.

Simple computations give

u1(t) = 1 − t2 − 2at

1 − 2a
, u2(t) =

−t2 + t

1 − 2a
, u3(t) =

t2 − 2at

1 − 2a
.

On the other hand consider the function v(t, s) :=
(t − s)2

2
. Then

∂3v

∂t3
= 0.

Let v1(s) := v(0, s), v2(s) := v(a, s) and v3(s) := v(1, s), so that

v1(s) =
s2

2
, v2(s) =

(a − s)2

2
, v3(s) =

(1 − s)2

2
.

Now, let ϕ(t, s) = u1(t)v1(s) + u2(t)v2(s) + u3(t)v3(s). One can easily show that ϕ(., s) is a

solution of y′′′ = 0, for each fixed s. Moreover ϕ(0, s) = v(0, s), ϕ′(a, s) = v(a, s) and ϕ(1, s) =
v(1, s). It follows from the uniqueness of solutions of a linear homogeneous boundary value

problem that ϕ(t, s) = v(t, s), that is

u1(t)v1(s) + u2(t)v2(s) + u3(t)v3(s) =
(t − s)2

2
, ∀ (t, s) ∈ I2.

We define G(t, s) as follows.

For 0 ≤ s ≤ a, we let

G(t, s) =

⎧⎪⎨⎪⎩
−u2(t)v2(s) − u3(t)v3(s) 0 ≤ t ≤ s

u1(t)v1(s) s ≤ t ≤ a

and for a ≤ s ≤ 1, we let

G(t, s) =

⎧⎪⎨⎪⎩
−u3(t)v3(s) a ≤ t ≤ s

u1(t)v1(s) + u2(t)v2(s) s ≤ t ≤ 1.

If f : I × R3 → R is a Carathéodory function, then u ∈ A C2(I) is a solution of (3), (4) if and

only if u is a solution of the integral equation

u(t) = λ

∫ 1

0
G(t, s)f(s, u(s), u′(s), u′′(s))ds. (5)

Assume that f : I × R3 → R is a Carathéodory function. Then, the operator T : AC2
0 → AC2

0 ,

defined by Tu(t) =
∫ 1
0 G(t, s)f(s, u(s), u′(s), u′′(s))ds, is continuous and completely continu-

ous.

Proof. (i) T is continuous. For, let un → u in AC2
0 (I). Then, for k = 0, 1, 2, u

(k)
n → u(k) uniformly

on I. Given that f is continuous with respect to its second, third and fourth arguments, and for
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k = 0, 1,
∂k

∂tk
G(., .) is uniformly continuous on I × I, and also

∂2

∂t2
G(., .) is continuous on I × I

except on the set {(t, t); t ∈ I}, which has measure zero, we have

∂k

∂tk
G(t, s)f(s, un(s), u′

n(s), u′′
n(s)) → ∂k

∂tk
G(t, s)f(s, u(s), u′(s), u′′(s)), as n → +∞,

for almost every s ∈ I, and k = 0, 1, 2. Now, there exists M > 0, independent of n ∈ N, such

that |un|+ |u′
n|+ |u′′

n| ≤ M for all n ∈ N. Hence, there is hM ∈ L1(I) such that for all n ∈ N, we

have ∣∣f(s, un(s), u′
n(s), u′′

n(s))
∣∣ ≤ hM (s) for almost all s ∈ I.

The Lebesgue dominated convergence theorem implies that, as n → +∞∫ 1

0

∂k

∂tk
G(t, s)f(s, un(s), u′

n(s), u′′
n(s))ds →

∫ 1

0

∂k

∂tk
G(t, s)f(s, u(s), u′(s), u′′(s))ds.

This shows that for k = 0, 1, 2, and all t ∈ I

(Tun)(k) (t) → (Tu)(k) (t) as n → +∞.

Therefore

‖Tun‖(2) → ‖Tu‖(2) as n → +∞.

(ii) T is completely continuous. For, let B = B(0, r) be a ball in AC2
0 (I), and let u ∈ B. Then

‖u‖(2) ≤ r.

Since f is a Carathéodory function there exits hr ∈ L1(I) such that∣∣f(t, u(t), u′(t), u′′(t))
∣∣ ≤ hr(t) for almost all t ∈ I.

Thus

‖Tu‖(2) ≤ max{|G(t, s)| +
∣∣∣∣ ∂

∂t
G(t, s)

∣∣∣∣+ ∣∣∣∣ ∂2

∂t2
G(t, s)

∣∣∣∣ ; (t, s) ∈ I2} ‖hr‖L1 .

This shows that T (B) is uniformly bounded. To show that T (B) is equicontinuous, let u ∈ B

and 0 < t1 < t2 < 1. Then

Tu(t2) − Tu(t1) =
∫ 1

0
[G(t2, s) − G(t1, s)]f(s, u(s), u′(s), u′′(s))ds

so that

|Tu(t2) − Tu(t1)| ≤
∫ 1

0
|G(t2, s) − G(t1, s)|hr(s)ds

≤ max
s∈I

|G(t2, s) − G(t1, s)| ‖hr‖L1 .

Since G(., .) is uniformly continuous on I × I, it follows that |Tu(t2) − Tu(t1)| → 0 whenever

|t2 − t1| → 0. The conclusion follows from Arzela-Ascoli’s theorem.
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3 Topological Transversality Theory

In this section, we recall the most important notions and results related to the topological

transversality theory due to Granas. See [10] for the details of the theory.

Let X be a Banach space, C a convex subset of X and U an open set in C.

(i) g : X → X is compact if g(X) is compact.

(ii) H : [0, 1] × X → X is a compact homotopy if H is a homotopy and for all λ ∈ [0, 1],
H(λ, ·) : X → X is compact.

(iii) g : U → C is called admissible if g is compact and has no fixed points on Γ = ∂U .

Let MΓ(U, C) denote the class of all admissible maps from U to C.

(iv) A compact homotopy H is admissible if, for each λ ∈ [0, 1], H(λ, ·) is admissible.

(v) Two mappings g and h in MΓ(U, C) are homotopic if there is an admissible homotopy

H : [0, 1] × U → C such that H(0, ·) = g and H(1, ·) = h.

(vi) g ∈ MΓ(U, C) is called inessential if there is a fixed point free compact map h : U → C
such that g|Γ = h|Γ. Otherwise, g is called essential.

Let d be an arbitrary point in U and g ∈ MΓ(U, C) be the constant map g(x) ≡ d. Then g is

essential.

g ∈ MΓ(U, C) is inessential if and only if g is homotopic to a fixed point free compact map.

Let g, h ∈ MΓ(U, C) be homotopic maps. Then g is essential if and only if h is essential.

4 Main Results

Consider the nonlinear problem (3), (4){
u′′′(t) = λ f(t, u(t), u′(t), u′′(t)), t ∈ (0, 1)
u(0) = u′(a) = u(1) = 0, 0 < a < 1.

The nonlinearity f : I × R3 → R is an L1-Carathéodory function and satisfies

(H1) There exist positive functions α, β ∈ AC2
0 (I) such that α ≤ β, α′ ≤ β′ and

(i) α′′′(t) ≥ f (t, α(t), α′(t), α′′(t)) , β′′′(t) ≤ f (t, β(t), β′(t), β′′(t)) ,

(ii) f (t, α(t), α′(t), 0) < 0 < f (t, β(t), β′(t), 0) , ∀t ∈ I,

(iii) f(t, β(t), v, w) ≤ f(t, u, v, w) ≤ f(t, α(t), v, w) for (t, v, w) ∈ I × R2 and α(t) ≤ u ≤ β(t).

(H2) There exist Q ∈ L1(I; R+) and Ψ : [0, +∞) → (0, +∞) continuous and nondecreasing

with
1
Ψ

integrable over bounded intervals and
∫ +∞
0

dσ

Ψ(σ)
> ‖Q‖L1 , such that |f(t, u, v, w)| ≤

Q(t)Ψ (|w|), ∀ t ∈ I, α ≤ u ≤ β, α′ ≤ v ≤ β′, w ∈ R.
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Remark 1. By α ≤ u ≤ β it is meant α (t) ≤ u (t) ≤ β (t) for all t ∈ I.

Assume (H1) and (H2) are satisfied. Then (1), (2) has at least one positive solution, u ∈ [α, β],
with u′ ∈ [α′, β′].
Proof. It will be given in several steps. For x, y, z ∈ R with x ≤ z let δ (x, y, z) = max(x,min(y, z)).
Notice that x ≤ δ (x, y, z) ≤ z for all y ∈ R.

Our arguments are based on the topological transversality theory.

For λ ∈ [0, 1], consider the following one-parameter family of problems{
u′′′(t) = λ F (t, u(t), u′(t), u′′(t)) 0 < t < 1
u(0) = u′(a) = u(1) = 0, 0 < a < 1

(6.λ)

where

F (t, u(t), u′(t), u′′(t)) = f(t, δ(α (t) , u (t) , β (t)), δ(α′ (t) , u′ (t) , β′ (t)), u′′(t)).

Notice that (6.0) has only the trivial solution, see Lemma 2.1. Hence, we shall consider only

the case 0 < λ ≤ 1.

Step.1. Consider K1 := max(‖α′‖0 , ‖β′‖0). All solutions of (6.λ) satisfy |u′(t)| ≤ K1 and

|u(t)| ≤ K1 for all t ∈ I.

Let u be a possible solution of (6.λ). Then (H1) implies that |u′(t)| ≤ K1 for all t ∈ I. Suppose

on the contrary that there is a τ ∈ I such that |u′ (τ)| > K1, which implies that u′ (τ) > K1 or

u′ (τ) < −K1. We consider only the first case, the second case can be handled similarly. Then

there exists t0 ∈ I such that

max
t∈I

u′(t) := u′(t0) > K1.

If t0 ∈ (0, 1) then u′′(t0) = 0 and u′′′(t0) ≤ 0. Then, it follows from (H1) that

0 ≥ u′′′(t0) = λ F (t0, u(t0), u′(t0), u′′(t0)) =

λf(t0, δ(α (t0) , u (t0) , β (t0)), δ(α′ (t0) , u′ (t0) , β′ (t0)), u′′(t0)) =

λf(t0, δ(α (t0) , u (t0) , β (t0)), β′ (t0) , 0)

≥ λf(t0, β (t0)), β′ (t0)), 0) > 0.

This is a contradiction.

If t0 = 0, then u′′(0) = 0 and u′′′(0+) ≤ 0. It follows that 0 ≥ u′′′(0+) > λf(0, 0, β′ (0) , 0) > 0.

This is a contradiction.

Similarly, if t0 = 1, then we will reach a contradiction.

Therefore,

u′(t) ≤ K1 for all t ∈ I.

Similarly, we can prove that −K1 ≤ u′(t) for all t ∈ I.
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Hence, we have shown that any solution u of (6.λ) is such that∣∣u′(t)
∣∣ ≤ K1, ∀t ∈ I. (7)

Since u(0) = 0, a simple integration gives

|u(t)| ≤
∫ 1

0

∣∣u′(s)
∣∣ ds ≤ K1.

Hence

|u(t)| ≤ K1 ∀t ∈ I. (8)

Step.2. A priori bound on the second derivative u′′, of solutions u of (6.λ).

Define K2 > 0 by the formula
∫K2

0

ds

Ψ(s)
> ‖Q‖L1 (this is possible because of the property of

Ψ).

We want to show that |u′′(t)| ≤ K2 for all t ∈ I.

Suppose, on the contrary that there exists τ1 ∈ I such that |u′′(τ1)| > K2. Then, there exists

an interval [µ, ξ] ⊂ [0, 1] such that one of the following situations occur

(i) u′′(µ) = 0, u′′(ξ) = K2, 0 < u′′(t) < K2 µ < t < ξ,

(ii) u′′(µ) = K2, u′′(ξ) = 0, 0 < u′′(t) < K2 µ < t < ξ,

(iii) u′′(µ) = 0, u′′(ξ) = −K2, −K2 < u′′(t) < 0 µ < t < ξ,

(iv) u′′(µ) = −K2, u′′(ξ) = 0, −K2 < u′′(t) < 0 µ < t < ξ.

We study the first case. The other cases can be handled in a similar way. We have

u′′′(t) ≤ Q(t)Ψ
(
u′′(t)

)
, µ ≤ t ≤ ξ.

This implies
u′′′(t)

Ψ (u′′(t))
≤ Q(t) for µ ≤ t ≤ ξ.

An integration from µ to ξ, and a change of variables lead to∫ K2

0

ds

Ψ(s)
≤ ‖Q‖L1 .

This clearly contradicts the definition of K2. Taking into consideration the four cases above, we

see that

∣∣u′′(t)
∣∣ ≤ K2 for all t ∈ I.

Let

K3 := max{K2,
∥∥α′′∥∥

0
,
∥∥β′′∥∥

0
}.

Then, any solution u of (6.λ) is such that its second derivative u′′ will satisfy the a priori bound∣∣u′′(t)
∣∣ ≤ K3 for all t ∈ I. (9)
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From Step.1 and Step.2 above and the fact that f is an L1-Carathéodory function, we deduce

that there exists a positive constant K, such that

‖u‖(2) ≤ K (10)

for any solution u of (6.λ).
Step.3. Existence of solutions of (6.λ). It follows from (5) that problem (6.λ) is equivalent to

u(t) = λ

∫ 1

0
G(t, s)F (s, u(s), u′(s), u′′(s))ds. (11)

Define H : [0, 1] × AC2
0 (I) → AC2

0 (I) by

H(λ, u)(t) = λ

∫ 1

0
G(t, s)F (s, u(s), u′(s), u′′(s))ds for all λ ∈ [0, 1], t ∈ I. (12)

Let

U := {u ∈ AC2
0 (I); ‖u‖(2) < 1 + K},

where K is the constant from (10).

Lemma 2.2 implies that H(λ, .) : U → AC2
0 (I) is compact. It is clear from Steps 1 and 2 above

and the choice of U that there is no u ∈ ∂U such that H(λ, u) = u for λ ∈ [0, 1]. It is also clear

that H(., .) is uniformly continuous in λ.

Therefore, H(λ, .) : U → AC2
0 (I) is an admissible homotopy between the constant map

H(0, .) = 0 and the compact map H(1, .). Since 0 ∈ U, we have that H(0, .) is essential.

By the topological transversality theorem of Granas, H(1, .) is essential. This implies that it

has a fixed point in U, and this fixed point is a solution of (6.1). Since solutions of (6.1) are

solutions of (1), (2), we conclude that (1), (2) has at least one solution u0 ∈ U.

Step.4. We show that α′(t) ≤ u′
0(t) for all t ∈ I. A simple integration will then give α(t) ≤ u0(t)

for all t ∈ I.

Suppose, on the contrary, that there is η ∈ I such that α′(η) > u′
0(η). Let α′(c) − u′

0(c) :=
max{α′(t) − u′

0(t); t ∈ I}. Then, α′(c) > u′
0(c), α′′(c) = u′′

0(c) and α′′′(c) ≤ u′′′
0 (c). This implies

the following contradiction,

0 ≥ α′′′(c) − u′′′
0 (c) ≥

f
(
c, α (c) , α′ (c) , α′′ (c)

)− f(c, δ(α (c) , u0 (c) , β (c)), δ(α′ (c) , u′
0 (c) , β′ (c)), u′′

0 (c))

= f
(
c, α (c) , α′ (c) , α′′ (c)

)− f(c, δ(α (c) , u0 (c) , β (c)), α′ (c) , α′′ (c)) > 0.

The last inequality follows from the fact that α (c) ≤ δ(α (c) , u0 (c) , β (c)) ≤ β (c) and assump-

tion (H1)(iii).

In a similar way, we prove that u′
0(t) ≤ β′(t) for all t ∈ I, which will imply that u0(t) ≤ β(t) for

all t ∈ I.

This completes the proof of the main result.

Remark 2. It is possible to obtain a uniqueness result if we assume, in addition to (H1) and

(H2), the following condition

(H3) There exists � > 0, such that f(t, u1, v1, w)−f(t, u2, v2, w) > �(v1−v2) for α′ ≤ v2 ≤ v1 ≤
β′, all t ∈ I, w ∈ R, and α ≤ u1, u2 ≤ β.
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Assume that the conditions (H1), (H2) and (H3) hold. Then Problem (1), (2) has a unique

positive solution u ∈ [α, β] with u′ ∈ [α′, β′].
Proof. Theorem 4.1 guarantees the existence of at least one solution u ∈ [α, β] with u′ ∈
[α′, β′].
Suppose there are two solutions u1, u2 ∈ [α, β]. We exhibit that u′

1(t) = u′
2(t) for all t ∈ I. A

simple integration will give u1(t) = u2(t) for all t ∈ I. Suppose on the contrary that u′
1(ξ) 
= u′

2(ξ)
for some ξ ∈ I. Let z(t) := u′

1(t) − u′
2(t) for all t ∈ I. Suppose, first, that z(ξ) > 0. Let z(η) =

max{z(t); t ∈ I}. Then, z(η) > 0, z′(η) = 0 and z′′(η) ≤ 0.

Since

z′′(t) = u′′′
1 (t) − u′′′

2 (t) = f(t, u1(t), u′
1(t), u

′′
1(t)) − f(t, u2(t), u′

2(t), u
′′
2(t))

and

z′(η) = u′′
1(η) − u′′

2(η) = 0

we have

0 ≥ z′′(η) = f(t, u1(η), u′
1(η), u′′

1(η)) − f(t, u2(η), u′
2(η), u′′

2(η)) =

= f(t, u1(η), u′
1(η), u′′

1(η)) − f(t, u2(η), u′
2(η), u′′

1(η)) > � z (η) > 0.

This is a contradiction.

Similarly, if we assume z(ξ) < 0, we will arrive at a contradiction.

Therefore

u′
1(t) = u′

2(t) for all t ∈ I.

This yields

u1(t) = u2(t) for all t ∈ I,

proving uniqueness.

5 Multiplicity of Solutions

In this section we use Theorem 4.1 to get multiplicity of solutions of problem (1), (2).

Assume f : I × R3 → R is a Carathéodory function and satisfies

(H4) there are sequences {αj}, {βj} of positive functions in AC2
0 (I) such that for all j = 1, 2, ...

(i) 0 ≤ αj ≤ βj ≤ αj+1, and α′
j ≤ β′

j ≤ α′
j+1,

(ii) α′′′
j (t) ≥ f(t, αj (t) , α′

j (t) , α′′
j (t)), β′′′

j (t) ≤ f(t, βj (t) , β′
j (t) , β′′

j (t)),

(iii) f(t, αj (t) , α′
j (t) , 0) < 0 < f(t, βj (t) , β′

j (t) , 0) , t ∈ I,

(iv) f(t, βj (t) , v, w) ≤ f(t, u, v, w) ≤ f(t, αj (t) , v, w) for (t, v, w) ∈ I × R2, αj(t) ≤ u ≤ βj(t),

(v) The condition (H2) holds on I × [ αj , βj ] × [α′
j , β

′
j ] × R.

Then, Problem (1), (2) has infinitely many positive solutions uj such that αj ≤ uj ≤ βj , and

α′
j ≤ u′ ≤ β′

j .

32  International Journal of Applied Mathematics & Statistics



6 Example

Consider the following problem{
u′′′(t) = φ (t) (1 + u′′(t)2)(1 + cos(u′(t))g(u(t)) 0 < t < 1
u(0) = u′(a) = u(1) = 0

(13)

where φ ∈ L1(I), φ (t) ≥ 0 for all t ∈ I, and g : R → R is continuous and has an infinite

number of positive simple zeros. This is the case if we assume the existence of an increasing

sequence {aj}j∈N of positive numbers such that

g(aj) g(aj+1) < 0 for j = 0, 1, ...

None of the results in the previously published works can be applied to problem (13). However,

f , defined by

f(t, u, v, w) = φ (t) (1 + w2)(1 + cos v)g(u)

satisfies condition (H4) of our Theorem 5.1.

Hence Problem (13) has infinitely many positive solutions.

Remark 3. A typical example for g is g(u) = sinu, whose positive zeros form an infinite

sequence {nπ; n = 1, 2, ...}.
It is clear that the differential equation

u′′′(t) = φ (t) (1 + u′′(t)2)(1 + cos(u′(t)) sin(u(t))

has infinitely many positive solutions, un(t) = nπ, n ≥ 1.

The function f, defined by

f(t, u, v, w) = φ (t) (1 + w2)(1 + cos v) sin u 0 ≤ t ≤ 1

changes sign infinitely many times. In fact, we have

f(t, αj , v, w) < 0 for αj =
(

3
2

+ 2j

)
π, j = 0, 1, 2, ...

and

f(t, βj , v, w) > 0 for βj =
(

5
2

+ 2j

)
π, j = 0, 1, 2, ...
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ABSTRACT

Frigon nonlinear alternative for multivalued admissible contractions in Fréchet spaces, com-
bined with integral semigroup theory, is used to investigate the controllability of some
classes of impulsive semilinear functional and neutral functional differential inclusions in
Fréchet spaces.

Key words and phrases: Impulsive functional differential inclusions, controllability, integral
solution, fixed point, Fréchet space, admissible contraction.
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1 INTRODUCTION

This paper is concerned with an application of a recent Frigon nonlinear alternative, for admis-
sible contraction maps in Fréchet spaces (Frigon, 2002), to the existence of integral solutions of
first order controllability associated with impulsive semilinear functional and neutral functional
differential inclusions in Fréchet spaces. In Section 3, we will consider first order controllability
for the impulsive semilinear functional differential inclusion,

y′(t) − Ay(t) ∈ F (t, yt) + (Bu)(t), a.e. t ∈ J := [0,∞) \ {t1, t2, . . .}, (1.1)

y(t+k ) − y(t−k ) = Ik(y(t−k )), k = 1, 2, . . . , (1.2)
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y(t) = φ(t), t ∈ [−r, 0], (1.3)

where r > 0, F : J×D → P(E) is a multivalued map with compact values (P (E) is the family of
all nonempty subsets of E), A : D(A) ⊂ E → E is a nondensely defined closed linear operator
on E, B is a bounded linear operator from D(A) into D(A), D = {ψ : [−r, 0] → D(A) : ψ is con-
tinuous everywhere except for a countable number of points t̄ at which ψ(t̄−) and ψ(t̄+) exist,
ψ(t̄−) = ψ(t̄) and sup

θ∈[−r,0]
|ψ(θ)| < ∞}, (0 < r < ∞), 0 = t0 < t1 < . . . < tm < . . . , lim

n→∞ tn = ∞,

y(t+k ) = lim
h→0+

y(tk + h) and y(t−k ) = lim
h→0−

y(tk − h), and Ik ∈ C(D(A), D(A)), k ∈ {1, 2, . . .}.
In Section 4 we study the first order controllability of impulsive semilinear neutral functional
differential inclusions of the form,

d

dt
[y(t) − g(t, yt)] − Ay(t) ∈ F (t, yt) + (Bu)(t), a.e. t ∈ [0,∞) \ {t1, t2, . . .}, (1.4)

y(t+k ) − y(t−k ) = Ik(y(t−k )), k = 1, . . . , (1.5)

y(t) = φ(t), t ∈ [−r, 0], (1.6)

where F, A, Ik and φ d are as in problem (1.1)–(1.3), and g : J ×D → D(A).

Impulsive differential and partial differential equations have become more important in re-
cent years in some mathematical models of real phenomena, especially in control, biolog-
ical or medical domains; see the monographs of Lakshmikantham et al (Lakshmikantham
and Simeonov, 1989) and Samoilenko and Perestyuk (Samoilenko and Perestyuk, 1995), the
papers of Ahmed (Ahmed, 2001; Ahmed, 2000) and Liu (Liu, 1999), and the survey pa-
per by Rogovchenko (Rogovchenko, 1997) and the references therein. In the case where
Ik = Ik ≡ 0, k = 1, . . ., and A is a densely defined linear operator generating a semigroup,
the controllability of differential inclusions with different conditions was studied by Benchohra
et al (Benchohra and Ntouyas, 2003a; Benchohra and Ntouyas, 2003b), Balachandran and
Manimegolai (Balachandran and Manimegalai, 2002) and Li and Xue (Li and Xue, 2003). Very
recently, Guo et al (Guo and Li, 2004) initiated the study of controllability of impulsive evolu-
tion inclusions with nonlocal conditions, where they considered a class of first order evolution
inclusions with a convex valued right side. For the non-convexity of the right side, the control-
lability of first order impulsive functional differential inclusions, with a fixed number of impulses,
was studied by Benchohra et al (Benchohra and Ouahab, 2004). As we know, the investiga-
tion of many properties of solutions for a given equation, such as stability or oscillation, needs
its guarantee of global existence. Thus, it is important and necessary to establish sufficient
conditions for global existence of solutions for impulsive differential equations. For the case
where A = B ≡ 0, the global existence results for impulsive differential equations and inclu-
sions with different conditions were studied by Benchohra et al (Benchohra and Ouahab, (in
press)a), Cheng and Yan (Cheng and Yan, 2001), Graef and Ouahab (Graef and Ouahab, (in
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press)), Guo (Guo, 1999; Guo, 2002), Guo and Liu (Guo and Liu, 1996), Henderson and
Ouahab (Henderson and Ouahab, 2005b), Marino et al (Marino and Muglia, 2004), Ouahab
(Ouahab, (in press)), Stamov and Stamova (Stamov and Stamova, 1996), Weng (Weng, 2002)
and Yan (Yan, 1997; Yan, 1999).

On infinite intervals, and still when A is a densely defined linear operator generating C0-
semigroup families of linear bounded operators and F is a single valued map, the problems
(1.1)-(1.3) and (1.4)-(1.6) were studied by Arara, Benchohra and Ouahab (Arara and Oua-
hab, 2003) by means of the nonlinear alternative for contraction maps in Fréchet spaces due
to Frigon and Granas (Frigon and Granas, 1998). For the case where the impulses are ab-
sent, Ik = Ik ≡ 0, k = 1, . . ., an application of a recent nonlinear alternative due to Frigon
(Frigon, 2002) was applied by Benchohra and Ouahab (Benchohra and Ouahab, (in press)b).

Recently, the existence of integral solutions on compact intervals for the problem (1.1), (1.3)
with periodic boundary conditions in a Banach space was considered by Ezzinbi and Liu
(Ezzinbi and Liu, 2002). For more details on nondensely defined operators and the con-
cept of integrated semigroups, we refer to the monograph (Ahmed, 2001) and to the papers
(Arendt, 1987a; Arendt, 1987b; Busenberg and Wu, 1992; Da Prato and Sinestrari, 1987;
Neubrander, 1988; Thieme, 1990). Very recently, global exact controllability for semilinear dif-
ferential inclusions with nondensely defined operators was studied by Henderson and Ouahab
(Henderson and Ouahab, 2005a). For more details and examples on nondensely defined oper-
ators, we refer to the survey paper by Da Prato and Sinestrari (Da Prato and Sinestrari, 1987)
and the paper by Ezzinbi and Liu (Ezzinbi and Liu, 2002).

Our goal here is to give existence results for the above problems by using this nonlinear alter-
native for multivalued admissible contractions in Fréchet spaces, and to extend some results
considered very recently by Arara et al (Arara and Ouahab, 2003), Benchohra et al (Benchohra
and Ouahab, 2004), Benchohra and Ouahab (Benchohra and Ouahab, (in press)b), and Hen-
derson and Ouahab (Henderson and Ouahab, 2005a).

2 PRELIMINARIES

In this section, we introduce notations, definitions, and preliminary facts which are used through-
out this paper.

Let [0, b] be a interval in IR, and C([0, b], E) is the Banach space of all continuous functions
from [0, b] into E with the norm,

‖y‖∞ = sup{|y(t)| : 0 ≤ t ≤ b}.

B(E) is the Banach space of all bounded linear operators from E into E with norm,

‖N‖B(E) = sup{|N(y)| : |y| = 1}.
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A measurable function y : [0, b] → E is Bochner integrable if and only if |y| is Lebesgue inte-
grable. (For properties of the Bochner integral, see for instance, Yosida (Yosida, 1980)).
L1([0, b], E) denotes the Banach space of functions y : [0, b] −→ E which are Bochner inte-
grable and normed by,

‖y‖L1 =
∫ b

0
|y(t)|dt.

Definition 2.1 ((Arendt, 1987a)). We say that a family {S(t) : t ∈ IR} of operators in B(E) is
an integrated semigroup family if,

(1) S(0) = 0.

(2) t → S(t) is strongly continuous.

(3) S(s)S(t) =
∫ s

0
(S(t + r) − S(r))dr for all t, s ≥ 0.

Definition 2.2 ((Kellermann and Hieber, 1989)). An operator A is called a generator of an
integrated semigroup, if there exists ω ∈ IR such that (ω,∞) ⊂ ρ(A) (ρ(A) is the resolvent set
of A), and there exists a strongly continuous exponentially bounded family (S(t))t≥0 of bounded

operators such that S(0) = 0 and (λI − A)−1 = λ

∫ ∞

0
e−λtS(t)dt exists for all λ, with λ > ω.

Lemma 2.1 ((Arendt, 1987a)). Let A be the generator of an integrated semigroup (S(t))t≥0.

Then, for all x ∈ E and t ≥ 0,∫ t

0
S(s)xds ∈ D(A) and S(t)x = A

∫ t

0
S(s)xds + tx.

Definition 2.3. We say that a linear operator A satisfies the ”Hille-Yosida condition” if there
exist M ≥ 0 and ω ∈ IR such that (ω,∞) ⊂ ρ(A), and

sup{(λ − ω)n|(λI − A)−n| : n ∈ IN, λ > ω} ≤ M.

If A is the generator of an integrated semigroup (S(t))t≥0 which is locally Lipschitz, then from
(Arendt, 1987a), S(·)x is continuously differentiable if and only if x ∈ D(A) and (S′(t))t≥0 is a
C0- semigroup on D(A).

Here and hereafter, we assume,

(H1) A satisfies the Hille-Yosida condition.

Let (S(t))t≥0 be the integrated semigroup generated by A. Then we have the following.

Theorem 2.2 ((Arendt, 1987a), (Kellermann and Hieber, 1989)). Let f : [0, T ] → E be a
continuous function. Then, for y0 ∈ D(A), there exists a unique continuous function y : [0, T ] →
E such that,

(i)
∫ t

0
y(s)ds ∈ D(A), t ∈ [0, T ],
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(ii) y(t) = y0 + A

∫ t

0
y(s)ds +

∫ t

0
f(s)ds, t ∈ [0, T ],

(iii) |y(t)| ≤ Meωt(|y0| +
∫ t

0
e−ωs|f(s)|ds), t ∈ [0, T ].

Moreover, y satisfies the variation of constants formula,

y(t) = S′(t)y0 +
d

dt

∫ t

0
S(t − s)f(s)ds, t ≥ 0. (2.1)

Let Bλ = λR(λ,A), where R(λ,A) := (λI − A)−1. Then for all x ∈ D(A), Bλx → x as λ → ∞.

As a consequence, if y satisfies (2.1), then

y(t) = S′(t)y0 + lim
λ→∞

∫ t

0
S′(t − s)Bλf(s)ds, t ≥ 0.

Throughout this paper we will use the following notations. P(X) = {Y ⊂ X : Y 
= ∅},
Pcl(X) = {Y ∈ P(X) : Y closed}, Pb(X) = {Y ∈ P(X) : Y bounded}. We denote by
Dα, α ∈ ∧, the Hausdorff pseudo-metric induced by dα; that is, for A,B ∈ P(X),

Dα(A,B) = inf
{

ε > 0 : ∀x ∈ A, ∀y ∈ B, ∃x̄ ∈ A, ȳ ∈ B such that

dα(x, ȳ) < ε, dα(x̄, y) < ε
}

with inf Ø = ∞. In the particular case where X is a complete locally convex space, we say that
a subset A ⊂ X is bounded if Dα({0}, A) < ∞ for every α ∈ ∧ . More details can be found in
(Frigon, 2002).

Definition 2.4. A multivalued map F : X → P(E) is called an admissible contraction with
constants {kα}α∈∧ if, for each α ∈ ∧, there exists kα ∈ (0, 1) such that,

i) Dα(F (x), F (y)) ≤ kαdα(x, y) for all x, y ∈ X.

ii) For every x ∈ X and every ε ∈ (0,∞)
∧

, there exists y ∈ F (x) such that

dα(x, y) ≤ dα(x, F (x)) + εα for every α ∈
∧

.

Lemma 2.3. (Nonlinear Alternative, (Frigon, 2002)). Let E be a Fréchet space and U an
open neighborhood of the origin in E, and let N : U → P(E) be an admissible multivalued
contraction. Assume that N is bounded. Then one of the following statements holds:

(C1) N has at least one fixed point.

(C2) There exist λ ∈ [0, 1), n ∈ IN, and x ∈ ∂U such that x ∈ λN(x).

For applications of Lemma 2.3, we consider Hd : P(X) ×P(X) −→ IR+ ∪ {∞} given by,

Hd(A,B) = max
{

sup
a∈A

d(a,B), sup
b∈B

d(A, b)
}

,
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where d(A, b) = inf
a∈A

d(a, b), d(a, B) = inf
b∈B

d(a, b). Then (Pb,cl(X),Hd) is a metric space and

(Pcl(X),Hd) is a generalized metric space.

In what follows, we will assume that the function F : [0,∞)×D → P(E) is an L1
loc- Carathéodory

function; that is,

(i) t �−→ F (t, x) is measurable for each x ∈ D;

(ii) x �−→ F (t, x) is continuous for almost all t ∈ [0,∞);

(iii) For each q > 0, there exists hq ∈ L1
loc([0,∞), IR+) such that

‖F (t, x)‖ ≤ hq(t) for all ‖x‖ ≤ q, for each x ∈ D and for almost all t ∈ [0,∞).

For more details on multivalued maps, we refer the reader to the books of Casting and Valaadin
(Castaing and Valadier, 1977), Deimling (Deimling, 1992), Gorniewicz (Gorniewicz, 1999), Hu
and Papageorgiou (Hu and Papageorgiou, 1997), Kamenskii (Kamenskii and Zecca, 2001) and
Tolstonogov (Tolstonogov, 2000).

3 CONTROLLABILITY OF IMPULSIVE FDIS

In this section we shall establish sufficient conditions for the controllability of the first order
functional semilinear differential inclusions (1.1)-(1.3). We shall first consider the space,

PC = {y : [0,∞) → D(A) | yk ∈ C(Jk,D(A)), k = 0, . . . , m, and there exist y(t−k )

and y(t+k ), k = 1, . . . , m, with y(t−k ) = y(tk)}.

Set
Ω = {y : J1 → D(A) : y ∈ D ∩ Ω}, J1 = [−r, 0] ∪ J.

Definition 3.1. A function y ∈ Ω is said to be an integral solution of (1.1)-(1.3) if there exists a
function v ∈ L1(J,D(A)) such that v(t) ∈ F (t, yt) a.e t ∈ [0,∞), and

y(t) = S′(t)φ(0) + A

∫ t

0
y(s)ds +

∫ t

0
v(s)ds +

∫ t

0
Bu(s)ds +

∑
0<tk<t

S′(t − tk)Ik(y(t−k )),

∫ t

0
y(s)ds ∈ D(A), for t ∈ [0,∞), and y(t) = φ(t), t ∈ [−r, 0].

Before stating and proving our main result of this section, we give also the definition of control-
lability on the interval J1.

Definition 3.2. The system (1.1)–(1.3) is said to be infinite controllable on the interval J1, if for
every initial function φ ∈ D and every y1 ∈ D(A), and for each n ∈ IN, there exists a control
u ∈ L2([0, tn], U), such that the integral solution y(t) of (1.1)–(1.3) satisfies y(tn) = y1.
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Let us introduce the following hypotheses:

(H2) φ(0) ∈ D(A) and there exist constants ck, such that |Ik(y)| ≤ ck, for each y ∈ E.

(H3) F : [0,∞) ×D −→ P(D(A)) is a nonempty compact-valued, multivalued map, and for all
R > 0, there exists lR ∈ L1

loc([−r,∞), IR+) such that

Hd(F (t, x), F (t, x)) ≤ lR(t)‖x − x‖ for all x, u ∈ D with ‖x‖, ‖x‖ ≤ R,

and
d(0, F (t, 0)) ≤ lR(t) for a.e. t ∈ J.

(H4) There exist a continuous nondecreasing function ψ : [0,∞) −→ (0,∞) and p ∈ L1(J, IR+)
such that

‖F (t, u)‖ ≤ p(t)ψ(‖u‖D) for a.e. t ∈ J and each u ∈ D,

with ∫ ∞

c

du

u + ψ(u)
= ∞.

(H5) For every n > 0, the linear operator W : L2(Jn, U) → E (Jn = [0, tn]) defined by,

Wu =
∫ tn

0
S′(tn − s)Bu(s)ds,

has an invertible operator W−1 which takes values in L2(Jn, U)\KerW , and there exist
positive constants M, M1 such that ‖B‖ ≤ M and ‖W−1‖ ≤ M1.

(H6) There exist constants bk ≥ 0, k = 1, . . . , m, such that

‖Ik(y) − Ik(x)‖ ≤ bk‖x − x‖ for each x, x ∈ D(A).

Remark 3.1. For the construction of W , see (Carmichael and Quinn, 1984-1985).

Theorem 3.1. Assume that hypotheses (H1)-(H6) hold. If
∞∑

k=1

Mbk < 1, then the IVP (1.1)–(1.3)

has at least one integral solution.

Proof. We begin by defining a family of semi-norms on Ω, thus rendering Ω into a Fréchet
space. Let τ be sufficiently large. Then, for each n ∈ IN, we define in Ω the semi-norms by

‖y‖n = sup{e−|ω|t−τLn(t)|y(t)| : −r ≤ t ≤ tn},

where Ln(t) =
∫ t

0
l̃n(s)ds and

l̃n(t) = max{tnMM2M1e
|ω|tn ln(t), MM2M1e

|ω|tn ,Mln(t)}.

Thus Ω =
⋃

n≥1 Ωn, where

Ωn = {y : [−r, tn] → D(A) : y ∈ D ∩ PCn(J,D(A))},
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and PCn = {y : [0, tn] → D(A) such that y(t) is continuous everywhere except for some tk at
which y(t−k ) and y(t+k ) exist, and y(t−k ) = y(tk), k = 1, 2, . . . , n − 1}. Then Ω is a Fréchet space
with the family of semi-norms {‖ · ‖n}.

Now, using hypothesis (H5) for each y(·) and

v ∈ SF,y = {v ∈ L1(J,D(A)) : v(t) ∈ F (t, yt) a.e t ∈ J},

define the control,

uy(t) = W−1[y1 − S′(tn)φ(0) − lim
λ→+∞

∫ tn

0
S′(tn − s)Bλv(s)ds

−
∑

0<tk<t

S′(tn − tk)Ik(y(t−k ))](t).

Now, transform the problem (1.1)–(1.3) into a fixed point problem. Consider the operator N :
Ω → P(Ω) defined by,

N(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
h ∈ Ω : h(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(t), if t ∈ [−r, 0],

S′(t)φ(0) +
d

dt

∫ t

0
S(t − s)v(s)ds

+ d
dt

∫ t

0
S(t − s)(Buy)(s)ds

+
∑

0<tk<t

S′(t − tk)Ik(y(t−k )), if t ∈ J,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
where v ∈ SF,y. Clearly, the fixed points of the operator N are solutions of the problem (1.1)–
(1.3).

Let y be a possible solution of the problem (1.1)–(1.3). Given n ∈ IN and t ≤ tn, then y ∈ N(y),
and there exists v ∈ SF,y such that for each t ∈ [0,∞), we have

|y(t)| ≤ Me|ω|t|φ(0)| + Me|ω|t
∫ t

0
e−|ω|sp(s)ψ(‖ys‖)ds

+Me|ω|t
∫ t

0
e−|ω|s‖(Buy(s)‖ds + Me|ω|t

n∑
k=1

e−|ω|tkck

≤ Me|ω|t|φ(0)| + Me|ω|t
∫ t

0
e−|ω|sp(s)ψ(‖ys‖)ds

+MMe|ω|tM1tn

(
‖y1‖ + Me|ω|tn |φ(0)| + Me|ω|tn

n∑
k=1

e−|ω|tkck

+Me|ω|tn
∫ t

0
e−|ω|sp(s)ψ(‖ys‖)ds

)
+ Me|ω|t

n∑
k=1

e−|ω|tkck.

We consider the function µ defined by

µ(t) = sup{|y(s)| : −r ≤ s ≤ t}, 0 ≤ t ≤ tn.
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Let t∗ ∈ [−r, t] be such that µ(t) = |y(t∗)|. If t∗ ∈ [0, tn], then by the previous inequality we have
for t ∈ [0, tn],

e−|ω|tµ(t) ≤ M |φ(0)| + M

n∑
k=1

e−ωtkck + MMM1tn‖y1‖

+MMM1tn[Me|ω|tn |φ(0)| + Me|ω|tn
n∑

k=1

e−|ω|tkck]

+
∫ t

0
e−|ω|sm(t)ψ(µ(s))ds,

where
m(t) = [M + MMM1tne|ω|tn ]p(t).

If t∗ ∈ [−r, 0], then µ(t) = ‖φ‖ and the previous inequality holds. Let us take the right-hand
side of the above inequality as v(t). Then we have

µ(t) ≤ eωtv(t) for all t ∈ [0, tn],

and

v(0) =

(
MMM1tn‖y1‖ + [MM2M1tn + M ]|φ(0)| + [MM2M1tn + M ]

n∑
k=1

e−|ω|tkck

)
,

and
v′(t) = Me−|ω|tm(t)ψ(µ(t)), t ∈ [0, tn].

Using the increasing character of ψ we get

v′(t) ≤ Me−|ω|tm(t)ψ(e|ω|tv(t)) a.e. t ∈ [0, tn].

Then for each t ∈ [0, tn] we have

(e|ω|tv(t))′ = |ω|e|ω|tv(t) + v′(t)e|ω|t

≤ |ω|e|ω|tv(t) + Mp(t)ψ(e|ω|tv(t))

≤ m(t)[e|ω|tv(t) + ψ(e|ω|tv(t))], t ∈ [0, tn].

Thus ∫ e|ω|tv(t)

v(0)

du

u + ψ(u)
≤
∫ tn

0
m(s)ds <

∫ ∞

v(0)

du

u + ψ(u)
.

Consequently, there exists a constant dn such that v(t) ≤ dn, t ∈ [0, tn], and hence ‖y‖n ≤
max(‖φ‖, dn) := Kn. Set

U = {y ∈ Ω : ‖y‖n < Kn + 1 for all n ∈ IN}.

Clearly, U is a open subset of Ω.
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We shall show that N : U → P(Ω) is an admissible contraction operator; that is, there exists
γ < 1, such that

Hd(N(y), N(y)) ≤ γ‖y − y‖n for each y, y ∈ PCn.

Let y, y ∈ PCn and h ∈ N(y). Then there exists v(t) ∈ F (t, yt), so that

h(t) = S′(t)φ(0) +
d

dt

∫ t

0
S(t − s)v(s)ds

+
d

dt

∫ t

0
S(t − s)(Buy)(s)ds +

∑
0<tk<t

S′(t − tk)Ik(y(t−k )).

By (H3) and (H6), it follows that

Hd(F (t, yt), F (t, yt)) ≤ ln(t)‖yt − yt‖D.

Hence, there is w ∈ F (t, yt) such that

|v(t) − w| ≤ ln(t)‖yt − yt‖D, t ∈ Jn.

Consider U : Jn → P(E), given by

U(t) = {w ∈ E : |v(t) − w| ≤ ln(t)‖yt − yt‖D}.
Since the multivalued operator V (t) = U(t) ∩ F (t, yt) is measurable (see Proposition III.4
in (Castaing and Valadier, 1977)), there exists a function t → v(t), which is a measurable
selection for V . So, v(t) ∈ F (t, yt) and

|v(t) − v(t)| ≤ ln(t)‖yt − yt‖D for each t ∈ Jn.

Let us define, for each t ∈ Jn,

h(t) = S′(t)φ(0) +
d

dt

∫ t

0
S(t − s)v(s)ds

+
d

dt

∫ t

0
S(t − s)(Buy)(s)ds +

∑
0<tk<t

S′(t − tk)Ik(y(t−k )).

Then we have

‖h(t) − h(t)‖ =
∥∥∥ d

dt

∫ t

0
S(t − s)[(Buy)(s) − (Buy)(s)]ds

+
d

dt

∫ t

0
S(t − s)[v(s) − v(s)]ds

+
∑

0<tk<tn

S′(t − tk)[Ik(y(tk)) − Ik((y(tk)))]
∥∥∥

≤ Me|ω|t
∫ t

0
e−|ω|s‖B‖‖uy(s) − uy(s)‖ds

+Me|ω|t
∫ t

0
ln(s)e−|ω|s‖ys − ys‖ds

+Meωt
n∑

k=1

e−ωtk‖Ik(y(tk)) − Ik((y(tk)))‖
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≤ tnM1M
2Me|ω|t

∫ t

0
e−|ω|se|ω|tn‖v(s) − v(s)‖ds

+M1M
2Me|ω|t

∫ t

0

n∑
k=1

e|ω|(tn−tk)bk‖y(tk) − y(tk)‖ds

+e|ω|t
∫ t

0
e−|ω|sln(s)‖ys − ys‖ds

+Me|ω|t
n∑

k=1

e−|ω|tkbk‖y(tk) − y(tk)‖

≤ e|ω|t
∫ t

0
tnM1M

2Meωtn ln(s)e−|ω|s‖ys − ys‖ds

+eωt

∫ t

0
M1M

2Me|ω|tn
n∑

k=1

e|ω|tkbk‖y(s) − y(s)‖ds

+e|ω|t
∫ t

0
Mln(s)e−|ω|s‖ys − ys‖Dds

+e|ω|t
n∑

k=1

Mbke
−|ω|tk‖y(s) − y(s)‖

≤ e|ω|t
∫ t

0
l̃n(s)e−|ω|s‖ys − ys‖ds

+eωt

∫ t

0
l̃n(s)

n∑
k=1

e|ω|tkbk‖y(s) − y(s)‖ds

+e|ω|t
∫ t

0
l̃n(s)e−|ω|s‖ys − ys‖Dds

+e|ω|t
n∑

k=1

Mbke
−|ω|tk‖y(s) − y(s)‖

≤ e|ω|t
∫ t

0
l̃n(s)eτLn(s)e−|ω|se−τLn(s)‖ys − ys‖ds

+eωt

∫ t

0
l̃n(s)eτLn(s)

n∑
k=1

e−|ω|tke−τLn(s)bk‖y(tk) − y(tk)‖ds

+e|ω|t
∫ t

0
l̃n(s)eτLn(s)e−|ω|se−τLn(s)‖ys − ys‖Dds

+e|ω|t
n∑

k=1

Mbke
τLn(t)e−τLn(t)e−|ω|tk‖y(tk) − y(tk)‖

≤ e|ω|t
∫ t

0
(eτLn(s))′ds‖y − y‖n + eωt

∫ t

0
(eτLn(s))′ds

n∑
k=1

bk‖y − y‖n

+e|ω|t
∫ t

0
(eτLn(s))′ds‖y − y‖n + e|ω|t

n∑
k=1

Mbke
τLn(t)‖y − y‖n

≤ e|ω|t+τLn(t) 2
τ
‖y − y‖n + e|ω|t+Ln(t)

n∑
k=1

bk

τ
‖y − y‖n

+e|ω|t+τLn(t)
n∑

k=1

Mbk‖y − y‖n.
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Thus,

e−|ω|t−τLn(t)‖h(t) − h(t)‖ ≤
(

2
τ

+
n∑

k=1

bk

τ
+

n∑
k=1

Mbk

)
‖y − y‖n.

Therefore,

‖h − hn‖n ≤
(

2
τ

+
n∑

k=1

bk

τ
+

n∑
k=1

Mbk

)
‖y − y‖n.

By an analogous relation, obtained by interchanging the roles of y and y, it follows that

Hd(N(y), N(y)) ≤
(

2
τ

+
n∑

k=1

bk

τ
+

n∑
k=1

Mbk

)
‖y − y‖n.

Let y ∈ Ω, and ε ∈ (0,∞). Consider N : Ωn → Pcl(Ωn) given by,

N(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
h ∈ Ωn : h(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(t), if t ∈ [−r, 0],

S′(t)φ(0) + d
dt

∫ t

0
S(t − s)v(s)ds

+ d
dt

∫ t

0
S(t − s)(Buy)(s)ds

+
∑

0≤tk<t

S′(t − tk)Ik(y(tk)), if t ∈ [0, n],

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
where v ∈ Sn

F,y = {h ∈ L1([0, tn],D(A)) : v ∈ F (t, yt) a.e. t ∈ [0, tn]}. By (H3) and (H5)-(H6),
and since F is compact valued, we can prove that, for every y ∈ Ωn, N(y) ∈ Pcp(Ωn) and there
exists y∗ ∈ Ωn such that y∗ ∈ N(y∗).

Let h ∈ Ωn, y ∈ U and ε > 0. Assume that y∗ ∈ N(y). Then we have

‖y(t) − y∗(t)‖ ≤ ‖y(t) − h(t)‖ + ‖y∗(t) − h(t)‖

≤ ‖y − Ny‖ne−ωt−τLn(t) + ‖y∗(t) − h(t)‖.
Since h is arbitrary, we may suppose that h ∈ B(y∗, ε) = {h ∈ Ωn : ‖h − y∗‖n ≤ ε}. Therefore,

‖y − y∗‖n ≤ ‖y − Ny‖n + ε.

If y∗ 
∈ N(y), then ‖y∗ − N(y)‖ 
= 0. Since N(y) is compact, there exists x ∈ N(y) such that
‖y∗ − N(y)‖ = ‖y∗ − x‖. Then we have

‖y(t) − x(t)| ≤ ‖y(t) − h(t)‖ + ‖x(t) − h(t)‖

≤ ‖y − Ny‖ne−|ω|t−τLn(t) + ‖x(t) − h(t)‖.

Thus,
‖y − x‖n ≤ ‖y − Ny‖n + ε.

So, N is an admissible contraction operator by Lemma 2.3, and N has a fixed point y, which is
an integral solution to (1.1)–(1.2).
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4 CONTROLLABILITY OF IMPULSIVE NEUTRAL FDIS

In this section we study the problem (1.4)–(1.6). We give first the definition of an integral
solution of the problem (1.4)–(1.6).

Definition 4.1. A function y ∈ Ω is said to be an integral solution of (1.4)–(1.6), if there exists
v ∈ L1(J,D(A)) such that v(t) ∈ F (t, yt) a.e. t ∈ J , and y(t) satisfies the integral equation,

y(t) = φ(0) − g(0, φ(0) + g(t, yt) + A

∫ t

0
y(s)ds +

∫ t

0
v(s)ds

+
∫ t

0
(Bu)(s)ds +

∑
≤tk<t

S′(t − tk)Ik(y(t−k )),

and y(t) = φ(t), t ∈ [−r, 0],
∫ t

0
y(s)ds ∈ D(A), t ∈ [0,∞).

Definition 4.2. The system (1.4)–(1.6) is said to be controllable on the interval [−r,∞), if for
every continuous initial function φ ∈ D and every y1 ∈ D(A), and for each n ∈ IN, there exists a
control u ∈ L2([0, tn], U), such that the integral solution y(t) of (1.4)–(1.6) satisfies y(tn) = y1.

For our next result, we will invoke some hypotheses unique to the problem.

(A1) There exist constants 0 ≤ d1 < 1 and d2 ≥ 0 such that

|g(t, u)| ≤ d1‖u‖D + d2 t ∈ [0,∞), u ∈ D.

(A2) For each R > 0, there exists a function c∗R > 0 such that

|g(t, x) − g(t, x)| ≤ c∗R‖x − x‖D, t ∈ [0,∞), x, x ∈ D, with ‖x‖, ‖x‖ ≤ R.

Let Ln(t) =
∫ t

0
l̂n(s)ds where

l̂n(t) = max{tnMM2M1e
|ω|tn ln(t), MM2M1e

|ω|tn , MMM1,Mln(t)}.

For each n ∈ IN we define in Ω the semi-norms by

‖y‖n = sup{e−|ω|t−τLn(t)|y(t)| : −r ≤ t ≤ tn}.

Then Ω is a Fréchet space with a family of semi-norms {‖ · ‖n}.

Theorem 4.1. Assume (H1)–(H6) and (A1)-(A2) are satisfied. If, for each n > 0, we have

c∗n + M
∞∑

k=1

bk < 1, then the IVP (1.4)-(1.6) is controllable on [−r,∞).

Proof. By using hypothesis (H5), for each y(·) and

v ∈ SF,y = {v ∈ L1(J,D(A)) : v(t) ∈ F (t, yt) a.e t ∈ J},
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define the control,

uy(t) = W−1
[
y1 − S′(tn)[φ(0) − g(0, φ(0))] − g(tn, ytn)

− lim
λ→+∞

∫ tn

0
S′(tn − s)Bλv(s)ds −

∑
0<tk<t

S′(tn − tk)Ik(y(t−k ))

⎤⎦ (t).

Transform the problem (1.4)–(1.6) into a fixed point problem. Consider the operator N1 : Ω →
P(Ω) defined by,

N1(y) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h ∈ Ω : h(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(t), if t ∈ [−r, 0],

S′(t)[φ(0) − g(0, φ(0))] + g(t, yt)

+
d

dt

∫ t

0
S(t − s)v(s) ds

+
d

dt

∫ t

0
S(t − s)(Buy)(s)ds

+
∑

0<tk<t

S′(t − tk)Ik(y(t−k )) if t ∈ [0,∞) , v ∈ SF,y.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Remark 4.1. It is clear that the fixed points of N1 are integral solutions to (1.4)–(1.6).

Let y be a possible solution of the problem (1.4)–(1.6). Given n ∈ IN and t ≤ tn, then y ∈ N1(y),
and there exists v ∈ SF,y such that for each t ∈ [0,∞), we have

|y(t)| ≤ Me|ω|t[‖φ(0)‖ + ‖g(, φ(0))‖] + d1‖yt‖D + d2

+Me|ω|t
∫ t

0
e−|ω|sp(s)ψ(‖ys‖)ds

+Me|ω|t
∫ t

0
e−|ω|s‖(Buy(s)‖ds + Me|ω|t

n∑
k=1

e−|ω|tkck

≤ Me|ω|t[‖φ(0)‖ + ‖g(0, φ(0))‖] + d1‖yt‖D + d2

+Me|ω|t
∫ t

0
e−|ω|sp(s)ψ(‖ys‖)ds + MMe|ω|tM1tn

∫ t

0
d1‖ytn‖ds

+MMe|ω|tM1tn

(
‖y1‖ + Me|ω|tn [‖φ(0)‖ + ‖g(0, φ(0))‖ + d2

+Me|ω|tn
n∑

k=1

e−|ω|tkck

+Me|ω|tn
∫ t

0
e−|ω|sp(s)ψ(‖ys‖)ds

)
+ Me|ω|t

n∑
k=1

e−|ω|tkck.

We consider the function µ defined by

µ(t) = sup{|y(s)| : −r ≤ s ≤ t}, 0 ≤ t ≤ tn.

Let t∗ ∈ [−r, t] be such that µ(t) = |y(t∗)|. If t∗ ∈ [0, tn], then by the previous inequality, we
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have for t ∈ [0, tn],

µ(t) ≤ e|ω|tnM [‖φ(0)‖ + ‖g(0, φ(0))‖] + d1µ(t) + d2

+Me|ω|t
n∑

k=1

e−ωtkck + MMe|ω|tnM1tn

∫ t

0
d1µ(s)ds

+MMe|ω|tnM1tn

(
‖y1‖ + Me|ω|tn [‖φ(0)‖ + ‖g(0, φ(0))‖

+d2 + Me|ω|tn
n∑

k=1

e−|ω|tkck + Me|ω|tn
∫ t

0
e−|ω|sp(s)ψ(µ(s))ds

)
+Me|ω|tn

∫ t

0
e−|ω|sp(s)ψ(µ(s))ds

≤ e|ω|tnM [‖φ(0)‖ + ‖g(0, φ(0))‖] + d1µ(t) + d2 + Me|ω|tn
n∑

k=1

e−ωtkck

+MMe|ω|tnM1tn

(
‖y1‖ + Me|ω|tn [‖φ(0)‖ + ‖g(0, φ(0))‖

+d2 + Me|ω|tn
n∑

k=1

e−|ω|tkck

)
+
∫ t

0
m(s)ψ(µ(s))ds.

Then

µ(t) ≤ 1
1 − d1

(
e|ω|tnM [‖φ(0)‖ + ‖g(0, φ(0))‖] + d2 + Me|ω|tn

n∑
k=1

e−ωtkck

)

+
MMe|ω|tnM1tn

1 − d1

(
‖y1‖ + Me|ω|tn [‖φ(0)‖ + ‖g(0, φ(0))‖]

)
+

MMe|ω|tnM1tn
1 − d1

(
d2 + Me|ω|tn

n∑
k=1

e−|ω|tkck

)
+
∫ t

0
m(s)[µ(s) + ψ(µ(s))]ds,

where

m(t) =
1

1 − d1
[M2MMM1tne2|ω|tn ]e−|ω|tp(t) + Me|ω|tne−|ω|tp(t) + MMe|ω|tnM1tnd1.

If t∗ ∈ [−r, 0], then µ(t) = ‖φ‖ and the previous inequality holds. Let us take the right-hand
side of the above inequality as v(t). Then we have

µ(t) ≤ v(t) for all t ∈ [0, tn],

and

v(0) =
1

1 − d1

(
e|ω|tnM [‖φ(0)‖ + ‖g(0, φ(0))‖] + d2 + Me|ω|tn

n∑
k=1

e−ωtkck

)

+
MMe|ω|tnM1tn

1 − d1

(
‖y1‖ + Me|ω|tn [‖φ(0)‖ + ‖g(0, φ(0))‖ + d2

+Me|ω|tn
n∑

k=1

e−|ω|tkck

)
,
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and
v′(t) = m(t)[µ(t) + ψ(µ(t))], t ∈ [0, tn].

Using the increasing character of ψ we get

v′(t) ≤ m(t)ψ(v(t)) a.e. t ∈ [0, tn].

Then for each t ∈ [0, tn], we have∫ v(t)

v(0)

du

u + ψ(u)
≤
∫ tn

0
m(s)ds <

∫ ∞

v(0)

du

u + ψ(u)
.

Consequently, there exists a constant dn such that v(t) ≤ dn, t ∈ [0, tn], and hence ‖y‖n ≤
max(‖φ‖, dn) := Kn. Set

U1 = {y ∈ Ω : ‖y‖n < Kn + 1 for all n ∈ IN}.

Clearly, U1 is a open subset of Ω. As in Theorem 3.1, we can show that N1 : U1 → P(Ω)
is an admissible contraction operator. From the choice of U1 there is no y ∈ ∂U1 such that
y ∈ λN1(y) for some λ ∈ (0, 1). As a consequence of the nonlinear alternative (Frigon, 2002),
we deduce that N1 has at least one fixed point which is an integral solution to (1.4)–(1.6).

5 AN EXAMPLE

As an application of our results, we consider the following impulsive partial functional differential
inclusion,

∂z(t, x)
∂t

− d∆z(t, x) ∈ Q(t, z(t − r, x)) + (Bu)(t), t ∈ [0,∞) \ {t1, t2, . . .}, x ∈ Γ, (5.1)

bkz(t−k , x) = z(t+k , x) − z(t−k , x), k = 1, 2, . . . , x ∈ ∂Γ, (5.2)

z(t, x) = 0, t ∈ [0,∞) \ {t1, t2, . . .}, x ∈ ∂Γ, (5.3)

z(t, x) = φ(t, x), −r ≤ t ≤ 0, x ∈ Γ, (5.4)

where d, r, bk > 0, Γ is a bounded open in IRn with regular boundary ∂Γ, B is as in (1.1),

∆ =
n∑

i=1

∂2

∂x2
i

, φ ∈ D([−r, 0] × Γ, IRn) = {ψ : [−r, 0] × Γ → IRn : ψ is continuous everywhere

except for a countable number of points t̄ at which ψ(t̄−, .) and ψ(t̄+, .) exist, ψ(t̄−, .) =
ψ(t̄, .), and sup

(θ,x)∈[−r,0]×Γ

|ψ(θ, x)| < ∞}, (0 < r < ∞), 0 = t0 < t1 < . . . < tm < . . . , z(t+k , x) =

lim
(h,x)→(0+,x)

z(tk + h, x), and z(t−k , x) = lim
(h,x)→(0−,x)

z(tk − h, x), Ik(z) = bkz k ∈ {1, 2, . . .},
Q : [0,∞)× IRn → P(IRn) is a multivalued map with compacts values, and there exist constants
kp > 0 such that
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Hd(Q(t, x), Q(t, y)) ≤ kq‖x − y‖ for all x, y ∈ [0, π], t ∈ [0,∞),

and
Hd(0, Q(t, 0)) ≤ kq.

Consider E = C(Γ, IRn) the Banach space of continuous functions on Γ with values in IRn.
Define the linear operator A on E by Az = d∆z, where

D(A) = {z ∈ E : ∆z ∈ Eand z|∂Γ = 0}.

Now we have
D(A) = {z ∈ E : z|∂Γ = 0} 
= E.

It is well known from (Da Prato and Sinestrari, 1987) that ∆ satisfies the properties,

(i) (0,∞) ⊂ ρ(∆),

(ii) ‖R(λ, ∆)‖ ≤ 1
λ

, for some λ > 0.

It follows that ∆ satisfies (H1), and hence it generates an integrated semigroup (S(t))t, t ≥ 0,
and that |S′(t)| ≤ e−µt, for t ≥ 0 and some constant µ > 0. Let

F (t, wt)(x) = Q(t, w(t − x)), 0 ≤ x ≤ π.

Then problem (5.1)-(5.4) takes the abstract form (1.1)-(1.3). We can easily see that all hy-
potheses of Theorem 3.1 are satisfied. Hence from Theorem 3.1 the problem (5.1)-(5.4) has
at last one integral solution on [−r,∞).
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ABSTRACT

The paper is an overview of the selected results of the authors devoted to a solution
of two problems by I. T. Kiguradze concerning to existence of nonoscillatory proper
Kneser and strongly increasing solutions of the Emden – Fowler equation. Some new
exact conditions of existence and asymptotic estimations of such solutions are given.
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1 Introduction and preliminaries

The paper contains a survey of the authors’ results devoted to solutions of two well known
I. T. Kiguradze’s problems on the existence of nonoscillatory infinitely continuable to the right
strongly increasing solutions and Kneser solutions vanishing at infinity of the following Emden
– Fowler type equation

u(n) = p(t)|u|λsignu, 0 < λ 
= 1, n ≥ 2, t > a > 0, (1.1)

with a locally integrable function p, that is nonzero on a set of positive measure in every neigh-
bourhood of +∞.

1.1 Basic definitions and notations

Definition 1.1. A solution u of the equation (1.1) is called proper if it is infinitely continuable
to the right and for all sufficiently large t satisfies condition sup {|u(s)| : s > t} > 0; it is called
singular otherwise (Kiguradze and Chanturia, 1990; Kiguradze and Chanturia, 1993).

Definition 1.2. A maximally prolonged to the right solution u : [t0, tu) → R of the equation
(1.1) is called nonoscillatory if it has no zero on some interval [t1, tu) ⊂ [t0, tu), and oscillatory
otherwise (Kiguradze and Chanturia, 1990; Kiguradze and Chanturia, 1993).
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We shall consider nonoscillatory solutions of the equation (1.1) of various types such as proper
Kneser solutions vanishing at infinity, singular Kneser solutions of the first type, strongly in-
creasing solutions and singular solutions of the second type.

Definition 1.3. A solution u : [t0,+∞) → R of the equation (1.1) satisfying conditions

(−1)iu(i)(t)u(t) > 0, i = 1, . . . , n − 1, t ∈ [t0, t∗), lim
t→t∗

u(t) = 0, (1.2)

is called a proper Kneser solution vanishing at infinity if t∗ = +∞, and a singular solution of the
first type, if t∗ < +∞ and u(t) ≡ 0 for t ≥ t∗ > t0 (Kiguradze and Chanturia, 1990; Kiguradze
and Chanturia, 1993).

Definition 1.4. A solution u : [t0, tu) → R of the equation (1.1) satisfying conditions

u(i)(t)u(t) > 0, i = 1, . . . , n − 1, t ∈ [t0, tu), lim
t→tu−0

|u(n−1)(t)| = +∞, (1.3)

is said to be: 1) a strongly increasing solution, if tu = +∞; 2) a singular solution of the second
type if tu < +∞ (Kiguradze and Chanturia, 1990; Kiguradze and Chanturia, 1993).

1.2 Problem statements

The second order equation (1.1) with power function p for the first time has arose at the be-
ginning of XX century in astrophysical researches of R. Emden and then was explicitly inves-
tigated by R. Fowler, R. Bellman, G. Sansone and many other authors. The general case of
the equation (1.1) has the rich history which was comprehensively stated by I. T. Kiguradze
in his monograph (Kiguradze and Chanturia, 1990; Kiguradze and Chanturia, 1993). The ma-
jor results in studying of asymptotic properties of solutions of this equation and their various
generalizations also belong to I. T. Kiguradze and representatives of his school.

1.2.1 Kneser solutions

Let us assume the condition

(−1)np(t) ≥ 0, t ≥ 0, λ ∈ (0, 1) (1.4)

holds.
The basic results here are the following two general assertions

The first Kiguradze’s theorem (Kiguradze, 1975) Let (1.4) hold. The equation (1.1) with
function p, differing from zero on a set of positive measure, has Kneser singular solutions of
the first type. Moreover, if (−1)np(t) > ct−n > 0, t > t0, then each solution of the (1.2) type of
the equation (1.1) is a singular solution of the first type.

Kvinikadze condition (Kvinikadze, 1978) Let function p : [0, +∞) → R satisfy conditions (1.4)
and

+∞∫
t

|p(τ)|τn−1dτ < +∞. (1.5)
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Then equation (1.1) has proper vanishing at infinity Kneser solutions u : [0, +∞) → R and
each of them admits the asymptotic estimation

|u(t)| < c

⎡⎣ +∞∫
t

|p(τ)|(τ − t)n−1dτ

⎤⎦1/(1−λ)

for large t.

In connection with the sufficient condition (1.5) the following problem has arisen.

The first Kiguradze’s problem (Kiguradze, 1975) Let 0 < λ < 1. Suppose that that the
function p satisfies the condition (1.4) and is not identical zero in every neighbourhood of +∞.

Is the condition (1.5) necessary for the equation (1.1) to have at least one proper solution of
the (1.2) type?

The solution of this problem and some new necessary conditions of the existence of specified
solutions are given in the Section 2 of the paper.

1.2.2 Strongly increasing solutions

Let λ > 1 and function p : [0, +∞) → [0, +∞) is no zero on a set of positive measure in any
neighbourhood of +∞.

The basic results here are the following two statements.

The second Kiguradze theorem (Kiguradze, 1975) Equation (1.1) with parameter λ > 1
and function p : [0, +∞) → [0, +∞), that is nonzero on a set of positive measure, has a
n−parametrical set of singular solutions of the second type. If p(t) > ct−1−(n−1)λ > 0, t > t0

then this equation has no any proper solutions of the (1.3) type.

Kiguradze – Kvinikadze’s condition (Kiguradze and Kvinikadze, 1982) Equation (1.1) with
parameter λ > 1 and function p : [0, +∞) → [0, +∞), differing from zero on a set of positive
measure in any neighbourhood of +∞ and satisfying the condition

J(a, +∞) ≡
+∞∫
a

p(τ)τ (n−1)λdτ < +∞, (1.6)

has (n − 1)−parametrical set of nonoscillatory strongly increasing solutions and each of them
in some neighbourhood of +∞ supposes the estimation

|u(n−1)(t)| ≥ c
( +∞∫

t

τ (n−1)λp(τ)dτ
)1/(1−λ)

.

In connection with these results the following problem has arisen

The second Kiguradze’s problem (Kiguradze, 1983; Kiguradze, 1978) Let λ > 1. Suppose
that that the non-negative function p is not identical zero in every neighbourhood of +∞. Is the
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condition (1.6) necessary for the equation (1.1) to have at least one proper solution of the (1.3)
type?

The Section 3 gives both the solution of this problem and some new exact necessary existence
conditions and asymptotic estimations for such solutions.

2 Kneser solutions

Let λ ∈ (0, 1) and function p : [0, +∞) → [0, +∞) is nonzero on a set of positive measure in
every neighbourhood of +∞. The results on studying nonoscillatory proper Kneser solutions
(1.2) vanishing at infinity of the Emden – Fowler type equation (1.1) satisfying the condition
(1.4) are stated here in terms of convergence of the integral (Izobov, 1985b)

Jµ(p, ϕ) ≡
+∞∫
1

|p(τ)|µϕ(τ)dτ

with various constants µ > 0 and piecewise continuous functions ϕ : [0,+∞) → (0, +∞). Initial
here is the article (Izobov, 1985b) in which the solution of the first Kiguradze’s problem for the
second order equation (1.1) is given and integral conditions of the existence or the absence
of proper Kneser solutions to the equation (1.1) of an arbitrary order are received. This work
contains also an algorithm of simultaneous building both the second order Emden – Fowler
equation with admissible piecewise constant function p and its corresponding Kneser solution.
In the work (Izobov and Rabtsevich, 1990) which has appeared later the solution of the first
Kiguradze problem for the equation of an arbitrary order n ≥ 2 is received.
A sufficient condition of the absence of proper Kneser solutions for the equation (1.1) of an
arbitrary order establishes the following theorem.

Theorem 2.1. (Izobov, 1985b) Equation (1.1) with the parameter λ ∈ (0, 1) and the function p

satisfying (1.4) and the condition

+∞∫
1

|p(τ)|µτn2ν−1dτ = +∞, ν < µ ∈ (0, n−1
1 ), (2.1)

where ni = ni(n) ≡ (n − i)λ + i, i = 1, 2, has no proper nonoscillatory Kneser solutions (1.2.)

Proof. For any positive number α < (2n1)−1 min{1 − n1µ, 1 − λ} we introduce other numbers
as follows µ1 = α + λn−1

1 , µ2 = −α + n−1
1 , if n = 2; µk+1 = kβ + λn−1

1 , k = 0, 1, . . . , n − 2,

µn = −α + n−1
1 , where β = 2α/((n− 1)(n− 2)), if n > 2. These numbers satisfy the conditions

λµ < λµn < µ1 < . . . < µn,
n∑

i=1
µi = 1.

Let us rewrite the condition (2.1) in the more convenient and equivalent form

+∞∫
1

τ−1−ε [|p(τ)|τn2 ]µ dτ = +∞, ε = n2(µ − ν). (2.11)
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It is clear, the divergence of the integral (2.11) implies also the divergence of the integral

+∞∫
1

τ−1−nδ [|p(τ)|τn2 ]µn dτ = +∞, δ ∈ (0, ε/n). (2.12)

Assume now, the equation (1.1) has a proper Kneser solution u : [t0, +∞) → R. Then, ac-
cording to (1.2), the inequalities u(i)(t)u(i+1)(t) < 0 hold for i = 0, 1, . . . n − 2 and t ≥ t0 ≥ 1.

Without loss of generality it is possible to suppose, that the solution u satisfies conditions

(−1)iu(i)(t) > 0, i = 0, 1, . . . n − 1, t ≥ t0. (2.2)

Since the obvious representation u(i)(t) = u(i)(t0)+
t∫

t0

u(i+1)(τ)dτ, t ≥ t0, and the inequalities

(2.2) are valid, then the inequality

|u(i+1)(t)|(t − t0) ≤ |u(i)(t0)|, t ≥ t0, (2.31)

holds for all t ≥ t0 ≥ 0, and, hence, the estimations

|u(i+1)(t)| ≤ |u(i)(t0)|(2/t), i = 0, 1, . . . n − 2, t ≥ t1 = 2t0, (2.32)

are valid also.

For the function v(t) ≡ (−1)[n/2]
n−1∏
i=0

u(i)(t) > 0, t ≥ t1, we calculate their derivative and then

using estimation (2.32), the inequality (Beckenbach and Bellman, 1960)

n∑
i=1

βixi ≥
n∏

i=1

xiβi, xi ≥ 0, βi > 0,

n∑
i=1

βi = 1,

and the choice of numbers µi and α we finally find the upper estimation for this derivative in
the form

v′(t) = −
n−1∑
k=0

|u(k+1)(t)|
n−1∑

i=0,�=k

|u(i)(t)| ≤ −c

n−1∏
k=0

⎡⎣|u(k+1)(t)|
n−1∏

i=0, �=k

|u(i)(t)|
⎤⎦µk+1

≤ −c|p(t)|µnv(t)uλµn−µ1(t)
n−1∏
i=1

|u(i)(t)|µi−µi+1 ≤ −c|p(t)|µntµn−µ1−nδv1−δ(t), t ≥ t1. (2.4)

The number δ here is chosen to satisfy the condition δ < min{ε/n, λα,−2α + (1 − λ)n−1
1 } and

also to the condition δ < β in the case n > 2, c is a universal positive constant.
Since for the exponent t in (2.4) the inequalities µn − µ1 − nδ ≥ (1 − λ)n−1

1 − 2α − nδ

= −1−nδ+(n−2)λα+n2µn ≥ −1−nδ+n2µn hold, the inequality v′(t) ≤ −f(t)v1−δ(t), f(t)
≡ ct−1−nδ[|p(t)|tn2 ]µn , t ≥ t1 also is true. Integrating it from t1 up to t, we have the estimation

vδ(t) − vδ(t1) ≤ −δ
t∫

t1

f(τ)dτ, t ≥ t1, where in accordance to the (2.12) right term tends to

−∞ as t → +∞. This fact contradicts to the inequality v(t) > 0 for all t ≥ t1 derived from initial
assumptions. This contradiction proves the theorem.
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Corollary 2.2. (Izobov and Rabtsevich, 1990) The statement of the theorem 2.1 remains valid
after replacement of the condition (2.1) by the weaker condition

+∞∫
1

|p(τ)|µτnν−1dτ = +∞, ν < µ ∈ (0, n−1
1 ). (2.13)

Proof. Putting t0 = t/2 in the estimation (2.31), yields the obvious inequalities |u(i+1)(t)|
≤ 2|u(i)(t/2)|/t, i = 0, 1, . . . n − 2, t ≥ t1 = 2t0. Their sequential application allows to specify
the estimation (2.32) as follows

|u(i)(t)| ≤ 2(i−1)i/2|u(t0)|t−i, i = 1, . . . n − 1, t ≥ 2n−1t0.

Using the obtained estimation we get the inequality
n−1∏
i=1

|u(i)(t)|µi−µi+1 ≥ const · tnµn−1 > 0 for

the product in (2.4), which together with (2.13) proves the corollary.

Corollary 2.3. (Izobov and Rabtsevich, 1990) Let λ ∈ (0, 1) and the condition (1.4) hold. If the
equation (1.1) has a proper Kneser solution of the (1.2) type, then

+∞∫
1

|p(τ)|µτnν−1dτ < +∞ for all ν < µ ∈ (0, n−1
1 (n)).

The condition (2.1) and the weaker condition (2.13) are exact with respect to the parameter µ.

This fact establishes 1

Theorem 2.4. (Izobov, 1985b; Izobov and Rabtsevich, 1990) For any natural n ≥ 2, piecewise
continuous function ϕ : [0, +∞) → (0, +∞) and numbers µ ≥ 1/n1(2) in the case n = 2 and
µ > 1/n1(n) in the case n > 2 there exists such piecewise continuous function p(t) ≡ pn,ϕ,µ(t),
satisfying (1.4) and the condition

+∞∫
1

|p(τ)|µϕ(τ)dτ = +∞, (2.5)

that the equation (1.1) has proper Kneser solutions of the (1.2.) type.

Proof. The proof of this theorem consists of two parts. In the first part will be constructed
the second order equation with function p satisfying the condition (2.5) at µ = 1/n1(2) which
has proper Kneser solutions. In the second part similar construction is made in the case
µ ∈ (1/n1(n), +∞), leaving thus not investigated the case µ = 1/n1(n), n > 2.

1. As it was marked above, from the proof of this theorem for the second order equation (1.1)
presented in (Izobov, 1985b) we shall consider the most important case µ = 1/n1(2) = (1
+λ)−1. The construction of the desired piecewise continuous function p and the proper Kneser
solution u of the equation (1.1) with this function we will realise the step-by-step procedure with
the increasing number of steps at each of the following stage.

1Without loss of generality it is assumed that the function ϕ(t) > 0 has the exact lower boundary inf
τ≤t≤τ+1

ϕ(t)

≡ ϕτ > 0 on the every unit segment [τ, τ + 1].
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Let’s consider the constructions of the k-th stage, that acts on some segment [tk, tk+1] which
length is ≥ 1. Pick the auxiliary constants and the functions of the natural argument i ≥ 3 as

follows: 1) the number γ ∈ (0, 1) and the corresponding number R ≡
+∞∑
j=3

γj−3jλ/(1−λ) < +∞;

2) the number α ∈ (1, 1 + λ) and the functions

ai = i−1
i−1∏
j=2

(1 − j−1−λ)(1−λ)/(1+λ), 1 > iai > a0 ∈ (0, 1),

bi = (iαa1+λ
i )1/(1−λ) > bi+1, 1 > b

(1+λ−α)/(1−λ)
i > b0 = a

(1+λ)/(1−λ)
0 ∈ (0, 1),

for i ≥ 3. The introduced functions satisfy the inequality

bi − bi+1 ≥ bλ
i a1+λ

i , i ≥ iα, (2.6)

which was proved in (Izobov, 1985b). Let at the initial moment t = tk the following inequalities
fulfill

0 < u(tk), 0 < (γ − 1)b−1
0 Ru(tk)u̇−1(tk) < 1. (2.7)

At the i-th step of the current stage considered on some segment [τi−1, τi], i ≥ 3, τ2 = tk,

realize the equalities

u(τi) = γu(τi−1) > 0, u̇(τi) = bib
−1
i−1u̇(τi−1) < 0, i ≥ 3 (2.8)

for the solution u of the equation (1.1) with the function

p(t) = pi ≡ 1 + λ

2
1 − (bi/bi−1)2

1 − γ1+λ

u̇2(τi−1)
u1+λ(τi)

.

From the relations (2.8) and the inequality (γ − 1)u(τi−1) =
τi∫

τi−1

u̇(τ)dτ ≤ u̇(τi)(τi − τi−1)

= bib
−1
i−1u̇(τi−1)(τi − τi−1) an estimation for the length of the segment [τi−1, τi] τi − τi−1

≤ (1 − γ)γi−3b−1
i u(tk)|u̇(tk)|−1, i ≥ 3 follows. This estimation together with the condition (2.7)

leads to inequalities

τi − tk ≤ (1 − γ)
u(tk)
|u̇(tk)|

i∑
j=3

γj−3b−1
j < (1 − γ)b−1

0 R
u(tk)
|u̇(tk)| < 1, i ≥ 3. (2.9)

On the other hand, the following opposite estimation for length of the segment [τi, τi+1]

τi+1 − τi ≥ (1 − bi+1bi−1)p−1
i+1|u̇(τi)|u−λ(τi) (2.10)

follows from the evident representation u̇(τi+1) − u̇(τi) =
τi+1∫
τi

pi+1u
λ(τ)dτ.

For some l ≥ 3 by the equalities (2.8) and by the inequalities (2.6), (2.9) and (2.10) we can
receive now the desired estimation of the integral:

τl+1∫
τk

pµ(τ)ϕ(τ)dτ ≥ ϕtk

l∑
i=2

pµ
i+1(τi+1 − τi) ≥ ϕtk

l∑
i=2

p
−λ/(1+λ)
i+1 (τi+1 − τi)
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≥
(

1 − γ1+λ

1 + λ

) λ
1+λ

|u̇(tk)|
1−λ
1+λ

l∑
i=2

ai ≥ a0c(k)
l∑

i=iα

i−1 → +∞

as l → +∞. Therefore there exists a number l(k) > iα such that

θk∫
tk

pµ(τ)ϕ(τ)dτ ≥ 1, θk ≡ τl(k)+1. (2.11)

At the penultimate step of the considered k-th stage, that acts on the segment [θk, ηk], using
the function

p(t) = p1 ≡ 1 + λ

2
1 − β2

1

1 − β1+λ
0

u̇2(θk)
u1+λ(θk)

we realize equalities u(ηk) = β0u(θk) > 0, u̇(ηk) = β1u̇(θk) < 0 with those constants
β0, β1 ∈ (0, 1) such that the inequality

u(ηk)|u̇(ηk)|−1 ≥ 2 (2.12)

is fulfilled.
On the last step of the current stage we shall put p(t) ≡ 0 on the interval (ηk, tk+1]. We shall
choose the end point tk+1 of this interval (and the start moment of the following (k + 1)-th
stage) to satisfy to the following conditions: inequalities (2.7) with replacement k on k + 1 and
the condition 0 < u(tk+1) < γu(ηk)/2. The last condition together with the inequality (2.12)
ensures also the second necessary alongside with (2.11) the estimation tk+1 − ηk ≥ 1.

So, we have constructed the piecewise constant function p(t) ≥ 0 on the interval (tk, tk+1] with
length ≥ 1, such that the inequality

tk+1∫
tk

pµ(τ)ϕ(τ)dτ ≥ 1, µ = 1/(1 + λ),

holds and the solution u of the second order equation (1.1) admits the estimation

0 < u(t), u̇(t) < 0, t ∈ (tk, tk+1], u(tk+1) < γu(tk), |u̇(tk+1)| < γ|u̇(tk)|.

To complete the proof of the theorem in the considered case it is enough to extend these
constructions to the all semiaxis t ≥ 0.

2. This part of the proof (Izobov and Rabtsevich, 1990) also has the constructive character. The
construction of the necessary equation (1.1) of the order n > 2 with the function p satisfying
the condition (2.5) with parameter µ ∈ (1/n1(n),+∞) such that it has the proper solution u of
the (1.2) type we perform by a number of steps. Each of the stages consists of two steps. The
algorithm is arranged such that the end point of the interval on which the constructions of the
previous stage operate, serves as the beginning point for the interval at the following stage.
Thus, let at the moment t2k, that is the end point for the previous k-th stage of the given
constructions the following conditions are fulfilled:
1) for the function ϕ the estimation

ϕ(t) ≥ ϕk = const > 0, t ∈ [t2k, t2k + (δ + 1)|βk|]; (2.13)

62  International Journal of Applied Mathematics & Statistics



holds for some positive number δ to be determine below (see the lemma 2.1), which depends
on the number n only;
2) for the solution u the equalities

u(i)(t2k) = αkβ
n−i−1
k (i = 0, . . . , n − 1), |βk| < (n + 1)−1, (2.14)

are true, in which and everywhere below in this part of the proof the elements of the sequences
{αk} and {βk} satisfy the inequalities (−1)n−1αk > 0, βk < 0.

Now we give the needed constructions for the (k + 1)-th stage.

Step 1. The following Lemma is a base for the proposed constructions.

Lemma 2.1 Let arbitrary numbers n ≥ 2, αk, βk be chosen along with the segment [t2k, t2k+1]
the length of which is not less δ|βk|, where δ = δ(n) ≥ n. Then for all αk+1 and βk+1 which are
close enough to zero, there exists a function p of the (1.4) type and a solution u defined on this
segment such that

(−1)iu(i)(t) > 0, u(i)(tj) = αjβ
n−i−1
j (i = 0, . . . , n − 1, j = 2k, 2k + 1). (2.15)

Following this lemma, put t2k+1 = t2k + δ|βk| and choose the numbers αk+1 and βk+1 such
that the following condition

ϕk|αk+1|(1−λ)µ|βk+1|1−µn1(n) exp[µ(1 − λ)] > 1 (2.16)

holds. This is possible according to the assumption µn1(n) > 1.

Step 2. It is easy to check, that the function y(t) = αk+1β
n−1
k+1 exp[β−1

k+1(t − t2k+1)] is the
solution of the equation y(n) = β−n

k+1y, satisfying the conditions y(i)(t2k+1) = αk+1β
n−i−1
k+1 ,

0 < (−1)iy(i)(t), t > t2k+1, i = 0, . . . , n − 1. Then the equation (1.1) with the function
p(t) = β−n

k+1y
1−λ(t) has the solution u(t) = y(t), t > t2k+1. Choose the moment t2k+2 satisfying

the condition (2.13) where k is replaced by k +1 and such that t2k+2 > t2k +1. By monotonicity
of the function p, the equalities t2k+1 = t2k + δ|βk| and the conditions (2.15), (2.16) the fol-

lowing estimation of the integral
t2k+2∫
t2k+1

|p(τ)|µϕ(τ)dτ > 1 holds and it ensures the validity of the

condition (2.5).
Thus the constructions of the (k + 1)-th stage, acting on the segment [t2k, t2k+2] the length of
which is > 1, are completed. In accordance with the conditions (2.13) and (2.14) where k is
replaced by k + 1 the moment t2k+2 can serve as the beginning point for the following stage of
the proposed constructions. The theorem is completely proved.

The first author of this paper proved a stronger statement in the form

Theorem 2.5. For any natural number n ≥ 2 and piecewise continuous function ϕ : [0, +∞)
→ (0, +∞) there exists a piecewise continuous function p(t) ≡ pn,ϕ(t), satisfying the inequality
(1.4) and the condition (2.5) for every µ ≥ n−1

1 (2) in the case n = 2 and µ > n−1
1 (n) in the case

n > 2 such that the n-th order equation (1.1) has proper Kneser solutions.

I.T. Kiguradze extended the approach used in (Izobov, 1985b). He received both more exact
necessary existence condition of such solutions and their asymptotic estimations.
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Theorem 2.6. (Kiguradze and Chanturia, 1993) Let the equation (1.1) has a proper nonoscil-
latory Kneser vanishing at infinity solution u. Then for every number µ ∈ [2/(n1 + n), 1/n1),
n1 = n1(n),

lim
t→+∞ tν

+∞∫
t

τnµ−ν−1|p(τ)|µdτ = 0, (2.17)

where ν = 1 − µn1, and the following estimation

|u(t)| ≥ γ0(n, λ, µ)

⎡⎢⎣ +∞∫
t

(τ − t)n−2

⎛⎝ +∞∫
τ

|p(x)|µdx

⎞⎠(n−1)/(nµ−1)

dτ

⎤⎥⎦
(nµ−1)/((n−1)(1−λ)µ)

(2.18)

holds in some neighbourhood of +∞

After improvements of some parameters in (Rabtsevich, 1993) this statement was modified to
the form:

Theorem 2.7. Let the equation (1.1) has a proper nonoscillatory Kneser solution u vanishing at
infinity. Then for any numbers µ ∈ [1/n, 1/n1) and ν ∈ (0, σ0], where σ0 = min{nµ−1, 1−n1µ},
the equality (2.17) holds and the estimation (2.18) is valid in some neighbourhood of +∞.

The second author of this paper proved also the following statements (Rabtsevich, 2000c).

Theorem 2.8. If the equation (1.1) has a proper nonoscillatory Kneser solution u vanishing at
infinity then for any nonincreasing function ϕ(t) > 0, satisfying the condition t|ϕ̇(t)|/ϕ(t) ≤ 1
for all t > t0 and any numbers µ ∈ (0, 1/n1) and ε > 0 the following equality

lim
t→+∞Φµ,ε(ϕ(t)) = 0

holds, and, since some moment tu > t0, the estimate sn−1(t) > γ[Φµ,ε(ϕ(t))]1/((1−λ)µ) is valid,

where Φµ,ε(ϕ(t)) = ϕ−ε(t)
+∞∫
t

(p(τ)τn−1)µϕε(τ)(|ϕ̇(τ)|/ϕ(τ))1−µdτ, sn−1(t) =
n−1∑
i=0

|u(i)(t)|ti/i!

and γ is a positive constant depending on n, λ, µ only.

Theorem 2.9. In the case 0 < (−1)np(t) ≤ ct−n, t > t0, the condition (1.6) is necessary and
sufficient for proper Kneser solutions u : [0,+∞) → R vanishing at infinity of the equation (1.1)
to exist and each of them admits the asymptotic estimation

|u(t)| > c

⎡⎣ +∞∫
t

|p(τ)|τn−1dτ

⎤⎦1/(1−λ)

in some neighbourhood of +∞.

3 Strongly increasing solutions

In this paragraph some results concerning the study of strongly increasing solutions (1.3) of
the equation (1.1) with parameter λ > 1 and nonnegative locally integrable function p are given
in terms of divergence of the integral Jµ(p, ϕ) (its definition see in previous Section). These
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results are connected with the sufficient condition (1.6) for the equation (1.1) to have proper
unbounded solutions and are initiated by the I. T. Kiguradze’s problem about the necessity of
this condition. This problem was stated by him in the survey (Kiguradze, 1978) and at the 6-th
session of the joint seminar by name I. G. Petrovsky and the Moscow mathematical society
(Kiguradze, 1983).
The fact, that the condition (1.6) is not a necessary one for the equation (1.1) to have strongly
increasing solutions, is the simple consequence of the following theorem.

Theorem 3.1. (Izobov, 1984c; Izobov, 1984a; Izobov, 1984b; Izobov, 1985a) For any number
µ ≥ 1/n and piecewise continuous function ϕ : [0, +∞) → (0,+∞) there exists piecewise
continuous function p : [0, +∞) → [0, +∞) satisfying the condition Jµ(p, ϕ) = +∞, such that
equation (1.1) with parameter λ > 1 has a n-parametrical family of strongly increasing solutions
with initial values

0 
= U(0) ≡ (u(0), u(1)(0), . . . , u(n−1)(0)) ∈ X1 ≡ {x ∈ Rn : 0 ≤ xi ≤ 1}. (3.1)

Proof. Put δ1/n = 1/2 and δµ = exp
{
[(1 + n)µ − 1](1 − nµ)−1 ln 2

}
at nµ > 1. For some num-

bers θ > 0 and δ ∈ (0, δµ) we introduce the time moments as

τk+1 = τk + δ1+k, τ1 = θ, k = 1, . . . , m = [δ−1], (3.2)

and for the interval (τ1, τm+1] the length which satisfies τm+1 − τ1 < 2δ2 < 1/2 define the
function p by equality

pµ(t) = δ−kϕ−1(t), t ∈ (τk, τk+1], k = 1, . . . , m. (3.3)

For this function the evident inequality

τm+1∫
τ1

pµ(τ)ϕ(τ)dτ = mδ > 2/3 (3.4)

is fulfilled. Let’s receive now the upper estimation of the integral

1
(n − 1)!

τm+1∫
τ1

p(τ)(τm+1 − τ)n−1dτ ≤ 1
(n − 1)!

m∑
k=1

(τm+1 − τk)n−1

τk+1∫
τk

p(τ)dτ

≤ 1
(n − 1)!

δn(1 − δ)1−nϕ
−1/µ
θ

m∑
k=1

δk(n−1/µ) ≤ 2mδnϕ
−1/µ
θ ≤ 2δn−1ϕ

−1/µ
θ , (3.5)

where without loss of generality it is assumed ϕθ > 0 for all θ ≥ 0 where ϕθ ≡ inf ϕ(τ) > 0,

τ ∈ [θ, θ + 1].
The required piecewise continuous function p(t) ≥ 0 we shall build by step-to-step procedure.
At the first step choose the needed values θ = θ1 > θ0 = 0, δ = δ1 by putting p(t) ≡ 0 on the
segment [θ0, θ1], where the moment θ1 is unknown. This moment t = θ1 must be so large to
provide the inequalities

θ1 − θ0 > 4(n − 1)!, δ1 ≡ 1
4λ

u1−λ(θ1)(1 + ϕ
−1/µ
θ1

)−1 < δµ, (3.6)
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where u(θ1) ≡ sup{u(θ1) : U(θ0) ∈ X1} > 1.

For the chosen θ = θ1 and δ = δ1 calculate the moment τk and number m1 = [δ−1
1 ] by the

formula (3.2) ([ · ] means the integer part of number) and then define the function p by formula
(3.3).
Establish now that every solution u of such defined equation (1.1) with initial conditions (3.1)
exists on the whole segment [θ0, θ2], θ2 = τm1+1. Let’s suppose to the contrary that some
solution u exists on the interval [θ0, t∗), t∗ ∈ (θ1, θ2] and u(t) ↑ +∞ at t → t∗ − 0. From the

representation u(k)(t) =
n−1∑
i=k

u(i)(θ0)(t− θ0)i−k/(i− k)!, k ∈ {0, 1, . . . , n− 1}, t ∈ [θ0, θ1], by the

first condition (3.6) we obtain the inequality 4u(l)(θ1) < u(k)(θ1) for any 0 ≤ k < l ≤ n − 1. For
derivative of this solution the following representation

u̇(t) =
n−1∑
i=1

u(i)(θ1)(t − θ1)i−1/(i − 1)! +
1

(n − 2)!

t∫
θ1

p(τ)(t − τ)n−2uλ(τ)dτ, t ∈ [θ1, t∗),

holds. Due to the inequalities 4α1[u(θ1)] ≡ 4 max
1≤i≤n−1

u(i)(θ1) < u(θ1), t∗ − θ1 < 2δ2
1 < 1/2 and

(3.5) we have the estimations

u̇(t) ≤
⎡⎣2α1[u(θ1)]u−λ(θ1) +

1
(n − 2)!

t∫
θ1

p(τ)(t − τ)n−2dτ

⎤⎦uλ(t)

<

⎡⎣u1−λ(θ1) +
1

(n − 2)!

t∫
θ1

p(τ)(t − τ)n−2dτ

⎤⎦uλ(t), t ∈ [θ1, t∗).

Integration the last differential inequality from θ1 up to t (u(t) > 0 for t ∈ [θ1, t∗)) yields the
inequality

R(t) ≡ 1− (λ− 1)

⎡⎣t − θ1 +
uλ−1(θ1)
(n − 1)!

t∫
θ1

p(τ)(t − τ)n−1dτ

⎤⎦ ≤
[
u(θ1)
u(t)

]λ−1

, t ∈ [θ1, t
∗). (3.7)

On the other hand, by virtue of the condition (3.6) and inequalities (3.5) we have the estimation

R(t) ≥ 1− (λ−1)
[
2δ2

1 + 2uλ−1(θ1)δn−1
1 ϕ

−1/µ
θ1

]
> 1−4uλ−1(θ1)(1+ϕ

−1/µ
θ1

) = λ−1, t ∈ [θ1, t∗),

which contradicts to the fact that right part of the inequality (3.7) tends to +0 as t → t∗ − 0.

Thus, all solutions u of the equation (1.1) with the initial conditions U(θ0) ∈ X1 exist on whole
segment [θ0, θ2]. The constructions of the first step are completed.
Let’s assume now, the function p(t) ≥ 0 is constructed on the segment [θ0, θ2k] the length
of which is greater 4k(n − 1)!. Then all solutions of the equation (1.1) with initial conditions
(3.1) exist on this segment. Now we realize the constructions that are needed to design the
admissible function p(t) for the (k +1)-th step. For this purpose similar to the first step we shall
choose the moments θ = θ2k+1 and δ = δk+1. Put p(t) ≡ 0 on the interval (θ2k, θ2k+1]. The
moment t = θ2k+1 we shall take so large that conditions

θ2k+1 − θ2k > 4(n − 1)!, δk+1 ≡ 1
4λ

u1−λ(θ2k+1)(1 + ϕ
−1/µ
θ2k+1

)−1 < δµ, (3.61)
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have been satisfied where u(θ2k+1) ≡ sup{u(θ2k+1) : U(θ0) ∈ X1}.
It is obvious, as well as on the first step, at such θ2k+1 for any solution u of the equation (1.1)
with initial values (3.1) the inequality 4α1[u(θ2k+1)] < u(θ2k+1) is true. For the chosen θ and δ

calculate the number mk+1 and the corresponding moments τi, i = 1, . . . , mk+1 by formulas
(3.2). Then define function p(t) according to the equality (3.3). All solutions of the equation
(1.1) with the initial values (3.1) exist on the whole segment [θ2k, θ2k+2], θ2k+2 = τmk+1

+1. The
proof of this fact repeats the similar proof of the first step with replacement of θ0, θ1 and δ1 by
θ2k, θ2k+1 and δk+1, respectively.
It remains to note that inequalities of the type (3.4) guarantee the validity of the condition
Jµ(p, ϕ) = +∞. The theorem 3.1 is proved.

At µ = 1 and ϕ(t) = t(n−1)λ this theorem gives the solution of the second Kiguradze problem
(Izobov, 1984a; Izobov, 1984b; Izobov, 1985a):

Corollary 3.2. The inequality (1.6) is not a necessary condition for the n-th order equation
(1.1) with parameter λ > 1 and function p : [0,+∞) → [0,+∞) to have strongly increasing
solutions.

The necessary condition for existence of strongly increasing solutions of the n-th order equa-
tion (1.1) follows from the next theorem (Izobov, 1984a; Izobov, 1984b; Izobov, 1985a).

Theorem 3.3. The equation (1.1) with function p(t) ≥ 0 satisfying condition

Jµ[p, τn1ν−1] = +∞, ν < µ ∈ (0, 1/n), (3.8)

has no proper solutions of the (1.3) type.

Proof. For β = n−2 min{1 − λ−1, 1 − nµ} define numbers µk+1 = 1/n at n = 2k + 1, µi

= −µn−i+1 + 2/n = ([n/2] + 1 − i)β + 1/n, 1 ≤ i ≤ [n/2], satisfying the conditions λµn

> µ1 > . . . > µn > µ,
n∑

i+1
µi = 1, and pick the number α by means of inequalities 0 < α

< β min{1, λ − 1}, n2α ≤ ε = n1(µ − ν). From the condition (3.8) follows the equality

Jµ[p, τn1µ−1−ε] = +∞. (3.9)

Since the integral with function t−ε−1[p(t)tn1 ]γ converges on the set T ≡ {t ≥ 1 : p(t)tn1 ≤ 1}
for any γ ≥ 0, then from divergence of the integral (3.9) under proper choice of numbers µn

and α follows a divergence of the integral

Jµn [τn1µn−nα−1] = +∞. (3.10)

Now, assume to the contrary that the equation (1.1) with the function p(t) ≥ 0 satisfying the
condition (3.10) has a proper solution of the (1.3) type. Then due to the well known relationship
between the arithmetic and geometric average, obvious estimations u(i)(t) > ctn−i−1, c > 0,

i = 0, 1, . . . , n− 1, t > t2, and the choice of numbers µi and α for the derivative of the auxiliary

function v(t) =
n−1∏
i=0

u(i)(t) we have the estimations

v̇(t) =
n−1∑
k=0

u(k+1)(t)
n−1∏

i=0, �=k

u(i)(t) ≥ c

n−1∏
k=0

⎡⎣u(k+1)(t)
n−1∏

i=0,�=k

u(i)(t)

⎤⎦µk+1

≥
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≥ cv(t)pµn(t)uλµn−µ1(t)
n−1∏
i=1

[u(i)(t)]µi−µi+1 ≥ cpµn(t)t(n−1)λµn+µn−nα−1v1+α(t), t > t2.

From here by the condition (3.10) follows the existence of a such moment t∗, for which
v(t) → +∞ as t → t∗ − 0, that contradicts to our assumption. The theorem is proved.

Remark 3.1. The accuracy of the condition (3.8) with respect to parameter µ follows from the
theorem 3.1. This accuracy of (3.8) with parameter ν is confirmed by the consideration of the
function p(t) = t−n1 lnε−1/µ t, ε ∈ (0, 1/2), µ ∈ (0, 1/n), t ≥ e, satisfying both to the constructed
integral condition and the sufficient condition (1.6).

Corollary 3.4. (Izobov, 1984a; Izobov, 1984b; Izobov, 1985a) If the equation (1.1) has a proper
solution of the (1.3) type then the function p satisfies condition Jµ[p, τn1ν−1] < +∞ for every
parameters ν < µ ∈ (0, 1/n).

Corollary 3.5. (Izobov, 1984a; Izobov, 1984b; Izobov, 1985a) In the class P = {p : 0 ≤ p(t)
≤ cp(1 + tmp), t ≥ 0} of piecewise continuous functions p with a power majorant the condition
J1/n[tα] = +∞ at α < (λ − 1)(1 − n−1) guaranties the absence of any proper solutions of the
(1.3) type for the equation (1.1)

To the theorems 3.1 and 3.2 above it had preceded the following theorem proved in (Izobov,
1984c) for the second order equation (1.1) with the concrete admissible value of parameter ν.

Theorem 3.0. The second order equation (1.1) with an arbitrary function p(t) ≥ 0, satisfying
the condition

+∞∫
a

t−2
[
p(t)tλ+3

]µ
= +∞ (3.11)

with µ ∈ (0, 1/2) has no proper solutions of the (1.3) type. Nevertheless, for any µ > 1/2 there
exists the piecewise continuous function p(t) ≥ 0 satisfying conditions (3.11) and J(a, +∞)
= +∞ such that the equation (1.1) has a two-parametrical family of proper solutions of the
(1.3) type. In the special case µ = 1/2 there exist both satisfying the condition (3.11) func-
tions p(t) ≥ 0, for which the equation (1.1) has no unbounded proper solutions, and functions
p(t) ≥ 0 satisfying (1.6), for which this equation (1.1) has a two-parametrical family of such
solutions.

Corollary 3.6. For any piecewise continuous function ϕ(t) ↑ +∞ as t ↑ +∞ there exists a
piecewise continuous function p satisfying the condition

+∞∫
a

ϕ(τ)
√

p(τ)τ (λ−1)/2dτ = +∞

such that the equation (1.1) has a two-parametrical family of proper solutions of the (1.3) type.
Nevertheless, there are also such continuous functions ϕ(t) ↓ 0 at t ↑ +∞ and p(t) ≥ 0
satisfying the condition (3.11), that this equation has also the same family of solutions .

Note, that in (Izobov, 1984c) linear extension of the integral (1.6) J1[p, τ (n−1)λ/ϕ(τ)] with a non-
decreasing positive function ϕ (see formulated below the theorem 3.3) was firstly considered.
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By means of a recurrent algorithm of parallel construction of the function p and the solution
possessing the needed properties the following theorems are proved. They also solve the
second Kiguradze problem.

Theorem 3.7. (The case n = 2 see in (Izobov, 1984c) and n > 2 see in (Izobov and Rabt-
sevich, 1987b; Rabtsevich, 1986; Rabtsevich, 1990c; Rabtsevich, 1990b). For any piecewise
continuous function ϕ(t) > 1 nondecreasing and unbounded on the semiaxis t ≥ a and for
number α > 1 there exists a function p(t) ≥ 0 satisfying the condition J1[p, τ (n−1)λ/ϕ(τ)] = +∞
such that the equation (1.1) has n-parametrical family of strongly increasing solutions possess-
ing additional differential property

0 < u(n−1)(t)/u(t) < (n − 1)!ϕα(t)t1−n (3.12)

in some neighbourhood of +∞.

Theorem 3.8. (n = 2 see in (Izobov, 1984a), n > 2 see in (Izobov and Rabtsevich, 1987a;
Rabtsevich, 1990c; Rabtsevich, 1990b). There exist piecewise continuous function p(t) ≥ 0
and monotonous unbounded function ϕ(t) > 1, united by the equality J1[p, τ (n−1)λ/ϕ(τ)] = +∞
and such that the equation (1.1) has n-parametrical family of strongly increasing solutions, pos-
sessing the additional differential property (3.12) with parameter α = 1 in some neighbourhood
of +∞.

The case α < 1 is stated by the next theorem

Theorem 3.9. (n = 2 see in (Izobov, 1984c), n > 2 see in (Rabtsevich, 1986)) Let ϕ(t) > 1
be an arbitrary nondecreasing function. Then the equation (1.1) with any function p(t) ≥ 0,

satisfying the condition J1[p, τ (n−1)λ/ϕ(τ)] = +∞, does not have solutions with property (3.12)
for α < 1.

This theorem strenthes the following assertion.

Theorem 3.10. (Izobov and Rabtsevich, 1987a; Rabtsevich, 1990c; Rabtsevich, 1990b) Let
ϕ(t) > 1 be an arbitrary nondecreasing function possessing a power majorant. Then the
equation (1.1) with function p(t) ≥ 0, satisfying the condition J1[p, τ (n−1)λ/ϕ(τ)] = +∞, has no
any solutions with property (3.12) at α = 1.

From the theorems 3.1 and 3.3 in obvious way follows that the condition (1.6) is not obliged
to be carried out in the case of presence at the equation (1.1) of the proper solutions of the
(1.3) type. Moreover, the subintegral expression must be nonlinear with respect to function p(t)
in any prospective integral condition of the absence of nonoscillatory unbounded solutions for
the equation (1.1). Nevertheless, the set of functions p, defined by the linear on p condition
J1[p, τ (n−1)λ/ϕ(τ)] < +∞ such that the equation (1.1) has no proper solutions of the (1.3) type
is not empty. It is established by the following theorem.

Theorem 3.11. (Izobov and Rabtsevich, 1987a; Rabtsevich, 1990c; Rabtsevich, 1990b) For
any piecewise continuous unbounded (not necessarily monotonous) on semiaxis t ≥ 0 func-
tion ϕ(t) > 0 there exists a piecewise continuous function p(t) > 0 satisfying the condition
J1[p, τ (n−1)λ/ϕ(τ)] < +∞ such that the equation (1.1) has no proper solutions of the (1.3.)
type.
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Also, I. T. Kiguradze has received new necessary conditions of the existence of proper solutions
of the (1.3) type and their a priori upper asymptotic estimations, too.

Theorem 3.12. (Kiguradze and Chanturia, 1993) Let the equation (1.1) has a proper solution
of the (1.3) type. Then for all µ ∈ [2/(n + n1), 1/n) the equality

lim
t→+∞ t1−nµ

+∞∫
t

pµ(τ)τ [n+n1]µ−2dτ = 0

holds and the inequality

|u(t)| ≤ γ(n, λ, µ)
(
tnµ−1

+∞∫
t

pµ(τ)dτ
)1/((1−λ)µ)

is fulfilled in some neighbourhood of +∞.

Next, in the papers (Rabtsevich, 1994; Rabtsevich, 1996) a more exact condition and an es-
timation are received in the maximal area of change of parameters, using the monotony and
differential properties of the auxiliary functions vδ,i(t) = u(i)(t)ti−n+1+δ (i = 0, . . . , n), δ > 0.

Theorem 3.13. If the equation (1.1) has a strongly increasing solution u, then for all
µ ∈ (0, 1/n), σ > 0 the condition

lim
t→+∞Fµ σ(t) = 0, Fµ σ(t) ≡ tσ

+∞∫
t

pµ(s)sn1µ−1−σ ds,

holds and the estimation
|u(t)| ≤ ctn−1 (Fµ σ(t)) 1/(1−λ)µ

is valid in some neighbourhood of +∞.

Nevertheless, the function p(t) = t−n1ϕ(t) with the piecewise continuous function ϕ(t) → +0
as t → +∞ does not satisfy any of maintained above necessary conditions rather the equation
(1.1) with the ϕ(t) = lnγ t for γ ∈ (−1, 0) has no any such solutions. This fact for the case n = 2
is established by

Theorem 3.14. (Izobov, 1996a; Izobov, 1996b) Let the function pµ(t) ≡ t−1[p(t)t1+λ]µ satisfy
the condition

Jεµα(p) ≡
+∞∫
t0

t−εpµ(t) exp α

t∫
t0

pµ(τ)
( τ∫

t0

p(ξ)ξλdξ
)µm

dτdt = +∞, t0 > 0,

for some ε > 0, α > 0, µ ∈ (0, 1/2) and µn ≡ min{1 − 2µ, (λ − 1)µ}. Then the equation (1.1)
has no proper nonoscillatory unbounded solutions .

Due to the condition (1.6) the equation (1.1) with the function p(t) ≤ const × t−1−λ lnγ t,

γ < −1, t ≥ t0, has a two-parametrical family of proper nonoscillatory unbounded solutions.
It is natural to assume, that this equation with function p(t) ≥ const × t−1−λ lnγ t, γ > −1,
t ≥ t0, has no any solutions specified above. This particular statement contains the following
theorem

70  International Journal of Applied Mathematics & Statistics



Theorem 3.15. (Izobov, 1996a; Izobov, 1996b) Let for some numbers ε > 0, α > 0,

µ ∈ (0, 1/2), q ∈ N and 0 < ω < Ω < 1 the condition

Jεµαq(p) ≡
+∞∫
t0

t−εpµ(t) exp α
{ t∫

tΩ

pµ(ξ)dξ

q∏
i=1

( ∫
tΩω(i)

tω(i)p(ξ)ξλdξ
)µ(λ−1)λi−1}

dt = +∞

holds, where ω(i) ≡ ωi. Then the equation (1.1) has no proper nonoscillatory unbounded
solutions .

Corollary 3.16. Equation (1.1) with function p(t) ≥ ct−1−λ lnγ t, c > 0, γ > −1, t ≥ t0 > 1,

has no proper nonoscillatory unbounded solutions.

Remark 3.2. An example of the function for which the integral Jεµα(p) diverges for small µ > 0
and converges for small 1/2 − µ > 0 is the function p(t) = t−1−λ lnγ t where γ = (1 − λ)/(2λ).

Remark 3.3. Splitting the segment [t0, t] by points τi = τi(t) = tωi and θi = θi(t) = tΩωi
,

0 < ω < Ω < 1, i = 0, 1, . . . , q, that used in the theorem 3.11, is adapted to catch the
logarithmic component of the function p. Using other methods of splitting of the segment leads
to the more general in comparison with the theorem 3.11 criterion of the absence of unbounded
proper solutions of the equation (1.1).

The following two criterion are proved in the same way:

Theorem 3.17. (Izobov, 1996b) Let for functions p(t) and pµ(t, n) ≡ t−1[p(t)tn1 ]µ the condition

+∞∫
t0

t−εpµ(t, n) exp α

t∫
t0

pµ(τ, n)
( θτ∫

t0

p(ξ)ξ(n−1)λdξ
)µ(λ−1)

dτdt = +∞

holds for some ε > 0, α ≥ 0, µ ∈ (0, 1/n) and θ ∈ (0, 1). Then the equation (1.1) has no
unbounded nonoscillatory solutions .

Theorem 3.18. (Izobov, 1996b) Let for some numbers ε > 0, α ≥ 0, µ ∈ (0, 1/n) and 0 < ω

< Ω < 1 the condition
+∞∫
t0

t−εpµ(t, n) exp α
{ t∫

tΩ

pµ(ξ, n)dξ
∏

l∈L(t)

( tω(l)∫
tΩω(l)

p1(ξ, n)dξ
)µ(λ−1)λl−1}

dt = +∞,

holds, where ω(l) ≡ ωl and L(t) =
{
1, . . . , 1 +

[ | lnω|−1 ln(ln t/ ln t0)
]}

, t0 ≥ e. Then the
equation (1.1) has no proper unbounded nonoscillatory solutions .

The theorem 3.13 presents an exact condition: function p(t) ≥ const × t−n1 lnγ t, t ≥ t0,

with number γ ≥ −1 satisfies to this condition while according to the Kiguradze – Kvinikadze
condition (1.6) the equation (1.1) with non-negative function p(t) ≤ const × t−n1 lnγ t, t ≥ t0,

at γ < −1 already has (n − 1)-parametrical family of unbounded solutions. Then the second
author shown that the more general necessary conditions of existence of those solutions and
their estimations can be obtained by introduction of auxiliary functions vϕ,i(t) = ui(t)t1−nϕ(t)
with any nondecreasing function ϕ(t) > 0.

For an arbitrary function ϕ : [a,+∞) → [0, +∞) introduce the following sets Aϕ(t) = {x > a :
(x − t)ϕ(x) > 0}, Aϕ = Aϕ(a); ϕ1(t) = min{t−1, ϕ̇(t)/ϕ(t)} for t > a. The following general
theorem is true.
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Theorem 3.19. (Rabtsevich, 1997b; Rabtsevich, 1997a) Let u be the solution of the problem
(1.1), (1.3), and ϕ : [0, +∞) → [0, +∞) be any nondecreasing absolutely continuous func-
tion having the limited variation on the set [a, +∞) \ Ap. Then for any numbers ν ∈ [0, 1),
µ ∈ (2(1 − ν)/(n + n1), (1 − ν)/n) and ε > 0 the equality

lim
t→+∞Fν,µ,ε(ϕ(t)) = 0, Fν,µ,ε(ϕ(t)) ≡ ϕε(t)

+∞∫
t

(p(τ)τ (n−1)λ)µ

ϕε(τ)

(
ϕ̇(τ)
ϕ(τ)

)ν

ϕ1−µ−ν
1 (τ)dτ (3.13)

and, since some moment tu > a, the estimation

|u(t)| < γtn−1[Fν,µ,ε(ϕ(t))]1/((1−λ)µ)

hold, where γ is a positive constant depending of n, λ, µ.

A slight modification of this theorem with smaller amount of parameters is given as follows

Theorem 3.20. (Rabtsevich, 1997b; Rabtsevich, 1997a) Let u be the solution of the problem
(1.1), (1.3), ϕ : [0, +∞) → [0, +∞) be any nondecreasing absolutely continuous function
having the limited variation on the set [a, +∞) \Ap and satisfying almost everywhere on Ap to
the condition tϕ̇(t)/ϕ(t) ≤ 1. Then for any numbers µ ∈ (0, 1/n) and ε > 0 the equality

lim
t→+∞Gµ,ε(ϕ(t)) = 0, Gµ,ε(ϕ(t)) ≡ ϕε(t)

+∞∫
t

(p(τ)τ (n−1)λ)µϕ−ε(τ)(ϕ̇(τ)
/
ϕ(τ))1−µdτ (3.131)

is fulfilled and, since some moment tu > a, the estimation

|u(t)| < γtn−1[Gµ,ε(ϕ(t))]1/((1−λ)µ)

holds, where γ is a positive constant depending on n, λ, µ.

By means of (3.13) it is found a wide class of functions p (in particular, having a power majorant)
for which the (1.6) is the necessary and sufficient condition of solvability of the mentioned above
problem (1.1), (1.3). Then, the question on necessary and sufficient conditions of existence of
strongly increasing solutions of the equation (1.1) with function p(t) < ct−n1 , t > a, partially
studied in (Rabtsevich, 1990c; Rabtsevich, 1990b), completely considers the following theorem

Theorem 3.21. (Rabtsevich, 1997b) If the equation (1.1) with function p satisfying the condition

δp(t)tn1 < 1, t > a, δ > 0, (3.14)

has a strongly increasing solution, then the condition (1.6) holds.
In addition, if the condition δp(t)tn1 < J(t; +∞) < 1, t > a, δ > 0, holds then each strongly
increasing solution u of the equation (1.1) admits the estimation

0 < c∗ < |u(t)|t1−nJ−1/(λ−1)(t; +∞) < c∗ < +∞

in some neighbourhood +∞, where the constants c∗ and c∗ depend of n and λ only.
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The complete solution of the problem stated in (Izobov, 1996a) about the existence of strongly
increasing solutions of the equation (1.1) with function p monotonously decreasing on the semi-
axis t > a, which defined by the equality

p(t) = ct−n1(lk−1(t))−1(lnk t)−1−σ, σ ∈ R, k ∈ N, (3.15)

where ln0 t = t, lnk+1 t = ln(lnk t), lk(t) =
k∏

i=0
lni t, gives the following

Corollary 3.22. Let the function p be defined by the equality (3.15). In the case σ ≥ 0 all
solutions of the type (1.3) of the equation (1.1) are the singular solutions of the second type.
If σ ≤ 0 then the equation (1.1) has strongly increasing solutions and each of them admits
two-sided asymptotic estimation c∗ < |u(t)|t1−n(lnk t)σ/(λ−1) < c∗ where the constants c∗ and
c∗ depend of n and λ only.

The case in which the function p is a nonmonotone or unbounded function is considered by the
following

Theorem 3.23. (Rabtsevich, 1997b) Let the function p satisfies the inequality p(t)tn1f(t)
< δJf (a; t) for all t ∈ Ap where δ > 0 and function f : Ap → [0, 1]. If the equation (1.1)
has a proper solution of the (1.3) type then integral condition Jf (a; +∞) < +∞ holds, where

Jf (a; t) ≡
t∫

a
p(τ)τ (n−1)λf(τ)dτ.

In the case of divergence of the integral Jf (a; +∞) the following statements are valid:

Corollary 3.24. Let the integral Jf (a; +∞) diverges. If the equation (1.1) has a strongly in-
creasing solution, then for any δ > 0 the set Mδ = {t > a : p(t)t(n−1)λf(t) > δJf (a; t)/t} has
subsets of a positive measure in every neighbourhood of +∞ and the integral condition∫

Mδ

p(t)tn1f(t)dt < +∞

holds.

One of the more general situations describes

Theorem 3.25. (Rabtsevich, 1997b) Let the function p satisfies the condition p(t)tn1f(t)
≤ ψ(Jf (a; t)) for all t ∈ Ap where ψ : R+ → [1,+∞) and f : Ap → [0, 1] are the given functions.
If the equation (1.1) has a proper solution of the (1.3) type then the integral condition

+∞∫
a

p(t)tn1f(t)/ψ(Jf (a; t))dt = +∞

holds.

Moreover, if

+∞∫
1

dx

xψ(x)
= +∞ then the integral Jf (a; +∞) converges.

Remark 3.4. Many of the listed above results are extended to the more general equations
and systems of the Emden – Fowler type in the papers (Rabtsevich, 1990a; Rabtsevich,
1993; Rabtsevich, 2000d; Rabtsevich, 1998). Asymptotic properties of nonoscillatory singu-
lar solutions of the Emden – Fowler equation was studied in (Rabtsevich, 2000b; Rabtse-
vich, 2000a; Rabtsevich, 2001; Rabtsevich, 2003).
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ABSTRACT

We consider perturbed half-linear Euler differential equations

(A)
(
ϕ(x′ )

)′
+ E(α)

tα+1 [α + f(t)]ϕ(x) = 0 ,

(B)
(
ϕ(x′ )

)′
+ E(α)

tα+1 [α + g(|x|)]ϕ(x) = 0 ,

where α > 0, ϕ(u) = |u|α−1u and E(α) = αα/(α + 1)α+1. Our objective is to establish

comparison principles which enable us to deduce the oscillation or nonoscillaiton of (B)

from that of (A), and vice versa.
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MSC (Mathematical Subject Classification): 34C10, 34C15

1. INTRODUCTION

The oscillatory and nonoscillatory behavior of the Euler differential equation x′′ + γ t−2 x = 0

has been well analyzed. It is known that all nontrivial solutions of this equation are oscillatory
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for γ > 1/4 and nonoscillatory for γ ≤ 1/4. Consider the half-linear differential equation

(
ϕ(x′ )

)′
+

α γ

tα+1
ϕ(x) = 0, t > 0 , (1.1)

where α > 0 and γ are constants and ϕ(x) = |x|α−1 x, which may well be called the half-linear

(or generalized) Euler differential equation. The asymptotic behavior of (1.1) is investigated by

Elbert in [3]. It is established that the value

E(α) =
αα

(α + 1)α+1
,

plays a crusical role in determining the oscillatory behavior of solutions of the equation (1.1).

Namely, for γ > E(α) all nontrivial solutions of (1.1) are oscillatory, while for γ ≤ E(α) all non-

trivial solutions of (1.1) are nonoscillatory. It should be noticed that this is not the single case of

similarity between the second order linear differential equation (p(t)x′(t))′+q(t)x(t) = 0 and the

half-linear differential equation
(
ϕ(x′ )

)′
+ q(t) ϕ(x) = 0. Generally, there is a striking similarity

between these two types of differential equations. This similarity was first observed for the first

time by Elbert [2], who extended the classical Sturmian comparison and separation theorems

for the linear differential equation to the corresponding half-linear differential equation. Among

numerous papers, we choose to refer to the papers [6] - [11].

Elbert and Schneider [5] considered a perturbed version of the equation (1.1)

(
ϕ(x′ )

)′
+

E(α)
tα+1

[α + δ(t)]ϕ(x) = 0 , (1.2)

where δ(t) is a continuous function on (t0,∞) for some t0 > 0. They proved that under the

condition that

lim
t→∞

t∫
t0

δ(s)
s

ds

exists as a finite number and

lim
t→∞

∞∫
t

δ(s)
s

ds ≥ 0 for t ≥ t1 > t0 ,

in the superlinear case, i.e. for α > 1, the nonoscillation of the linear differential equation

z′′(t) + δ(es) z(t) = 0 (1.3)
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implies that of the half-linear differential equation (1.2), whereas in the sublinear case, i.e.

for 0 < α < 1, the nonoscillation of the half-linear equation (1.2) implies that of the linear

differential equation (1.3). Moreover, under the same condition for the function δ(t) they proved

the following oscillation criterion for the equation (1.2).

Theorem A. The equation (1.2) is oscillatory if

lim inf
t→∞ t

∞∫
t

δ(eη) dη >
α + 1

2
(1.4)

and nonoscillatory if

lim sup
t→∞

t

∞∫
t

δ(eη) dη <
α + 1

2
. (1.5)

In order to prove this theorem they used Riccati technique combined with the notion of the prin-

cipal solution of the half-linear equation introduced by Elbert and Kusano [4] and its asymptotic

form.

Our objective here is to compare the half-linear differential equation (1.2) with its “nonlin-

ear”perturbation of the form

(
ϕ(x′ )

)′
+

E(α)
tα+1

{α + g(|x|)}ϕ(x) = 0, (1.6)

establishing comparison principles which enable us to deduce the oscillation or nonoscillation

of (1.6) from that of (1.2), and vice versa. For this purpose we need to give a more compact

and straightforward proof of Theorem A, which will be our first task in this paper.

This paper is organized as follows. In Section 2 we prove some auxiliary lemmas which will

be used in the proofs of our main results. After providing an alternative proof of Theorem A in

Section 3, we establish in Section 4 the main comparison theorems connecting (1.2) with (1.6).

Some examples illustrating our main results will also be presented.

We note that in the proofs of our main results including Theorem A we are going to use the

Schauder-Tychonoff fixed point theorem, for whose formulation and proof we refer the reader

to the book of Coppel [1] (pp. 9-10).

2. AUXILIARY LEMMAS

In this section we collect auxiliary lemmas which will be used later.
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The first lemma due to Elbert [2] is a nonoscillation principle presenting a close connection

between second order half-linear differential equations and the first order nonlinear differential

equations called the generalized Riccati equation.

Lemma 0.1.. The half-linear differential equation

(
ϕ(x′ )

)′
+ q(t)ϕ(x) = 0

is nonoscillatory if and only if the generalized Riccati equation

u′ + q(t) + α |u|1+1/α = 0

has a solution defined for all sufficiently large t.

Lemma 0.2.. The function

Fα(�) = |�|1+ 1
α − � + E(α), � ∈ R (2.1)

has the following properties:

(i) it is nonnegative for all � ∈ R;

(ii) Fα(�) = 0 if and only if � = D(α) =
(

α

α + 1

)α

;

(iii) lim
�→D(α)

Fα(�)
(� − D(α))2

=
1

2α D(α)
.

PROOF: Since

Fα
′(�) =

α + 1
α

|�|1/α sgn � − 1 , Fα
′(D(α)) = 0 ,

Fα
′′(�) =

α + 1
α2

|�| 1
α
−1 , Fα

′′(D(α)) =
1

αD(α)
,

we conclude that Fα(�) takes its absolute minimum at �0 = D(α). Accordingly, Fα(�) ≥

Fα(D(α)) = 0 for all � ∈ R and we see that Fα(�) = 0 if and only if � = D(α). Moreover,

by L’Hospital’s rule we have

lim
�→D(α)

Fα(�)
(� − D(α))2

= lim
�→D(α)

F ′
α(�)

2(� − D(α))
= lim

�→D(α)

F ′′
α(�)
2

=
1

2 αD(α)
,

completing the proof of the lemma. �
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Lemma 0.3.. Let x(t) be a positive function on [t0,∞) satisfying

(
ϕ(x′ )

)′
+

α E(α)
tα+1

ϕ(x) ≤ 0 , t ≥ t0 . (2.2)

Then

lim
t→∞x(t) = ∞, lim

t→∞x′(t) = 0 (2.3)

and

lim
t→∞ t

x′(t)
x(t)

=
α

α + 1
. (2.4)

PROOF: From the inequality (2.2) it is obvious that x′(t) is decreasing on [t0,∞). Using the

fact that if a function x(t) ∈ C2[t0,∞) satisfies x′(t) < 0 and x′′(t) < 0 for all large t, then

x(t) → −∞ as t → ∞, we conclude that x′(t) > 0 for all t ≥ t0. Since x′(t) is positive and

decreasing it tends to a finite limit x′(∞) ≥ 0. If we integrate (2.2) from t to ∞, we get

(
x′(t)

)α ≥
(
x′(∞)

)α
+ α E(α)

∫ ∞

t

xα(s)
sα+1

ds, t ≥ t0 , (2.5)

from which, using the increasing property of x(t), we see that

(
x′(t)

)α ≥ E(α) xα(t0)
tα

, t ≥ t0 ,

or

x′(t) ≥
(
E(α)

)1/α x(t0)
t

, t ≥ t0 .

Integrating again the above inequality over [t0, t], we get

x(t) ≥ x(t0) +
(
E(α)

)1/α
x(t0) log

t

t0
, t ≥ t0 ,

from which it follows that lim
t→∞x(t) = ∞.

Suppose now that x′(∞) > 0. Then, lim
t→∞x(t)/t = x′(∞), so that there exists constant c > 0

such that x(t) ≥ c t for t ≥ t0. Then, from (2.5), we have

(
x′(t0)

)α
> α E(α)

∫ ∞

t0

xα(s)
sα+1

ds ≥ α E(α) cα

∫ ∞

t0

ds

s
= ∞ .

This is impossible, so that we prove that lim
t→∞x′(t) = 0.

Now, for t ≥ t0, we define

f(t) = −
[(

ϕ(x′ )
)′

+
α E(α)
tα+1

ϕ(x)
]
≥ 0, Φ(t) = tα+1 f(t)

xα(t)
≥ 0 .
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Then, (2.2) can be rewritten in the form

(
ϕ(x′ )

)′
+

1
tα+1

(
α E(α) + Φ(t)

)
ϕ(x) = 0 , t ≥ t0 . (2.6)

The function u(t) defined for t ≥ t0 with

u(t) =
(

x′(t)
x(t)

)α

,

satisfies the generalized Riccati equation

u′(t) + α
(
u(t)

)α+1
α +

1
tα+1

(
α E(α) + Φ(t)

)
= 0 , t ≥ t0 . (2.7)

Since, by (2.3), u(t) → 0 as t → ∞, from (2.7) we obtain

u(t) = α

∫ ∞

t

(
u(s)

)α+1
α

ds +
∫ ∞

t

Φ(s)
sα+1

ds +
E(α)
tα

, t ≥ t0 . (2.8)

Accordingly,
(
u(t)

)α+1
α ∈ L1[t0,∞).

If we put v(t) = tα u(t), from (2.7) we have

v′(t) +
α

t
Fα

(
v(t)

)
+

Φ(t)
t

= 0 , t ≥ t0, (2.9)

where the function Fα(�) is defined by (2.1). Also, from (2.8) we obtain the following Riccati

integral equality for the function v(t)

v(t) = α tα
∫ ∞

t

(v(s))
α+1

α

sα+1
ds + tα

∫ ∞

t

Φ(s)
sα+1

ds + E(α) , t ≥ t0 . (2.10)

By Lemma 0.2, we have Fα(v(t)) ≥ 0, so that from (2.9) we see that

v′(t) +
Φ(t)

t
≤ 0, t ≥ t0. (2.11)

Consequently, v(t) is positive and decreasing, so that there exists limt→∞ v(t) = V < ∞.

Integrating (2.11) over [t0,∞) we conclude that Φ(t)/t ∈ L1[t0,∞), so that

lim
t→∞ tα

∫ ∞

t

Φ(s)
sα+1

ds = 0.

We now let t → ∞ in (2.10), obtaining

V = V
α+1

α + E(α) i.e. Fα(V ) = 0 .
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Applying Lemma 0.2 (ii), we conclude that V = D(α). Accordingly,

lim
t→∞

(
t
x′(t)
x(t)

)α

=
(

α

α + 1

)α

,

which proves (2.4). �

Lemma 0.4.. If a positive function x(t) satisfies (2.2) for all large t, then for any ε > 0 we have

lim
t→∞ tε−

α
α+1 x(t) = ∞ and lim

t→∞ t−ε− α
α+1 x(t) = 0 . (2.12)

PROOF: Let x(t) be a positive function satisfying (2.2). Then, we have (2.4) by Lemma 0.3,

which implies that

t
x′(t)
x(t)

=
α

α + 1
+ δ(t) , lim

t→∞ δ(t) = 0 . (2.13)

If we denote σ = α
α+1 and integrate (2.13) over [t0, t], we get

x(t) = x(t0) exp
( t∫

t0

σ + δ(s)
s

ds

)
, t ≥ t0 . (2.14)

For any λ ∈ R, we have tλ = exp(λ log t) = tλ0 exp
(
λ
∫ t
t0

ds
s

)
, which combining with (2.14)

yields

tλ x(t) = c1 exp
( t∫

t0

σ + λ + δ(s)
s

ds

)
, t ≥ t0 ,

where c1 = tλ0 x(t0). If we now take λ = −σ + ε or λ = −σ − ε, we get

t−σ+ε x(t) = c1 exp
( t∫

t0

ε + δ(s)
s

ds

)
, t ≥ t0 ,

t−σ−ε x(t) = c1 exp
( t∫

t0

δ(s) − ε

s
ds

)
, t ≥ t0 .

Letting t → ∞ and noting that δ(t) → 0 as t → ∞, we have the desired conclusion (2.12). �

3. OSCILLATION AND NONOSCILLATION OF THE PERTURBED HALF-LINEAR EULER

EQUATION

The purpose of this section is to present a proof of Theorem A, different from that of Elbert

and Schneider [5], for the half-linear perturbed Euler differential equation (1.2). We begin by

transforming (1.2) into the following equivalent form

(E)
(
ϕ(x′ )

)′
+

E(α)
tα+1

[
α +

f(t)
(log t)2

]
ϕ(x) = 0, t ≥ a
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where f : [a,∞) → (0,∞) is a continuous function. Then, Theorem A formulated for (E) reads

as follows.

Theorem 3.5.. The equation (E) is oscillatory if

lim inf
t→∞ log t

∞∫
t

f(s)
s(log s)2

ds >
α + 1

2
, (3.1)

and nonoscillatory if

lim sup
t→∞

log t

∞∫
t

f(s)
s(log s)2

ds <
α + 1

2
. (3.2)

PROOF: Suppose that the equation (E) has a positive solution x(t) on [t0,∞). Since (E) is of

the form (2.6), as in the proof of Lemma 2.3, we see that the function u(t) and v(t) defined by

u(t) =
(

x′(t)
x(t)

)α

and v(t) = tαu(t) ,

satisfy (2.7), (2.8), (2.9) and (2.10) with Φ(t) = E(α)
f(t)

(log t)2
.

Furthermore, we define U(t) = v(t) − D(α) and V (t) = U(t) · log t. Then, according to (2.9),

U(t) satisfies

U ′(t) +
α

t
Fα(U(t) + D(α)) +

E(α) f(t)
t(log t)2

= 0, t ≥ t0 . (3.3)

Since limt→∞ U(t) = 0 by Lemma 0.3, integrating (3.3) from t to ∞ we obtain

U(t) = α

∞∫
t

Fα

(
U(s) + D(α)

)ds

s
+

∞∫
t

E(α) f(s)
s(log s)2

ds, t ≥ t0 , (3.4)

or

V (t) = log t

∞∫
t

α

s
Fα

(
V (s)
log s

+ D(α)
)

ds + log t

∞∫
t

E(α) f(s)
s(log s)2

ds, t ≥ t0 .

Let ε be an arbitrary positive number such that 0 < ε < 1
2αD(α) . Since U(t) → 0 as t → ∞,

using the property (iii) of the function Fα(�) in Lemma 0.2, we see that there exists δ > 0 and

some t1 ≥ t0, such that 0 < U(t) < δ and

Fα

(
U(t) + D(α)

) ≥ ( 1
2αD(α)

− ε

)
U2(t) (3.5)

for all t ≥ t1. This combined with (3.3) yields

U ′(t) +
(

1
2αD(α)

− ε

)
α

t
U2(t) ≤ 0, t ≥ t1 . (3.6)
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Integrating (3.6) on [t1, t] and then taking the upper limit as t → ∞, we have

lim sup
t→∞

U(t) · log t ≤ 2D(α) or lim sup
t→∞

V (t) < ∞ . (3.7)

Combining (3.4) and (3.5), we obtain

U(t) ≥
(

1
2αD(α)

− ε

)
α

∞∫
t

U2(s)
s

ds +

∞∫
t

E(α) f(s)
s(log s)2

ds, t ≥ t1 ,

which implies, for all t ≥ t1, that

V (t) ≥
(

1
2αD(α)

− ε

)
α log t

∞∫
t

V 2(s) ds

s(log s)2
+ log t

∞∫
t

E(α) f(s)
s(log s)2

ds . (3.8)

Put V = lim inft→∞ V (t), V ∈ [0,∞). Taking the lower limit as t → ∞ in (3.8), we find that V

satisfies

V ≥
(

1
2αD(α)

− ε

)
α V 2 + lim inf

t→∞ log t ·
∞∫
t

E(α) f(s)
s(log s)2

ds ,

which is a quadratic inequality of the form K V 2 − V + L ≤ 0, with

K =
(

1
2αD(α)

− ε

)
α, L = lim inf

t→∞ log t ·
∞∫
t

E(α) f(s)
s(log s)2

ds.

Since K > 0, the above inequality is satisfied only if 1 − 4 K L ≥ 0, or L ≤ 1/4K, that is,

lim inf
t→∞ log t

∞∫
t

f(s)
s(log s)2

ds ≤ 1

E(α)
(

2
D(α) − 4α ε

) .

Since ε is arbitrary, it follows that

lim inf
t→∞ log t

∞∫
t

f(s)
s(log s)2

ds ≤ α + 1
2

,

which contradicts the assumption (3.1). This proves the oscillatory part of the theorem.

Our next task is to show that the equation (E) is nonoscillatory if condition (3.2) is satisfied.

Assume that (3.2) holds. Then, there exist 0 < η < α+1
2 and some t1 ≥ t0, such that

lim sup
t→∞

log t

∞∫
t

f(s)
s(log s)2

ds ≤ η for t ≥ t1 . (3.9)

With the choice of ε > 0 such that

0 < ε <
α+1

2 − η

2α D(α) η
,
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the quadratic equation

α

(
1

2αD(α)
+ ε

)
X2 − X + η E(α) = 0 (3.10)

has two distinct positive roots. Denote the smaller root by σ. Using once more the property (iii)

of the function Fα(�) in Lemma 0.2, we see that there exists δ > 0 such that 0 ≤ � − D(α) < δ

implies

Fα(�) ≤
(

1
2αD(α)

+ ε

)
(� − D(α))2 . (3.11)

Let T > t1 be so large that

σ

log t
< δ for t ≥ T . (3.12)

Let C[T,∞) be the set of all continuous functions v : [T,∞) → R with the topology of uniform

convergence on compact subintervals of [T,∞). Define the set Ψ ⊂ C[T,∞) and the operator

G : Ψ → C[T,∞) by

Ψ = {v ∈ C[T,∞) : 0 ≤ v(t) ≤ σ, t ≥ T}

and

Gv(t) = log t

∞∫
t

α

s
Fα

(
v(s)
log s

+ D(α)
)

ds + log t

∞∫
t

E(α) f(s)
s(log s)2

ds, t ≥ T .

For every v ∈ Ψ, using (3.9), (3.10), (3.11) and (3.12), we have

0 ≤ Gv(t) ≤ log t

∞∫
t

α

s

(
1

2αD(α)
+ ε

)(
v(s)
log s

)2

ds + log t

∞∫
t

E(α) f(s)
s(log s)2

ds

≤ α

(
1

2αD(α)
+ ε

)
σ2 + E(α) η = σ , t ≥ T .

Thus, G(Ψ) ⊂ Ψ. Let {vn} be a sequence in Ψ which converges to v0 ∈ Ψ in the topology of

C[T,∞). Using the Lebesgue dominated convergence theorem, we see that
∞∫
t

α

s
Fα

(
vn(s)
log s

+ D(α)
)

ds converges to

∞∫
t

α

s
Fα

(
v0(s)
log s

+ D(α)
)

ds

uniformly on [T,∞), which shows that G is a continuous operator. Since G(Ψ) ⊂ Ψ and Ψ

is uniformly bounded on [T,∞), it is evident that G(Ψ) is also uniformly bounded on [T,∞).

Moreover, we have

0 ≤ (Gv)′(t) =
1
t

∞∫
t

α

s
Fα

(
v(s)
log s

+ D(α)
)

ds +
1
t

∞∫
t

E(α) f(s)
s(log s)2

ds

− α
log t

t
Fα

(
v(t)
log t

+ D(α)
)
− E(α) f(t)

t log t
,
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which ensures that G(Ψ) is locally equicontinuous on [T,∞). This implies, via the Ascoli-Arzela

lemma, that G(Ψ) is relatively compact in C[T,∞).

Therefore, all the hypotheses of the Schauder-Tychonoff fixed point theorem are fulfilled, so

that there exists v1 ∈ Ψ such that Gv1 = v1. Accordingly, v1(t) satisfies on [T,∞) the integral

equation

v1(t) = log t

∞∫
t

α

s
Fα

(
v1(s)
log s

+ D(α)
)

ds + log t

∞∫
t

E(α) f(s)
s(log s)2

ds .

Then the function u1(t) defined by

u1(t) =
1
tα

(
v1(t)
log t

+ D(α)
)

, t ≥ T ,

satisfies the equation

u′
1 + α u

α+1
α

1 +
E(α)
tα+1

[
α +

f(t)
(log t)2

]
= 0, t ≥ T . (3.13)

Since (3.13) is the generalized Riccati equation associated with the equation (E), we conclude

from Lemma 0.1 that (E) is nonoscillatory. This proves Theorem A. �

4. COMPARISON THEOREMS

Our main results developed in this section answer the question as to the similarity in the oscil-

latory behavior existing between the half-linear differential equation

(
ϕ(x′ )

)′
+

1
tα+1

(
α E(α) + f(t)

)
ϕ(x) = 0 , t ≥ a , (4.1)

and its “nonlinear”perturbation of the form

(
ϕ(x′ )

)′
+

1
tα+1

(
α E(α) + f(|x|δ)

)
ϕ(x) = 0 , t ≥ a . (4.2)

Theorem 4.1.. Let the function f : [a,∞) → (0,∞) be continuous. Suppose that there exists a

constant L > 0 such that f(t) is nonincreasing for t ≥ L and

tα f
(
t

α+1
α

)
is nondecreasing for all t ≥ L > 0. (4.3)

If the equation (4.1) is nonoscillatory, then there exists a nonoscillatory solution of the equation

(4.2) for every δ > α+1
α .
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PROOF: Let X(t) be a positive solution of the equation (4.1) on [t0,∞) and let ε be any constant

such that 0 < ε < α
α+1 . Then, X ′(t) is positive and decreasing, and since X(t) satisfies (2.2),

we have by lemma 0.3

lim
t→∞X(t) = ∞ and lim

t→∞X ′(t) = 0 . (4.4)

By applying Lemma 0.4, we also have

lim
t→∞ tε−

α
α+1 X(t) = ∞ .

Consequently, there exists T ≥ max{t0, L} such that

X(t) > t
α

α+1
−ε for t ≥ T . (4.5)

Denote µ = α+1
α−ε(α+1) and notice that µ > α+1

α . Then, by the nonincreasing property of f(t),

from (4.5), we obtain

f(t) > f
([

X(t)
]µ
)
, t ≥ T . (4.6)

Integrating the equation (4.1) twice, first from t to ∞ and then from T to t, and using (4.4), we

obtain

X(t) = X(T ) +

t∫
T

{ ∞∫
s

1
ξα+1

(
α E(α) + f(ξ)

)
Xα(ξ) dξ

}1/α

ds , (4.7)

for t ≥ T , which, combined with (4.6), yields

X(t) ≥ X(T ) +

t∫
T

{ ∞∫
s

1
ξα+1

(
α E(α) + f

(
Xµ(ξ)

))
Xα(ξ) dξ

} 1
α

ds , (4.8)

for t ≥ T .

Define the set Ω ⊂ C[T,∞) and the operator F1 : Ω → C[T,∞) by

Ω = {x ∈ C[T,∞) : X(T ) ≤ x(t) ≤ X(t), t ≥ T} (4.9)

F1x(t) = X(T ) +

t∫
T

{ ∞∫
s

1
ξα+1

(
α E(α) + f

([
x(ξ)

]µ
))

xα(ξ) dξ

} 1
α

ds, t ≥ T .

Because of (4.8), using the assumption (4.3), we see that

X(T ) ≤ F1 x(t) ≤ X(t) for t ≥ T, i.e. F1 x ∈ Ω for x ∈ Ω .

Using the Lebesgue dominated convergence theorem it can be shown that F1 is continuous

mapping. We now show that F1(Ω) is relatively compact in C[T,∞). From the Ascoli-Arzela
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lemma it suffices to verify that it is locally uniformly bounded and locally equicontinuous on

[t0,∞). Let t∗ > T be fixed. If x ∈ Ω, then X(T ) ≤ x(t) ≤ X(t) ≤ X(t∗) for t ∈ [T, t∗]. This

shows that F1(Ω) is uniformly bounded on [T, t∗]. Also, if x ∈ Ω, then for all t ∈ [T, t∗]

0 ≤ (F1 x)′(t) =
{ ∞∫

t

1
ξα+1

(
α E(α) + f

([
x(ξ)

]µ
))

xα(ξ) dξ

}1/α

≤
{ ∞∫

s

1
ξα+1

(
α E(α) + f

([
X(ξ)

]µ
))

Xα(ξ) dξ

}1/α

≤
{ ∞∫

s

1
ξα+1

(
α E(α) + f(ξ)

)
Xα(ξ) dξ

}1/α

= X ′(t) ≤ X ′(t∗) .

This shows that F1(Ω) is equicontinuous on [T, t∗]. Consequently, F1(Ω) is a relatively compact

subset of C[T,∞).

Therefore, by the Schauder-Tychonoff fixed point theorem, there exists an element y ∈ Ω such

that F1 y = y, or equivalently

y(t) = X(T ) +

t∫
T

{ ∞∫
s

1
ξα+1

(
α E(α) + f

([
y(ξ)

]µ
))

yα(ξ) dξ

} 1
α

ds , t ≥ T .

Differentiating this integral equation, we find that y(t) is a solution of the differential equation(
ϕ(y′)

)′
+

1
tα+1

(
α E(α) + f(|y|µ)

)
ϕ(y) = 0 , t ≥ T,

which implies that equation (4.2) possesses a nonoscillatory solution for all δ > α+1
α . �

Theorem 4.2.. Consider the equations(
ϕ(x′ )

)′
+

1
tα+1

(
α E(α) + f(|x|)

)
ϕ(x) = 0 , t ≥ a , (4.10)

and (
ϕ(x′ )

)′
+

1
tα+1

(
α E(α) + f(tδ)

)
ϕ(x) = 0 , t ≥ a . (4.11)

where the function f : [a,∞) → (0,∞) is continuous. Let there exist an L > 0 such that f(t) is

nonincreasing for t ≥ L. If the equation (4.10) has a nonoscillatory solution, then the equation

(4.11) is nonoscillatory for every δ > α
α+1 .

PROOF: Let X(t) be a positive solution of the equation (4.10) on [t0,∞). Let ε > 0 be an

arbitrary constant. By Lemma 0.4, we have

lim
t→∞ t−ε− α

α+1 X(t) = 0 ,
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so that, there exists T ≥ max{t0, L} such that

L ≤ X(t) < t
α

α+1
+ε for t ≥ T . (4.12)

Denote µ = α
α+1 + ε > α

α+1 . Integrating (4.10) from t to ∞, we have

X ′(t) =
{ ∞∫

t

1
sα+1

(
α E(α) + f

(
X(s)

))
Xα(s) ds

} 1
α

, t ≥ T . (4.13)

We then integrate (4.13) on [T, t] and obtain

X(t) = X(T ) +

t∫
T

{ ∞∫
s

1
ξα+1

(
α E(α) + f

(
X(ξ)

))
Xα(ξ) dξ

} 1
α

ds , (4.14)

for all t ≥ T . Therefore, from (4.12) and (4.14), using the nonincreasing nature of f(t), we have

the integral inequality

X(t) ≥ X(T ) +

t∫
T

{ ∞∫
s

1
ξα+1

(
α E(α) + f

(
ξ µ
))

Xα(ξ) dξ

}1/α

ds , t ≥ T .

We now define the operator F2 : Ω → C[T,∞), Ω is being given by (4.9), as follows

F2 x(t) = X(T ) +

t∫
T

{ ∞∫
s

1
ξα+1

(
α E(α) + f

(
ξ µ
))

xα(ξ) dξ

}1/α

ds , t ≥ T .

Then it can be verified as in the proof of Theorem 4.1 that F2 sends Ω continuously into a

relatively compact subset of Ω. It follows from the Schauder-Tychonoff fixed point theorem that

F2 has a fixed point z in Ω, which satisfies

z(t) = X(T ) +

t∫
T

{ ∞∫
s

1
ξα+1

(
α E(α) + f

(
ξ µ
))

zα(ξ) dξ

}1/α

ds , t ≥ T.

Since z(t) a positive solution of the half-linear equation

(
ϕ(z′ )

)′
+

1
tα+1

(
α E(α) + f(tµ)

)
ϕ(z) = 0 ,

we conclude via the Sturm comparison theorem that the perturbed Euler equation (4.11) is

nonoscillatory for all δ > α
α+1 . �

Moreover, we are able to prove a comparison theorem between the two nonlinear second order

differential equations of the form (4.10), namely

(A)
(
ϕ(x′ )

)′
+

1
tα+1

(
α E(α) + f(|x|)

)
ϕ(x) = 0 ,
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(B)
(
ϕ(x′ )

)′
+

1
tα+1

(
α E(α) + g(|x|)

)
ϕ(x) = 0 ,

where f, g : (0,∞) → (0,∞) are continuous functions.

Theorem 4.3.. Let there exists a constant L > 0 such that

g(ξ) is nonincreasing, ξα g(ξ) is nondecreasing for ξ ≥ L , (4.15)

f(ξ) ≥ g(ξ) for ξ ≥ L . (4.16)

If the equation (A) has a nonoscillatory solutions, then so does the equation (B).

PROOF: Let X(t) be a positive solution of the equation (A) on [t0,∞). Then, since

(
ϕ
(
X ′(t)

))′
+

α E(α)
tα+1

ϕ(X(t)) = −f
(|X(t)|)
tα+1

ϕ(X(t)) ≤ 0, t ≥ t0 ,

by Lemma 0.3 we have

lim
t→∞X(t) = ∞, lim

t→∞X ′(t) = 0 ,

so that there exists some T > t0, such that X(t) ≥ L for all t ≥ T . Proceeding as in the proof

of Theorem 4.2 we find that X(t) satisfies the integral equation (4.14), which in view of (4.16)

leads to the following inequality holding for t ≥ T

X(t) ≥ X(T ) +

t∫
T

{ ∞∫
s

1
ξα+1

(
α E(α) + g

(
X(ξ)

))
Xα(ξ) dξ

} 1
α

ds . (4.17)

Define the set Ω ⊂ C[T,∞) by (4.9) and the operator F3 : Ω → C[T,∞) by

F3 x(t) = X(T ) +

t∫
T

{ ∞∫
s

1
ξα+1

(
α E(α) + g

(
x(ξ)

))
xα(ξ) dξ

}1/α

ds, t ≥ T .

Because of (4.17), using the assumption (4.15), we have

X(T ) ≤ F3 x(t) ≤ X(t) for all t ≥ T, i.e. F3 x ∈ Ω for x ∈ Ω .

In addition, it can be proved in a routine manner that F3 is a continuous mapping and that the

set F3(Ω) is relatively compact in C[T,∞). Therefore, by the Schauder-Tychonoff fixed point

theorem, there exists an element x ∈ Ω such that F3 x = x, which is equivalent to

x(t) = X(T ) +

t∫
T

{ ∞∫
s

1
ξα+1

(
α E(α) + g

(
x(ξ)

))
xα(ξ) dξ

}1/α

ds .
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This function x(t) provides a positive solution of the equation (B). This completes the proof. �

Our main results developed in the previous sections will be illustrated by the following two

examples.

. Consider the equation

(
ϕ(x′ )

)′
+

E(α)
tα+1

[
α +

λ

(log t)β

]
ϕ(x) = 0, t ≥ a , (4.18)

where α, β, λ are positive constants. By Theorem 3.5 we conclude that:

(i) if β < 2, then (4.18) is oscillatory for all λ > 0;

(ii) if β = 2, then (4.18) is oscillatory for all λ > α+1
2 and nonoscillatory for all λ ≤ α+1

2 ;

(iii) if β > 2, then (4.18) is nonoscillatory for all λ > 0.

We now use Theorem 4.1 and 4.2 to obtain fairly good information about the oscillatory and nonoscilla-

tory behavior of solutions of the nonlinear differential equation

(
ϕ(x′ )

)′
+

E(α)
tα+1

[
α +

µ

(log |x|)β

]
ϕ(x) = 0, t ≥ a . (4.19)

(i) If β > 2, Theorem 4.1 implies that (4.19) has a nonoscillatory solution for all µ > 0;

(ii) If β = 2, Theorem 4.1 implies that (4.19) has a nonoscillatory solution for all µ < α+1
2

(
α

α+1

)2
;

(iii) If β = 2, we claim that all solutions of (4.19) are oscillatory for every µ > α+1
2

(
α

α+1

)2
. Assume

to the contrary that the equation (4.19) has a positive solution for some µ > α+1
2

(
α

α+1

)2
. Applying

Theorem 4.2, we see that the half-linear equation

(
ϕ(x′ )

)′
+

E(α)
tα+1

(
α +

µ

δ2

1
(log t)2

)
ϕ(x) = 0 (4.20)

is nonoscillatory for all δ > α
α+1 . But this is impossible, since in this case we have µ

δ2 > α+1
2 for all δ

sufficiently close to α
α+1 , and this forces the equation (4.20) to be oscillatory (see the statement (ii) for

(4.18)).

Similarly, we have the following statement

(iv) If β < 2, every solution of (4.19) are oscillatory for all µ > 0.

Consider the nonlinear differential equation

(4.21)
(
ϕ(x′ )

)′
+

E(α)
tα+1

[
α +

µ

(log |x|)2 +
ν

(log |x| · log log |x|)2
]
ϕ(x) = 0
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where α, µ, ν are positive constants.

By comparing (4.21) with the case β = 2 of the equation (4.19) on the basis of the comparison theorem,

Theorem 4.3, we conclude that:

(i) If µ < α+1
2

(
α

α+1

)2
, then (4.21) has a nonoscillatory solution for all ν > 0;

(ii) If µ > α+1
2

(
α

α+1

)2
, then all solutions of (4.21) are oscillatory for all ν > 0;

Indeed, let µ < α+1
2

(
α

α+1

)2
. Choose µ0 such that

µ < µ0 <
α + 1

2

( α

α + 1

)2

and put

f(ξ) =
µ0

(log ξ)2
, g(ξ) =

µ

(log ξ)2
+

ν

(log ξ · log log ξ)2
.

From Example 4.1 the equation (4.19) with β = 2 and µ = µ0 has a nonoscillatory solution. Noting

that, for ξ large enough, f(ξ) ≥ g(ξ), g(ξ) is decreasing and ξαg(ξ) is increasing, applying Theorem

4.3, we conclude that the equation (4.21) possesses a nonoscillatory solution.

Let µ > α+1
2

(
α

α+1

)2
. Assume to the contrary that (4.21) has a nonoscillatory solution for some ν > 0.

We now use Theorem 4.2 to assert that the half-linear equation

(
ϕ(x′ )

)′
+

E(α)
tα+1

(
α +

µ

δ2

1
(log t)2

+
ν

(log tδ · log log tδ)2

)
ϕ(x) = 0

is nonoscillatory for all δ > α
α+1 . Since ν > 0, the Strum comparison theorem for half-linear differential

equations implies that (4.20) is nonoscillatory for all δ > α
α+1 . However, as we have observed in

Example 4.1, this is impossible. This establishes the truth of the statement (ii).
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ABSTRACT

The classical Khasminskii theorem (see [7]) on the non-explosion solutions of stochas-

tic differential equations (SDEs) is very important since it gives a powerful test for SDEs

to have non-explosion solutions without the linear growth condition. Recently, we [15] es-

tablished a more general Khasminskii-type test for stochastic differential delay equations

(SDDEs) which covers a wide class of highly non-linear SDDEs. We also give some inter-

esting and useful moment estimations. This paper is a continuation of our earlier one and

the main aim is to establish almost sure asymptotic estimations.

Key words: Brownian motion, stochastic differential delay equation, Itô’s formula, Gron-

wall inequality, asymptotic estimation.

2000 Mathematics Subject Classification: 60H10, 65J15

1 Introduction

One of the main problems in the study of stochastic differential equations is to find sufficient

conditions for the existence and uniqueness of the solution. The classical existence-and-

uniqueness theorem requires that the coefficients of the underlying SDEs obey the local Lips-

chitz condition and the linear growth condition (see e.g. [1, 4, 7, 17, 18]). However, there are

many SDEs that do not satisfy the linear growth condition. Therefore, lot of researches have

been devoted to proving the existence and uniqueness by replacing the linear growth condi-

tion with more general conditions. One of the most powerful results is the Khasminskii test

[7] for the SDEs to have non-explosion solutions without the satisfaction of the linear growth

condition.

In this paper we will consider an n-dimensional stochastic differential delay equation (SDDE)

dx(t) = f(x(t), x(t − τ), t)dt + g(x(t), x(t − τ), t)dB(t), (1.1)

on t ≥ 0 with initial data {x(t) : −τ ≤ t ≤ 0} ∈ C([−τ, 0];Rn). Here

f : Rn × Rn × R+ → Rn and g : Rn × Rn × R+ → Rn×m

and τ is a positive constant. It is also known that if both f and g obey the local Lipschitz

condition and the linear growth condition, then the SDDE has a unique global solution (see
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e.g. [8, 9, 11, 12, 16]). Nevertheless, a lot of SDDEs appeared in engineering, finance and

population dynamics etc. (see e.g. [2, 3, 5, 14]) do not satisfy the linear growth condition. In

2002, Mao [13] established the following useful result (the notations used will be explained in

Section 2 below).

Theorem 1.1. (Mao’s test) Let both coefficients f and g be locally Lipschitz continuous on

Rn × Rn × R+. Assume moreover that there is a function V ∈ C2,1(Rn × [−τ,∞); R+) and a

positive constant K such that

lim
|x|→∞

inf
0≤t<∞

V (x, t) = ∞, (1.2)

and

LV (x, y, t) := Vt(x, t) + Vx(x, t)f(x, y, t) +
1
2

trace[gT (x, y, t)Vxx(x, t)g(x, y, t)] (1.3)

≤ K[1 + V (x, t) + V (y, t − τ)], ∀(x, y, t) ∈ Rn × Rn × R+.

Then the SDDE (1.1) has a unique global solution on t ∈ [−τ,∞) for any given initial data

{x(t) : −τ ≤ t ≤ 0} ∈ C([−τ, 0];Rn).

Theorem 1.2. [15, Theorem 2.4] Let both coefficients f and g be locally Lipschitz continuous

on Rn ×Rn ×R+. Assume moreover that there are two functions V ∈ C2,1(Rn × [−τ,∞); R+)
and U ∈ C(Rn × [−τ,∞); R+) as well as two positive constants λ1 and λ2 such that

lim
|x|→∞

inf
0≤t<∞

V (x, t) = ∞, (1.4)

and

LV (x, y, t) ≤ λ1[1 + V (x, t) + V (y, t − τ) + U(y, t − τ)] − λ2U(x, t), (1.5)

∀(x, y, t) ∈ Rn × Rn × R+. Then the SDDE (1.1) has a unique global solution on t ∈ [−τ,∞)
for any given initial data {x(t) : −τ ≤ t ≤ 0} ∈ C([−τ, 0];Rn). Moreover, the solution has the

properties that

EV (x(t), t) < ∞ and E

∫ t

0
U(x(s), s)ds < ∞ (1.6)

for any t ≥ 0.

As demonstrated in [15], Theorem 1.2 does not only give sufficient conditions for many highly

non-linear SDDEs to have unique global solutions but also gives many interesting and useful

moment estimations for the solutions. In this paper, we will concentrate on the almost sure

asymptotic estimations for the solutions.

2 Preliminary Results

Throughout this paper, unless otherwise specified, we use the following notation. Let | · |
be the Euclidean norm in Rn. If A is a vector or matrix, its transpose is denoted by AT .

If A is a matrix, its trace norm is denoted by |A| =
√

trace(AT A). Let R+ = [0,∞) and
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τ > 0. Denote by C([−τ, 0];Rn) the family of continuous functions from [−τ, 0] to Rn with

the norm ‖ϕ‖ = sup−τ≤θ≤0 |ϕ(θ)|. Denote by C(Rn × [−τ,∞];R+) the family of continuous

functions from Rn × [−τ,∞] to R+. Let (Ω,F , {Ft}t≥0, P ) be a complete probability space with

a filtration {Ft}t≥0 satisfying the usual conditions (i.e. it is increasing and right continuous while

F0 contains all P -null sets). Let B(t) = (B1(t), · · · , Bm(t))T be an m-dimensional Brownian

motion defined on the probability space.

As a standing hypothesis we will impose the following local Lipschitz condition on the coeffi-

cients of the SDDE (1.1).

Assumption 2.1. For each integer i ≥ 1 there is a positive constant Ki such that

|f(x, y, t) − f(x̄, ȳ, t)|2 ∨ |g(x, y, t) − g(x̄, ȳ, t)|2 ≤ Ki(|x − x̄|2 + |y − ȳ|2)

for those x, y, x̄, ȳ ∈ Rn with |x| ∨ |y| ∨ |x̄| ∨ |ȳ| ≤ i and any t ∈ R+.

Let C2,1(Rn × [−τ,∞); R+) denote the family of all continuous non-negative functions V (x, t)
defined on Rn × [−τ,∞) such that they are continuously twice differentiable in x and once in t.

Given V ∈ C2,1(Rn × [−τ,∞); R+), we define the operator LV : Rn × Rn × R+ → R by (1.3),

where

Vt(x, t) =
∂V (x, t)

∂t
, Vx(x, t) =

(∂V (x, t)
∂x1

, · · · ,
∂V (x, t)

∂xn

)
,

Vxx(x, t) =
(∂2V (x, t)

∂xi∂xj

)
n×n

.

Let us emphasize that LV is thought as a single notation and is defined on Rn×Rn×R+ while

V is only defined on Rn × [−τ,∞).
The following result from [10, Lemma 2.1] will be of great use in the paper.

Lemma 2.2. Let M(t), t ≥ 0 be a continuous real-valued local martingale with initial value

M(0) = 0. Let 〈M(t),M(t)〉 be its quadratic variation. Let ρ > 1 be a number while {τk}k≥1

and {γk}k≥1 be two sequences of positive numbers such that τk → 0 as k → ∞. Then for

almost all ω ∈ Ω, there is a random integer k0 = k0(ω) such that for all k ≥ k0,

M(t) ≤ γk

2
〈M(t),M(t)〉 +

ρ

γk
log k on 0 ≤ t ≤ τk.

3 Almost Sure Asymptotic Estimations

Let us now begin to discuss the almost sure asymptotic estimations for the solution of the

SDDE (1.1). Let us emphasize that the additional conditions imposed in each theorem below

plus the standing Assumption 2.1 will guarantee the existence of the unique global solution

of the SDDE (1.1) as shown later in the Appendix. Hence we will only prove the asymptotic

estimations in this section.

Theorem 3.1. Let Assumption 2.1 hold. Assume that there are real numbers α1 ≥ 0, α2 >

α3 ≥ 0, r ≥ 0, θ > 2 + r and K > 0 such that

xT f(x, y, t) ≤ α1 − α2|x|θ + α3|y|θ (3.1)

and

|g(x, y, t)|2 ≤ K(1 + |x|r + |y|r) (3.2)
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for all (x, y, t) ∈ Rn × Rn × R+. Then the unique global solution x(t) of equation (1.1) has the

property that

lim
t→∞

|x(t)|
p
√

log t
= 0 a.s. (3.3)

for every p ∈ [2, θ − r).

Proof. Fix any p ∈ [2, θ − r) and choose γ > 0 sufficiently small for

α2 >
α3(p − 2 + θepγτ )

p − 2 + θ
. (3.4)

Define

V (x, t) = epγt |x|p, (x, t) ∈ Rn × R+.

It is easy to show that

LV (x, y, t) ≤ pγepγt|x|p + pepγt|x|p−2xT f(x, y, t)

+ 1
2p(p − 1)epγt|x|p−2|g(x, y, t)|2.

By Itô’s formula, we then have

V (x(t), t) − V (x(0), 0)

≤
∫ t

0
epγs

[
pγ|x(s)|p + p|x(s)|p−2xT (s)f(x(s), x(s − τ), s)

+
1
2
p(p − 1)|x(s)|p−2|g(x(s), x(s − τ), s)|2

]
ds + M(t), (3.5)

where

M(t) = p

∫ t

0
epγs|x(s)|p−2xT (s)g(x(s), x(s − τ), s)dB(s).

It is easy to see that M(t) is a real-valued continuous local martingale vanishing at 0 and its

quadratic variation is given by

〈M(t),M(t)〉 = p2

∫ t

0
e2pγs|x(s)|2(p−2)|xT (s)g(x(s), x(s − τ), s)|2ds

≤ p2

∫ t

0
e2pγs|x(s)|2(p−1)|g(x(s), x(s − τ), s)|2ds.

Now, assigning β > 0 and ρ = 2 arbitrarily and applying Lemma 2.2 with τk = k and γk =
βe−pγk, we observe that for almost all ω ∈ Ω there exists a random integer k0(ω) such that for

all k ≥ k0 and 0 ≤ t ≤ k,

M(t) ≤ 1
2
βe−pγk 〈M(t),M(t)〉 + (β−1epγk)2 log k

≤ (β−1epγk)2 log k

+
1
2
βe−pγkp2

∫ t

0
e2pγs|x(s)|2(p−1)|g(x(s), x(s − τ), s)|2ds.
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Substituting this into (3.5) yields that, with probability one, if k ≥ k0 and 0 ≤ t ≤ k, then

|x(t)|pepγt ≤ |x(0)|p + (β−1epγk)(2 log k)

+
∫ t

0
epγs [ pγ|x(s)|p + p|x(s)|p−2xT (s)f(x(s), x(s − τ), s)

+
1
2

p(p − 1) |x(s)|p−2 |g(x(s), x(s − τ), s)|2 ]ds

+
1
2
βe−pγkp2

∫ t

0
e2pγs|x(s)|2(p−1)|g(x(s), x(s − τ), s)|2ds.

By conditions (3.1) and (3.2) we hence have that with probability one, if k ≥ k0 and 0 ≤ t ≤ k,

epγt|x(t)|p ≤ |x(0)|p + (2 log k) (β−1epγk)

+
∫ t

0
epγs [ pγ|x(s)|p + p|x(s)|p−2(α1 − α2|x(s)|θ + α3|x(s − τ)|θ)

+
1
2
p(p − 1)K|x(s)|p−2(1 + |x(s)|r + |x(s − τ)|r)]ds

+
1
2

βp2

∫ t

0
epγs|x(s)|2(p−1)K(1 + |x(s)|r + |x(s − τ)|r)ds. (3.6)

Recall the well-known Young’s inequality (see e.g. [6]):

acb1−c ≤ ca + (1 − c)b, ∀a, b ≥ 0, c ∈ [0, 1]. (3.7)

The application of this inequality gives

|x(s)|p−2|x(s − τ)|θ ≤ p − 2
p − 2 + θ

|x(s)|p−2+θ +
θ

p − 2 + θ
|x(s − τ)|p−2+θ,

|x(s)|p−2|x(s − τ)|r ≤ p − 2
p − 2 + r

|x(s)|p−2+r +
r

p − 2 + r
|x(s − τ)|p−2+r,

|x(s)|2(p−1)|x(s − τ)|r ≤ 2(p − 1)
2(p − 1) + r

|x(s)|2(p−1)+r +
r

2(p − 1) + r
|x(s − τ)|2(p−1)+r.

Substituting these into (3.6) implies that, with probability one, if k ≥ k0 and 0 ≤ t ≤ k,

epγt|x(t)|p ≤ |x(0)|p + (2 log k)(β−1epγk)

+
∫ t

0
epγs

{
pγ|x(s)|p + α1p|x(s)|p−2 − α2p|x(s)|p−2+θ

+ α3p
p − 2

p − 2 + θ
|x(s)|p−2+θ + α3p

θ

p − 2 + θ
|x(s − τ)|p−2+θ

+
1
2
p(p − 1)K|x(s)|p−2 +

1
2
p(p − 1)K|x(s)|p−2+r

+
1
2
p(p − 1)K

p − 2
p − 2 + r

|x(s)|p−2+r +
1
2
p(p − 1)K

r

p − 2 + r
|x(s − τ)|p−2+r

+
1
2
βp2K|x(s)|2(p−1) +

1
2
βp2K|x(s)|2(p−1)+r

+
1
2
βp2K

2(p − 1)
2(p − 1) + r

|x(s)|2(p−1)+r +
1
2
βp2K

r

2(p − 1) + r
|x(s)|2(p−1)+r

}
ds.

In view of the fact that∫ t

0
epγs|x(s − τ)|wds ≤

∫ 0

−τ
epγ(s+τ)|x(s)|wds +

∫ t

0
epγ(s+τ)|x(s)|wds
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for w = (p − 2 + θ), (p − 2 + r) and [2(p − 1) + r] respectively, we obtain that, with probability

one, if k ≥ k0 and 0 ≤ t ≤ k,

epγt|x(t)|p ≤ C + (2 log k)(β−1epγk)

+
∫ t

0
epγs

{
p(α1 +

1
2
p(p − 1)K)|x(s)|p−2 + pγ|x(s)|p

+
1
2
p(p − 1)K(1 +

p − 2
p − 2 + r

+
r

p − 2 + r
epγτ )|x(s)|p−2+r

+
1
2
βp2K|x(s)|2(p−1)

+
1
2
βp2K(1 +

2(p − 1)
2(p − 1) + r

+
r

2(p − 1) + r
epγτ )|x(s)|2(p−1)+r

− p(α2 − α3

p − 2 + θ
(p − 2 + θepγτ ))|x(s)|p−2+θ

}
ds,

where

C = |x(0)|p +
∫ 0

−τ
epγ(s+τ)p

[ α3θ

p − 2 + θ
|x(s)|p−2+θ +

r(p − 1)K
2(p − 2 + r)

|x(s)|p−2+r

+
rβpK

2(2(p − 1) + r)
|x(s)|2(p−1)+r

]
ds.

Recalling (3.4) as well as θ > 2 + r and p ∈ [2, θ − r), it is easy to see that the following

polynomial is bounded upper by, say Λ, in Rn. That is, for all x ∈ Rn,

p(α1 +
1
2
p(p − 1)K)|x(s)|p−2 + pγ|x|p

+
1
2
p(p − 1)K(1 +

p − 2
p − 2 + r

+
r

p − 2 + r
epγτ )|x|p−2+r

+
1
2
βp2K|x|2(p−1) +

1
2
βp2K(1 +

2(p − 1)
2(p − 1) + r

+
r

2(p − 1) + r
epγτ )|x|2(p−1)+r

−p(α2 − α3

p − 2 + θ
(p − 2 + θepγτ ))|x|p−2+θ

≤ Λ.

Hence, with probability one, if k ≥ k0 and 0 ≤ t ≤ k, then

epγt|x(t)|p ≤ C + (2 log k)(β−1epγk) +
∫ t

0
epγsΛds

≤ C + (2 log k)(β−1epγk) +
Λ
pγ

epγt.

In particular, with probability one, if k ≥ k0 and k − 1 ≤ t ≤ k, we have

|x(t)|p ≤ Ce−pγ(k−1) + (2 log k)(β−1epγ) +
Λ
pγ

,

which gives

|x(t)|p
log t

≤
{

Ce−pγ(k−1) + (2 log k)(β−1epγ) +
Λ
pγ

}
× [ log (k − 1) ]−1.
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Letting t → ∞ (forcing k → ∞) we obtain that

lim sup
t→∞

|x(t)|p
log t

≤ (epγ)(2β−1) a.s.

That is

lim sup
t→∞

|x(t)|
p
√

log t
≤ (eγ) p

√
2β−1 a.s.

Finally, letting β → ∞ we have

lim sup
t→∞

|x(t)|
p
√

log t
≤ 0 a.s.

and hence the required assertion (3.3) must hold. �
The above theorem shows that almost every sample path of the solution will not grow faster

than p
√

log t. The following theorem further reveals that the average in time of almost every

sample path of the solution is bounded.

Theorem 3.2. Assume that all conditions of Theorem 3.1 hold except (3.1) which is replaced

by the following more general condition

xT f(x, y, t) ≤ α1 − α2|x|θ + α3|y|θ − U(x) + U(y), (3.8)

wherer U ∈ C(Rn; R+). Then the unique global solution x(t) of equation (1.1) has the property

that

lim sup
t→∞

1
t

∫ t

0
|x(s)|ds ≤ Λ̃ a.s. (3.9)

where Λ̃ is a positive constant independent of the initial data.

Before we prove this theorem, let make a quick remark. It is easy to see that if we set U ≡ 0
then condition (3.8) reduces to condition (3.1). Hence under the conditions of Theorem 3.1,

the solution of equation (1.1) also has property (3.9) in addition to (3.3).

Proof. Define

V (x, t) := V (x) = |x|2, (x, t) ∈ Rn × R+.

Obviously, the operator LV has the form

LV (x, y, t) = 2xT f(x, y, t) + |g(x, y, t)|2, (x, y, t) ∈ Rn × Rn × R+.

Hence, by the Itô formula,

|x(t)|2 − |x(0)|2

=
∫ t

0
[2xT (s)f(x(s), x(s − τ), s) + |g(x(s), x(s − τ), s)|2]ds + M(t), (3.10)

where

M(t) = 2
∫ t

0
xT (s)g(x(s), x(s − τ), s)dB(s),
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is a real-valued continuous local martingale vanishing at 0. By condition (3.2) we compute its

quadratic variation

〈M(t),M(t)〉 = 4
∫ t

0
|xT (s)g(x(s), x(s − τ), s)|2ds

≤ 4
∫ t

0
|x(s)|2|g(x(s), x(s − τ), s)|2ds

≤ 4K

∫ t

0
|x(s)|2(1 + |x(s)|r + |x(s − τ)|r)ds.

By Lemma 2.2 with ρ = 2, γk = 2 and τk = k, we see that for almost all ω ∈ Ω, there is a

random integer k0 = k0(ω) such that

M(t) ≤ log k + 4K

∫ t

0
|x(s)|2(1 + |x(s)|r + |x(s − τ)|r)ds (3.11)

for 0 ≤ t ≤ k whenever k ≥ k0. But, by Young’s inequality (3.7),

|x(s)|2|x(s − τ)|r ≤ 2
2 + r

|x(s)|2+r +
r

2 + r
|x(s − τ)|2+r.

Hence, ∫ t

0
|x(s)|2(1 + |x(s)|r + |x(s − τ)|r)ds

≤
∫ t

0

[
|x(s)|2 + (1 +

2
2 + r

)|x(s)|2+r +
r

2 + r
|x(s − τ)|2+r

]
ds

≤ r

2 + r

∫ 0

−τ
|x(s)|2+rds +

∫ t

0
[|x(s)|2 + 2|x(s)|2+r]ds

for ∫ t

0
|x(s − τ)|2+rds ≤

∫ 0

−τ
|x(s)|2+rds +

∫ t

0
|x(s)|2+rds.

Therefore, we see from (3.11) that, with probability one,

M(t) ≤ log k +
4Kr

2 + r

∫ 0

−τ
|x(s)|2+rds + 4K

∫ t

0
[ |x(s)|2 + 2|x(s)|2+r ]ds

for 0 ≤ t ≤ k whenever k ≥ k0. Substituting this into (3.10) and then using condition (3.8) we

obtain that, with probability one,

|x(t)|2 ≤ |x(0)|2 +
4Kr

2 + r

∫ 0

−τ
|x(s)|2+rds + log k

+
∫ t

0

[
2α1 − 2α2|x(s)|θ + 2α3|x(s − τ)|θ − 2U(x(s)) + 2U(x(s − τ))

+K(1 + |x(s)|r + |x(s − τ)|r) + 4K|x(s)|2 + 8K|x(s)|2+r
]
ds

≤ C + log k +
∫ t

0

[
(2α1 + K) − 2(α2 − α3)|x(s)|θ

+2K|x(s)|r + 4K|x(s)|2 + 8K|x(s)|2+r
]
ds

for 0 ≤ t ≤ k whenever k ≥ k0, where

C = |x(0)|2 +
∫ 0

−τ
[

4Kr

2 + r
|x(s)|2+r + 2α3|x(s)|θ + K|x(s)|r + 2U(x(s)) ]ds.
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Consequently, with probability one,

(α2 − α3)
∫ t

0
|x(s)|θds ≤ C + log k +

∫ t

0

[
(2α1 + K) − (α2 − α3)|x(s)|θ

+2K|x(s)|r + 4K|x(s)|2 + 8K|x(s)|2+r
]
ds

for 0 ≤ t ≤ k whenever k ≥ k0. Recalling that α2 > α3 and θ > 2 + r, we see that there is a

positive constant Λ such that

(2α1 + K) + 4K|x|2 + 2K|x|r + 8K|x|2+r − (α2 − α3)|x|θ ≤ Λ, ∀x ∈ Rn.

So, with probability one,

(α2 − α3)
∫ t

0
|x(s)|θds ≤ C + log k + Λt

for 0 ≤ t ≤ k whenever k ≥ k0. Hence, for almost all ω ∈ Ω, if (k − 1) ≤ t ≤ k and k ≥ k0,

1
t

∫ t

0
|x(s)|θds ≤ 1

α2 − α3
[
C + log k

k − 1
+ Λ].

Letting t → ∞ yields

lim sup
t→∞

1
t

∫ t

0
|x(s)|θds ≤ Λ

α2 − α3
a.s.

However, it is easy to show by the Hölder inequality that

1
t

∫ t

0
|x(s)|ds ≤

(1
t

∫ t

0
|x(s)|θds

) 1
θ
.

Thus

lim sup
t→∞

1
t

∫ t

0
|x(s)|ds ≤ θ

√
Λ

α2 − α3
:= Λ̃ a.s.

as required. �

Theorem 3.3. Let Assumption 2.1 hold. Assume that there is a function U ∈ C(Rn; R+) and

two positive constants α, K such that

2xT f(x, y, t) ≤ α − U(x) + U(y) (3.12)

and

|g(x, y, t)|2 ≤ K (3.13)

for all (x, y, t) ∈ Rn × Rn × R+. Then the unique global solution of equation (1.1) has the

property that

lim
t→∞ sup

|x(t)|√
2t log log t

≤
√

eK a.s. (3.14)
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Proof. By the Itô formula,

|x(t)|2 − |x(0)|2 =
∫ t

0
(2xT (s)f(x(s), x(s − τ), s) + |g(x(s), x(s − τ), s)|2)ds

+ 2
∫ t

0
xT (s)g(x(s), x(s − τ), s)dB(s)

≤
∫ t

0
[α + K − U(x(s)) + U(x(s − τ))]ds + M(t)

≤ (α + K)t +
∫ 0

−τ
U(x(s))ds + M(t),

where

M(t) = 2
∫ t

0
xT (s)g(x(s), x(s − τ), s)dB(s),

is a real-valued continuous local martingale vanishing at 0 and

〈M(t),M(t)〉 ≤ 4K

∫ t

0
|x(s)|2ds.

Assign β > 0 and ρ > 1 arbitrarily. Applying Lemma 2.2 with γk = βρ−k and τk = ρk, we see

that for almost all ω ∈ Ω, there is a random integer k0 = k0(ω) such that

M(t) ≤ β−1ρk+1 log k + 2Kβρ−k

∫ t

0
|x(s)|2ds

for 0 ≤ t ≤ ρk whenever k ≥ k0. Hence, with probability one,

|x(t)|2 ≤ ξ + β−1ρk+1 log k + (α + K)ρk + 2βρ−kK

∫ t

0
|x(s)|2ds

for 0 ≤ t ≤ ρk whenever k ≥ k0, where ξ = |x(0)|2+
∫ 0
−τ U(x(s))ds. By the well-known Gronwall

inequality, then have that, with probability one,

|x(t)|2 ≤ [ ξ + (α + K)ρk + β−1ρk+1 log k
]
e2βK ,

for 0 ≤ t ≤ ρk whenever k ≥ k0. In particular, with probability one, if ρk−1 ≤ t ≤ ρk and k ≥ k0,

then

|x(t)|2
2t log log t

≤ [ξ + (α + K)ρk + β−1ρk+1 log k]e2βK

2ρk−1 log ((k − 1) + log ρ)
.

Letting t → ∞ yields

lim sup
t→∞

|x(t)|2
2t log log t

≤ ρ2

2β
e2βK a.s.

Finally, letting ρ → 1 and setting β = 1
2K we obtain the assertion

lim sup
t→∞

|x(t)|√
2t log log t

≤
√

eK a.s.

as desired. �
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Theorem 3.4. Let Assumption 2.1 hold. Assume there are non-negative constants α1, α2, α3

and K such that α2 + α3 > 0,

xT f(x, y, t) ≤ α1 + α2|x|2 + α3|y|2 (3.15)

and

|g(x, y, t)|2 ≤ K (3.16)

for all (x, y, t) ∈ Rn × Rn × R+. Then the unique global solution x(t) of equation (1.1) has the

property that

lim
t→∞

|x(t)|
e(α2+α3)t

√
log log t

= 0 a.s. (3.17)

Proof. Define

V (x, t) = e−2(α2+α3)t|x|2, (x, t) ∈ Rn × R+.

Hence the operator LV has the form

LV (x, y, t) = −2(α2 + α3)e−2(α2+α3)t|x|2 + 2e−2(α2+α3)txT f(x, y, t)

+ e−2(α2+α3)t|g(x, y, t)|2.

By Itô’s Formula and the conditions we compute

e−2(α2+α3)t|x(t)|2 − |x(0)|2

=
∫ t

0
e−2(α2+α3)s

[− 2(α2 + α3)|x(s)|2 + 2xT (s)f(x(s), x(s − τ), s)

+|g(x(s), x(s − τ), s)|2]ds + M(t)

≤
∫ t

0
e−2(α2+α3)s

[− 2α3|x(s)|2 + 2α3|x(s − τ)|2 + (2α1 + K)
]
ds + M(t),

where

M(t) = 2
∫ t

0
e−2(α2+α3)sxT (s)g(x(s), x(s − τ), s)dB(s).

Noting ∫ t

0
e−2(α2+α3)s|x(s − τ)|2ds ≤

∫ 0

−τ
|x(s)|2ds +

∫ t

0
e−2(α2+α3)s|x(s)|2ds,

we have

e−2(α2+α3)t|x(t)|2 ≤ C + M(t), (3.18)

where

C = |x(0)|2 + 2α3

∫ 0

−τ
|x(s)|2ds +

2α1 + K

2(α2 + α3)
.

Clearly, M(t) is a real-valued local martingale vanishing at 0 and

〈M(t),M(t)〉 ≤ 4K

∫ t

0
e−4(α2+α3)s|x(s)|2ds.
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Let δ > 1 be arbitrary. Applying Lemma 2.2 with ρ = 2, γk = 1 and τk = 2kδ
, we observe that

for almost all ω ∈ Ω, there is a random integer k0 = k0(ω) such that

M(t) ≤ 1
2
〈M(t),M(t)〉 + 2 log k

≤ 2 log k + 2K

∫ t

0
e−4(α2+α3)s|x(s)|2ds

for 0 ≤ t ≤ 2kδ
whenever k ≥ k0. Substituting this into (3.18) gives that, with probability one,

e−2(α2+α3)t|x(t)|2 ≤ C + 2 log k + 2K

∫ t

0
e−2(α2+α3)s[e−2(α2+α3)s|x(s)|2]ds

for 0 ≤ t ≤ 2kδ
whenever k ≥ k0. Applying the Gronwall inequality, we get that, with probability

one,

e−2(α2+α3)t|x(t)|2 ≤ [ C + 2 log k ] exp [2K

∫ t

0
e−2(α2+α3)sds]

≤ [ C + 2 log k ] exp (
K

α2 + α3
)

for 0 ≤ t ≤ 2kδ
whenever k ≥ k0. Hence, with probability one, if 2(k−1)δ ≤ t ≤ 2kδ

and k ≥ k0,

|x(t)|2
e2(α2+α3)t log log t

≤ [ C + 2 log (k) ] × exp (
K

α2 + α3
) × [δ log (k − 1) + log log 2]−1.

Letting t → ∞ implies

lim sup
t→∞

|x(t)|2
e2(α2+α3)t log log t

≤ 2
δ

exp (
K

α2 + α3
).

Since δ > 1 is arbitrary, we must have that

lim
t→∞

|x(t)|2
e2(α2+α3)t log log t

= 0 a.s.

which is the same as the required assertion. �

4 Examples

Let us now discuss four examples to illustrate our theory. In the first two example, the SDDEs

are scalar and the Brownian motion B(t) is scalar too.

Example 4.1. Let

f(x, y, t) = 1 − 2x5 + y5 and g(x, y, t) = 1 + x + y, (x, y, t) ∈ R × R × R+.

It is easy to show that

xf(x, y, t) ≤ 1.5 − 8
6
x6 +

5
6
y6 and |g(x, y, t)|2 ≤ 3(1 + |x|2 + |y|2).

By Theorems 3.1 and 3.2, we can conclude that for any given initial data {x(s) : −τ ≤ s ≤ 0} ∈
C([−τ, 0];R), the unique global solution of the SDDE

dx(t) = [1 − 2x5(t) + x5(t − τ)]dt + [1 + x(t) + x(t − τ)]dB(t)
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obeys that

lim
t→∞

|x(t)|
p
√

log t
= 0 a.s

for any p ∈ [2, 4), and

lim sup
t→∞

1
t

∫ t

0
|x(s)|ds ≤ Λ̃ a.s.

where Λ̃ is a positive constant independent of the initial data.

Example 4.2. Let

f(x, y, t) = 1 − 2x5 + y5 − x7 + y7 and g(x, y, t) = 1 + x + y

for (x, y, t) ∈ R × R × R+. It is easy to show that

xf(x, y, t) ≤ 1.5 − 8
6
x6 +

5
6
y6 − 7

8
x8 +

7
8

and |g(x, y, t)|2 ≤ 3(1 + |x|2 + |y|2).

By Theorem 3.2 we can conclude that for any given initial data {x(s) : −τ ≤ s ≤ 0} ∈ C([−τ, 0];R),
the unique global solution of the SDDE

dx(t) = [1 − 2x5(t) + x5(t − τ) − x7(t) + x7(t − τ)]dt + [1 + x(t) + x(t − τ)]dB(t)

obeys that

lim sup
t→∞

1
t

∫ t

0
|x(s)|ds ≤ Λ̃ a.s

where Λ̃ is a positive constant independent of the initial data.

Example 4.3. Let us now consider an n-dimensional linear SDDE

dx(t) = [a + A1x(t) + A2(t − τ)]dt + A3dB(t), (4.1)

where a ∈ Rn, A1, A2 ∈ Rn×n and A3 ∈ Rn×m while B(t) is an m-dimensional Brownian motion.

Denote by ‖A1‖ the operator norm of A1, namely ‖A1‖ = sup{|A1x| : x ∈ Rn, |x| = 1} and similarly,

‖A2‖ and ‖A3‖. Fix any ε > 0 and compute, for x, y ∈ Rn,

xT [a + A1x + A2y] ≤ |a||x| + ‖A1‖|x|2 + ‖A2‖|x||y|
≤ |a|2

4ε
+ (ε + ‖A1‖ + 1

2‖A2‖)|x|2 + 1
2‖A2‖|y|2.

By Theorem 3.4, we can conclude that for any given initial data {x(s) : −τ ≤ s ≤ 0} ∈ C([−τ, 0];Rn),
the unique global solution of the linear SDDE (4.1) obeys that

lim
t→∞

|x(t)|
e(ε+‖A1‖+‖A2‖)t√log log t

= 0 a.s. (4.2)

for any ε > 0.

Example 4.4. Let us still consider the linear SDDE (4.1). Assume that the symmetric matrix A1 + AT
1

is negative-definite and

− 1
2λmax(A1 + AT

1 ) > ‖A2‖, (4.3)
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where λmax(A1 + AT
1 ) < 0 is the largest eigen-value of A1 + AT

1 . Let

ε = −1
2λmax(A1 + AT

1 ) − ‖A2‖ > 0.

Compute, for x, y ∈ Rn,

xT [a + A1x + A2y] ≤ |a||x| + 1
2xT (A1 + AT

1 )x + ‖A2‖|x||y|

≤ |a|2
4ε

+
[
ε + 1

2λmax(A1 + AT
1 ) + 1

2‖A2‖
]
|x|2 + 1

2‖A2‖|y|2

=
|a|2
4ε

− 1
2‖A2‖|x|2 + 1

2‖A2‖|y|2.

By Theorem 3.3, we can conclude that for any given initial data {x(s) : −τ ≤ s ≤ 0} ∈ C([−τ, 0];Rn),
the unique global solution of the linear SDDE (4.1) obeys that

lim
t→∞ sup

|x(t)|√
2t log log t

≤ ‖A3‖
√

e a.s. (4.4)

5 APPENDIX

In this appendix, we will show that under the conditions of any theorem in Section 3, the SDDE

(1.1) has a unique global solution. In fact, under the conditions of Theorem 3.4, the existence

and uniqueness of the solution follows easily from Mao’s test (i.e. Theorem 1.1) by using

V (x, t) = |x|2. We also note that the conditions of Theorem 3.2 are more general than those

of either Theorem 3.1 or Theorem 3.3 so we only need to show the existence and uniqueness

of the solution under the conditions of Theorem 3.2. In this case, we still let V (x, t) = |x|2.

Compute the operator LV :

LV (x, y, t) = 2xT f(x, y, t) + |g(x, y, t)|2

≤ 2[α1 − α2|x|θ + α3|y|θ − U(x) + U(y)] + K(1 + |x|r + |y|r).

By the Young inequality, it is easy to show that

K(1 + |x|r + |y|r) ≤ C1 + α2(|x|θ + |y|θ)

where C1 and following C2 etc. are all positive constants. Hence

LV (x, y, t) = C2 + (a2 + 2α3)|y|θ + 2U(y) − (α2|x|θ + 2U(x))

≤ C3[1 + (α2|y|θ + 2U(y))] − (α2|x|θ + 2U(x)).

By Theorem 1.2, we see easily that the SDDE (1.1) has a unique global solution.
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ABSTRACT

In this paper we study a multiparameter, nonlinear second order difference equation that

is motivated by the Euler discretization of derivatives in the autonomous, second order

differential equation derived from Newton’s second law in mechanics. Our objective is

mainly to analyze qualitative properties of the second order difference equation such as

convergence, periodicity and chaos. With proper restrictions, two different semiconjugate

factorizations facilitate our work.
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1 Introduction

Euler’s simple method of rendering derivatives discrete in time has, over the centuries led to

interesting classes of difference equations that have inspired a significant amount of research.

The bulk of this research has been done during the past 30 years when digital computing has

been available and increasingly accessible.

We start with the differential equation

x′′ = φ(x, x′) (1.1)

of classical mechanics. Using Euler’s forward difference method (1.1) may be transformed into

a second order difference equation. The time axis is made discrete as t0, t1, t2, . . . with a fixed

step size τ so that for each n = 0, 1, 2, . . . we have tn+1 − tn = τ. Then we estimate the first
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and second derivatives of the function x(t) using forward differences as

x′(tn) ≈ x(tn + τ) − x(tn)
τ

=
xn+1 − xn

τ
,

x′′(tn) ≈ x′(tn + τ) − x′(tn)
τ

=
1
τ

[
xn+2 − xn+1

τ
− xn+1 − xn

τ

]
.

Inserting these into (1.1) yields

1
τ

[
xn+2 − xn+1

τ
− xn+1 − xn

τ

]
= φ

(
xn,

xn+1 − xn

τ

)
. (1.2)

This is the Euler discretization of (1.1) with a fixed step size. For sufficiently small τ and a wide

range of functions φ Eq.(1.2) gives good estimates of the solutions of (1.1) over a chosen time

interval [a, b], in which case t0 = a and tN = b where N is the largest index that one would

consider. For more details on Euler’s and other methods for solving differential equations a

standard numerical analysis text such as [4] may be consulted.

In this paper we consider a slightly more general form of (1.2) that is capable of producing

a much richer variety of asymptotic behavior through parameter adjustments. Our discussion

is focused on the asymptotics of that general difference equation rather than on estimating

solutions of (1.1) using (1.2).

Relabling xn+1/τ as yn and rearranging terms in Equation (1.2) gives

yn+1 = 2yn − yn−1 + τφ(τyn−1, yn − yn−1). (1.3)

This is a special case of the second order difference equation

xn+1 = axn + bxn−1 + f(xn−1, xn − cxn−1) (1.4)

where the parameters a, b, c are given real numbers and f : R2 → R is a given function. This

equation may also be written succinctly as

xn+1 = F (xn, xn−1)

which is reminicent of (1.1) but with

F (u, v) = au + bv + f(v, u − cv). (1.5)

It may be mentioned in passing that difference equations may be used directly as equations of

motion in mechanics. An interesting study of this approach is given in [7].

2 General Concepts and Results

Each fixed point or equilibrium x̄ of Eq.(1.4) is given by the equation

x̄ = ax̄ + bx̄ + f(x̄, (1 − c)x̄)

or equivalently,

(1 − a − b)x̄ = f(x̄, (1 − c)x̄). (2.1)
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For example, if f is a homogeneous function of degree k, i.e. f(tu, tv) = tkf(u, v) then the

origin x̄ = 0 is a fixed point (if the domain of f contains it) and for k 
= 1 another isolated fixed

point

x̄ =
[

1 − a − b

f(1, 1 − c)

]1/(k−1)

may exist provided that the various quantities are well defined. For k = 1 if 1−a−b = f(1, 1−c)
then all points on the diagonal (and in the domain of f ) are fixed and thus none are isolated;

otherwise, origin is the unique isolated fixed point if it is in the domain of f. We refer the

reader to texts such as [1], [6], [12], [13] and [17] for basic background material, including the

definitions of stability, asymptotic stability and instability for fixed points and cycles of difference

equations.

2.1 Global stability

Let x̄ be an isolated fixed point of (1.4) and let F be the function defined in (1.5). If f is

continuously differentiable, then so is F and through linearization it may be shown that x̄ is

locally stable if ∣∣∣∣∂F

∂u
(x̄, x̄)

∣∣∣∣ < 1 +
∂F

∂v
(x̄, x̄) < 2.

If x̄ is the only fixed point of (1.4) then we also have the following general result in which f is

only assumed to be continuous.

Theorem 1. Assume that f is continuous on R2 and define g(u, v) = f(v, u − cv). If x̄ is the

only fixed point of (1.4) and there is δ ∈ (0, 1) such that

|a| + |b| + δ < 1

and

|g(u, v) − g(x̄, x̄)| ≤ δ max{|u − x̄|, |v − x̄|}, (u, v) ∈ R2 (2.2)

then x̄ is globally asymptotically stable.

Proof. Note that

|F (u, v) − x̄| = |F (u, v) − F (x̄, x̄)|
≤ |a||u − x̄| + |b||v − x̄| + |f(v, u − cv) − f(x̄, (1 − c)x̄)|
≤ (|a| + |b| + δ) max{|u − x̄|, |v − x̄|}.

Therefore, by Corollary 4.3.5 in [17] x̄ is globally asymptotically stable.

Example 1. Consider the difference equation

xn+1 = 0.5xn−1 + 1 + 3
√

xn + 1. (2.3)

which is a special case of (1.4) with a = c = 0, b = 0.5 and f(v, u) = 1 + 3
√

u + 1. Equation

(2.3) has a unique fixed point x̄ with a value of approximately 5.8. Inequality (2.2) holds for
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(2.3) because

|g(u, v) − g(x̄, x̄)| = |f(v, u) − f(x̄, x̄)|
= | 3

√
u + 1 − 3

√
x̄ + 1|

=
|u − x̄|∣∣∣ 3

√
(u + 1)2 + 3

√
u + 1 3

√
x̄ + 1 + 3

√
(x̄ + 1)2

∣∣∣
and using the approximate value of x̄ we find that the denominator of the fraction above ex-

ceeds 5/2 for all real u, so we may set δ = 2/5 = 0.4 in Theorem 1 and conclude that the

unique fixed point x̄ of (2.3) is globally asymptotically stable.

Remark. Condition (2.2) in particular holds if f is a contraction on the plane, i.e.

|f(x, y) − f(s, t)| ≤ γ max{|x − s|, |y − t|}, γ <
1

1 + |c| . (2.4)

If (2.4) holds then

|g(u, v) − g(x̄, x̄)| = |f(v, u − cv) − f(x̄, (1 − c)x̄)|
≤ γ max{|v − x̄|, |u − cv − (1 − c)x̄|}
≤ γ max{|v − x̄|, |u − x̄| + c|v − x̄|}
≤ γ(1 + |c|) max{|u − x̄|, |v − x̄|}

and (2.2) follows if γ(1 + |c|) < 1.

Inequality (2.2) is essentially weaker than (2.4) because the latter inequality is assumed to

hold globally whereas the former only requires sufficient flatness of the graph of g near the

point (x̄, x̄). For instance, in Example 1 above the function f(v, u) is not a contraction on the

plane (in fact, f is not differentiable when u = −1), but near the point (x̄, x̄) the cylindrical

surface 1 + 3
√

u + 1 flattens out significantly. See [17, Sec.4.3] for further general remarks with

regard to the geometric aspects of Theorem 1.

2.2 Persistent oscillations

Suppose that x̄ is an isolated fixed point of F. Then the following inequalities imply that both

eigenvalues of the linearization of (1.4) have modulus greater than 1 (see, e.g. [17, p.168]):∣∣∣∣∂F

∂v
(x̄, x̄)

∣∣∣∣ > 1,

∣∣∣∣∂F

∂v
(x̄, x̄) − 1

∣∣∣∣ >

∣∣∣∣∂F

∂u
(x̄, x̄)

∣∣∣∣ . (2.5)

These inequalities and a basic result from [17, p.166] imply the next theorem. We say that a

bounded solution of (1.4) will oscillate persistently if it has at least two distinct limit points.

Theorem 2. Suppose that inequalites (2.5) hold at an isolated fixed point x̄ of (1.4) and further,

the equation

ax̄ − bv + f(v, x̄ − cv) = x̄ (2.6)

has no real solution v 
= x̄. Then all bounded, non-constant solutions of (1.4) oscillate persis-

tently.
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Example 2. In Equation (1.4) let c = 1 and assume that f(v, u − cv) = g(u − v) − bv for some

real function g so that (1.4) takes the form

xn+1 = axn + g(xn − xn−1). (2.7)

We make the following additional assumptions:

(a) 0 ≤ a < 1;
(b) g is continuous, nondecreasing and bounded below on R;
(c) There is α ∈ (0, 1) and t0 > 0 such that g(t) ≤ αt for all t > t0;
Then (2.7) has a unique fixed point x̄ = g(0)/(1 − a) and all of its solutions are bounded ([17,

T4.1.1]). If we also assume that:

(d) g is continuously differentiable at 0 with g′(0) > 1,

then every solution of (2.7) with at least one initial value different from x̄ oscillates persistently.

To prove this last assertion, we note with regard to (2.5) that if F (u, v) = au + g(u − v) then∣∣∣∣∂F

∂v
(x̄, x̄)

∣∣∣∣ = g′(0) > 1,∣∣∣∣∂F

∂v
(x̄, x̄) − 1

∣∣∣∣ = | − g′(0) + 1| > |a + g′(0)| =
∣∣∣∣∂F

∂u
(x̄, x̄)

∣∣∣∣ .
Further, Eq.(2.6) takes the form

g(x̄ − v) = g(0)

whose only solution by assumptions (b) and (d) is v = x̄. Thus by Theorem 2 all nontrivial

solutions of (2.7) oscillate persistently. A specific example of g that satisfies (a)-(d) above is

g(t) = tan−1 βt with β > 1.

3 Semiconjugate factorizations

A second order equation such as (1.4) may be viewed as a mapping of the two dimensional

space upon unfolding in vector form. Such an equation in principle admits factorizations into

two mappings of the real line ([17]). When a difference equation is stated in scalar form as

(1.4) is, we may obtain the semiconjugate factors through substitutions. We obtain our first

(of two) such factorization by subtracting the term cxn from both sides of (1.4) and rearrange

terms to obtain

xn+1 − cxn = (a − c)xn + bxn−1 + f(xn−1, xn − cxn−1).

We now make two assumptions:

(SC1) f is linear in the first coordinate, i.e., f(u, v) = du + g(v) where d is a real

number (possibly 0) and g is a function.

Then the terms on the right hand side of the preceding expression may be rearranged to give

xn+1 − cxn = (a − c)xn + (b + d)xn−1 + g(xn − cxn−1). (3.1)

Our second assumption is as follows:
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(SC2) The constants a, b, c, d satisfy

b + d = c(c − a). (3.2)

Note that the constant values in Eq.(1.3) namely, a = 2, b = −1, c = 1 satisfy condition (3.2) if

we assume hypothesis (SC1) above with d = 0. The case d = 0 corresponds to the function φ

in (1.1) being “space independent”.

Under assumptions (SC1) and (SC2), we substitute tn = xn − cxn−1 into Eq.(3.1) and obtain

the equivalent system of first order difference equations

tn+1 = (a − c)tn + g(tn) (3.3a)

xn+1 = cxn + tn+1 (3.3b)

These two first order equations represent the first semiconjugate factorization of (1.4) that we

discuss here. We may call this type of factorization semiconjugacy by sums. For reference, we

note that under the assumptions (SC1) and (SC2) Eq.(1.4) takes the following form:

xn+1 = axn + c(c − a)xn−1 + g(xn − cxn−1). (3.4)

The second type of semiconjugate factorization requires the following assumption:

(SC3) f is homogeneous of degree one, i.e. f(tu, tv) = tf(u, v) for all real values

of t for which f is defined.

Examples of mappings that satisfy (SC3) include linear maps f(u, v) = αu + βv as well as the

following:

|αu + βv|,
√

αu2 + βuv + γv2,
αu2 + βuv + γv2

δu + ξv

under suitable domain restrictions where necessary. Under (SC3) we may divide both sides of

(1.4) by xn to obtain

xn+1

xn
= a + b

xn−1

xn
+

1
xn

f(xn−1, xn − cxn−1)

= a + b
xn−1

xn
+

xn−1

xn
f(1,

xn

xn−1
− c).

In the preceding expression we substitute

rn =
xn

xn−1
(3.5)

to obtain

rn+1 = a +
b + f(1, rn − c)

rn
.

Note that this is a first order difference equation that together with (3.5) gives the following

factorization of (1.4) that we call semiconjugacy by ratios:

rn+1 = a +
b + f(1, rn − c)

rn
(3.6a)

xn+1 = rn+1xn (3.6b)

Int. J. Appl. Math. Stat.; Vol. 9, No. J07, June 2007 115



The essential or structural difference between (3.3) and (3.6) is in their second equations (3.3b)

and (3.6b), respectively. These latter equations translate the dynamics of fibers given by equa-

tions (3.3a) and (3.6a) in different ways into behaviors for solutions of (1.4). For instance, even

if in both (3.3a) and (3.6a) all solutions converge to a unique fixed point, the resulting behav-

iors for (1.4) will be quite different in the two cases because (3.3b) and (3.6b) give different

outcomes.

We note that these two semiconjugate types are essentially complementary, becasuse if both

of the assumptions (SC1) and (SC3) hold then f is linear, which reduces (1.4) to a linear

equation. It may also be mentioned that equations (3.3) and (3.6) are examples of “triangular”

systems; these types of systems have been studied at a general level for their periodic struc-

ture; see, e.g. [2] and [11]. Since we are dealing with somewhat specific systems, we can

obtain substantial information (some of which go beyond periodicity) without having to appeal

to the more general results.

3.1 Semiconjugacy by sums

Throughout this section, we assume that (SC1) and (SC2) hold. We demonstrate that solu-

tions of Eq.(3.4) exhibit a wide variety of dynamic behaviors ranging from periodic to chaotic.

Solutions of Eq.(3.3a) are orbits, or sequences of iterates {tn} = {hn(t0)} where

h(t) = (a − c)t + g(t), t0 = x0 − cx−1.

For each given sequence of real numbers {tn}, the general solution of (3.3b) is

xn = cnx0 +
n∑

j=1

cn−jtj , n ≥ 1. (3.7)

For nontriviality, we assume that c 
= 0 in the sequel. The sum in (3.7) is of convolution type

but here the sequence {tn} is rarely given in explicit form. Often we only know some of the

qualitative features of {tn} as a solution of (3.3a), e.g. whether it is stable or periodic. We use

(3.7) to translate those qualitative properties into properties of solutions of Eq.(3.4).

Lemma 1. Assume that |c| 
= 1.

(a) Let {tn} be a periodic sequence of real numbers with period p, and let {τ0, . . . , τp−1} be

one cycle of {tn}. If

ξi =
1

1 − cp

p−1∑
j=0

cp−j−1τ(i+j)mod p i = 0, 1, . . . , p − 1 (3.8)

then the solution {xn} of Eq.(3.3b) with x0 = ξ0 and t1 = τ0 has period p and {ξ0, . . . , ξp−1} is

a cycle of {xn}.
(b) If for a given sequence {tn} of real numbers Eq.(3.3b) has a solution {xn} of period p then

{tn} is periodic with period p.

Proof. (a) With x0 = ξ0 and t1 = τ0 we find that

x1 = cx0 + t1 = cξ0 + τ0
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which upon using (3.8) for ξ0 gives

x1 =
c

1 − cp

⎛⎝p−1∑
j=0

cp−j−1τj

⎞⎠+ τ0 =
1

1 − cp

⎛⎝p−2∑
j=0

cp−j−1τj+1 + τ0

⎞⎠ = ξ1

Proceeding in an inductive fashion, we show in this way that xi = ξi for i = 0, . . . , p − 1. Next,

we show that xp = x0. Using (3.7) we have

xp = cpξ0 +
p−1∑
j=0

cp−j−1τj =
cp

1 − cp

p−1∑
j=0

cp−j−1τj +
p−1∑
j=0

cp−j−1τj = ξ0 = x0.

Hence {xn} is a solution with period p, as claimed.

(b) Suppose that for a given sequence {tn} of real numbers, the corresponding solution of

(3.3b) is periodic with period p. Let t1 = x1 − cx0 and from (3.3b) obtain

tp+1 = xp+1 − cxp = x1 − cx0 = t1.

It follows that {tn} is periodic with period p.

Theorem 2 (periodic solutions) Assume that |c| 
= 1 and let {tn} be a periodic solution of the

first order equation (3.3a) with prime period p. If {τ0, . . . , τp−1} is one cycle of {tn} then (3.4)

has a solution {xn} of prime period p with a cycle {ξ0, . . . , ξp−1} given by (3.8).

Proof. By Lemma 1(a) the periodic sequence {tn} generates a periodic solution of (3.3b). By

construction, this periodic solution is also a solution of (3.4) if {tn} is a solution of (3.3a). It

remains to show that p is the prime or minimal period. Let q be the prime period of {xn} so

that q ≤ p. Then by Lemma 1(b) {tn} has period q ≥ p since p is the prime period for {tn}.
Therefore, q = p.

The periodic orbits in iterates of a continuous one dimensional map of an interval satisfy the

following ordering known as the Sharkovski ordering of cycles; see [5], [17], [20].

3 � 5 � 7 � · · · 2 · 3 � 2 · 5 � · · · 22 · 3 � 22 · 5 � · · · 2k � 2k−1 � · · · � 2 � 1.

In particular, if a continuous mapping has an orbit with period 3, then it has periodic orbits with

all possible periods. The following is an immediate consequence of Theorem 2.

Corollary 1. (coexisting periods) If Eq.(3.3a) has a solution of period 3 (e.g. satisfies the

Li-Yorke conditions; see[14]) then Eq.(3.4) has periodic solutions with all possible periods that

are arranged in the Sharkovski ordering.

Lemma 2 (boundedness) Let |c| < 1. If {tn} is a bounded sequence with |tn| ≤ B for some

B > 0, then the corresponding solution {xn} for Eq.(3.3b) is also bounded and |xn| < |x0| +
B/(1 − |c|) for all n ≥ 1. Further, there is a positive integer N such that

|xn| ≤ 1 +
B

1 − |c| for all n ≥ N. (3.9)

Proof. From (3.7) we obtain

|xn| ≤ |c|n|x0| +
n∑

j=1

|c|n−jB < |x0| + B
∞∑

k=0

|c|k = |x0| + B

1 − |c| .
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From the preceding inequalities it also follows that if n is large enough, then |c|n|x0| ≤ 1 from

which (3.9) follows.

In the literature, the term “chaotic” usually indicates non-periodic, oscillatory behavior that is

sensitive to initial values. See [5], [14], [15] and [17] for some background on this concept. In

particular, Theorem 3.3.3 in [17] implies the following:

Theorem 3 (chaotic behavior) Assume that |c| < 1 and that the first order equation (3.3a) is

chaotic within an invariant closed interval [A,B] on the line. Then the second order equation

(3.4) is chaotic in the following invariant compact, convex set in the plane

{(u, v) : cu + A ≤ v ≤ cu + B} ∩
[
−1 − max{|A|, |B|}

1 − |c| , 1 +
max{|A|, |B|}

1 − |c|
]2

.

Example 3. Consider the one parameter family of rational second order equations

xn+1 =
6x2

n − 5xnxn−1 + x2
n−1 − α(2xn − xn−1) + 4

4xn − 2xn−1
, 0 < α < 4 (3.10)

which is obtained from (3.4) by setting a = 3/2, c = 1/2 and g(t) = 1/t − α/2. We may write

the mapping h in (3.3a) as

h(t) = t − α

2
+

1
t
.

h has a positive fixed point t̄ = 2/α and a positive global minimum value of hmin = 2 − α/2 at

t = 1, so h(t) > 0 for all t > 0 if 0 < α < 4. If α ≤ 2
√

2 then the fixed point t̄ attracts all positive

iterates of h. To see this, we note that if

h2(t) = h(h(t)) = t +
1
t
− α +

t

t2 − (α/2)t + 1

then

h2(t) − t =
−α[t − (2/α)][t2 − (α/2)t + 1/2]

t[t2 − (α/2)t + 1]

Since both of the quadratic terms in the preceding expression are positive for all t if α ≤ 2
√

2 it

follows that h2(t) > t for 0 < t < 2/α so by Theorem 2.1.2 of [17] t̄ = 2/α is a global attractor

of all positive orbits of h. Thus when α ≤ 2
√

2, Eq.(3.10) has a fixed point x̄ = t̄/(1 − c) = 4/α

(this can also be computed directly from (3.10)) which attracts all positive solutions of (3.10).

The attractivity of x̄ can be established directly using (3.7) or by observing that the invariant

fiber v = u/2 + t̄ is attracting and all points on this fiber approach x̄.

If α > 2
√

2 then it is not hard to see that all iterates of h will eventually enter and remain in the

invariant interval [2−α/2, h(2−α/2)] and with increasing value of α, a sequence of bifurcations

of periodic orbits ensues that progresses through the Sharkovski ordering to lead to a period 3

orbit at about α = 3.48. Since for each point (u, v) in the plane, v − u/2 = t, it follows that for

2 < α < 4, each solution of Eq.(3.10) eventually enters the invariant bounded set{
(u, v) :

u

2
+ 2 − α

2
≤ v ≤ u

2
+ h

(
2 − α

2

)}
∩ (0, 1 + 2h(2 − α/2)]2 (3.11)

For α up to 3.48, each period-p orbit of h uniquely generates a period-p trajectory of (3.10) in

the set (3.11) according to (3.8). For instance, solving the equation

t = h2(t) = t +
1
t
− α +

2t

2t2 − αt + 2
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for α > 2
√

2 yields the period-2 orbit

τ0 =
α −√

α2 − 8
4

, τ1 =
α +

√
α2 − 8
4

.

Now using (3.8) we obtain a period-2 solution of (3.10) as

ξ0 =
cτ0 + τ1

1 − c2
=

3α +
√

α2 − 8
6

,

ξ1 =
cτ1 + τ0

1 − c2
=

3α −√
α2 − 8

6
.

On the other hand, if α is close enough to 4, e.g. α > 3.48, then the trajectories of (3.10) will

exhibit sensitivity to initial conditions and undergo nonperiodic oscillations within the set (3.11).

Remark. As the preceding results show, when |c| < 1 then Eq.(3.4) rather faithfully duplicates

the qualitative behavior of solutions of Eq.(3.3a). When |c| > 1 then it is evident from (3.7) that

solutions of (3.4) are typically unbounded and thus any bounded solutions (including periodic

ones) of (3.4) that correspond to bounded behavior in (3.3a) must be unstable. Therefore,

different qualitative behaviors will be exhibited by (3.4) and (3.3a) when |c| > 1.

The relationship between the solutions of (3.4) and (3.3a) in cases c = ±1 is also different

from |c| 
= 1. It is worth noting that if φ is linear in its first coordinate, then (1.2) becomes a

special case of Eq.(3.4) with c = 1 (upon re-scaling the mapping φ). With c = 1 (3.7) changes

into a sum (or discrete integral) so the nature of solutions of (3.4) will be qualitatively different

from that of the solutions of (3.3a). In particular, a periodic solution of (3.3a) with a cycle

{τ0, . . . , τp−1} can translate into periodic solutions of (3.4) if and only if
∑p−1

i=0 τi = 0. Thus there

is a significant loss of periodicity in the second order equation. For more details on the case

c = 1 in certain special cases of Eq.(3.4) see [16], [17] and [19].

3.2 Semiconjugacy by ratios

In this section we assume only that (SC3) holds, i.e., f is homogeneous of degree 1. We do

not put any further restrictions such as (3.2) on the coefficients a, b, c in Eq.(1.4). The solutions

of (1.4) under (SC3) exhibit a very different type of behavior than was the case with (SC1) and

(SC2). In order to avoid singularities in (3.6), solutions of (1.4) that contain zero may be singled

out and treated differently.

Since for each given solution {rn} of (3.6a) the corresponding solution of (1.4) is obtained from

(3.6b) as

xn = rnrn−1 · · · r0x−1 (3.12)

the following result is easy to establish.

Theorem 4. Let x0, x−1 be given initial values with x−1 
= 0 and let {rn} be a solution of

Eq.(3.6a) with r0 = x0/x−1. Assume that rn is a real number for all n ≥ 0 (e.g. rn is contained

in an invariant set of (3.6a) which does not contain 0). Then the following is true:

(a) If there is n0 ≥ 0 such that |rn| < 1 for all n ≥ n0 then the corresponding solution {xn} of

(1.4) converges to 0.
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(b) If there is n0 ≥ 0 such that |rn| > 1 for all n ≥ n0 then the corresponding solution {xn} of

(1.4) is unbounded.

(c) If {rn} converges to a cycle {ρ1, . . . , ρp} with ρ1ρ2 · · · ρp = 1 then {xn} converges to a

periodic solution of (1.4) with period p.

(d) If {xn} converges to a nonzero value, then the infinite product
∏∞

n=0 rn is convergent; in

particular, there are disjoint, infinite sets of positive integers K0 and K1 such that |rn| < 1 (or

|xn| < |xn−1|) for n ∈ K0 and |rn| > 1 (or |xn| > |xn−1|) for n ∈ K1.

The following corollary illustrates the various points made in Theorem 4 as well as the fact that

semiconjugates can sometimes be useful in the derivation of solutions in quantitatively explicit

form. If we set β = a − αc for arbitrary a, c then the difference equation given in next corollary

is a version of (1.4) with b = 0 and

f(v, u − cv) =
α(u − cv)2

v
+ αc(u − cv).

Corollary 2. Consider the following rational difference equation

xn+1 =
αx2

n + βxnxn−1

xn−1
, x−1 
= 0 (3.13)

(a) If for n ≥ 0 we set xn+1 = 0 when xn−1 = xn = 0 then the general solution of (3.13) is

given in explicit form as

xn = x0

n∏
k=1

[(
x0

x−1
− β

1 − α

)
αk +

β

1 − α

]
, α 
= 1 (3.14a)

xn = x0

n∏
k=1

(
x0

x−1
+ βk

)
, α = 1. (3.14b)

(b) If |α| < 1 and |β| < 1 − α then every solutions of (3.13) converges to zero.

(c) If |α| > 1 or |β| > 1 − α then almost all solutions of (3.13) are unbounded.

(d) If |α| = 1 then certain solutions of (3.13) are periodic with period 2, hence bounded and

not converging to zero. There are also both unbounded solutions and solutions converging to

zero in this case.

Proof. (a) Since the function on the right hand side of (3.13) is homogeneous of degree 1 in xn

and xn−1, we may divide by xn and use the rn notation to obtain

rn+1 = αrn + β. (3.15)

The solution of this linear first order equation is easily obtained and then transformed into the

appropriate form in (3.14) using (3.12) to complete the proof.

(b) If |α| < 1 then every solution of (3.15) converges to the unique fixed point β/(1 − α). This

point has absolute value less than unity if |β| < 1 − α so by Theorem 4(a) every solution of

(3.13) converges to zero.

(c) If |α| > 1 then almost every solution of (3.15) is unbounded exponentially, where as if

|α| < 1 but |β| > 1 − α then every solution of (3.15) converges to the fixed point β/(1 − α)
with magnitude greater than unity. In either case, the conclusion follows upon an application of

Theorem 4(b).
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(d) In this case it is more efficient to use Eq.(3.14). If α = 1 and β 
= 0 then using (3.14b) it

is clear that every solution of (3.13) is unbounded whereas if β = 0 then solutions with initial

values satisfying |x0| ≤ |x−1| are bounded (periodic if x0 = −x−1 
= 0).

If α = −1 then consider solutions with initial values satisfying x0/x−1 = 1 + β/2. For these

solutions (3.14a) reduces to

xn = x0

n∏
k=1

[
(−1)k +

β

2

]
= Kn

(
β2

4
− 1
)[n/2]

where [n/2] is the greatest integer less than or equal to n/2 and Kn = x0 if n is even and

Kn = x0(β/2 − 1) if n is odd. It follows that if |β| ≤ 2
√

2 then {xn} is bounded whereas if

β > 2
√

2 then {xn} is unbounded. In particular, if β = 0,±2
√

2 then {xn} is periodic with

period 2.

To give further applications of ratios, the next two results are quoted from the literature ([9],

[10], [18]) concerning the following equation

xn+1 = |αxn − βxn−1| (3.16)

which is a special case of Eq.(1.4) where a = b = 0 and f(v, u − cv) = α|u − cv| if we define

c = β/α. In this case, Eq.(3.6a) takes the form

rn+1 =
∣∣∣∣α − β

rn

∣∣∣∣ (3.17)

Theorem 5. [18] Let α = β = 1 in (3.16) and let Q+ denote the set of all non-negative rational

numbers.

(a) If x0/x−1 ∈ Q+ or x−1 = 0 then the corresponding solution {xn} of (3.16) has period 3

eventually and for all large n its cycles are {0, α, α} where α > 0.

(b) If x0/x−1 /∈ Q+ then the corresponding solution {xn} of (3.16) converges to zero.

(c) Equation (3.17) has a period-p solution or a p-cycle {ρ1, . . . , ρp} for every p 
= 3. These

p-cycles are given as

ρ1 =
1 +

√
5

2
, ρ2 =

√
5 − 1√
5 + 1

(p = 2)

ρ1 =
1
2

[
yp−4 +

√
y2

p−4 + 4yp−4yp−1

]
, ρk =

yk−4ρ1 − yk−2

yk−3 − yk−5ρ1
, 2 ≤ k ≤ p, (p ≥ 4)

where yn is the n-th Fibonacci number; i.e., yn+1 = yn + yn−1 for n ≥ −2 where we define

y−3 = −1, y−2 = 1.

(d) If {ρ1, . . . , ρp} is a periodic solution of (3.17) then for the corresponding solution {xn} of

(3.16) it is true that

xn = x0ρ
n/p, if n/p is an integer

xn ≤ x0αρn/p, otherwise
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where

ρ =
p∏

i=1

ρi < 1, α = max{r1, . . . , rp}ρ−(1−1/p) > 1.

Theorem 6. [9] (a) Eq.(3.16) has a positive period-2 solution if and only if

β2 − α2 = 1, α > 0.

Further, these period-2 solutions are confined to the pair of lines y = r1x and y = r2x in phase

space, where the slopes r1, r2 are given by

r1 =
β − 1

α
, r2 =

β + 1
α

.

On the other hand, the only period-2 solutions of (3.16) that pass through the origin occur at

α = 0 where β = 1.

(b) Eq.(3.16) has a positive period-3 solution if and only if

α3 + αβ − β3 = 1, α > 1. (3.18)

Further, these period-3 solutions are confined to the three lines y = rix in phase space where

for i = 1, 2, 3, the slopes ri are given by

r1 =
αβ + 1
α2 + β

, r2 =
β2 − α

αβ + 1
, r3 =

β + α2

β2 − α
. (3.19)

On the other hand, the only period-3 solutions of (3.16) that pass through the origin occur at

α = 1 where β = 1 also (see Theorem... above).

(c) Let β = 1. Then there is a strictly increasing sequence of parameter values {αp}, p ≥ 3,

such that

α3 = 1 and lim
p→∞αp = 2

and for each p = 3, 4, 5, . . . the particular solution {xn} of (3.16) with initial values x−1 = 1,

x0 = αp is periodic with period p.

It is a curious fact that the behaviors of solutions of (3.13) are considerably simpler than those

of (3.16). This is not easy to understand through a direct comparison of the two second order

difference equations which seem to have little in common except that they are both 2-parameter

difference equations. However, the essential difference becomes apparent when we contrast

the relatively simple dynamics of the linear mapping (3.15) with the much more complex dy-

namics of the first order mapping (3.17).
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ABSTRACT 

We will investigate the different extensions of the Cournot oligopoly model including 
models with intertemporal demand interaction, including production adjustment cost, 
pollution treatment cost sharing, and cost interaction. The local asymptotic stability of the 
steady state is examined in all cases and the stability conditions are compared to the 
classical Cournot model. 
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INTRODUCTION

Cournot oligopolies, their different variants, extensions and generalizations play an important 

role in the literature of mathematical economics. The early results up to the mid 70s are 

summarized in Okuguchi (1976), and their multi-product extensions with application studies 

are discussed in Okuguchi and Szidarovszky (1999). In the earliest studies the existence and 

uniqueness of the Nash-equilibrium of static oligopolies was the central issue, and later the 

attention has been turned to the asymptotical properties of the dynamic extensions. Puu and 

Sushko (2002) give a comprehensive summary of the most important more recent findings. 

All models discussed in the literature so far, are based on certain simplifying assumptions, 

which made the simple, analytic examination possible. 

In this paper we will drop some of the simplifying assumptions of earlier models and will focus 

on more sophisticated models. In particular, we will consider models with intertemporal 

demand interaction, production adjustment costs, pollution treatment cost sharing and also 

with cost interaction. The simplified versions of some of the models to be discussed in this 

paper have been introduced earlier in Okuguchi and Szidarovszky (1999) as well as in the 
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forthcoming book of Bischi et al. (2008). This paper develops as follows. Oligopolies with 

intertemporal demand interaction will be discussed in Section 2 followed by models with 

production adjustment costs. Section 4 will focus on oligopolies with pollution treatment cost 

sharing, and Section 5 will discuss the case of cost interaction among the firms. Conclusions 

will be drawn in the last section of the paper. 

OLIGOPOLIES WITH INTERTEMPORAL DEMAND INTERACTION  

In this section we will examine the affect of intertemporal demand interaction. In the case of 

durable goods the demand at any time period depends on the price and the demands of 

earlier periods. Even in the case of nondurable goods taste or habit formation has effect on 

future demands.

Let N be the number of firms producing a single item. Let kx  be the output of firm k and 

k kC x  its cost. Market saturation, habit formation, etc. of earlier time periods are 

condensed into a variable Q which is assumed to follow the dynamic rule

1

( 1) ( ), ( )
N

k

k

Q t H x t Q t ,                                    (1) 

where H  is a real valued function on 
1

0,
N

k

k

L R  with kL  being the capacity limit of firm k.

The price function f is assumed to depend on both the total output of the industry and the 

current value of parameter Q. So the profit of firm k can be given as   

kkkkkk xCQSxfx , ,                                  (2) 

where
kl

lk xS  is the output of the rest of the industry.  

In this section we assume that functions f and  1kC k N  are twice continuously 

differentiable, and  

(A) 0xf ;

(B) 0x k xxf x f ;

(C) 0x kf C

for all k and feasible values of kx , kS  and Q .

Under these conditions k  is strictly concave in kx , so with fixed values of kS  and Q

there is a unique best response of firm k, since the feasible set for kx  is the compact set 

0, kL . It can be given as follows:  
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*

0    if  , 0 0                                       

,   if  , , 0

    otherwise,                                                          

k k

k k k k x k k k k k k

k

f S Q C

R S Q L L f L S Q f L S Q C L

x

(3)              

where *

kx  is the unique solution of equation  

0,, kkkkxkkk xCQSxfxQSxf                           (4) 

in interval 0, kL . In the first two cases of (3) the partial derivatives of kR  are zeros, except 

the boundary points. Implicit differentiation shows that in the third case 

2

k x k xx
k

k x k xx k

R f x f
r

S f x f C
   and   

2

Q k xQk
k

x k xx k

f x fR
r

Q f x f C
.      (5) 

Assumptions (B) and (C) imply that 

1 0kr                                                      (6) 

as it is usual in the theory of discrete concave oligopolies. In addition, assume that 

(D) 0Q k xQf x f

for all feasible values of kx , kS  and Q . Then 

0kr .                                                       (7) 

Let 0ka  denote the speed of adjustment of firm k and assume that the firms change their 

outputs in the direction towards their best responses. This dynamism can be mathematically 

described by the discrete system  

1 ,    1k k k k l k

l k

x t x t a R x t Q t x t k N         (8) 

1

1 ,
N

k

k

Q t H x t Q t .                                  (9) 

A vector 1, , ,Nx x Q  is a steady state of this system if and only if for all k,

,k k l

l k

x R x Q

and

1

,
N

k

k

Q H x Q .

The local asymptotical stability of this system can be examined by linearization. The Jacobian 

of the system at the steady state can be written as follows: 
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1 1 1 1 1 1 1

2 2 2 2 2 2 2

1

1

1N N N N N N N

a a r a r a r

a r a a r a r

a r a r a a r

h h h h

J ,

where h and h  denote the partial derivatives of H with respect to x and Q at the steady 

state. The steady state is locally asymptotically stable if all eigenvalues of J  are inside the 

unit circle. For the sake of simplicity assume symmetric firms, then 1 Na a a ,

1 Nr r r , and 1 Nr r r . Then the eigenvector equation of J  has the special 

form

1    1k l k

l k

a u ar u arv u k N                        (10) 

1

N

k

k

h u hv v .                                            (11) 

Let
1

N

k

k

U u , then equation (10) can be rewritten as  

1 0karU arv a ar u .                               (12) 

Assume first that 1 a ar , then this eigenvalue is inside the unit circle if  

2

1
a

r
.                                                   (13) 

Otherwise 1 Nu u u , and (10) and (11) simplify as  

1 1 0

0.

a N ar u arv

hNu h v
                                (14) 

Nontrivial solution exists if and only if  

1- 1 1
Det 0

a N r ar

hN h
.

This is a quadratic equation: 

2 1 0h az h hNar ahz ,                       (15) 

where we use the simplifying notation 1 1z N r . Notice that (6) implies that 1 z N .

The roots of the quadratic equation are inside the unit circle if and only if  

1 1h az hNar                                           (16) 

1 1 1 0h az h az hNar                              (17) 
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1 1 1 0h az h az hNar .                              (18) 

These relations can be rewritten as 

1a hz hNr h                                            (19) 

1 0a z h hNr                                          (20) 

and

1 2 1a z h hNr h .                                  (21) 

It is reasonable to assume that 1 1h  and h>0. Then we have the following cases 

(i) If 0hz hNr , then (19) holds, if  

1h
a

hz hNr
.                                               (22) 

Notice that relation (20) always holds, since the multiplier of a in the left hand side is positive. 

If 1 0z h hNr , then (21) also holds for all a>0, otherwise it holds if 

2 1

1

h
a

z h hNr
.                                          (23) 

So in this case the steady state is locally asymptotically stable if a is sufficiently small. 

(ii)   If 0hz hNr , then (19) is always valid. Since 1 0z h hNr , inequality 

(20) is also true for all a>0. If 1 0z h hNr , then (21) is also satisfied, otherwise it holds 

if (23) holds. 

So in this case the steady state is either always locally asymptotically stable, or it is when the 

value if a is sufficiently small. 

In comparison to the classical case without intertemporal demand interaction notice that in 

that case 

0Q xQf f h h r ,

so from (15) the eigenvalues are 1 0  and 2 1 1 1 1h az a N r . The first 

eigenvalue is always inside the unit circle, and the second is there if and only if  

2 2

1 1
a

N r z
.                                          (24) 

Since this inequality is stronger than (13), this is the stability condition for the classical case. 

Simple algebra shows that  

2 12

1

h

z z h hNr
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and equality occurs if and only if 0r . Therefore in this sense, intertemporal demand 

interaction makes the system more stable, since the stability region for a becomes larger. 

OLIGOPOLIES WITH PRODUCTION ADJUSTMENT COST 

In this section we consider again an N-firm single-product oligopoly, when the price depends 

on only the total production level of the industry. However, the firms face additional cost if they 

increase their production levels compared to their outputs in the previous time period. Let 

1 1t  be any time period, then the profit of firm k can be written as

k k k k k k k k kx f x S C x A x x t ,                      (25) 

where k l

l k

S x  is the output of the rest of the industry as before. Assume that functions 

, kf C  and kA  are twice continuously differentiable, furthermore,  

(E) 0, 0,  0k kf C A ;

(F) 0kf x f ;

(G) 0,   0k kf C A

for all k and feasible values of kx , kx t  and kS .

Under these conditions k  is strictly concave in kx , and in the case of finite capacity limits 

of all firms, there is a unique best response of firm k, which will be now denoted by 

,k k kR S x t . It can be defined similarly to (3), and by implicit differentiation it is easy to see 

that

2

k k
k

k k k k

R f x f
r

S f x f C A
                               (26) 

and

2

k k
k

k k k k

R A
r

x t f x f C A
.                             (27) 

Assumptions (E)—(G) imply that  
1 0 1k kr r                                            (28) 

and

1 k kr r                                                  (29) 

for all k. In this case the dynamic system (8)—(9) is modified as follows: 

1 ,k k k k l k k

l k

x t x t a R x t x t x t                  (30) 

for k=1,2,…,N. A vector 1, , Nx x  is a steady state of this system if and only if for all k,
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,k k l k

l k

x R x x .

The Jacobian of system (30) now has the special structure 

1 1 1 1 1 1

2 2 2 2 2 2

1 1

1 1

1 1N N N N N N

a r a r a r

a r a r a r

a r a r a r

J .

For the sake of simplicity we consider only symmetric firms, when 1 Na a a ,

1 Nr r r  and 1 Nr r r . Then the eigenvector equation has the special form 

1 1 k l k

l k

a r u ar u u .                              (31) 

Let
1

N

k

k

U u  as before, then 

1 1 0karU a r ar u .                              (32) 

Assume first that 1 1a r ar , then this eigenvalue is inside the unit circle if 

1 2a r r ,

and since the multiplier of a is positive (by relation (29)), it holds if a is sufficiently small: 

2

1
a

r r
.                                                (33) 

Otherwise 1 Nu u u , and (32) has the special form: 

1 1 1 0a r N ar u ,

and nontrivial solution exits if and only if  

1 1 1a r N r .

Notice that the multiplier of a is always positive, since 1 1 1r N r r r Nr  with 

both terms being positive. So  is inside the unit circle if  

2

1
a

r r Nr
.                                           (34) 

That is, if the value of a is sufficiently small. Notice that since 0r , (34) is more restrictive 

than (33), so inequality (34) is the stability condition. Notice also that in the absence of 

production adjustment cost 0r , in that case the stability condition is relation (24), and 

since 0r , (34) is less restrictive than (24) unless 0r . That is, production adjustment 

costs usually make the system more stable. 
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OLIGOPOLIES WITH POLLUTION TREATMENT COST SHARING 

Pollution emerges in many industries as the result of the manufacturing process. In this 

section we will examine N-firm single-product oligopolies with the additional assumption that 

the firms treat jointly the pollution and share the treatment cost in proportion to their share in 

the total output. Therefore the profit of firm k is 

k k

k k k k k k k

k k

T x S
x f x S C x x

x S
,                        (35) 

where f is the price function, kC  is the cost function of firm k as before, and T is the total 

pollution treatment cost function. By introducing the notation 

    and
k k

k k k k k k k k

k k

T x S
G x S F x S f x S G x S

x S
     (36) 

we have  

k k k k k kx F x S C x ,                                    (37) 

where k  has the form of the payoff functions of classical oligopolies in which f is replaced 

by F.

By assuming that functions ,  ,   1kf G C k N  are twice continuously differentiable (G(0) 

is taken as the finite limit of this function at zero), from (5) we see that  

2

k x k xx
k

k x k xx k

R F x F
r

S F x F C
,                                   (38) 

where k kR S  is the best response of firm k. The corresponding dynamic system and its 

steady state can be presented similarly to the previously discussed cases. Assume that  

(H) 0xF ;

(I) 0x k xxF x F ;

(J) 0x kF C

for all k and feasible values of kx  and kS , then clearly 

1 0kr ,                                                (39) 

and the stability condition is inequality (24) for symmetric firms. Notice that the stability region 

for a becomes larger when r increases. Therefore pollution treatment cost sharing makes the 

system more stable if  

2 2 2

x k xx x x k xx k xx

x k xx k x x k xx k xx k

f x f f G x f x G

f x f C f G x f x G C

which is the case, when  
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0x G f f G C G xG ,                             (40) 

where we assume symmetric firms again. The conditions given earlier do not imply this 

relation, so it depends on the particular choice of the functions involved in this model.  

OLIGOPOLIES WITH COST INTERACTION 

Here we assume that the firms hire manpower, purchase supplies and materials from the 

same market, so the cost of each firm depends on its own production level as well as on the 

total production level of the rest of the industry. This cost interaction has not been considered 

in earlier models. So the profit of firm k is as follows:

,k k k k k k kx f x S C x S ,                                (41)  

where , kf S  are as before, and kC  is the modified cost function of firm k.

The corresponding dynamic system and its steady state can be presented similarly to the 

previously discussed cases. 

With fixed value of kS , we have 

,k
k k k k k kx k k

k

f x S x f x S C x S
x

                    (42) 

and

2

2
2 ,k

k k k k k kxx k k

k

f x S x f x S C x S
x

.

So if we assume that  

(K) 0f ;

(L) 0kf x f ;

(M) 0kxxf C

for all k and feasible values of kx  and kS , then k  is strictly concave in kx , and if all firms 

have finite capacity limits, then there is a unique best response k kR S  of each firm k. By 

implicit differentiation 

2

k k kxs
k

k k kxx

R f x f C
r

S f x f C
,                                  ( 4 3 ) 

where the denominator is always negative. Assuming again symmetric firms, from the 

previous sections we know that cost interaction makes the system more stable if the value of 

r increases. This is the case, when 0xsC ,

We finally note that the payoff functions (41) reduce to (35) by the special selection   
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,
k k

k k k k k k

k k

T x S
C x S C x x

x S
,

so models with pollution treatment cost sharing are special cases of the models of this 

section.

CONCLUSIONS 

In this paper four extensions of the classical Cournot model were introduced and their local 

asymptotical stability was examined.  

In the first case we assumed the presence of intertemporal demand interaction in the market 

as the result of market saturation, taste or habit formation etc. In the second case we 

assumed that any increase in the output level during any time period results in an additional 

cost. In the third case the firms treat pollution jointly and share the cleaning cost in proportion 

to their share in the total output. In the fourth case we assumed that the cost of each firm 

depends on the firm’s own output as well as on the output of the rest of the industry. 

For the sake of simplicity we considered only symmetric firms and presented the stability 

conditions in term of the common speed of adjustment of the firms. In all cases the condition 

requires its value to be sufficiently small. This stability region increases by intertemporal 

demand interaction in the market as well as by the presence of production adjustment costs. 

Conditions were derived in the other two cases to guarantee the increase of the stability 

region. These conditions depend on the particular choice of the cost and price functions.  

In the discussions of this paper we assumed symmetric firms for mathematical convenience 

only. The general case can be investigated in a similar manner based on the methodology 

being discussed in Bischi et al. (2008). 
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