QFT Anomalies and Applications
Graduate course given at the Beijing Institute of Mathematical Sciences and Applications (BIMSA) in the fall of 2021
Dates: Every Monday & Wednesday 2021-09-13 ~ 12-03, 13:30-15:05 (UTC +8:00)
Venue: BIMSA Rm 1110
Zoom ID: 388 528 9728,Password: BIMSA
Description:
Perturbative calculation of anomalies, Wess-Zumino conditions and BRST algebra, anomaly descent, anomaly inflow, topological aspects of anomalies, anomalies in supersymmetric theories, anomalies and defects, Hawking radiation
Prerequisites:
a) Basic Quantum Field Theory (Feynman path integral and diagrams, one-loop calculations)
b) Basic differential geometry (manifolds, forms, de Rham cohomology, Riemannian geometry)
c) Lie algebras and groups
References:
- R. Bertlmann, Anomalies in quantum field theory. Oxford University Press, 1996.
- Fiorenzo Bastianelli and Peter Van Nieuwenhuizen, Path Integrals and Anomalies in Curved Space. Cambridge University Press, 2006.
- Kazuo Fujikawa and Hiroshi Suzuki, Path Integrals and Quantum Anomalies. Oxford University Press, 2007.
- Adel Bilal, Lectures on Anomalies, [arXiv:0802.0634]
- Jeffrey A. Harvey, TASI 2003 Lectures on Anomalies, [arXiv:hep-th/0509097]
- C.A. Scrucca, M. Serone, Anomalies in field theories with extra dimensions, [arXiv:hep-th/0403163]
- J. Zinn-Justin, Chiral Anomalies and Topology, [arXiv:hep-th/0201220]
- M. J. Duff, Twenty Years of the Weyl Anomaly, [arXiv:hep-th/9308075]
- Edward Witten, Fermion Path Integrals And Topological Phases, [arXiv:1508.04715]
- Kazuya Yonekura, Dai-Freed theorem and topological phases of matter, [arXiv:1607.01873]
- Edward Witten, Kazuya Yonekura, Anomaly Inflow and the η-Invariant, [arXiv:1909.08775]
- Samuel Monnier, A Modern Point of View on Anomalies, [arXiv:1903.02828]
- Shun K. Kobayashi, Kazuya Yonekura, The Atiyah–Patodi–Singer index theorem from the axial anomaly, [arXiv:2103.10654]
Lecture Notes:
Lecture 1: Symmetries, Ward identities and quantum anomalies
Lecture 2: Perturbative calculation of anomalies, ABJ anomaly
Lecture 3: Point-splitting regularization, non-Abelian anomalies
Lecture 4: Path integral approach to anomalies, Fujikawa’s derivation of the ABJ anomaly
Lecture 5: Fujikawa’s derivation of the non-Abelian anomaly, consistent and covariant anomalies
Lecture 6: Heat kernel and zeta function regularization
Lecture 7: Topology of gauge bundles and physics
Lecture 8: Invariant polynomials and characteristic classes
Lecture 9: Cartan homotopy formula and BRS transformations
Lecture 10: Wess-Zumino conditions and anomaly descent
Lecture 11: Geometry of Faddeev-Popov ghosts, covariant anomaly
Lecture 12: Atiyah-Singer index theorem (singlet anomaly)
Lecture 13: Family index theorem (non-Abelian anomaly)
Lecture 14: Riemannian geometry as a GL(d) or SO(d) gauge theory
Lecture 15: Gravitational anomalies
Lecture 16: Mixed axial anomaly, supersymmetric quantum mechanics
Lecture 17: Mixed axial anomaly from supersymmetric quantum mechanics
Lecture 18: Green-Schwarz mechanism, anomaly inflow
Lecture 19: Anomaly inflow, non-perturbative anomalies
Lecture 20: Atiyah-Patodi-Singer index theorem, η-invariant, Dai-Freed partition function
Lecture 21: Weyl anomalies and the renormalization group
Lecture 22: Anomalies in supersymmetric theories