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Abstract

The linear § expansion is applied to the calculation of order parameters in lattice
SU(2) pure gauge theory and all the diagrams up to order four are tabulated. The
principle of minimal sensitivity is applied to fix the variational parameters. The results
are satisfactory for zero temperature, but at finite temperature there are indications that
the method fails to produce a valid expansion in the region where a second order phase
transition is expected.
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1 Introduction

The success of the eightfold way of Gell-Mann and Ne’eman [1], the large cross sections
and their angular dependence in deep inelastic lepton-hadron scattering, together with
the celebrated explanation of the charmonium and upsilon spectra in terms of excitations
of bound quark states, all support a model of quarks interacting via some gauge field as
the fundamental theory of the strong interaction. However, an isolated quark has never
been observed in experiments and this motivates the postulation of an exact confinement.
In other words, the gauge field mediating the strong force must be self interacting which
is possible if it is non-Abelian.

The clearest evidence of confinement in non-Abelian gauge theories is provided by
Wilson’s formulation of gauge fields on a Euclidean lattice [15]. The lattice is particularly
suited for non-perturbative calculations which are essential in the strong coupling limit.
In fact, in this limit non-Abelian gauge theories on the lattice turn out to be confining,
but it cannot be immediately deduced that this property survives in the continuum limit
as a deconfining phase transition may be encountered.

A lot of recent work has been devoted to showing that confinement survives in the
continuum. One way of approaching this problem is to consider various order parameters
which could monitor the phase structure of the system. Both Monte Carlo simulations
and semi-analytical methods have been applied in the evaluation of the order parameters
with considerable success.

In this project we calculate two order parameters for pure SU(2) lattice gauge theory,
the plaquette energy and the Polyakov line, using a variational-perturbative method, the
linear 6 expansion. Our initial aim was to go up to the fourth order for the plaquette
energy and up to the third order for Polyakov line, but the development of a new technique
for the evaluation of the diagrams involved in these expansions has enabled us to calculate
the fourth order of the Polyakov line as well.

2 Theory

2.1 Gauge theories
2.1.1 Continuum and lattice gauge fields

A gauge field is most naturally introduced by requiring that the global invariance of a
Lagrange density £ under a gauge group G is promoted to a local one. Here we concentrate
on SU(N) gauge fields on the Euclidean four dimensional space.

Consider N complex scalar fields ¢'(x), i = 1,..., N which form the components of a
complex SU(N)-vector field ¢(z). Then the (Euclidean) free Lagrange density

1 1
£ = 30,6 @)0"0(x) + Lm*6" (2)o() 0
is invariant under the global SU(N) transformation

¢(x) = ¢ (z) = Vo(a), (2)

where V' € SU(N) is independent of z. However, if V' depends on z the invariance is
lost due to the derivatives in the kinetic term. To extend the invariance of the Lagrange
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Figure 1: An elementary plaquette on a hypercubic lattice

density to local SU(N) transformations we introduce the covariant derivative

D, =0, +igA,(x) (3)
and demand that
Dup(x) = D¢/ (x) = V(2)Dud(x) (4)
or in operator form
i =V(2)D,V(x). (5)

The transformation law for the SO(4)-vector field A,(x) (Lorentz vector in Minkowski
space) is then found to be

mww»&m»=wm4mwww—;ww@Wu> (6)

So, if we replace 0, with the covariant derivative D, in Equation 1 the Lagrange density
will be invariant under local SU(N) transformations of the fields when accompanied by
the gauge transformation 6.

To give a standing on its own to the gauge field A, () we need to introduce a gauge
invariant kinetic term for it. To this end we define the gauge invariant SO(4)-tensor

F

uv

= _;[DN, Dl/] = @MAV - 81/"4# + ig[Af“ AV] (7>

which transforms covariantly under SU(N):
F,(x) = V(2)Fu (2)V(2). (8)

A free Lagrange density for the gauge field can then be defined as
1
Lyy = iTr(FWF“”) 9)

which is the Yang-Mills Lagrange density in Euclidean space. Here the Euclidean metric
tensor 6" (6 = diag(1,1,1,1)) has been used to raise the indices.

We now proceed to introduce gauge fields on the Euclidean lattice. A free Lagrange
density for the SU(N)-vector field ¢(z) on the lattice can be defined as

CL4

£=T 3 (A" @A () + m?6" (x)o () (10)



where a is the lattice spacing and A, is a forward difference in the direction p(= 1,2, 3,4)
indicated by the unit vector i (See Figure 1)

A(2) = - (Bl +aft) — 9(z) (1)

In the continuum limit this reduces to d,, as it should.

The Lagrange density 10 is clearly invariant under the global SU(N) transformation
in 2 but not under a local one. As in the continuum we introduce the covariant derivative
which now takes the form

Du(e) = - (U1 w)o(a +ai) — 6(x)) (12)

Here I have used the notation of [3] which I find most illuminating and displays the
geometrical significance of the gauge fields in terms of parallel transport. So, U(z,u) =
U(z + ajt,z) € SU(N) is the parallel transporter from the point = to x + afi and can be
expressed as

Uz, p) = e~ 94 (@) (13)

where the gauge field A, (z) € su(N), the algebra of SU(N). Then, expanding in a one
gets

Dube) = - (6 + af) = 6(e) + iag Ay (@)0(2) + O(a?)) (1)

which correctly reduces to 3 in the continuum limit.
Demanding that D, transforms covariantly (Equation 5) under local SU(N) trans-
formations leads to the transformation law of the parallel transporters

U'(a,n) = V(z +ap)U(z, )V (2). (15)

Before we introduce a free Lagrange density for the gauge field let me define the
antisymmetric tensor

)
F;UJ = _E[D;,HDV] (16>

by analogy to the continuum case. Applying F),, on ¢(z) and expanding in a we find,
after some algebra, the reassuring result

Fu(@) = ApAy (1) = Ay Au(x) +ig[Ayu(x), A (2)] + O(a). (17)

The action that has been proposed by Wilson [15] for the pure lattice gauge theory is
defined in terms of the parallel transporters:

S[U] =3 Sp(Uy) (18)

with
S,(U) = 8 (1 - jlvRe(Trm) (19)

and
Uy=U(z,z+av)U(x + av,z + afi + av)U(x + afp + av, v + ap)U(x + afr,x)  (20)
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is a parallel transporter around an elementary plaquette (Figure 1), called a plaquette
variable. The sum over all plaquettes p stands for

2=2 2 *ZZ- (21)

T 1<pu<v<4 T pv

It should be noted that this action is invariant under the gauge transformation 15.

A lattice gauge theory is of direct physical significance only if it is related to the
continuum theory, which should be recovered in the appropriate limit of the lattice theory.
It is instructive then to confirm that this is the case. Firstly,

Uyz) = Uz,z+av)U(x +av,x + aft + av)U(z + afp + av, x + afp)U(z + afi, x)

iagA, (z) jiagA, (x+ab) fiagA,,(m#»aﬂ)efiagA#(w)

= e e e
eiagAV(z)eiag(Au(x)—&-aAyAu(x))e—iag(A,,(x)—i—aAuAy(x))e—iagAu(x) (22>
which upon using the Campbell-Baker-Hausdorff formula
eAeB — €A+B+(1/2)[A,B]+... (23)
reduces to ‘
Up<g;-) — o 10%9Fu (2)+0(a®) (24)
Therefore,
1 f
s, = 8 (1 — ST, + Up))
_ B m(r ) + 0@ 25
= 9N r(F b)) + O(a”) (25)
giving

sw) = Byl > TH(F ) + OL)
= / diz TrF L) (26)

as a — 0. So we recover the Yang-Mills action (Equation 9) provided we identify

N
L

T (27)

Now we have confirmed the physical relevance of the lattice theory, we can go on to
define the appropriate path integral and the corresponding generating function.

2.1.2 Functional integral

By analogy to the continuum theory, the expectation value of an observable O is defined
to be

1
= / ];[dUlOe—S[U}, (28)



where

Z = / [] dU;e=51! (29)
l

is the partition function and U, are the parallel transporters from one lattice site to its
nearest neighbours, each pair of nearest neighbours (or link) being labeled by I. The
integration measure dU; on the link [ is the Haar measure of the gauge group (SU(N) in
this case).

As we are mainly interested in SU(2) here, we consider this gauge group as an example.
A parametrization of SU(2) which will be useful in our later considerations is

U = eigoﬁ-é"/?
= lcos(p/2) +irn-dsin(p/2), 0 <o <2m, (30)
where

n= Z’cos¢sin9+fsin¢sin0+Ecos€, 0 < ¢ < 2m,

0<f<m (31)
and ¢! are the Pauli matrices. In this parametrization the Haar measure is
1
dU = pdgbde sin Ody sin®(¢/2). (32)
T

2.1.3 Finite physical temperature

It turns out that Euclidean quantum field theory on a lattice is mathematically equivalent
to a system of classical statistical mechanics in four dimensions. In particular it is analo-
gous to the generalised Ising model for spins. However, this is just a formal mathematical
correspondence and should not be confused with a quantum system at finite physical tem-
perature. To introduce a finite physical temperature for a quantum system let me review
how the path integral in quantum mechanics is related to quantum statistical mechanics.

In quantum statistical mechanics the partition function for a system at finite temper-

ature 7T is ]

kgT
where H is the Hamiltonian of the system and kg is Boltzmann’s constant. This 3 is not
the same as that of the previous section, which was introduced in view of the mathematical
analogy between statistical mechanics and Euclidean lattice field theory mentioned above.
The thermal expectation value of an observable O is then given by

Z =Tr (e’ﬁH) , o) (33)

(0) = ;Tr (0e7H) . (34)

Now, the Euclidean (i.e. ¢ — —it) path integral for an one dimensional quantum
system described by a Hamiltonial H(q,p) is

Flq,=iriq,0) == {¢' | €™ | g) = [ Dlgle 1), (35)

Selgl = /OT dr’ (;m <57q,>2 + V(q)) ; (36)

where



is the Euclidean action with the boundary conditions ¢(0) = ¢, ¢(7) = ¢/. Therefore, we
can make the formal identification
Z= / dg{q| e [ q) = / Dlgle 574, (37)
periodic paths

provided 8 = 7 and the path integration is over all periodic paths with period 5.
The extension to Euclidean field theory is now straightforward. The action integral

takes the form 5
S :/ dx4/d3x£, (38)
0

where £ is the Lagrange density and the fields are periodic in z* with period 3. On the
lattice the integration is replaced by a summation over all lattice sites and = Na is the
length of the lattice in the time direction. All spatial directions have infinite length.

2.1.4 Phase transitions and order parameters

The mathematical correspondence between Euclidean lattice field theory and statistical
mechanics allows us to use powerful techniques from solid state physics to obtain results
about field theory. In particular, we are interested in suitable order parameters that
can distinguish between different phases of the system. In the Ising model such an or-
der parameter is the magnetization, which vanishes identically at the high temperature
rotationally symmetric phase of the spin system and takes on a non-zero value at low
temperature where the rotational symmetry is broken.

In non-Abelian lattice gauge theories we need to distinguish between the confined
phase, where the energy of a quark-antiquark pair grows with their spatial separation,
and the deconfinement phase, where a quark and an antiquark can exist separately. It
can be shown that in the strong coupling limit (i.e. ¢ — 00) gauge theories on a lattice
are confining ([2], chapter 10). Now, since physical results can only be obtained in the
continuum limit we naturally ask the question whether confinement survives in the con-
tinuum. Asymptotic freedom, the vanishing of the coupling constant at short distances
in non-Abelian gauge theories, and renormalization, however, require that as the lattice
constant approaches zero the coupling constant must tend to zero as well ([2] chapter 12).
Therefore, in taking the continuum limit we are forced into the weak coupling regime.
Along the way a deconfining phase transition may be encountered implying that the lat-
tice and continuum formulations of gauge fields are not continuously connected. If this is
the case, a deconfinement phase in the continuum may be possible.

In lattice gauge theory the order parameter corresponding to the magnetization in the
Ising model is the expectation value of a single parallel transporter between two nearest
neighbours, (U(x, 1)). However, this local quantity, and in fact any local quantity, cannot
be used as an order parameter since it vanishes identically for all values of the coupling
constant. This is guaranteed by Elitzur’s theorem [4] and is a consequence of the gauge
dependence of local quantities. Therefore, any order parameter in pure lattice gauge
theory must be non-local. The simplest such quantity is the plaquette energy

1 2 olmZz
E, = <NReTr(Up) - 1> = Nd—1) 95 (39)

where d is the dimension of the lattice (4 in our case) and N;(= d x number of sites) is
the number of links in the system. The number of plaquettes is then N, = N;(d — 1)/2.

8



Although this is not as good an order parameter as the magnetization of the Ising model,
it can exhibit the phase structure of the system with phase transitions appearing as jumps
(for first order phase transitions) in its value as a function of the coupling constant ([2]
chapter 9). Other, more complicated order parameters can be constructed as discussed
in [2].

At finite physical temperature the time direction of the lattice is distinct from the
spatial directions since it has a finite length. Therefore, the plaquette energy is not well
defined as plaquettes containing temporal links will have a different contribution from
those that contain only spatial links. The appropriate order parameter (again non-local)
is then the Polyakov line

1 ik i
Ly := ETY ( 1] U, ,4)) ) (40)

z4=1

where N, is the number of links along the time direction and 4 is a unit vector in the
same direction. In the confined phase the expectation value of L vanishes whereas in the
deconfinement phase it is non-zero ([3] chapter 5), which means that L is a suitable order
parameter.

Next we turn to the question of how to evaluate these order parameters for the SU(2)
pure gauge theory on the lattice. However, most of our methodology is applicable to
SU(N) after minor modifications.

2.2 The linear delta expansion
2.2.1 The Toy Model

The linear § expansion (LDE) is a variational-perturbative technique that provides a
systematic approximation method. Before we apply it to the problem of solving lattice
gauge theories let me demonstrate the main ideas involved by evaluating the integral

+o00
1 :/ dxe’9x4’“2x2, g >0, (41)
which corresponds to the path integral for zero dimensions scalar field theory.

For simplicity we set u = 0, but the case p # 0 can be treated in a similar way after
completing the square. The integral then can be evaluated exactly:

+oo ) F(1/4)
[:/_OO dre 9 = 2911 " (42)
Now we let .
1(6:\) = / dpe " +50a—go") (43)

so that 7 = I(1; ). A is introduced here as a variational parameter which we will try to
optimize. An expansion of I(J; \) in powers of 0 gives

I(é;A):\/f{lJrg (1—;’;)}+0(52). (44)

This expression depends on the parameter A which must be chosen so that the truncated
expansion 44 approximates the exact result 42 as closely as possible. The criterion we



adopt to optimize A is the Principle of Minimal Sensitivity (PMS), which states that since
I must be independent of the parameter A, the closest approximation to the true value
of I we can get by truncating the expansion at order 6% is Iy(1; \y), where Ay is the
solution of the equation
o\

This guarantees that, at least locally, I does not depend on the variational parameter
A. So, in the above example, by truncating the expansion at order ¢ and finding the
stationary point with respect to A, we get

A\ = \/5 (46)

6 (2m2\"/*
I~L(L\N)==-|— : 47
=2 (%) ()
It is important to note that even at first order we get the correct dependence on g, which
cannot be obtained by perturbation methods. In this particular example it can be proved
rigorously that the sequence Iy(1; A\y) tends to [ as N — oo and the proof can be found
in [16].

—0. (45)

which gives

2.2.2 Lattice SU(2) gauge theory

Now we will apply the linear ¢ expansion to SU(2) lattice gauge theory. The dynamics of
the pure gauge field is determined by Wilson’s action 18. However, the additive constant
is physically unimportant as it does not affect any expectation value. We shall, therefore,
use the action

S = g 3 Tl (48)

where we have used the fact that the trace of any SU(2) element, at least in the funda-
mental representation, is real and have absorbed the minus sign into the action.

This action leads to a non-solvable theory and we have to rely on some approximation
method. The linear ¢ expansion begins by introducing the trial action

So = JZ TrU,. (49)
]
Here, U, are parallel transporters on single links and J is the variational parameter. The
summation is now over all links in the system. The reason for choosing this trial action,
despite its gauge dependence, is that it leads to a solvable theory which can be used as
the zero order approximation in our expansion. Other choices are possible, however.

Before we proceed further with the LDE, it is worth checking that Sy gives a solvable
theory by evaluating the corresponding partition function Z,. We have,

Zy = [T]dvie® =
I
/H (dUleJTrUl) —
I

(/ dUleJTrUl)Nl | (50)

10



where /N is the total number of links in the system. Then consider

F(J) == /dUeJTrU. (51)
If we use the parametrization of SU(2) given in Equation 30 this can be written as:
2
F) = [ S sin? (i 2)e2 e, (52)
0

™

Now, the exponential of the cosine can be expanded in terms of the modified Bessel
functions of integer order I,(z):

"0 = [o(2) + 2;: I (2) cos(k0). (53)

Finally, expressing the cosines in this expansion in terms of the characters of the (254 1)-
dimensional irreducible representations of SU(2)

sin ((7 +1/2)¢)

Vo) = L, 5
and using their orthogonality with respect to the inner product
mdp *
(68 = [ FLsin(p/2x ()E() (55)
we obtain
£(7) = If2) ~ na(2y = &7 (56)

by the properties of the modified Bessel functions. Therefore, we have found a closed
form expression for the partition function Zj:

- (H20Y" o

However, the quantity we are really interested in is Z, the partition function of the
Wilson action, and not Z;. So we introduce the action

Ss = So+ (S —Sp), (58)
which reduces to S for 6 = 1. Then,

Z = /HdUleS5 = /HdUle(l_‘s)SoeSS (59)
1 1

is the desired partition function if § = 1. For mathematical convenience we absorb (1 —0)
into Sy by defining J(J) := (1 — §)J. This redefinition of Sy does not affect our earlier
results for Z,, but we should keep it in mind and take into account the ¢ dependence of
J in the end. Implementing this we get:

4 = /HdUl650@55:
1
(),

OO(STL

Zy Y — ("o (60)

n=0 """

11



Here, ()¢ denotes the expectation value with respect to Zy. Having found an expression
for the partition function of the system we can go on and evaluate the order parameters
we are interested in.
Let us first consider the plaquette energy. It is expressed in terms of the free energy
W =—-In(Z) as
2 ow

FE=—-——. 1
P Ni(d—-1) 05 (61)
So, it suffices to calculate W
W = —InZ=-InZ;—In (Z 0 (S™)o ) —
n=0 7’L
o 571 n
Wo =3 ("), (62
n=1

where the connected averages (-). are defined by

i) ([ e,

X are arbitrary statistical variables and the contour C} is the unit circle on the complex
z;-plane. We can then write (S™). in the form

(S")e = (B/2)" Zam ni)er (64)

where D,,; are {(n) inequivalent diagrams with multiplicities ;. These diagrams can be
evaluated directly and they are listed in Appendix C.1 together with their multiplicities.
In the next section we will deal exclusively with the methods for evaluating these diagrams.

The evaluation of the Polyakov line is not a very different task. We start with the

action 48 3
=3 (Z TrU,, + ZTrUpT> : (65)
Po pr

where p, indicates plaquettes that contain temporal links and p, plaquettes that contain
only spatial links. The fields are periodic in the time direction with period N,a. The trial
action we now use is

So=J Y TeU, + K3 TeU,. (66)

We have introduced two variational parameters because we need to distinguish between
temporal and spatial links. Then, a similar argument as for zero temperature, gives

Zo = [f(N]"LFE)]Y, (67)

with f(z) defined as previously. N; and N; are the total numbers of spatial and temporal
links respectively. The ¢ expansion then proceeds by introducing Ss as before, but now,
instead of evaluating the partition function we would like to calculate the expectation
value of the Polyakov line. To this end, a generating function:

_ / [ dU,eS+X© (68)
l

12



can be introduced to evaluate

J 11, dU,Oe®

0) = . 69
< > f Hl dUleS‘s ( )
A straightforward calculation, written out explicitly in [9], gives:
(o) 57’7, n
(0) O)o + Z OS (70)

where we have again redefined Sy by introducing J(0) and K (J) as before. The Polyakov
line is now easily evaluated as

o0 (STL

L)y + Z LS" (71)

With N, = 2, as we assume from now on, (LS™). take the form:

<LSn>c = §<ﬁ/2)n ; an,i<Ln,z’>c~ (72>

The inequivalent diagrams L, ;, together with their multiplicities, are listed in Appendix C.2.
We will now develop the methodology for evaluating these inequivalent diagrams.

3 Method of calculation

Equation 63 allows us to relate connected averages to non-connected expectation values.
We shall, therefore, consider the evaluation of non-connected averages first.

Let U be an element of SU(2) in the fundamental representation, i.e. a 2 x 2 unitary
matrix with unit determinant. Then, using the parametrization 30 of SU(2) we find:

7 T 1 i T
/ U™~ oy, / dUTH(U)e’ TV =
1d7, .,
— 050 =
2 dJ

1 df ;
2f dJ(;] wléj. (73)

This result is more general than it may seem. In fact, the expectation value of any product
of SU(2) matrix elements is a linear combination of products of Kronecker deltas. This
motivates the digression into the representation theory of the symmetric groups that
follows.

3.1 Projection operators and evaluation of non-connected aver-
ages

We will start by presenting some powerful results from the theory of finite groups that
will allow us to evaluate expectation values in a very elegant and general way.

13



Consider a finite group G of order | G | and define the vector space Vg, over the field
of complex numbers C', by

=1

(€]
Vo = {Z aigila; € C,g; € g} : (74)

Vector addition and scalar multiplication are defined in the usual way:
Given u,v € Vg,

|G| |G| G|

utv =73 agi+y Bigi:=) (ai+pi)a (75)
i=1 i=1

i—1
and

Au = A (g aigi) = E(Aai)gi, VA e C. (76)

i=1

Then, if we define the product between two elements of Vg by
(€] |G Gl 1G]
w = > g | | D Bigi | =D aiBi(gi9;), Vu,v e Vg, (77)
i=1 j=1 i=1j=1

Vs is a linear algebra over the field of complex numbers. The following theorem concerns
the structure constants of this algebra.

Theorem 1 Let ¢; = Y ek, 9, 1 = 1,2,...,K, be the element of Vg corresponding to the
sum of the elements of the conjugacy class K; C G. By the closure of the algebra under
multiplication, there exist complex numbers & such that

CiCj = Zfz‘jlcl- (78>
=1

Then, the structure constants §;; are given by

kik; &1

Eijl = -
TG & dim(V,)

X CBG) X ()X (K, (79)

where k; = |K;| and x* denotes the character of the irreducible representation of G on the
vector space V,.

The proof of this theorem is given in Appendix A.1.

We now construct projection operators corresponding to the irreducible representa-
tions of the group G. In [17] it is proved that if U : G — Perm(V) is a representation of
GonVand D, :G — GL(dim(V,),C) is an irreducible matrix representation of G, then

the operator
dim(V _
By = ,é| ) > X" H)U(g), (80)

geg

is a projection operator on V in the sense that

P,P,=4,,P,, > P, =1. (81)

p=1

14



St Y,=E, E=(1)

Sy: Y= L(E + B)

Yo= s(E-DB), E=(1%), B=(2)
Sy Y= 3(E+B+0O)
Y= %(QE C)
Y= ¢(E—-B+C), E=(1%), B=3(2,1), C =2(3)

Syt Y= 5(E+D+B+C+F)
Y, §(3E+D B—F)
Yﬁj BE-D—-B+F)
Y= L(2E+2B-C)
Y=+ (E-D+B+C-F), E=(1'), D=6(21?%), B=3(2,2),

]

C =8(3,1), F =6(4)

Table 1: The projection operators for the symmetric group S,, 1 < n < 4, in Young
Tableaux notation. The structure of the conjugacy classes in terms of the partitions of n
15 also shown.

In particular, if D, is unitary (for a finite group this is guaranteed by Maschke’s theorem
provided the representation is carried on an inner product space),

P, dAm(V,) > X" (9)U(9) =
|G| geg
AT ) Y UGg) =
dim(V,) & KD T (e)
e ; K)U (¢ (82)

where U : Vg — Perm(V) is the representation of the algebra Vg induced by the repre-
sentation of G on V. So, for the symmetric group S,, the projection operators take the

form:
dim(V

Yy —
e Z; X! ( (83)

since the characters are real. These can be constructed immediately from the character
table. The projection operators for the symmetric groups of order 1, 2, 3 and 4 are listed
in Table 1.

As mentioned before, the expectation value of a product of n SU(2) matrix elements
can be written as a linear combination of Kronecker deltas. In fact, in a more compact
fashion, it can be written as a linear combination of the projection operators of .S, acting
on (say) the lower indices of n Kronecker deltas. A further simplification is possible if the
possible index values are less than n. This is guaranteed by the following lemma.
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Sll YD:E

Sy: Y= 3(E+ B)

V.= L(E - B)
Y= 1(2E - C)
Y= 0, B=E+C

Si: Y= —(E+B+0O)

Y= 0, D=2E+C/2, F=B+C/2—E

Table 2: The reduced projection operators for S,, 1 < n < 4. The relation of the odd
conjugacy classes to the even ones can be determined by expressing the former as a linear
combination of the latter and then deducing the coefficients by requiring that the structure
of the algebra is maintained.

Lemma 1 An odd permutation acting on N indices, at least two of which are equal, is
equivalent to an even permutation acting on these N indices.

proof:

The odd permutation can be followed by an interchange of the two equal indices. The
resulting permutation is even. QED

The consequence of this lemma is that not all the conjugacy classes of S,,, n > 2, are
independent. The ones that consist of odd permutations can be reexpressed in terms of
the rest. The union of the remaining even conjugacy classes is the alternating group A,
a normal subgroup of S,. The reduced projection operators are shown in Table 2.

Now we are in a position to evaluate the expectation values of products of up to
four SU(2) matrix elements. First, we write the expectation value as a general linear
combination of the non-vanishing projection operators of the corresponding symmetric
group and then, by summing over various indices, we determine the coefficients. The
results of this procedure are summarized in Table 3. The expectation values given there
are sufficient to calculate the diagrams up to order four for the plaquette energy and order
three for the Polyakov line.

3.2 Evaluation of connected averages

Now we turn to the evaluation of the connected averages, which, in fact, are the ones
that appear in the § expansion. We will begin by the conventional construction of these
averages from the non-connected expectation values and then, I will present a powerful
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(Usho = (@1 Yy),,
(UiUio = (¥t Y5 )ehs Q=(w—1)/3

)ik A = (ws — 4wy) /4

abc)r

(UiULUE) o = (MY + wn Y

(UeUJUEUL 0 = (MYt Q¥ Y)ier M = (wa —3wa +1)/5

as!

Table 3: The expectation values of products of SU(2) matriz elements in terms of projec-

tion operators. Here, w1 = (1/2f)df /dJ and w, = (1/f)d"f/dJ", for n > 2.

method which allows one to calculate the connected averages of the vast majority of
diagrams efficiently with no reference to non-connected averages. As far as I know, this
method is used here for the first time, although special cases of it have appeared in some
PhD theses(e.g. [10]).

To express the connected averages in terms of the non-connected ones we use Equa-
tion 63. For one, two, three and four statistical variables it gives:

U)e = (U)o
(UV)e= (UV)o = (U)o(V)o

(UVW). = (UVIW)o — (UV)o(W)o — (UW)o(V)o—
(VIW)o(U)o + 2(U)o{V)o(W)o

(UVIWX)o = (U)o(VWX)o — (V)o(UWX)o—

(W)o(UVX)o = (X)o(UVW)o — (UV)o(WX)o—
(UW)o(VX)o = (UX)o(VW)o + 2(U)o(V)o(WX)o+
2(U)o(W)o{VX)o+ 2(U)o(X)o(VW)o + 2(V)o(W)o(UX)o+
2(V)o(X)o(UW)o + 2(W)o(X)o(UV)o — 6(U)o(V)o(W)o{X)o

Here, the statistical variables are identified with the trace of different plaquette variables
and the non-connected averages are obtained as in the previous section. These expressions
are sufficient for the diagrams up to order four for the plaquette energy and up to order
three for the Polyakov line.

The above procedure is easily carried out for low order diagrams, but it quickly be-
comes too cumbersome as we go to higher orders. Eventually, we will have to perform the
calculation with the help of a computer. Though, the following theorem sets the basis for
an efficient, systematic evaluation of connected averages which can take us a few orders
further in the ¢ expansion.

Theorem 2 Given a set of N statistical variables {Xy;}iz12..n, defined on the link ¢,
the connected averages of these variables satisfy:
N

d | AR
CU<HXZ;> :<T1"U£HXZ§> : (85)

i=1 i=1
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where Uy is the parallel transporter defined on the same link.

The proof is given in Appendix A.2. The implications of this theorem are not immediately
obvious, but they are indeed far going. In effect, it means that if a diagram can be formed
from a lower order diagram by attaching a single plaquette or the Polyakov line to one
of its links, then the connected average of the new diagram can be obtained from that
of the lower order diagram. One simply needs to differentiate with respect to J the part
of the connected average of the lower order diagram which corresponds to the link where
the new plaquette was attached. An example would be helpful:

Suppose we want to calculate < 2 > . Given that
\ C

(| 2 > — 301 1 — 4, (86)

we conclude that

< 2 > = Wl (30PQ — 8wiw)), (87)

where the prime denotes differentiation with respect to J. Note that we have differentiated
only one factor of €2 and two factors of w; since only those factors correspond to the link
where we have attached the third plaquette. The w} outside the parentheses corresponds
to the free links of the new plaquette.

Therefore, to evaluate all diagrams of a certain order, the following procedure should be
followed: First we identify the diagrams that cannot be obtained by attaching plaquettes
to lower order diagrams. Generally, these are a small minority of all the diagrams. We
evaluate the connected averages of these ‘irreducible’ diagrams using their non-connected
expectation values as described in the beginning of this section. Then, the connected
average of the rest of the diagrams is obtained from that of the corresponding lower order
diagrams as in the above example.

3.3 Evaluation of diagrams with FORM

As the evaluation of the diagrams eventually becomes too lengthy for any analytical
method, it is instructive to consider possible computer algorithms for doing this calcula-
tion. No such algorithms were developed as part of this project, but existing codes, by
H.F.Jones, were employed to check the analytical calculations. These algorithms were
written for the programming language FORM of J.A.M.Vermaseren (1989).

Both connected and non-connected averages can be calculated for each diagram. First,
the diagram is defined in terms of its link structure and then external routines for the
evaluation of connected and non-connected averages are invoked to complete the calcula-
tion.

A sample of these codes is shown in Appendix B.1. Their disadvantage is that each
diagram must be defined manually by explicitly adjusting the appropriate parameters
and the calculation is performed for one diagram at a time. Moreover, different order
diagrams need different external routines to do the calculation. An improved version of
these algorithms would probably be along the lines of W.Kerler’s codes [7], where the
classification and enumeration of the diagrams is also part of the computer calculation.
This not only allows the evaluation of the averages to be more efficient, but also provides
an effective way for the calculation of the multiplicities at the same time.
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3.4 Calculation of the multiplicities

Finally, before I discuss the results of our calculations, I will briefly describe how the
multiplicities of the inequivalent diagrams on a d-dimensional hypercubic lattice can be
calculated.

Each lattice site has 2d nearest neighbours, two in each of the d orthogonal directions
of the lattice. Now attaching a plaquette to this site would occupy two of these directions.
Then, the desired diagram is built by attaching extra plaquettes to this initial plaquette
and counting the number of ways this can be done without changing the link structure.

As an example, the multiplicity of < 2 > is 3-4[2(d — 1) — 1]. The combinatorial

112!

factor appears because it is immaterial which of the plaquettes is the single one. Then, 4
is the number of links where the single plaquette can be attached to the other two, and
the expression in the parentheses is the number of possible directions it can have relative
to them.

Some care must be taken when calculating the multiplicity of diagrams containing
the Polyakov line. In this case the lattice is periodic in the fourth direction, which must
not be counted with the spatial directions. Also, this periodicity implies that the two
extreme plaquettes of a diagram extending along the entire period of the lattice in the
fourth direction will share a link.

A Fortran routine to enumerate the possible link structures and evaluate their mul-
tiplicities has been developed by H.F.Jones. However, I have not used this code in this
project.

4 Results and discussion

Now that we have learnt how to evaluate the terms of the § expansions for the plaquette
energy and the Polyakov line (Equations 62 and 72) we consider the results of such a
calculation. However, a couple of technical comments are in order here. Firstly, we
should remember that the averages that appear in these expansions are functions of J() =
(1 -9)J and K(6) = (1 —0)K and so, to obtain the full expansion in powers of § each
average must be expanded first. This will introduce derivatives of the averages which can
be calculated recursively using the identities:

Wi = (w2 —dwi)/2 (88)

!/

W, = Wpil — 2w Wy (89)

Although these follow from the properties of the modified Bessel functions if w, is defined
as previously, they can be proved purely from the action integral if w,, is defined geomet-
rically through the expectation value of the trace of n plaquettes stack one on top of the
other. Then it is seen that they are generally true for SU(N).

Secondly, the ‘order’ of the expansion is counted by the corresponding power of 9.
However, in order to agree with the counting of orders in [5], I have adopted the convention
that for the plaquette energy order n is the expansion up to the coefficient of §"*! inclusive.
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Figure 2: Plots of the plaquette energy as a function of r = J/3p for f =3.2. MC stands
for Monte Carlo data, taken from Ref. [12]

4.1 Optimization of the plaquette energy

Figure 2 shows the first three orders (after order 0) of the plaquette energy as functions
of the variational parameter. The Monte Carlo value shown is from Ref. [12].

The Principle of Minimal Sensitivity dictates that at each order, and for each value
of 3, the optimum value of the variational parameter should correspond to a stationary
point of the plaquette energy. If more than one stationary points exist, the broader one
should be chosen. This optimization procedure was done using the C++ routines, listed
in Appendix B.2. The algorithms for the modified Bessel functions were taken from the
Numerical Recipes library. However, some of them were impossible to adjust to achieve
the required accuracy and so, slower algorithms, based on a power series expansion, were
devised. For the location of the stationary points I used the interval bisection method as
given in [14].

Once the optimum curve J(3) is found, it is inserted into the plaquette energy, which
is now considered as a function of 5 only. The results for the first three orders are shown
in Figure 3.

A few things should be observed. Firstly, not all orders have PMS points. Here, orders
1 and 3 have but order 2 does not. So instead of order 2 the Padé approximant P(1,1)
is plotted. The existence of PMS points for even or odd orders only is a quite general
phenomenon. It also appears in the § expansion for zero dimensions field theory [16], and
it has been observed by Kerler [7], who also provides a qualitative explanation.

Another feature is that, at least for the orders shown, as we go to higher orders the
optimized plaquette energy tends to the Monte Carlo result. This is encouraging but it
is accompanied by a gradual increase in the value of f3,,;,, the point where the broad
minimum ceases to exist. In other words, higher order approximations are valid in a
smaller part of the weak coupling region. This is clearly a disadvantage of our method
since the expansion fails to give adequate information for the transition region between
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Figure 3: Plot of the optimized plaquette energy as a function of /2. Since the second
order does not have any PMS points, the Padé approximant P(1,1) is shown instead. The
Monte Carlo data are taken from Refs. [11] and [23].

strong and weak coupling and, therefore, little can be deduced about the existence or the
nature of a deconfining phase transition in this region. This unfortunate phenomenon
has also been observed by J.O.Akeyo and H.F.Jones [5] who attempted to extend the
expansion beyond [,,;, by adopting a ‘weak PMS’. In the absence of stationary points
of the plaquette energy, they looked at stationary points of its slope. This enabled them
to extend the ¢ expansion down to /2 = 1.23 for order 3. However, such a criterion
is not well justified and their conclusion that there is no signal of the breakdown of the
expansion as higher orders are reached is rather misleading. Indeed the increase of S,
with order seems to be a universal feature of the ¢ expansion for lattice gauge theories.
As we will see below it also appears in the Polyakov line expansion and in that case it is
much more disastrous.

The failure of the expansion in the transition region is not unique to the J expansion
with the PMS criterion though. Kerler [6] has used the same expansion for the plaquette
energy but with a different criterion for fixing the variational parameter. Instead of
the PMS he uses the ‘accumulation’ points of successive orders of the expansion. For
example, such an accumulation occurs just after 1.0 in Figure 2. Kerler observed that as
the transition region is approached from either the weak or the strong coupling side, the
accumulation suddenly disappears. This change in the accumulation point systematics
occurs at 3/2 = 0.76 for the strong coupling side and at §/2 = 1.0 for the weak coupling
side. Therefore, at least for the first order of the § expansion, the disappearance of the
PMS point (at 8/2 = 1.07) almost coincides with the change in the accumulation point
systematics. The failure of the expansion in the transition region is taken by Kerler as an
indication for the location of a phase transition, but not for its existence or its nature.

Finally, Zheng, Tan and Wang [8] use a third criterion for optimizing the variational
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parameter at each order. They use the convexity inequality:
w < Weff,l(ﬁa J)7 (9())

where W,rr1(5, J) is the first order approximation to the free energy, together with the
variational principle

4}

0J
From the variational principle they obtain a double-valued curve J(3) and they choose
the appropriate branch by employing the convexity inequality. With this approach there
seems to be no problem in extrapolating the expansion into the transition region and the
criterion for the existence of a (first-order) phase transition is taken to be the matching
or the mismatching of the strong and weak coupling branches of the expansion. Zheng
et al. found that the first order expansions fail to join smoothly indicating a first-order
transition at /2 = 1.41. The second order, however, produces a smooth curve over the
whole range of couplings, thus removing the unwanted phase transition. The interesting
result is that the next order shows a discontinuity again in the transition region, although
the fit of the expansion to the Monte Carlo data in the strong and the weak coupling
regions is improved. This situation is analogous to the behaviour of the ¢ expansion
as we go to higher orders. Namely, the fit to the Monte Carlo data is improved in the
weak coupling region, but the validity of the expansion is restricted to a smaller region.
To overcome this difficulty Zheng et al. used gauge fixing, thus improving slightly their
results. However, this approach is not better justified than the weak PMS adopted by
Akeyo and Jones.

Werra(B,J) = 0. (91)

4.2 Optimization of the Polyakov line

The trial action for the Polyakov line has two variational parameters both of which must
be optimized. As a first attempt we follow Tan and Zheng [9] and set J = K. This follows
from the convexity inequality and the variational principles

o 4]

Ewefﬁl - 0, ﬁweff’l - 0 (92)

However, we could adopt a more sophisticated approach by using our PMS criterion for
the Polyakov line in the J— K plane. Since this introduces some computational difficulties,
we only consider the case J = K here.

Figure 4 shows plots of the Polyakov line for g = 2.5 as a function of the variational
parameter. Only order 2 exhibits a PMS point for § > 2.4. H.F.Jones has done the
calculation for order 4 and it seems that a PMS point exists for larger values of 3. So, as
for the plaquette energy, not all orders exhibit a PMS point and higher order approximants
are valid for a smaller range of couplings. The optimized second order is plotted in
Figure 5. Monte Carlo results and the first three orders of the cumulant expansion of Tan
and Zheng [9], based on the free energy variational principle, are also shown. It should
be emphasized that here Tan and Zheng have used gauge fixing for all orders. The fourth
order of the § expansion is not shown since it has not been optimized yet. Based on the
results for the plaquette energy we expect that it will give a better approximation to the
Monte Carlo data in the weak coupling region.
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Figure 5: Plot of the optimized Polyakov line as a function of 3. The first three orders of
the cumulant expansion of Tan and Zheng [9] are also shown together with Monte Carlo
points from Ref. [13]
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The disadvantage of the § expansion is that it cannot be extrapolated well into the
transition region which is the region of major interest. The gauge fixed cumulant expan-
sion, however, does extend into the transition region and it seems to approach the Monte
Carlo results as the order increases. In fact, (L) = 0 in the strong coupling region up to
Be =~ 1.6, where (L) takes on a non-zero value in a continuous way. This is the qualitative
behaviour of a second order phase transition, which according to Tan and Zheng may
exist near .. The Monte Carlo data support this possibility.

5 Conclusions

The plaquette energy and the Polyakov line have been calculated up to the fourth order for
SU(2) pure gauge theory on the lattice using the linear § expansion. The calculation of the
fourth order of the Polyakov line was beyond our initial expectations, but the development
of a new method for the evaluation of connected averages has made it possible. In the
near future we intend to complete the optimization of the Polyakov line and compare the
results with the calculation of H.F.Jones.

Our results so far suggest that the linear § expansion is a competent semi-analytical
approach to zero temperature lattice gauge theories. However, there are strong indications
that at finite temperature the method fails to produce an expansion valid in the range
of couplings where a deconfining second-order phase transition is expected. The results
could be improved by using a different trial action, preferably gauge invariant, or, in the
case of the Polyakov line, by applying the PMS criterion in the J — K plane instead of
setting J = K on an ad hoc basis.
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Appendix

A Proofs of important results

A.1 Proof of theorem 1

Consider an irreducible representation of the finite group G on the vector space V,

WG — Perm(V,).

Also, define the map
M Vg — Perm(V,),

T( =TWw (|§:| ozlgz) = lf:oziT(“)(gi), Yu € Vg.
i=1
This is a representation of the algebra Vg on V, with the property
jﬂ(u)(cl.)T(u)@) — 7w (g)T(“)(Ci), Vg € G.
Therefore, by Shur’s First Lemma,
TW(¢;) = N1,
where A is a complex number. By taking the trace on both sides we find:

kix*(K;)

A= mXTUR)
Yodim(V,)’

which is called the Dirac Character.
Then,

CiCj = Zﬁz’jzcz =
f( (cicy) meT “) (1)
T(u)(ci)f(u) (¢;) = Zé}jzf(“)(cz) =
“Aé‘ = Zgile%
=1
which, uppon using the orthogonality relation
D kXM (E) X" (K;) = |Gloy,
pn=1

gives
kik; & 1

&ijt = :
g (€ =1 dim(V,)

X (BG) XM () XM (5.
This completes the proof.

26

(93)

(94)

(95)

(96)

(97)

(98)

(100)

(101)



A.2 Proof of theorem 2
Firstly, we easily find

g <GZZ 1ZZX€1> — <T1“U56211'V—1 ZiX(’.,i>
0

iy — (TxUy), <€ZZ 1ZZX“> . (102)

0 0

Then, using Equation 63, we get

d | X dz: N
_ X i — % J <TrU eZi:lziXéri> <ezq 1 #iXe, Z> =
dz; Ny,
ln< zTrUgezizl zlxh> ) _
( 27TZ 7{] Zn]—H) < 0/ 2=0

<TrUg 1 X > . (103)

=1

This completes the proof.

B Routines used in the calculation

B.1 Samples of FORM routines

*program c3
*26/11/93

f Z,D, [d/dy], [d/dz];

s [1/2],5,k,1,w1,V3;

g fig3c=Z(1,0,0)*D;

multiply left [d/dyl=*[d/dz];

repeat;

id [d/dyl*Z(j?,k?,1?)=Z(j,k+1,1)+Z(j,k,1)*[d/dy];
id [d/dyl*D=-Z(0,1,0)*D"2+D*[d/dy];

id [d/dz]*Z(j?,k?,1?)=Z(j,k,1+1)+Z(j,k,1)*[d/dz];
id [d/dz]#*D=-Z(0,0,1)*D"~2+D*[d/dz] ;

endrepeat;

id [d/dy]=0;

id [d/dz]=0;

id D=[1/Z];

bracket [1/Z];

id [1/Z]=1;

id 2(1,0,0)=[A] (w1,V3);
id z2(0,1,0)=[B] (w1,V3);
id 72(0,0,1)=[C] (w1,V3);
id Z2(1,1,0)=[AB] (w1,V3);
id Z(1,0,1)=[AC] (w1,V3);
id z(0,1,1)=[BC] (w1,V3);
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id Z(1,1,1)=[ABC] (w1,V3);

*program fig3c
*26/11/93

Nwrite statistics;
d 2;

i a,b,c,d,e,f;

G y3(a,b,c,d)=(d_(a,c)*d_(b,d)+d_(a,d)*d_(b,c))/2;

G yi(a,b,c,d)=(d_(a,c)*d_(b,d)-d_(a,d)*d_(b,c))/2;

G y4(a,b,c,d,e,f)=(d_(a,d)*d_(b,e)*d_(c,f)+
d_(a,e)*d_(b,f)*d_(c,d)+d_(a,f)*d_(b,d)*d_(c,e))/3;

G y2(a,b,c,d,e,f)=d_(a,d)*d_(b,e)*d_(c,f)-y4(a,b,c,d,e,f);
.store

.global

d 2;
ia,b,c,d,e,f,g,h,i,j,k;
s wi,V1,V2,V3,V4,n;

cU
#do i=1,4

A’i’, B’i’,C’1’
#enddo

)

set AA:
#do i=1,4
A’i°
#enddo
set BB:
#do i=1,4
B’1i’
#enddo
set CC:
#do i=1,4
c’i’
#enddo

i

#do i=1,4
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a’i’, b’i’, c¢’i’
#enddo

set first:

#do i=1,4

a’i’, b’i’, c’i’
#enddo

set last:

#do i=2,4

a)i), b)i),c)i)
#enddo

al, bl, ci;

set Dag:

#do i=3,4

Aii)’ B)i), C)i)
#enddo

G [A](w1l,V3) =
#do i=1,4

* A’i’(a’i’,a’i’)
#enddo

G [B] (w1,V3) =
#do i=1,4

* B’1’(b’1i’,b’i’)
#enddo

G [C](w1,V3) =

#do i=1,4
x C’i’(c’i’,c’i?)

#enddo

G [AB] (w1,V3) = [A]*[B];

G [AC] (w1,V3) = [A]lx*[C];

G [BC](w1,V3) = [BI*[C];

G [ABC] (w1,V3)= [Al*[B]l*[C];

id U7(i7,j7first[n])=U(i,last[n],0);

id U?Dagln] (i?,j?,0)=U(i,j,1);

#procedure subs3
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#do i=1,4
if (count(A’i’,1)=1);
id A’i’(a?,b?,j?)=wi*xd_(a,b);
endif;
if (count(B’i’,1)=1);
id B’i’(a?,b?,j?)=wi*d_(a,b);
endif;
if (count(C’i’,1)=1);
id €’i’(a?,b?,j?)=wixd_(a,b);
endif;
#enddo
repeat;
id U?(a?,b?,i?)*U?(c?,d?,i?)*U?(e?,£7,i?)\
= V4xy4(a,c,e,b,d,f)+V2xy2(a,c,e,b,d,f);
id U?7(a?,b?,i?)*U?(c?,d?,i?)\
= V3*xy3(a,c,b,d)+yl(a,c,b,d);
id U?(a?,b?,i?)*U?(c?,d?,j?)\
= ((V3+1)*y3(a,c,b,d)+(3%V3-1)*yl(a,c,b,d))/2;
endrepeat;
#endprocedure

*program fig3plc
*26/11/93
#include fig3c
nwrite statistics;

* ¥ X X X ¥ %
w

id U?BB[n] (i?,j?,k?)=AA[n] (i,j,k);
id U?CC[n] (i?,j?,k?)=AA[n] (i,j,k);

#call subs3

.store *NB!!!

#_

#include c3
nwrite statistics;
b wi;
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s V2;
id V2=wli;
p;

B.2 C++ routines

//SU(2) - PMS for the Plaquette Enegry - John Papadimitriou 13/01/2000
//(last updated 5/5/00)

#include <iostream.h>
#include <math.h>
#include <fstream.h>
#include <stdlib.h>
#include "factor.h"
#include "bessiO.h"
#include "bessil.h"
#include "bessi.h"

//Function prototypes:

double root(double x1, double x2, double f1, double f2, int &depth,
double y, double dx);

double find_root(double x1, double x2,int &depth, double y, double dx);
double f(double,double);

double f_derivative(double, double, double);

int main(void)

{

const double dx=0.1, dy=0.1;
int i;

ofstream file("su2optl.dat");

char opt;
cout<<"Enter ’p’ to plot the function or ’m’ to minimize it: ";
cin>>opt;

switch(opt)

{

case ’'p’: {

for(i=1;i<=300;i++) {
cout<<i*dx/9.6<<’\t’<<f(i*dx,1.6)<<endl;
file<<ixdx/9.6<<’\t’<<f(i*dx,1.6)<<endl;
+

}break;
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case 'm’: {

double x=0, y;

int j;
for(i=0;i<30;i++){
y=(i+15) *dy;

//Initial approximation for Xx-—----—--——-———————————————————————
for(j=80; j<=600; j++)

{

if (fabs(f_derivative(j*dx, y, dx))<=0.02)

{x=j*dx;

break;

int depth=0;

if (x==0){

x=find_root (3, 50, depth, y, dx);

+

else {

x=find_root(x-1.0, x+18.0, depth, y, dx);
}

//output of optimum contour
cout<<x<<’\t’<<’\t’<<y<<endl;
file<<y<<’\t’<<’\t’<<x<<endl;
//cout<<y<<’\t’<<’\t’<<f (x,y)<<endl;
//file<<y<<’\t’<<’\t’<<f(x,y)<<endl;

+

}break;

default:{cout<<"No file written"<<endl;}
}

return O;

3

//function to be studied

double f(double x,double y)

{

double Ep;

int const d=4;int const RO=2*d-3;int const R1=2*d-4;
int const R2=2xd-5;int const R=4%*RO;

//Omegas

double wl=bessi(2,2*x)/bessil(2x*x);
double w2=4-6*wl/x;

double V3=bessi(3,2*x)/bessil(2x*x);
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double V4=bessi(4,2*x)/bessil(2*x);
double w3=4*(V4+wl);

double V5=bessi(5,2*x)/bessil(2*x);
double w4=5*xV5+3*w2-1;

//Derivatives of wn
double dwl=0.5%(w2-4*xwlxwl);
double ddwl=0.5*% (w3-6*wl*w2+16*wl*wl*ywl) ;
double dddwl=0.5% (w4-8*wl*w3-3*w2*w2+48*wl*wl*w2-96*pow(wl,4));
double dw2=w3-2*wl*w2;
double ddw2=w4-2*wl*w3-2*%dwl*w2-2*wl*xdw2;
double dw3=w4-2%w3*wl;

//Connected diagrams by new method

double figlpl=2*pow(wl,4);

double fig2plc=1+3*pow(V3,4)-4*pow(wl,8);;

double fig2p2c=2*pow(wl,6)*dwl;

double fig3plc=4*pow(V4,4)-18*pow(wl*V3,4)-2xpow(wl,4)+16xpow(wl,12);
double fig3p2c=pow(wl,3)*(pow(V3,3)*dw2-8*pow(wl,7)*dwl) ;

double fig3p3c=2xpow(wl,9)*ddwl;

double fig3p4c=pow(wl,6)*(3*pow(V3,3)+4.5%xV3xV3+0.5-6*xw2*pow(wl,4)+
16*xpow(wl,6));

double fig3p5c=2*pow(wl,8)*dwlxdwl;;

double figdplc=5*pow(V5,4)+9*pow(V3,4)+2-8*pow(wl,4)*(4*xpow(V4,4)-
18*pow (wl,4) *pow(V3,4) -2xpow (wl,4) ) -3*pow((1+3*pow(V3,4)),2) -
96*pow(wl,16) ;

double figdp2c=pow(wl,3)*(pow(V4,3)*(dw3-4*dwl)-18*pow(wl,3)*pow(V3,3)*
(dw1*V3+wl*xdw2/3.)-2*pow(wl,3) *dwl+48*pow(wl,11) *dwl) ;

double figdp3c=pow(V3,6)*(5xV5+w2)+6%pow(V3,4)+1-8*pow(wl,7)*

(pow (V3,3) *dw2-8*pow(wl,7)*dwl) -pow (1+3*pow(V3,4) ,2) -

2xpow (wl,12) * (w2xw2-16*pow(wl,4)) ;

double figdpdc=pow(wl,6)*(pow(V3,3)*ddw2-8*pow(wl,6)*(dwl*dwl+wl*ddwl)) ;
double figdpbc=2*pow(wl,12)*dddwl;

double figdp6c=pow(wl,4)* (V3*V3* (4*V3*(2xV4+wl)* (2%xV4+wl) /3. +(1-V3) *
(2%V4xV4+wikwl) ) +wlxwl*w2-12*pow(wl,6) *pow(V3,3) -2*pow(wl,6) *

(3% (3*V3xV3-8*pow(wl,4) *dwl)+1) —-4*pow(wlxV3,3) xdw2-

8xpow(wl,8) *dwlkdwl-wl*wl*w2* (1+3*pow(V3,4))+32xpow(wl,12));

double figdp7c=pow(wl,6)*(V3*xV3*xdw2*dw2/3.-16%pow(wl,6)*dwl*dwl) ;
double figdp8c=pow(wl,5)*dwl*(pow(V3,3)*dw2-8*pow(wl,7)*dwl);

double figdp9c=pow(wl,9)*(V3*(V3+1)*dw2-2*pow(wl,4)*dw2-16*pow(wl,3)*
dwlxdwl) ;

double figdp10c=2*pow(wl,11)*ddwlx*dwl;

double figdplic=pow(wl,6)*(3*pow(V3,3)*(V3+1)*(V3+1)+(3*V3*V3+1)x*
(3xV3xV3+1) /4. -12*pow(wl,4) *pow (V3,3) -2xpow (wl,4) *

(2% (3%V3*V3-8*pow (wl,4) *dwl) +3*V3*V3-8*pow (wl,4) *dwl+1) -

8xpow (wl,6)*w2*xdwl-4*pow(wl,8) *w2+32*pow(wl,10));

double figdpl2c=pow(wl,8)*dwl* (3*pow(V3,3)+4.5%V3*V3+0.5-6*w2*pow(wl,4)+
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16*pow (wl,6));

double figdpl3c=pow(wl,8)*((21*pow(V3,4)+24*pow(V3,3)+18%V3*V3+1)/4.-
24*pow (wl,4) *dwl*dwl-32xpow(wl,6)*dwl-16*pow(wl,8));

double figdpl4c=2*pow(wl,10)*pow(dwl,3);

double figdpl5c=2*pow(wl,10)*pow(dwl,3);

//Derivatives of connected diagrams

double Dfiglp1=8*pow(wl,3)*(0.5*w2-2*wl*wl);

double DDfiglpl=4x(w3*pow(wl,3)+1.5*xw2*w2*wlxwl-18*w2*pow(wl,4)+40*pow(wl,6)
)3

double DDDfiglpl=4*(pow(wl,3)* (wd-2*wl*w3)+3*xwlxwl*(w2-6*xwl*wl)* (w3-2*wl*w2)+
(3*xw3*wl*wl+3*xw2xw2xwl-72%w2*pow (wl,3) +240*pow(wl,5) ) *(0.5*xw2-2*xwl*wl)) ;
double Dfig2plc=4*pow(V3,3)* (w3-2xwl*w2)-16*pow(wl,7)* (w2-4*wl*wl);

double Dfig2p2c=pow(wl,5)* ((3*w2-16*wlkwl)* (w2-4*xwlkxwl)+wlk (w3-2*xwl*w2)) ;
double DDfig2plc=4*(pow(V3,3)*(wd-2*xwl*w3)+(V3*V3* (w3-2*xwl*w2)-2*xwl*pow(V3,3)
—4xpow (wl,7))* (w3-2*wl*w2)+(144*pow(wl,8)-28*pow(wl,6) *w2-2*w2*pow (V3,3) ) *
(0.5*%w2-2*wi*xwl)) ;

double DDfig2p2c=pow(wl,4)* ((6*w3*wl+15*w2*w2-210*w2*wl*wl+576*pow(wl, 4))*
(0.5*w2-2*wl*wl) +wl* (6*w2-30*wl*wl) * (W3-2*wl*w2) +wl*xwl* (wd-2*xwl*w3));

double Dfig3plc=4*pow(V4,3)* (wh-2*wl*w3)-24*pow(wl,4)*pow(V3,3)* (w3-2*wl*w2)+
(192*pow (wl,11)-8*pow(wl,3)-72*xpow(wl,3) *pow(V3,4)-16%pow(V4,3) ) *
(0.5%w2-2%wl*wl) ;

double Dfig3p2c=pow(wl*V3,3)* (wd-2xwl*w3)+(pow(wl,3)*V3*V3* (w3-2xwl)-

8*xpow (V3,3) *pow (wl,4)-4*xpow(wl,10) ) * (w3-2*w2*wl)+(0.5*w2-2*wl*wl) *
(3*xwilxwl*pow (V3,3)* (w3-2xwl)-2*xpow (w1*V3,3) -24*pow (V3,4) *pow(wl,3) -

40*pow (wl,9) *w2+192*pow (wl,11));

double Dfig3p3c=pow(wl,9)*(wd-2*xwl*w3)-6*pow(wl,10)* (w3-2*xwl*w2)+

pow (wl,8) % (9*xw3-60*wl*w2+192xwl*wl*wl) *x(0.5*%w2-2xwl*wl) ;

double Dfig3p4c=(6*pow(wl,5)*(V3*V3*(w2+3.5)+0.5)-60*w2*pow(wl,9)+

192xpow (wl,11))*(0.5*w2-2*xwl*wl)+(3*pow(wl,6)*V3* (V3+1)-6*pow(wl,10))*
(w3-2*wl*w2) ;

double Dfig3p5c=pow(wl,7)* (w2-4*wlxwl)* (wik (w3-2*wl*w2)+2x (W2*xw2-10*wl*xwl*w2+
24xpow(wl,4)));

//Expansion coefficients

double a0=0.5*figlpl;

double al=0.5*y*x(fig2plc+R*fig2p2c)-0.5*x*xDfiglipl;

double a2=0.25*(y*y*(fig3plc+3.*R*fig3p2c+R*R1*fig3p3c+8.*R1*xfig3pdc+
3.%(3.*%R*R0-8.*R1)*fig3pbc) -2.*x*y* (Dfig2plc+R*Dfig2p2c)+
x*xx*DDfiglpl) ;

double a3=(y*yxy*(figdplc+4.*R*xfigdp2c+3.*R*¥figdp3c+6.*R*¥R1*figdpdc+
R¥R1*R2xfigdpbc

+48 . xR1*xfigdp6c+6.* (3. *R*R0O-8.*%R1) *figdp7c+12.*(3.*R*R0-8.*R1)*xfigdp8c+
96.*R1*R1*xfigdp9c+48.*R1* (RO¥RO+4.*R1+2.*R2*¥R2) *figdp10c+48.*R1*figdplic+
192.*R1*R1*figdp12c+12.*(2.*RO+R1+2.*R1*R2) *figdp13c

+96. % (ROXRO*RO-2.*R1*xR1-R1) *figdpldc
+48.*(9.*RO*RO*R0O-14 . *RO*R0O+19.*R0O-7.)*figdp1bc)
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3. xxxy*y* (Dfig3plc+3. *R+Df ig3p2c+R*R1*Dfig3p3c+8. *R1*¥Df ig3pdc+
3.%(3.*%R*R0-8.*R1)*Dfig3pbc)+3. *xx*x*y* (DDfig2plc+R*+DDfig2p2c) -
xxx*x*DDDfiglpl) /12.0;

//Plaquette Energy to order delta”3
Ep=a0l+al;

//Pade Approximant P(1,1)
double Pl1=alO+al*al/(al-a2);

return Ep;

}

//first derivative of f(x,y) with respect to x
double f_derivative(double x, double y, double dx)
{

return (f(x+dx,y)-f(x-dx,y))/(2.0%dx);

}

double root(double x1, double x2, double f1, double f2, int &depth,
double y, double dx)

//Finds a root of f_derivative(x,y,dx)=0 using bisection for fixed y and dx
//Assumes that x2>=x1 and f1*f2<0.0 (D.M. CAPPER, Introduction to C++
//for scientists, engineers and mathematicians)

{

const int max_depth=50;

const double x_limit=1e-5;

double estimated_root;

double x_mid=0.5%(x1+x2);

if (x2-x1<=x_1limit) {

//cout<<"Root found at recursion depth="<<depth<<"\n";
estimated_root=x_mid;

}

else if (++depth>max_depth){

cout<<"WARNING: maximum limit of "<<max_depth<<

" bisections reached"<<"\n";

estimated_root=x_mid;

}

else {

double f_mid=f_derivative(x_mid, y, dx);

if (f_mid==0.0) {

//Zero at x_mid.

estimated_root=x_mid;

}

else if (f_derivative(xl, y, dx)*f_mid<0.0) {

//Zero in first segment.
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estimated_root=root(xl, x_mid, f1, f_mid, depth, y, dx);
}

else {

//Zero in second segment

estimated_root=root(x_mid, x2, f_mid, f2, depth, y, dx);
}

}

return estimated_root;

double find_root(double x1, double x2,int &depth, double y, double dx)
{

double f1=f_derivative(xl, y, dx);

double f2=f_derivative(x2, y, dx);

if (f1%£2>0.0) {

cout<<"Error in find_root(): "<<"end-points have same sign\n";
//exit (EXIT_FAILURE) ;

return 100;

}

if (x2-x1>0.0)

return root(xl, x2, f1, f2, depth, y, dx);

else

return root(x2, x1, f2, f1, depth, y, dx);

}
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//Pkovline - PMS for the Polyakov Line - John Papadimitriou 11/02/2000

#include
#include
#include
#include
#include
#include
#include
#include

//Function prototypes:

<iostream.h>
<math.h>
<fstream.h>
<stdlib.h>
"factor.h"
"bessiO.h"
"bessil.h"
"bessi.h"

double root(double x1, double x2, double f1, double f2, int &depth,

double vy,

double find_root(double x1, double x2,int &depth, double y,
double f(double,double,double);
double f_derivative(double, double, double);

double dx);

int main(void)

{

const double dx=0.1, dy=0.1;

int i;

ofstream file("pkov3.dat");

cout<<"Enter ’p’ to plot the function or ’m’ to minimize it:

char opt;
cin>>opt;
switch(opt)
{

case ’p’: {

for(i=1;i<=100;i++) {

cout<<i*xdx<<’\t’<<f(i*dx,i*dy,2.5)<<endl;
file<<i*dx<<’\t’<<f(ixdx,i*dy,2.5)<<endl;

}
}break;
case ’'m’:

double x=

int j;

{
0, vy;

for(i=0;i<30;i++){
y=(i+15) *dy;

//Initial approximation for x
for(j=80; j<=600; j++)

{

if (fabs(f_derivative(j*dx, y, dx))<=0.02)

{x=j*dx;

double dx);



int depth=0;

if (x==0){

x=find_root (3, 50, depth, y, dx);

+

else {

x=find_root(x-1.0, x+18.0, depth, y, dx);
}

//output of optimum contour
//cout<<x<<’\t’<<’\t’<<y<<endl;
//file<<y<<’\t’<<’\t’<<x<<endl;
cout<<y<<’\t’<<’\t’<<f(x,y,z)<<endl;
file<<y<<’\t’<<’\t’<<f(x,y,z)<<endl;

}

}break;

default:{cout<<"No file written"<<endl;}
}

return O;

3

//function to be studied

double f(double x,double y, double z)

{

int const D=4; int const r=2*(D-1); int const RO=r-1; int const Rl=r-2;
int const R2=r-3;

double L;

//Definition of variables

double wl=bessi(2,2*x)/bessil(2%*x);
double w2=4-6*wl/x;

double V3=bessi(3,2*x)/bessil(2x*x);
double V4=bessi(4,2*x)/bessil(2*x);
double w3=4*(V4+wl);

double V5=bessi(5,2*x)/bessil(2*x);
double w4=5*xV5+3*w2-1;

double x1=bessi(2,2*y)/bessil(2xy);
double x2=4-6*x1/y;

double V3K=bessi(3,2xy)/bessil(2xy);
double V4K=bessi(4,2*y)/bessil(2x*y);
double x3=4x(V4K+x1);
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double VBK=bessi(5,2*y)/bessil(2*y);
double x4=5*%VbHK+3*x2-1;

//Derivatives of x1 and wl

double dwl=0.5*(w2-4*wlxwl);

double ddwl=0.5%(w3-6*wl*w2+16xwlxwl*xwl) ;

double dddwl=0.5% (w4-8*wl*w3-3*w2*w2+48*wl*wl*w2-96*pow(wl,4));
double dw2=w3-2*wl*w2;

double dx1=0.5*(x2-4*x1*x1);

double ddx1=0.5%(x3-6*x1*x2+16xx1*x1*x1) ;

double dddx1=0.5% (x4-8*x1*x3-3*x2*x2+48*x1*x1*x2-96*pow(x1,4));
double dx2=x3-2*%x1*x2;

double ddx2=x4-2*x1*x3-2*dx1*x2-2*x1*dx2;

//Non-connected diargams
//A. Diagrams including line
double LOpl=2*x1*x1;

double Llpl=wlxwlxxlx*xx1xx2;

double L2p1=0.5%pow(wl,4)*x1*x1*w2*x2;

double L2p2=x1*(2xx1+(x3-2%x1)*V3K*V3*V3) ;

double L2p3=pow(wl,4)*pow(xl,3)*x3;

double L2p4=0.5%pow(wl,4)*x1*x1*x2*x2;

double L2pb=L2p4;

double L2p6=0.5*x1*x1* (V3*V3*x2*x2+(1-V3*V3)* (1+3*xV3K*V3K)) ;

double L3p1=0.5*%wl*x1*x1*xx2% (2*wl+(w3-2%wl)*V3*V3*V3);

double L3p2=0.25*pow(wl,B)*x1*x1*w2*w2*x2;

double L3p3=L3p2;

double L3p4=0.5%pow(wl,7)*x1*x1*x2*w3;

double L3p5=pow(wl,3)*x1*(4xwl*xl+(w3-2%wl)*(x3-2*%x1)*V3*V3K/3.0);
double L3p6=0.5%pow(wl,6)*pow(xl,3)*w2*x3;

double L3p7=pow(wl,4)*pow(xl,3)*((1+V3)*V3*x3+(1-V3)*(1-V3)*x1);
double L3p8=0.5*pow(wl,4)*x1*x1*x2x ((1+V3)*V3*x2+0.5%(1-V3)*(1-V3));
double L3p9=0.25%pow(wl,4)*pow(x1l,4)*w2*w2*x2;

double L3p10=0.25*pow(wl,6)*x1*x1*w2*x2*x2;

double L3p11=L3p10;

double L3p12=0.25*pow(wl,4)*x1*x1* (w2xx2* (2+V3*V3K+V3+V3K)+

(1-V3) * (1-V3K) * (1+3*V3*V3K) ) ;

double L3p13=L3p10;

double L3pl4=pow(wl,3)*xl*x1*((w3-2%wl)* (x2*x2-1-3*%V3K*V3K)*V3/6.0+
wlx (1+3%V3K*V3K) ) ;
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double

L3p15=x1* (2*xwl*wl*x1*x2+(x4-2%x2)* (0.25*%w3-wl)* (0.25*%w3-wl)*

(0.25%x3-x1)) ;

double
double
double
double
double
double
double
double
double
double
double

L3pl6=wlxwl*x1*x1*(x2+(x4-x2)*V3*V3*V3K) ;
L3p17=wil*wl*x1*kx1* (4d*x1xx1+(x3-2%x1)* (x3-2%x1) *V3%*V3/3.);
L3p18=0.5*wl*xwl*x1*xx2* (2*xx1+(x3-2xx1) *V3*V3*V3K) ;
L3p19=0.5%pow(wl,6) *pow(x1,3) *x2*x3;
L3p20=pow(wl,6)*pow(xl,4)*x4;

L3p21=L3p19;

L3p22=0.5*wl*xwl*x1*xx2* (2*xx1+(x3-2%x1) *V3*V3*V3K) ;
L3p23=0.25*pow (wl,6) *x1*x1*x2*x2%*x2;

L3p24=L3p19;

L3p25=L3p23;

L3p26=x1%* ((x3-2%x1) *V3K* (V3K+1) * (wl*wl+2x (0.25*xw3-wl)*(0.25%w3-wl))/3.0+

wlkxwlxx1* (1+4*%V3K-V3K*V3K)+0.5%V3K* (V3K-1)* ((2*xwl*wl+(0.25%xw3-wl) *(0.25%w3-wl) ) *
(x3+4%x1)/3.0-4*wl*xwi*xx1));

double
double
double

L3p27=0.5*%wl*wl*x1*xx1*xx1* (x2*x3*xV3*V3+(1-V3*V3) * (2*x1+(x3-2%x1) *V3K) ) ;
L3p28=0.2b*wl*wl*x1*kx1*kx2* (x2*x2*V3*V3+(1-V3*V3) * (1+3*V3K*V3K)) ;
L3p29=0.25*wl*wl*pow(x1,4) *x2*x2* (1+3xV3*V3) ;

//B. Diagrams not including line

double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double

D1p1=2*pow(wl,4);

D1p2=2x*wlxwl*x1*x1;

D2p1=1+3*pow(V3,4);

D2p2=1+3*V3*V3*xV3K*V3K;

D2p3=pow (w1, 6) *w2;

D2p4=pow (wl,4)*x1*x1%x2;

D2p5=pow (wl,4)*x1*x1*w2;

D2p6=pow (x1,4)* (1+3*%V3%xV3) ;

D3pl=x1*x1*wl* ((w3-2*wl)*pow(V3,3)+2*wl);
D3p2=0.5*x1*x1*pow(wl,6) *w2*w2;

D3p3=D3p2;

D3p4=x1*x1*pow(wl,7)*w3;

D3p5=wilxwl*wl* ((w3-2*wl)*V3*V3K*V3K+2*wl) ;
D3p6=0.5*x1*x1*pow(wl,6)*x2*w2;
D3p7=x1*x1*pow(wl,4) * (3*V3*V3K* (V3+1)+1.5%xV3%V3+0.5) ;
D3p8=0.5*pow(x1,4) *pow (wl,4) *w2*w2;

D3p9=pow (x1,4) *wi*wl*wl* ((w3-2%wl)*V3+2*wl) ;

D3p10=4x* ((0.25*%w3-wl)* (0.25*%w3-wl) * (0.256%xx3-x1) *(0.25*%x3-x1) +wl*wl*x1*x1);
D3pli=x1*wl*wl*((x3-2%x1)*V3*xV3*V3K+2*x1) ;
D3p12=x1*x1*x1*pow(wl,6)*x3;
D3p13=0.5*x1*x1*pow(wl,6)*x2*x2;

D3p14=2*x1*x1* (2*V3K*V3K* (0.25*w3-wl) * (0.25*%w3-wl) +(V3K*V3K+1) *wl*wl) ;
D3p15=0.5%pow(x1,4) *wl*wl*x2* (3*xV3*V3+1) ;
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//Connected diagrams
double LOplc=2*x1%*x1;
double Llplc=2*xlx*x1*wl*wl*xdxl;

double L2plc=2xx1*x1*pow(wl,4)*dxl*dwl;

double L2p2c=L2p2-L0pl1*D2p2-2*L1p1*D1p2+2*xL0pl1*D1p2*D1p2;
double L2p3c=2*x1*x1*x1*pow(wl,4)*ddx1;

double L2p4c=2*x1xx1*pow(wl,4)*dx1*dxl;

double L2pbc=L2p4c;

double L2p6c=L2p6-LOp1*D2p6-2*L1p1*D1p2+2*xLO0p1*D1p2*D1p2;

double L3plc=L3pl1-LOpl1*D3pl1-2*L2p1*D1p1+LOpl1*D1p2*D2p1-L1pl1*D2p1+2xL0Op1*D1p1*D2p5+
2*%L1p1*D1p1*D1p1-2*xLOp1*D1p2*D1pl*D1ipl;

double L3p2c=2*x1*x1*pow(wl,6)*dxl*dwl*dwl;

double L3p3c=2x*x1*x1*pow(wl,6)*dxl*dwl*dwl;

double L3p4c=2xx1xx1*pow(wl,7)*dxl*ddwl;

double L3pbc=L3p5-LOpl1*D3p5-L2p2*D1p1-2*xL2p1*D1p2-2*%L1pl1*D2p5+4*xL1p1*D1p2*xDipl+
LOp1*D1p1*D2p2+4*L0Op1*D2p5*D1p2-4*L0Op1*D1p2*D1p2*Dipl;

double L3p6c=2*x1*x1*x1*pow(wl,6)*ddxl*dwl;

double L3p7c=L3p7-LOpl*D3p7-2*L2p1*D1p2-L2p3*D1pl1-2*L1pl1*D2p5+4*L1p1*xD1p2*xDipl+
LOp1*D2p4*D1p1+4*L0Op1*D2p5*D1p2-4*L0Op1*D1p1*D1p2*D1p2;

double L3p8c=L3p8-LOpl1*D3p7-L2p1*D1p2-L2p4*D1p1+2*xL0p1*D2p5*xD1p2+2*L1p1*D1ipl1*Dip2+
LOp1*D2p4*D1p1-2*LOp1*D1p2*D1p2*D1pl1-L1p1*D2p5;

double L3p9c=2*pow(x1,4)*pow(wl,4)*dxl*dwlxdwl;

double L3pl10c=2*x1*x1*pow(wl,6)*dxl*dx1*dwl;

double L3plic=2*x1*x1*pow(wl,6)*dxl*dx1*dwl;

double L3p12c=L3p12-LOp1*D3p8-2*L2p1*D1p2-L2p5*D1p1-2%L1p1*D2p5+4*L1p1*xD1p2*xDipl+
4xL0p1*D1p2xD2p5-3*LO0p1*D1p2*D1p2*D1p1;

double L3p13c=2*x1*x1*pow(wl,6)*dx1*dx1*dwl;

double L3p14c=L3p14-LOpl1*D3p9-L2p6*D1p1-2*xL2p1*D1p2-2*%L1pl*D2p5+L0Op1*D2p6*xD1ipl+
4xL1p1*D1p2*D1p1+4*L0Op1*D2p5+D1p2-4*L0p1*D1p2*xD1p2*Dipl;

double L3p15c=L3p15-LOp1*D3p10-3*L2p2*D1p2-3*L1p1*D2p2+6*L1pl1*D1p2*D1ip2+
6*L0p1*D2p2*D1p2-6*LOp1*D1p2*D1p2*D1p2;

double L3p16c=L3p16-LOpl1*D3pll1-L2p2*D1p2-2*L2p3*D1p2-L1pl*D2p2-2*L1p1*D2p4+
6*L1p1*D1p2*D1p2+4*L0p1*D2p4*D1p2+2*L0p1*D2p2*D1p2-6*LO0pl*D1p2*D1p2*D1p2;

double L3p17c=L3pl17-LOp1*D3pl11-L2p2*D1p2-2*L2p4*D1p2-2*xL1p1*D2p4+L0Op1*D2p2*D1p2+
4xL1p1*D1p2*D1p2+4*L0p1*D2p4*D1p2-4*L0Op1*D1p2*D1p2*D1p2;

double L3p18c=L3p18-LOpl1*D3pl11-2*xL2p4*D1p2+L0pl*D2p2*D1p2-L1pl1*D2p2+
2xL0p1*D2p4*D1p2+2*xL1p1xD1p2+D1p2-2*L0p1*D1p2*D1p2*D1p2;

double L3p19c=2*x1*x1*x1*pow(wl,6)*dxl*ddx1;

double L3p20c=2*pow(x1,4)*pow(wl,6)*dddx1;

double L3p21c=2*x1*x1*x1*pow(wl,6)*ddx1*dx1;

double L3p22c=L3p22-L2p2*D1p2-2*L2p5*D1p2+L0p1*D2p2*D1p2+4*L1p1*D1p2*D1p2-
L1p1*D2p2-2*L0p1*D1p2*D1p2*D1p2;

double L3p23c=2*x1*x1*pow(wl,6)*dx1*dx1*dx1;
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double L3p24c=2*x1*x1*x1*pow(wl,6)*ddx1*dx1;

double L3p25c=2*x1*x1*pow(wl,6)*dxl*dx1*dxl;

double L3p26c=L3p26-LOpl1*D3p14-L2p2*D1p2-2*L2p6*D1p2-2*xL1p1*D2p6-L1p1*D2p2+
6*L1p1*D1p2*D1p2+4*LOp1*D2p6*D1p2+2*LO0p1*D2p2*D1p2-6*L0p1*D1p2*xD1p2*D1p2;

double L3p27c=L3p27-LOpl1*D3p15-L2p6*D1p2-L2p3*D1p2-L2p5*D1p2-L1p1*xD2p6-L1pl1*D2p4+
5xL1p1*D1p2*D1p2+2*xL0p1*D2p6+D1p2+2*L0p1*D2p4*D1p2-4*LO0pl*D1p2*D1p2*D1p2;

double L3p28c=L3p28-LO0p1*D3p15-L2p6*D1p2-L2p4*D1p2+2*L1pl1*D1p2*D1p2-L1p1*D2p4+
LOp1*D2p6*D1p2+2*L0p1*D2p4+*D1p2-2*xLOp1*D1p2*D1p2*D1p2;

double L3p29c=L3p29-LO0pl1*D3p15-L2p4*D1p2+L1p1*D1p2*D1p2+LO0pl1*D2p6xD1p2+
LOp1*D2p4*D1p2-L1p1*D2p6-LOpl1*D1p2*D1p2*D1p2;

//Derivatives of the connected diagrams
double d1KLOplc=4*x1*dx1;

double d2KLOplc=4*(dxl*dx1l+x1*ddxl);
double d3KLOplc=4*(3*dx1*ddx1+x1*dddx1);

double d1JL1plc=4*wlxdwl*x1l*xx1*dx1;

double d1KL1plc=2*wl*wl*x1*(2*dx1*dxl+x1*ddxl);

double d2JL1plc=4xx1*x1*dx1*(dwl*dwl+wl*ddwl);

double d2KL1plc=2*wl*wl*(2*dx1*dxl*dxl1+6*x1*dxl*ddx1+x1*x1*dddx1);
double d1Jd1KL1plc=4x*wl*dwl*x1x*(2*dx1*dxl+x1*ddx1);

double d1JL2plc=2x*x1*x1*dx1*(pow(wl,4)*ddwl+d*wl*wl*wlxdwl*dwl) ;
double d1KL2plc=2+*pow(wl,4)*dwlx(xl*x1*xddx1+2*x1*dx1*dx1);

double d1JL2p2c=2xV3*dw2*V3K*x1*dx2/3.0-32*wl*wl*wl*dwl*pow(x1,4)*dx1;
double d1KL2p2c=V3*V3*(x1*dx2*dx2/3.0+V3K*dx1*dx2+V3K*x1*ddx2)-8*pow(wl,4)
*x1kx1*x1* (4*dx1*xdx1+x1*ddx1) ;

double d1JL2p3c=8*wl*wl*wl*dwl*xl*xl*xl*ddxl;

double d1KL2p3c=2*pow(wl,4)*(3*x1*x1*dx1*ddxl+x1*x1*x1*dddx1) ;

double d1JL2p4c=8*wl*wl*wlxdwl*xl*xl*dxl*dx1;

double d1KL2p4c=2xpow(wl,4)*(2*xx1*dxl*dx1*dx1+2*x1*xx1*dx1*ddx1) ;
double d1JL2pbc=d1JL2p4c;

double d1KL2pbc=d1KL2p4c;

double d1JL2p6c=x1*x1*(2%V3*dw2* (V3K*V3K+V3K-2*pow(x1,4))-
32xwlswlxwl*dwl*xl*x1*xdx1) ;

double d1KL2p6c=2*x1*dx1* (3*xV3*V3* (V3K*V3K+V3K-2*pow(x1,4))

+0.5% (1+3*%V3K*V3K-4*pow (x1,4) ) -8*pow(wl,4) *x1*x1*xdx1)+
x1#x1x (V3%V3* ((2+V3K+1) *dx2-24*x1*x1*x1*dx1) +V3K*dx2-
8xx1xx1xx1*dx1-8*pow (wl,4) *x1* (x1*ddx1+2xdx1*dx1)) ;

//Expansion coefficients

double LO=0.5*L0Oplc;

double L1=0.5%(-y*d1KLOplc+0.5*z*2xr*L1iplc);

double L2=0.25% (y*y*d2KLOplc-z*2*r*(x*d1JL1plc+
y*d1KL1plc)+0.25%z*z* (8*r*R1*L2plc+2*r*L2p2c+
2xr*RO*L2p3c+4*r*RO*L2p4c+2*xr*RO*L2p5c+2*r*L2p6c) ) ;
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double L3=(-y*y*y*d3KLOplc+1l.5*z*2xr* (x*x*xd2JL1plc+2*x*y*d1Jd1KL1plc+
y*y*d2KL1plc) -0.75xz*z* (8*xr*R1* (x*d1JL2plc+y*d1KL2plc)+

2*r* (x*d1JL2p2c+y*d1KL2p2c) +2*r*RO* (x*xd1JL2p3c+y*d1KL2p3c) +
4xr*RO* (x*d1JL2p4c+y*d1KL2p4c) +2*xr*RO* (x*d1JL2p5c+y*d1KL2p5c) +
2xr* (x*d1JL2p6c+y*d1KL2p6c) ) +0. 125%z*z*xz* (12*xr*R1*L3plc+
12xr*R1*R1*L3p2c+72*r*R1*R2*L3p3c+12*xr*R1*¥R2*L3p4c+
12xr*R1*L3pbc+24*r*R1*xR1*L3p6c+12*xr*R1*xL3p7c+24*r*R1*L3p8c+
72*r*R1*L3p9c+24*r*xR1*R1*L3p10c+24*r*R1*¥R1*xL3plic+
12xr*R1*xL3p12c+24*r*R1*R1*xL3p13c+12*xr*R1*L3pl4c+2*xr*xL3plbc+
6*r*RO*L3p16c+6*r*RO*L3p17c+6*r*RO*L3p18c+6*r*RO*R1*L3p19c+
2*xr*RO*R1*L3p20c+6*r*RO*R1*L3p21c+6*r*RO*L3p22c+
12*xr*RO*RO*L3p23c+12*r*RO*RO*L3p24c+12*xr*RO*RO*L3p25c+
6*r*L3p26c+12*r*RO*L3p27c+12*r*RO*L3p28c+12*r*R0O*L3p29c))/12.0;
L=LO+L1+L2+L3;

return L;

b

//first derivative of f(x,y) with respect to x
double f_derivative(double x, double y, double dx)
{

return (f(x+dx,y,x)-f(x-dx,y,x))/(2.0%*dx);

}

double root(double x1, double x2, double f1, double f2, int &depth,
double y, double dx)

//Finds a root of f_derivative(x,y,dx)=0 using bisection for fixed y and dx
//Assumes that x2>=x1 and f1*f2<0.0 (D.M. cAPPER, Introduction to c++
//for scientists, engineers and mathematicians)

{

const int max_depth=50;

const double x_limit=1e-5;

double estimated_root;

double x_mid=0.5%(x1+x2);

if (x2-x1<=x_limit) {

//cout<<"Root found at recursion depth="<<depth<<"\n";
estimated_root=x_mid;

}

else if (++depth>max_depth){

COout<<"WARNING: maximum limit of "<<max_depth<<

" bisections reached"<<"\n";

estimated_root=x_mid;

}

else {

double f_mid=f_derivative(x_mid, y, dx);

if (f_mid==0.0) {

//Zero at x_mid.

estimated_root=x_mid;
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}

else if (f_derivative(xl, y, dx)*f_mid<0.0) {

//Zero in first segment.

estimated_root=root(x1l, x_mid, f1, f_mid, depth, y, dx);
}

else {

//Zero in second segment

estimated_root=root(x_mid, x2, f_mid, f2, depth, y, dx);
+

}

return estimated_root;

double find_root(double x1, double x2,int &depth, double y, double dx)
{

double fi1=f_derivative(xl, y, dx);

double f2=f_derivative(x2, y, dx);

if (£1x£2>0.0) {

cout<<"Error in find_root(): "<<"end-points have same sign\n";
//exit (EXIT_FAILURE) ;

return 100;

}

if (x2-x1>0.0)

return root(x1l, x2, f1, f2, depth, y, dx);

else

return root(x2, x1, f2, f1, depth, y, dx);

}

//Factorial function
//John Papadimitriou (12/12/1999)

#include <math.h>
double factorial(int);

//factorial function
double factorial(int n)

{

int i;

double f=0;
for(i=1;i<=n;i++)
{
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f+=log(i);
}

return exp(f);

}

//Returns Modified Bessel function of order zero
//John Papadimitriou 19/01/2000
#include <math.h>

double bessiO(double x)
{

double ans=0;

int n;

int const N=90;

for (n=0;n<=N;n++)

{

ans += pow(0.5%x,2*n)/pow(factorial(n),2);
+

return ans;

by

//Returns Modified Bessel function of order one
//John Papadimitriou 19/01/2000

#include <math.h>

double bessil(double x)
{

double ans=0;

int n;

int const N=90;

for (n=0;n<=N;n++)
{
ans += pow(0.5%x,2*n)/(factorial(n)*factorial(n+1));

}
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return O.5%x*ans;

}

#include <math.h>
#include <iostream.h>
#define ACC 100.0
#define BIGNO 1.0e10
#define BIGNI 1.0e-10

double bessi(int n, double x)

{

double bessiO(double
int j;

double bi,bim,bip,tox

X);

,ans;

if (n < 2) cout<<"Index n less than 2 in bessi";

if (x == 0.0)

return 0.0;

else {
tox=2.0/fabs(x);
bip=ans=0.0;

bi=1.0;

for (j=2*x(n+(int) sqr
bim=bip+j*tox*bi;

bip=bi;

bi=bim;

if (fabs(bi) > BIGNO)
ans *= BIGNI;

bi *= BIGNI;

bip *= BIGNI;

}

if (j == n) ans=bip;
}

ans *= bessiO(x)/bi;
return x < 0.0 && (n
+

}

#undef ACC

#undef BIGNO

#undef BIGNI

/* (C) Copr. 1986-92

t (ACC*n));j>0;j--) {

{

& 1) ? -ans : ans;

Numerical Recipes Software s>)%-OL12w-’<;w#!.
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C List of inequivalent diagrams

C.1 Inequivalent diagrams for the plaquette energy

n i Dy, Ol i (Dyi),
11 1 20l
2 1 |2 1 304 41— 4wd
2 R 2wlw]
31 13 1 AN 18wI0* — 2w + 16012
2 | 2 3R w3 (33Y — 8w]wy)
3 L1 RR, 2wy
4 SR, w(303 + 507 + I — bwiws + 16wS)
) 3(3RRO — 8R1) 2&)?&)12
41 L2 1 M+ 90 + 2 — 8w (4Nt —
18w4Q4 — 2wh) — 3(1 + 304)% — 9616
2 |3 4R w(A3 (W) — 4w]) — 18w (Wi + w Q)
—2wiw] + 48witw))
3 122 3R QS (5M + wy) + 601 + 1—
8w (Q3wh — 8wlw) — (1 + 301)2—
201 (w2 — 16wy)
4 |2 6RR, WO (But] — 8B (W2 + wiw))
5 RRlRQ 2&)%2&13”
6 |2 48R, GHOP(AQ(2A + w1)?/3+

(1 —Q)(2A% + w?)) + wiwy—

126803 — 200(3(302 — Swho!) + 1)—
4w Bwl — 8wiwE—

wiwy(1 + 3QY) + 32wi?)
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7 6(3RRy — 8R;) W (2w /3 — 16wiw?)
s |2 12(3RRy — 8Ry) wiw) (3wl — 8wiwy)
9 96 R? W) (D + 1wh — 2wiw) — 16w3w?)
10 48Ry (R2 + 4R, + 2R2) 2w wiw]
11 48R, OB+ 1)% + (3022 +1)%/4—
120103 — 2wi(2(302 — 8wiw] )+
302 — 8wiw) + 1) — 8wlwow — dwlws+
32wi0%)
12 192R? WW (3023 +9/202 4+ 1/2 — bwow! + 16w9)
13
12(2Ry + R1 + 2Ry Ry) ((21(24 + 2403 + 1802 + 1) /4—
24w1 — 32wiw] — 16w%)
14 96(R3 — 2R? — Ry) 200w
15
AS(9R3 — 14R2 + 19Ry — 7) 2wl0wf
R,=2d—-3—n,R=14R,.
Q= ( —1)/3,A = (w3 — 4wy) /4, M = (wg — 3wy + 1)/5.
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C.2 Inequivalent diagrams for the Polyakov line

n i Ln,i Qg <Ln,i>c
0 1 1 2
1 1 2r 28202
2 1 8rR; 2&kwigiw]
2 —_—
2 2r & (302EZ — 8wigds)

3 2rRy 2&wiey
4 4rRy 283wiER?
5 2rRy 2&wie?
6 2 EBPE(E+1)+ (382 +1)/2—

261 (302 + 1) — 8uwi€ie]]

20



10

11

12TR1

12rR?

72TR1 RQ

127”R1R2

12TR1

24r R?

127"R1

24TR1

727"R1

24r R?

24r R?

§161w1 (3P — Buwiwh)

RSS!

6¢2, 12¢1
2wiTwrE)

2wl EFulE]

S (BQNVEE — 16wiw| &3¢

260 wfwiEy

P32 + 1)E — 2wi8) — 16wig1&jwi]

E6 W30+ 1)Z 4 (302 +1)/2 — 2w, — 822

26 wiwE)

2wiEiwiEr?

2wiEtwi e

o1



12

13

14

15

16

17

18

19

20

21

12TR1

24r R?

127"R1

2r

67 Ro

67’R0

67 Ro

67“ROR1

QTRO Rl

6TROR1

W wako (29: —|— Q+5)/4+1 -1 -

4w1§1w252 Wi — wigg+
16wiET (wils + Ewa) — 48&TwT]

12
2<*’1 1W1 1

W30 (=

+E2 - 26) — 16wiw| Y]

2)(1 + 3032) /4—

G[4APAN — 18WIPGE(EE + &F) — 2wii €] + 48wiiE]]

A -
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